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Summary

H-likelihood refers to a likelihood function of both fixed parameters and ran-
dom “unobservables,” such as missing data and latent variables. The method
then typically proceeds by maximizing over the unobservables via an adjusted
profile H-likelihood, and carries out a Fisher-information-like calculation for
(predictive) variance estimation. The claimed advantage is its avoidance of
all “bad” elements of Bayesian prediction, namely the need for prior specifi-
cation and posterior integration. This talk attempts to provide an in-depth
look into one of the most intriguing mysteries of modern statistics: why have
the proponents of the H-likelihood method (Lee and Nelder, 1996, 2001, 2005,
2009) been so convinced of its merits when almost everyone else considers it
invalid as a general method? The findings are somewhat intriguing them-
selves. On the one hand, H-likelihood turns out to be Bartlizable under easily
verifiable conditions on the marginal distribution of the unobservables, and
such conditions point to a transformation of unobservables that makes it pos-
sible to interpret one predictive distribution of the unobservables from three
perspectives: Bayesian, Fiducial and Frequentist. On the other hand, the
hope for such a Holy Grail in general is diminished by the fact that the log
H-likelihood surface cannot generally be summarized quadratically due to the
lack of accumulation of information for unobservables, which seems to be the
Achilles’ Heel of the H-likelihood method.
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1. WHAT IS H-LIKELIHOOD?

In order to answer the question in the article title, one first needs to answer the
question in the section title above. Among several hundreds of attendees of Valencia
9, few raised their hands when I posed the latter question at the beginning of my
talk. Of course I was not trying to identify who had read my talk abstract (same
as this article’s abstract), but rather to demonstrate that H-likelihood is not a well
understood or even well-known notion.

There is a good reason for this lack of general recognition. Technically, the
H-likelihood is very easy to define and understand. As my talk was based on my
discussion (Meng, 2009a) of Lee and Nelder (2009), I shall follow the notation there
(and only repeat its essence in this sequel). Let y denote our observation, v be
any random “unobservable” such as missing data or latent variables that we want
to or need to include in our model, and fθ(y, v) be the joint probability distribu-
tion/density of {y, v}, where θ is the model parameter. The H-loglikelihoodthen is
defined as

h(θ, v; y) = log fθ(y, v). (1)

In other words, the only difference between an H-likelihood and an ordinary likeli-
hood (see below) is that the former will include any “unobservables” also as a part
of the argument of the likelihood function.

Most of us who have taken a basic course in parametric statistical inference
may recall how our teachers emphasized that all “unobservables,” other than the
parameter θ, must be integrated out before forming a likelihood function (and before
taking the log). That is, in contrast to (1), the ordinary log-likelihood function of θ
is given by

`(θ; y) ≡ log fθ(y) = log

∫
fθ(y, v)µ(dv), (2)

where the baseline measure µ depends on the problem at hand. Some of us surely
had lost points on a homework or on an exam for accidently having used (1) instead
of following the well accepted definition (2) (but see Bayarri, DeGroot and Kadane,
1988 and Berger, Liseo and Wolpert, 1999, for discussions on the lack of unique
definition of a likelihood function in general).

I effectively did, on an exam at Fudan University in late 1970s when I took
my first course in statistics. Had the “Bible” on the likelihood principle, Berger
and Wolpert (1988), been available then and had my teacher read it, he might
have given me extra points instead of deducting some. On page 21.2, Berger and
Wolpert (1988) explicitly stress that the argument of a likelihood function should
include “all unknown variables and parameters that are relevant to the statistical
problem.” (Emphasis is original.) They even went on to separate unobservable vari-
ables of interest from nuisance unobservable variables, just as we specify parameters
of interest and nuisance parameters (see also Berger, Liseo and Wolpert, 1999).

Despite Berger and Wolpert’s (1988) emphasis, few would be surprised to see
homework or exam points continuously taken away if a student adopts (1) in place
of (2). Indeed, I would not be reluctant to do the same to my students if they
repeat what I did on my first statistics exam, unless they justify properly what they
would do with (1). As I argued in Meng (2009a), there is nothing wrong with (1)
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as a definition. The central reason for its lack of general recognition is that there
has not been well established (non-Bayesian) methods and theory, with appreciable
generality, for making valid inference based on (1). Rather, there are an array of
examples in the literature, some of which were reviewed in Lee and Nelder (2009)
and its discussions (by Louis, Molenberghs et. al., and myself), that demonstrate
the kind of erroneous results from applying the methods established for (2) to (1).
For example, maximizing over both θ and v often leads to an inconsistent estimator
for θ and meaningless prediction for v.

For Bayesians, (1) is merely the log of the joint posterior of θ and v under
constant prior on θ (up to a normalizing constant), and hence there is no need of
a separate principle or justification. However, some researchers have been making
persistent attempts to establish a framework for drawing valid inferences based
on (1) by generalizing the standard likelihood methods such as MLE and profile
likelihood that were designed for (2). Lee and Nelder (2009) appears to be the
latest installment in this pursuit. The study I conducted in preparing Meng (2009a)
convinced me that this pursuit would likely be an indefinite one, and this sequel
provides additional reasons for my conviction. This sequel also makes links to several
highly relevant articles in the literature, which unfortunately I was not aware of at
the time of writing Meng (2009a).

2. OPTIMIZATION OR INTEGRATION?

At the heart of the matter is an age-old but critical question: how should we
“marginalize” out nuisance quantities in our inference? I put “marginalize” in quo-
tation marks because the term marginalization has different meanings for Bayesians
and for likelihoodists.

For example, whereas mathematically a likelihood function is a (possibly un-
normalized) posterior density or a probability function under the constant prior, a
“marginal likelihood” is not necessarily a special case of “marginal posterior” in the
same sense or in any sense. The meaning of the term “marginal posterior” has lit-
tle ambiguity, but the term “marginal likelihood” has been used in the literature to
mean very different quantities. When it is used as a synonym for integrated likelihood
(Kalbfleisch and Sprott, 1970, 1974; Berger, Liseo and Wolpert, 1999), its use is con-
sistent with the Bayesian meaning, namely, integrating out the nuisance parameter
in a likelihood. This includes the naming of “marginal likelihood” as “evidence”,
that is, the density/probability of the data with all parameters integrated out, as in
Bayes factor calculation (e.g., Kass and Raftery, 1995; Meng and Schilling, 2002).
However, the term “marginal likelihood” has also been used in the sense of “partial
likelihood” (Cox, 1975a), that is, when only a “marginal” part of data is used for
forming the likelihood, such as in Kalbfleisch and Sprott’s (1970) definition. In such
cases, the marginalization is done on the data space, not on the parameter space.
To add to the confusion, Lee and Nelder (2009) termed the ordinary likelihood (2)
as a marginal likelihood of the H-likelihood (1); this naming is more consistent with
the “partial likelihood” usage, as fθ(y) is a marginal distribution/density of fθ(y, v)
on the data space (including the unobservables).

Regardless of its meaning, all marginalization processes mentioned in the preced-
ing paragraph are carried out via integration, which is a probabilistic operation in the
sense that the resulting function remains to be a (un-normalized) probability density
if the parental function being marginalized is such on the joint space. In contrast,
the well-known profile likelihood method and its many “adjusted” variations (e.g.,
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Cox and Reid, 1987, 1993; Barndorff-Nielsen, 1994) achieve “marginalization” via
maximization, which is not a probabilistic operation in general because the resulting
profiled likelihood, adjusted or not, may not have any probabilistic interpretation,
on either the parameter space or the data space. This of course is a well-known
fact (e.g., Ghosh, 1988), and indeed the issue of integration verses maximization
has been discussed at length in the literature (e.g., Berger, Liseo and Wolpert, 1999;
Bjørnstad, 1999). It is therefore difficult to add anything really new. My intention
here is to emphasize that the distinction between integration and maximization, or
more generally optimization, is more blurred than what meets our eyes. The blur-
riness of course is not about the two operations mathematically, but rather about
the underlying principles that lead to their adoption as tools for marginalizing out
the nuisance quantities.

On the surface, the difference between integration and optimization is obvious,
even from the inference point of view. On the one hand, optimization has this
obvious “intuitive” appeal, which has seduced many investigators across all fields.
What can possibly be better than “optimal?” For all those occasions where I needed
to explain a statistical concept or method to a novice, explaining methods such as
least-squares fitting or the maximum likelihood estimator turns out to be among the
easiest. The person might not understand the concept of regression or likelihood at
all, but whenever I said “Let us find the best-fitting line” or “Let us seek the most
likely value”, the frequency of head nodding just went up. What could possibly be
more plausible than the parameter value that maximizes the probability/density of
the data (in the absence of an informative prior)? But on the other hand, the very
“most likely” appeal is a recipe for disasters in terms of overfitting – the lack of
probabilistic propagation of uncertainties is the culprit. Indeed, the vast majority
of the examples of the failure of MLE that I am aware of are examples where the
signal/information in the data is not strong enough to overcome the overfitting (e.g.,
due to too many parameters ); these include the well-known Neyman-Scott problem
(Neyman and Scott, 1948) and the H-likelihood examples reviewed and discussed in
Meng (2009a).

The danger of maximization was well emphasized by Berger, Liseo and Wolpert
(1999), who argued effectively the safety of using integration. It is also safer psycho-
logically because the very use of the term integration reminds us that more than one
state needs to be explicitly taken into account, in contrast to optimization which
puts all our stake on one state. Berger, Liseo and Wolpert (1999) also provided a list
of reasons why an integrated likelihood can be viewed on its own, not as a special
case of a posterior density. Nevertheless, its strong Bayesian flavor is hard to mask,
especially with its explicit use of a “weight function” for the nuisance parameter,
i.e., the conditional prior of the nuisance parameter given the parameter of inter-
est, just as with the partial Bayes framework (Cox, 1975b, McCullagh, 1990, Meng,
1994, 2009b). Perhaps because of this strong association between using integration
and Bayesian methods, those who do not wish to be associated with the Bayesian
school have tried hard to avoid using integration for eliminating nuisance quantities.
The recent literature on the H-likelihood, as represented by Lee and Nelder (1996,
2001, 2005, 2009) and Lee, Nelder and Pawitan (2006), highlights this effort.

But are their methods truly maximization-based? Initially Lee and Nelder
(1996) adopted the same MLE recipe for (1) as for (2), that is, maximizing over
both θ and v in arriving at point estimation for both θ and v, the so-called MHLE
(maximum H-likelihood estimate). After a number of discussants and authors—
see Meng (2009a) for details—pointed out that MHLE often leads to inconsistent
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or even meaningless estimators (e.g., always taking the value ∞), Lee and Nelder
(2001) adjusted their approach by adopting APHL (adjusted profile H-likelihood)
for inference about the unobservable v, with the inference for θ restored to be based
on the ordinary “marginal” likelihood as given in (2).

To see the essence of APHL, let us follow the notation of Lee and Nelder (2009),
who adopted the notation of ` = `(α, ψ) for a log likelihood, which can be either
(2) or (1), where ψ is the quantity of interest and α is the nuisance quantity —
here “quantity” can be either a fixed parameter or a random unobservable. Lee and
Nelder (2009) then presented APHL as

pα(`; ψ) =

[
`− 1

2
log det{D(`, α)/2π}

]∣∣∣∣
α=α̃

, (3)

where D(`, α) = −∂2`/∂α2 and α̃ solves ∂`/∂α = 0. Below we will replace pα(`; ψ)
with a mathematically more precise notation p`,α(ψ; y), which makes it clear that
APHL is a function of the quantity of interest ψ and data y only, but its functional
form is determined by the choice of ` and α.

Although no integration is carried out in reaching (3), Lee and Nelder (2001)
noted that “for random effects v the use of pv(`) is equivalent to integrating them
out.” (Lee and Nelder’s (2001) pα(`) is the same as Lee and Nelder’s (2009) pα(`; ψ).)
This is because the right-hand side of (3) is the first-order Laplace approximation
to log[

∫
exp{`(α, ψ)}dα] (see Reid, 1996) – the irrelevant constant 2π (for defining

likelihood) is a give-away.

Consequently, for Baysians, no additional principles or justifications are needed
because the APHL is merely a convenient approximation to the log of marginal
posterior of the quantity of interest. The writing of Lee and Nelder, in their series
of articles cited above, makes it clear that their goal is to make inference about the
unobservables without resorting to the Bayesian framework. At the same time, they
emphasized that “We dislike the use of estimation methods without a probabilistic
basis, because, for example, inferences for joint and conditional probabilities are
not possible.” (Lee and Nelder, 2009). This emphasis or desire, together with their
APHL, makes it particularly difficult to decide whether we should classify APHL
as a maximization method on its own or as an approximate integration method.
The former classification carries no probabilistic justification. The latter does, but
only when it is viewed as an approximate Bayesian method, a view that Lee and
Nelder want to avoid. The central question thus lingers: is there a non-Bayesian
but probabilistic-based principle for APHL?

3. BUT DOES IT REALLY MATTER?

From a practical point of view, some may question whether it really matters if
APHL has its own principle or it somehow relies on the Bayesian principle. The
following simple (but not toy) example illustrates that it does matter, precisely from
a practical point of view.

Let y = {y1, . . . , yn} be i.i.d. observations from an exponential distribution
with mean λ, and u = yn+1, a future realization, is our unobservable. (We use
the notation u instead of the generic v to follow the notation of Meng (2009a)
for the same example; the following discussion supplements my investigation there,
where v is reserved for the “right scale,” as further discussed below.) Our task is to
estimate λ as well as to predict yn+1. This is an extremely simple model yet it has
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many applications (e.g., in reliability testing). It is illogical to expect its general
applicability when a method cannot handle such a simple and common case. Yet
whether APHL can handle this case depends on which principle one adopts.

Specifically, it is easy to see that the H-loglikelihood(1) in this case is given by

h(λ, u; y) = −(n + 1) log λ− nȳn + u

λ
. (4)

Hence for any fixed u, it is maximized by

λ(u) =
nȳn + u

n + 1
. (5)

Consequently, the APHL of (3) for u is, using our notation (and ignoring an irrele-
vant constant term),

ph,λ(u; y) = −n log λ(u). (6)

This is a strictly monotone decreasing function of u. Hence, when it is treated as
a “log-likelihood” and maximized, it would lead to ûAPHL = 0, regardless of the
data.

In contrast, if we recognize that (6) is intended as an approximation to the log
of the marginal (predictive) posterior of u under the constant prior for λ, then we
can “recover” the posterior density as

p(u|y) ∝ exp{ph,λ(u; y)} =

[
n + 1

nȳn + u

]n

. (7)

If we let r = u/ȳn, then (7) is equivalent to setting the posterior predictive density
for r to be

p(r|y) =
n− 1

n

(
1 +

r

n

)−n

, r ≥ 0, (8)

a Pareto distribution with order n. Clearly no one would/should use its mode for
point estimation! The mean of r from (8) is n/(n − 2) when n ≥ 3, and hence the
posterior predictive mean for u = yn+1 given y is û1 = [n/(n − 2)]ȳn. This point
prediction is not perfect because of the multiplier n/(n − 2) (an issue that will be
discussed shortly), but it is certainly far more sensible than ûAPHL = 0! Note that
this imperfection is not due to the Laplace approximation, which in fact is exact in
terms of the functional form for u; the approximation is in the normalizing constant
and hence it becomes immaterial after the re-normalization, as done in (8). This
can be verified directly because integrating out λ in

p(λ, u|y) ∝ λ−(n+1) exp{−(nȳn + u)/λ}

will give the same function form as in (7). In other words, (8) is identical to the
actual posterior predictive distribution of r given y, under the constant prior on λ.

Lee and Nelder (2009) showed that the problem of ûAPHL = 0 is avoided if
one uses v = log u as the unobservable. In general, they emphasized that the
choice of the scale for unobservables “in defining the H-likelihood is important to
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guarantee the meaningfulness of the mode estimation.” This emphasis itself is an
indication that it is the integration/Bayesian principle in guidance rather than the
maximization/likelihood recipe in play because maximization is invariant to (one-
to-one) transformations, whereas integration is not and hence a choice needs to
be made. Lee and Nelder (2009) noted in particular that when normality holds
approximately, their APHL method worked well. Whereas the normality assumption
is obvious and sufficient, it is by no means necessary — one can find various examples
where treating APHL as a regular log-likelihood and maximizing it will deliver
acceptable results (at least in terms of point estimators), and yet the APHL curve
is far from normal.

In fact, for our current example, with v = log(u), the APHL curve is (see Meng,
2009a)

ph,λ(v; y) = −n log(nȳn + ev) + v. (9)

This clearly is far from being a quadratic function of v; indeed, for large v, it
behaves like −(n−1)v. Nevertheless, it is maximized at v̂ = log(ȳn)+log[n/(n−1)],
which leads to the point estimate for u as û2 = [n/(n − 1)]ȳn, almost identical to
û1 = [n/(n − 2)]ȳn, the posterior mean from (8). Note that on the v scale, if we
directly maximize the H-loglikelihood(1), we would have arrived at the “perfect”

estimator, û3 = ev̂MHLE = ȳn(= λ̂), as shown in Meng (2009a). The extra factor
n/(n − 1) in û2 is due to the adjustment in the profile loglikelihood, because the
original unadjusted profile loglikelihood is

ph,λ(v; y) = −(n + 1) log(nȳn + ev) + v, (10)

which is maximized at v̂MHLE = log(ȳn). This difference reflects the difference
between joint MHLE for v from H-likelihood, which corresponds to (10), and the
marginal MHLE for v from its marginal H-likelihood (with λ integrated out), which
corresponds to (9).

Regardless of which MHLE we are after, it is clear that the v scale is far bet-
ter than the original u scale. Mathematically speaking the reason for the scale
to matter is the Jacobian factor needed to preserve probability mass via integra-
tion/transformation. A question of both theoretical and practical interest then is if
there is any general theoretical result to guide the discovery of such scales. This led
to the Bartlization results reported in Meng (2009a).

4. BARTLIZATION: AN HEROIC EFFORT?

As reviewed in Meng (2009a), a theoretical backbone for Fisher’s ML paradigm
is the Bartlett identities, especially the first two. That is, under mild regularity
conditions, the (marginal) log-likelihood `(θ; y) of (2) satisfies

Eθ

[
∂`(θ; y)

∂θ

]
= 0, ∀ θ ∈ Θ, (11)

and

Eθ

[
∂2`(θ; y)

∂θ2

]
+ Eθ

[(
∂`(θ; y)

∂θ

) (
∂`(θ; y)

∂θ

)>]
= 0, ∀ θ ∈ Θ, (12)
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where Eθ denotes the expectation under fθ(y). The first Bartlett identity (11)
ensures that the score function, S(θ; y) ≡ ∂`(θ; y)/∂θ, is unbiased, and the second
identity (12) ensures it to be information unbiased, in the terminology of Godambe
(1960) and Lindsay (1982). That is, from the estimating equation point of view,
identity (11) is responsible for the consistency of MLE (more precisely of a root of
the score equation). Identity (12) is the key in establishing that the score function
is the optimal estimating equation, in the sense that

I−1(θ)Varθ [S(θ; y)] I−1(θ) ≤ I−1
G (θ)Varθ [G(θ; y)] I−>G (θ), ∀ θ ∈ Θ, (13)

for every G ∈ G, the class of regular (unbiased) estimating equations as defined in
Godambe (1960, 1976). Here, I(θ) is the usual expected Fisher information, and
IG(θ) is its generalization to unbiased estimating function G:

IG(θ) = Eθ

[
−∂G(θ; y)

∂θ

]
, (14)

where all expectations are with respect to fθ(y) of (2). Note unlike I(θ), IG(θ) is
not in general guaranteed to be positive semi-definite, or even be symmetric (and
of course it may not exist, just as Fisher information may not exist).

As a side note, it is interesting that Godambe (1960) did not motivate the
“sandwich” criterion in (13) from its obvious asymptotic justification, namely, its
right-hand side is the asymptotic variance of any root of G(θ; y) = 0 (under reg-
ularity conditions). Rather, it was motivated by the desire to have G as good an
estimate of its mean, that is, zero, as possible (and hence smaller Var[G(θ; y)]), and
to make G as sensitive as possible as a function of θ (and hence larger derivative,
in magnitude, with respect to θ). Perhaps this was driven by the desire to provide
a deeper insight via revealing individual ingredients of the “sandwich,” and/or the
desire to make a direct finite-sample generalization of the Cramér-Rao lower bound.

The optimality as formalized in (13) also holds more generally for conditional
score functions; see Godambe and Thompson (1974), Godambe (1976), Lindsay
(1980, 1982), and especially a comprehensive and very readable discussion paper
by Desmond (1997; incidently, John Nelder was one of the discussants). Because a
score function naturally possesses the Bartlett identities (11)-(12) and hence these
identities effectively become necessary (but by no means sufficient) conditions for
achieving optimality (13), efforts have been made throughout the literature to con-
struct estimating functions that are both unbiased and information unbiased, such as
with quasi-likelihood (e.g., McCullagh and Nelder, Chapter 9, 1989) and with profile
likelihood (e.g., McCullagh and Tibshirani, 1990). As emphasized in McCullagh and
Tibshirani (1990), identities (11) and (12) hold for regular likelihood (2) because it
permits differentiation under integration (under mild regularity conditions):

∂

∂θ
Eθ[T (θ; y)] = Eθ

[
∂T (θ; y)

∂θ
+ T (θ; y)S>(θ; y)

]
, (15)

where T (θ; y) is an arbitrary function but is differentiable with respect to θ (and all
quantities in (15) are well defined).

Clearly taking T (θ; y) = 1 leads to (11) and consequently taking T (θ; y) =
S(θ; y) yields (12). However, when we replace θ by φ = (θ, v) as required by the
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H-loglikelihood (1), (15) no longer makes sense because the unobservable v is a part
of the integration variable and θ remains to be fixed, and hence the Eθ notation
is unchanged in this replacement. Consequently, it is quite logical to suspect that
Bartlett identities will not hold in general for H-likelihood, which would be an
explanation why H-likelihood cannot be handled as a regular likelihood. It therefore
was somewhat a surprise (at least to me) that it turns out that there exist almost
trivially verifiable sufficient and necessary conditions on v such that the Bartlett
identities hold for H-likelihood, as given in Theorem 1 and Theorem 2 of Meng
(2009a). Perhaps the most surprising aspect of these results is that the required
conditions only involve the marginal distribution of the unobservable v, and hence
they can be checked (almost) irrespective of the observed-data loglikelihood (2).

In particular, as long as the density of v, fθ(v), vanishes on the boundary of
its support, the first Bartlett identity holds for the H-loglikelihooddefined in (1).

Furthermore, if f
(1)
θ (v) also vanishes on the same boundary, where f

(k)
θ (v) denotes

the k-th derivative with respect to v, then the second Bartlett identity holds as
well. And these conditions are almost necessary (see Theorem 1 of Meng, 2009a, for
the precise results, which are also illustrated in the following section). As verified
in Meng (2009a), for our exponential example, the conditions are violated for the
original scale u = yn+1 because the exponential density fθ(u) = θe−θu, u ∈ R+

does not vanish at u = 0 as long as θ = λ−1 > 0 (which always hold for 0 ≤ λ < ∞).

However, once we transform it to v = log(u), fθ(v) = θev−θev

, v ∈ R vanishes on
both v = −∞ and v = ∞, as does its derivative, for any θ > 0. The Bartlett
identities (11)-(12) therefore hold for the H-likelihood when the unobservable is
“parameterized” as v = log(yn+1).

The existence of such easily verifiable conditions for establishing the “right”
transformation for the unobservables, a process that can be termed as Bartlization
(Meng, 2009a), seems to lend some encouragement to the H-likelihood research (see
Section 6). Part of the excitement is that in this example the v scale leads to
“3-in-1.” That is, under the common default prior, the constant prior on log(θ)
(not on θ), the posterior predictive distribution, the sampling pivotal predictive
distribution (also can be viewed as a fiducial distribution), and the h-distribution
(i.e., by exponentiating AHPL, as done in (7)) for r = yn+1/ȳn are all Pareto
distribution of order n + 1, that is,

p(r|y) =
(
1 +

r

n

)−(n+1)

, r ≥ 0, (16)

as shown in Section 7 of Meng (2009a).

Such “3-in-1”, if it can be made to hold in general, of course would be a Holy
Grail, as it unifies Bayesian, frequentist and fiducial perspectives. Unfortunately,
but not surprisingly, this unification remains to be the legendary Holy Grail. Or
as Professor Ed George, the discussant at my Valencia 9 presentation, put it, “H”
stands for heroic effort, which is laudable but it also indicates potentially unsur-
mountable difficulties. Indeed, the unsurmountable difficulty of the MHLE methods
is what I labeled, in Meng (2009a), as the lack of accumulation of information for

unobservables by which I meant the following. Let φ̂ be the (joint) MHLE, and

Sh(φ; y) =
∂h(φ; y)

∂φ
and Ih(θ) = Eθ

[
−∂Sh(φ; y)

∂φ

]
(17)
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be the H-score and H-information (a.k.a. the expected Hessian information) respec-

tively. Then the usual Taylor expansion of Sh(φ̂; y)− Sh(φ; y) leads to

φ̂− φ = I−1
h (θ)Sh(φ; y) + R. (18)

If this is for the regular likelihood (2), then suitable regularity conditions would
guarantee that the corresponding remainder term R → 0 as the data size goes to
infinity (or more generally as the Fisher information goes to infinity). This, however,
cannot be made true for H-likelihood in general, regardless of whether the Bartlett
identities hold or not. This is because no matter how much data we have, we cannot,
for example, predict a future observation with certainty. The data only help us to
learn as much as possible about our model. But even if we know our model perfectly,
there is still uncertainty about a future realization, an uncertainty precisely our
model intends to capture. Therefore, even if the first term on the right-hand side
of (18) has mean zero and variance I−1

h (θ), which is a direct consequence of the

Bartlett identities, we still cannot use it to approximate the distribution of φ̂ − φ
because R may not be negligible; see Meng (2009a) for a detailed demonstration.
The following extension of that demonstration illustrates further that Bartlization
is by no means sufficient, and even within the Bartlized class of transformations,
the choice of scale can still have significant impact even asymptotically, precisely
because of the Achilles’ Heel, that is, R fails to converge to zero.

5. HOW MUCH CAN THE BARTLIZATION PROCESS HELP?

For our exponential example, let us consider a general transformation of u = yn+1

via u = B(w), a function from SB = [a, b] to [0,∞), where a and/or b can be infinity.
To simplify mathematics, we will assume B(w) is monotone increasing and its kth

order derivative B(k)(w) exists for at least k ≤ 3. Under such a setting, the marginal
density of w is given by

fλ(w) =
1

λ
exp

{
−B(w)

λ

}
B(1)(w). (19)

Theorem 1 of Meng (2009a) implies that the first Bartlett identity holds for the
corresponding H-loglikelihoodif and only if

fλ(a) = fλ(b), for all λ > 0; (20)

and given (20), the second Bartlett identity holds if and only if

f
(1)
λ (a) = f

(1)
λ (b), for all λ > 0. (21)

For a density support with infinite Lebesgue measure, the easiest way to make (20)
and (21) hold is to make all quantities there zero, i.e., “vanish on the boundary.”
This leads to requiring

B(1)(a)e−B(a)/λ = B(1)(b)e−B(b)/λ = 0, (22)

and
[
B(2)(a)− [B(1)(a)]2

λ

]
e−B(a)/λ =

[
B(2)(b)− [B(1)(b)]2

λ

]
e−B(b)/λ = 0, (23)
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for all λ ≥ 0. There are obviously infinitely many functions B(w) that satisfy these
two sets of conditions. For example, for any m ∈ (2,∞), Bm(w) = wm, w ∈ [0,∞)
satisfies both (22) and (23). This indicates that more conditions are needed to
pinpoint the “optimal” transformation, unless all of them are equivalent, at least
asymptotically. The derivation hereafter demonstrates the possibility for the former
and the impossibility of the latter.

Given a Bartlized transformation B(w) (that satisfies the aforementioned mono-
tonicity and differentiability assumptions), clearly the H-loglikelihoodis given by

h(λ, w; y) = −(n + 1) log λ− nȳn + B(w)

λ
+ log[B(1)(w)]. (24)

Consequently, the H-score equation becomes

∂h

∂λ
= −n + 1

λ
+

nȳn + B(w)

λ2
= 0,

∂h

∂w
= −B(1)(w)

λ
+

B(2)(w)

B(1)(w)
= 0.

(25)

Whether the solution(s) of (25) correspond(s) to MHLE will depend on the nature
of B(w), but one thing is clear. That is, if we want the solution of (25) for λ to be

the same as the MLE from the regular log-likelihood (2), that is λ̂MLE = ȳn, for
any data set, then the following equation must hold for B(w):

[B(1)(w)]2 = B(w)B(2)(w), ∀ w ∈ SB . (26)

This now uniquely defines B up to an affine class, because (26) is equivalent to

(noting B(w) > 0 for w > a) [log B(w)](2) = 0 for all w ∈ SB , which means
u ≡ B(w) = c1 exp{c2W}, or equivalently

w = c3 log(u) + c4, for any c3 6= 0 and c4 ∈ R. (27)

Given (27), the fact that u needs to vary from 0 to ∞ implies that SB must be
(−∞,∞). Therefore, the log scale is the unique “optimal” Bartlization (up to an
affine class) in the sense of retaining the MLE from the ordinary likelihood by
MHLE. It would be quite interesting to investigate the existence and uniqueness of
such optimal transformations more generally.

To illustrate that Bartlization process alone is not enough to determine even the
asymptotic behavior of MHLE, let us concentrate on Bm(w) = wm when m > 2. In
such cases, it is easy to derive from (25) that its (unique) solution is given by

λ̂m,n =
n

n + m−1
ȳn

ûm,n ≡ B(ŵm,n) = (1−m−1)λ̂m,n.
(28)

Hence, when n →∞, whereas λ̂m,n is consistent for λ regardless of the value of m,
ûm,n will converge to um = (1−m−1)λ. No matter how one questions the meaning
of “convergence” for unobservables, the fact that um depends on the choice of m,
which clearly is an artifact of MHLE, is at least a discomfort. This result also
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shows the problem with taking m = 1 because it leads to û1,n = 0 regardless of the
data, as we have seen before, as well as the advantage of taking m = ∞, which is
equivalent to taking the optimal transformation B(w) = ew = limm→∞(1 + w/m)m

(by changing w = u1/m to its affine equivalent w = m(u1/m − 1)).

The need for m > 2 can also be seen from the Hessian calculation. Further
differentiating (25) but with B(w) = wm yields

∂2h

∂λ2
=

n + 1

λ2
− 2

nȳn + wm

λ3
;

∂2h

∂λ∂w
=

mwm−1

λ2
;

∂2h

∂w2
= −m(m− 1)wm−2

λ
− (m− 1)w−2.

(29)

Noting that w = u1/m and hence

Eλ(wk) = Eλ(uk/m) = λk/mΓ(1 + k/m) (30)

for any k such that 1 + k/m > 0. Consequently, the expected Hessian matrix is
given by (where φ = (λ, w))

Ih(λ) = Eλ

[
−∂2h

∂φ2

]
=




n+1
λ2 −mΓ(2−1/m)

λ1+1/m

−mΓ(2−1/m)

λ1+1/m

(m−1)2Γ(1−2/m)

λ2/m


 . (31)

Hence, Ih(λ) exists and is positive definite if and only if m > 2. (Note that Ih(λ)
does exist when m = 1, but it is not non-negative definite because its second diagonal
element is zero.) Therefore in this case the condition needed for Bartlization is
actually the same for ensuring Ih(λ) > 0; how generally this phenomenon holds is
worth some investigations.

Without getting into the further details of Taylor expansion (18) and the non-
convergence of its remaining term R, we already have seen enough issues with the
choice of the scale for the unobservable even in this simplest non-trivial case. One
therefore has to wonder about the difficulties in pushing the H-likelihood methods
with reasonable generalities via the maximization route. Even if it is not impossible,
it does require heroic effort to make significant progresses, with unclear impact in
terms of both theory and practice. However, judging from my email exchanges with
Professor Nelder, it appears that he (and his co-authors) had a bigger picture in
mind in pushing the H-likelihood research. The next section, a tribute to John
Nelder, documents my reasoning for this speculation.

6. INFERENCE FUSION: AN UNREALIZED (UN-REALIZABLE?) DREAM
OF JOHN NELDER?

“At last! Someone who takes our work seriously!” This was the opening line of an
email of June 29, 2009, from Professor John Nelder, with whom I never had any
exchange, in person or in writing, prior to that correspondence. Apparently, Nelder
was pleased to see the Bartlization results reported in Meng (2009a), which was
submitted to the editor on June 24, 2009. He wrote, in the next sentence,
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“I have wanted general results for a long time, BUT we use the method
only for a particular model class (double hierarchical GLMs), as ex-
plained in our book. I am going to send you a copy of the book; please
send your full address. .... The H in H-likelihood originally stood for
‘hierarchical’ because we were thinking of hierarchical classifications,
extending the normal case as first put forward by Henderson the cattle
breeder in the 50s, but later withdrawn by him. We later found that we
could apply the method to cross-classifications, (where it works espe-
cially well) but the ‘h’ stuck. (I am very bad at finding catchy name for
these things). It is unreasonable of me to ask you to amend your con-
tribution, but I do wish you would continue our work using the model
class in the book. I look forward to hearing from you.”

This description spells out the origin of the term “H-likelihood” (I might add
that “h” for is “hierarchical” and “H” for “Henderson”!) and Nelder’s wish that this
line of work be continued. In subsequent emails, Nelder expressed strong interests
in comparing and connecting the h-distribution with Fisher’s fiducial distribution.
In particular, he speculated that the results in Barnard (1995) may help for this
purpose:

“You may know ..., that Barnard ‘solved’ the fiducial problem. i.e.,
gave conditions under which a probability can be associated with a
parameter. Fiducial inference was not Fisher’s ‘great mistake’, but
he overestimated the scope of its use. However, it may be that other
distributions may be close to satisfying Barnard’s conditions. I believe
that Fisher’s transform of the correlation coefficient may be one of this
class. ...” (July 2, 2009)

His interest in comparing and connecting the two was even more vividly described
subsequently:

“I reread the Barnard paper, which I think is a masterpiece. Have you
had time to look at it? I had a half-baked idea that perhaps fiducial
distributions, when they exist, form a way of scaling some appropriate
likelihood without the use of prior distributions. When you have had
time to read our book, I very much hope that we could write a paper
combining your insights with our formulation. Does this sound like a
good idea to You?” (July 10, 2009)

I must confess that I neither had read Barnard’s article then nor was I ready
to accept Professor Nelder’s invitation to work with him. I was of course very
flattered by his invitation, and in other circumstances I would have jumped into
such a precious opportunity of working with one of the most preeminent figures
in statistics. But I was already completely overwhelmed by my teaching, research
and administrative commitments, and that the project Nelder had in mind is not
something that could be completed over weekends, considering the attempts made
by many great minds, including Fisher, throughout history.

Nelder obviously sensed my reluctance; in one of his emails, he wrote “If I
appear to be pressurising you, it is because (1) I am naturally impatient and (2)
because I am an old man (85 in Oct.).” [Nelder’s sense of urgency was also reflected
in his conversation with Senn (2003), where he made an analogy between partial



14 X.-L. Meng

likelihood and H-likelihood: “Partial likelihood was a new kind of quantity for which
Cox didn’t give a full justification (Cox, 1972) but was later shown by other people
to have the right sort of properties. I don’t know why at the moment we have this
resistance, but I hope to get over it before I die.”] Nevertheless, he continuously
encouraged me to join him to pursue his ultimate dream, the fusion of schools of
inference. In almost every email he sent me subsequently, this dream was revisited:

“We have finally finished our rejoinder, and think we have made some
progress towards integrating the three modes of inference, Fisherian,
frequentist, and Bayesian. ... I find it quite exciting and hope we may
be able to make a synthesis.” (July 25, 2009)

“ ... I specially want to know if you think we have at least started a
fusion of the three schools of inference. ” (July 30, 2009)

“ ... Youngjo has finally finished the rejoinder for our paper and will
send you a copy. He has made a real effort to join the three schools of
inference, but there is much to be done. I do think it is a worthwhile
effort to make statistics whole.” (August 28, 2009)

“ ... It would be marvelous to find a common framework for the schools
of inference.” (October 13, 2009)

From all these writings, it became increasingly clearer to me that Nelder’s (and
possibly his co-authors’) ultimate interest is not in avoiding specifying a prior per
se, but rather in unifying different schools of inference. This is a very laudable goal,
a dream that many of us share, although our beliefs in its realizability may differ
greatly.

My reply to Nelder (on November 6, 2009) clearly reflected that we had different
expectations:

“As for my general impression of the rejoinder, my reading so far has not
generated new insights, as the central message seems to be the same one
emphasized in your original article and echoed in my discussion, that is,
the choice of scale is critical, and there is a possibility that there is one
scale that can render the same result for all three approaches. If this
can be established more generally, yes of course it is exciting. And I
agree that it is unlikely this is possible in completely generality. Indeed,
my current thinking is that the existence of such scale perhaps should
be taken as a characterization of a family of models. Once we can
get that characterization, I believe it might provide new insights into
the similarities and differences of the three schools of thoughts beyond
what we already know. I of course fully recognize that the lack of new
insight is likely due to my haphazard reading. I really wish I would
have more time to devote to this topic, as I have been very intrigued
by it. Unfortunately I seem to manage to overwhelm myself with too
many “yeses” ...”

This was in response to the email he sent to me on the same day, which contin-
ually displayed his enthusiasm for “fusing”:

“I ought not to be bothering you, but I would like to know what you
thought of our rejoinder to the discussion in our Stat. Sci. paper. The
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possibility of fusing methods of inference I find very exciting; I am sure
it will need some restriction on the model class, but this is not surprising
to me. ... Do let me know if you get to London. I have officially retired
from Imperial College, but we could still meet there.” (November 6,
2009)

Sadly, I never had and will never have a chance to meet Professor Nelder (and
to enjoy his legendary singing and piano playing; see Senn, 2003). He passed away
on August 7, 2010. I received the news right in the midst of preparing this sequel.
I felt a profound loss, more so than loss of a friend. I was given the opportunity to
meet and work with him, and I was even warned with his candid “I am an old man”,
yet all I can tell my students and grand students now is my deep regret. I will never
know how disappointed he must be upon receiving my “lack of new insight” response
above, for that was the last time I heard from him. But I hope he had forgiven my
reluctance and would have permitted me to share with the world one more time of his
never diminishing enthusiasm for our beloved subject – his devotion to statistics was
infectious and well known (e.g., Senn, 2003; Payne, 2010; Payne and Senn, 2010).
Regardless of whether we share Nelder’s enthusiasm for H-likelihood methods, just
as whether we share Fisher’s conviction to fiducial arguments, Nelder’s contribution
and commitment to statistics is a tremendous inspiration for generations to come.

Indeed, if I am lucky enough to live to 85 and still have half as much energy as
Nelder had, I promised myself that I would push future “Xiao-Li Meng”’s as hard
as he did to me. I literally would never have written Meng (2009a) or this sequel if
not for his strong belief in what he had been pursuing.

Thank you, John.
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DISCUSSION

EDWARD I. GEORGE (University of Pennsylvania, USA)

H Stands for Hopeful. In his attempt to find merit in the H-likelihood approach,
Professor Xiao-Li Meng has provided some deep insights into what is needed at
the very least if H-likelihood methods were to work. Ironically, his success only
underscores the ultimate limitations of the H-likelihood approach.

H-likelihood, proposed by Lee and Nelder in a series of papers as a potential tool
for likelihood inference, is given by h(θ, v; y) = log fθ(y, v) where y is the observed
data, θ is the unknown parameter and v is an unobserved random variable such as
a latent variable, missing variable or future realization from fθ. At first glance, it
is very tempting to treat θ and v alike, to think of h as the joint likelihood of θ
and v. After all, they are both unknown entries in the likelihood, and if we can
find enough similarities in their roles, we should be able to at least formally use the
same methods to make inference about their values. But the more and more one
tries to find similarities, the more one actually finds differences. This is the ironic
conclusion of Professor Meng’s deep insights into this problem.

The fundamental reason why likelihood methods for v based on h should not be
expected to work is that as a function of v given y, fθ(y, v) is simply not a likelihood.
Ultimately, a likelihood is a reversal of a conditional probability distribution. More
precisely, pθ(y) is a likelihood as a function of θ given y if and only if pθ(y) is a
conditional probability distribution as a function of y given θ. It is this feature that

Edward I. George is the Universal Furniture Professor of Statistics at the University of
Pennsylvania.
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allows likelihood to fit in with the consistent probability calculus that, for example,
gives rise to coherent Bayesian inference. Clearly, fθ(y, v) is not a likelihood as a
function of v given y because it is not a conditional probability distribution of y
given v.

H Stands for Heroic. In spite of this lack of appropriate motivation for H-
likelihood, Xiao-Li perseveres and in an effort to reveal its hidden potential, hero-
ically investigates the extent to which the fundamental properties of a likelihood
analysis carry over for H-likelihood. Focusing on the basic Bartlett identities, he
notes that the usual formulation of expected score and expected information under
(θ, v) does not really make sense for H-likelihood. Ultimately, this problem can be
seen as stemming from the fact noted above, that as a function of v given y, fθ(y, v)
is simply not a likelihood.

Undeterred by this observation, in Meng (2009a), Xiao-Li brilliantly observes
that hidden inside the H-likelihood is a bonafide likelihood, namely fθ(y | v), the
likelihood of v given y corresponding to the conditional distribution of y given v.
Indeed, the H-likelihood can be decomposed as h(θ, v; y) = log fθ(y | v) + log fθ(v),
the second term being the marginal distribution of v. The key then to making the
Bartlett identities hold for H-likelihood is to require conditions which would make
this marginal disappear under the Bartlett expectations. These conditions, given
in Theorem 1 and 2 of Meng (2009a), can at least in some cases be met by using
an appropriate transformation of v, a process which Xiao-Li has colorfully termed
Bartlization. Further investigation in Section 5 reveals that the determination of the
optimal transformation, if it exists, can be subtle and difficult. So there you have
it, in some cases, under a suitable transformation of v which can be difficult to find,
the H-likelihood will satisfy the Bartlett identities. This contrasts sharply with the
general appeal of likelihood methods which are typically at least straightforward.
Ironically, Xiao-Li insightful discoveries seem to underscore the limitations, rather
than the potential, of H-likelihood as a useful practical tool.

Alas, Xiao-Li goes on to show us that even if Bartlization can be obtained,
H-likelihood will still not enjoy all the appealing asymptotic properties that are
usually associated with likelihood inference. The basic problem is that information
about v does not accumulate with more data so that uncertainty about v will not
be eliminated as the number of observations on y goes to infinity. For example,

as Xiao-Li points out, in the fundamental likelihood approximation of φ̂ − φ by
I−1

h (θ)S(φ; y) in (18), the error of approximation fails to go to zero as the sample
size goes to infinity. So even with Bartlization, the inferential benefit of H-likelihood
is limited.

H Stands for Hiding the Motivation. From the Bayesian point of view, the
appropriate adjustment of fθ(y, v) for inference about θ is the marginal distribution
obtained by margining out v with respect to a distribution. Similarly for inference
about v, one would use the marginal obtained by margining out θ. This is in
fact exactly the sensible motivation for the APHL (adjusted profile H-likelihood)
given by (3), which can easily be seen as a first order Laplace approximation to the
marginal obtained by integrating out with respect to a uniform distribution. So, the
recommendation by Lee and Nelder (2001) to use maximized APHL rather than raw
H-likelihood for estimation is at least reasonable. Unfortunately, Lee and Nelder in
their seeming obsession to avoid crediting the Bayesian paradigm, promote APHL as
a likelihood method, setting Xiao-Li off on his valiant investigation of the extent to
which this might be justified. To my mind, here is a place where Occam’s Razor can
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help us choose the best motivation for APHL. Compared to a likelihood motivation,
I choose the Bayesian motivation because it is vastly simpler and transparent.

Let me conclude by congratulating Xiao-Li for a fascinating investigation that
provides tremendous insight into the inner workings of likelihood methods. As fur-
ther food for thought, I would be interested in Xiao-Li’s answers to the following
questions: (i) Does the success of the transformation v = log yn+1 in your exponen-
tial example in Section 3 fundamentally have to do with transformation to a location
family for which an implicit uniform prior is working? (ii) In particular, what role
does invariance play in these methods? (iii) Can decision theory approaches shed
further light on these methods? (iv) Why are Lee and Nelder so invested in avoiding
a prior on θ?

ANTHONY F. DESMOND (University of Guelph, Ontario, Canada) and
CHANGCHUN XIE (McMaster University, Ontario, Canada)

Introduction. One of us (Desmond) had the great pleasure of attending Professor
Meng’s presentation at Valencia 9. We greatly appreciated the clarity and wit with
which Professor Meng presented his paper. It prompted us to read the original
paper of Lee and Nelder (2009) of which Professor Meng was a discussant. Having
experimented with the use of H-likelihood in our own work in biostatistics (Xie et al.,
2008), we appreciate the opportunity to comment on this stimulating presentation,
which raises interesting and deep foundational issues about the nature of likelihood
and predictive inference. In our discussion, we would like to ask some questions,
motivated to some extent by recollections of the oral presentation at Valencia 9, and
also by our subsequent reading of Meng (2009a).

Issue of terminology. One issue that is important, and is often raised, is the
issue of terminology. For example should we talk about ‘estimation’ or ‘prediction’
of unobservables. When it comes to inference for random effects or latent variables
we prefer the term ‘estimation’, as do Lee et al (2006); see also Robinson (1991).
On the other hand Lee and Nelder (2009) use the term unobservable for both ran-
dom effects and future observations. Meng (2009a) appears to agree, stating that “
‘unobservables’ is semantically more appropriate”. We wonder about this and feel
that this is not merely a semantic issue. In our view, there is a fundamental logi-
cal difference between ‘unobservable’ random effects and future observations. The
latter are at least potentially observable. The same could be said of missing data.
This leads us to ask whether, perhaps, the concept of H-likelihood might be more
appropriate for one, but not the other? Related to this is the phenomenon well
described by Professor Meng that information does not accumulate for unobserv-
ables such as random effects. The situation seems logically somewhat different for
future observations, in that past data surely increases information for prediction of
future observations. For example, standard textbook prediction intervals for future
observations based on samples from normal distributions for both homogeneous and
regression situations get more precise (narrower) as n or (X ′X)−1 increases. Finally,
unknown parameters are themselves unobservable, but Lee and Nelder clearly wish
to distinguish them from, say, random effects.

Fiducial prediction. H is for history! We were most intrigued by Professor
Meng’s discussion in (6.3) on fiducial ideas and predictive probability as this led
us to revisit some of the writings of R. A. Fisher. There is at least formally a
strong connection between Professor Meng’s pivotal predictive distribution (7.14)
of Meng (2009a) and a thought provoking section in Fisher (1956), Chapter V,
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entitled ‘Fiducial prediction’. Fisher is here concerned with a situation in which
one observes a random sample N1 of exponentially distributed inter-emission times
of a radioactive source with rate θ. From the sufficient statistic, the sum of the
inter-emission times X1 =

∑N1
i=1 yi1, yi1 ∼ exp(θ). Fisher wishes to derive a fiducial

distribution of the sum of N2 future times X2 =
∑N2

i=1 yi2, yi2 ∼ exp(θ). He has
previously, in chapter 3, used this example to illustrate the fiducial argument for
the unknown parameter θ based only on the observed sample. Fisher considers
the ratio of X2 to X1, which is a predictive pivot (although this is not Fisher’s
terminology) for X2 distributed independently of θ and obtains, what he refers to
as the ‘distribution of X2 given X1’ given by his expression (70). With N1 = n,
N2 = 1 and, converting to Professor Meng’s notation, this becomes

f(yn+1|ȳn) =
n(nȳn)n

(nȳn + yn+1)n+1
, 0 < yn+1 < ∞.

Transforming to r = yn+1/ȳn, Fisher’s (70) leads to

f(r|ȳn) = (1 +
r

n
)−(n+1), 0 < r < ∞,

which is the same as (7.14) of Meng (2009a). Fisher continues stating that: “With-
out discussing the possible values of the parameter θ, therefore, the exact probability
of the total time recorded in a second series of trials lying within any assigned limits
is thus calculable on the basis of the total time observed in the first series.” Meng
(2009a) notes, in Section 7.6, that (7.14) is obtainable with an improper “nonin-
formative prior” on log(λ) (Note Meng’s 1/λ is Fisher’s θ) and finds it “somewhat
intriguing that this un-realizable posterior distribution via random λ is easily re-
alizable via the pivotal predictive distribution.” We have another instance here of
Fisher’s fiducial argument resulting in formally similar results to Bayesian inferences
with “noninformative” priors. In the famous words of Savage, Fisher appears “to
make the Bayesian omelette without breaking the Bayesian eggs”, or to quote Meng,
enjoy “the Bayesian fruits without paying the B-club fee.” Fisher (1956), however,
on page 118 makes a strong claim that his fiducial predictions are empirically ver-
ifiable and states: “Probability statements about the hypothetical parameters are,
however, generally simpler in form and once their equivalence is understood to pre-
dictions in the form of probability statements about future observations, they are
not seen to incur any logical vagueness by reasons of the subjects of them being
relatively unobservable.” On another historical note, Meng states that Nelder and
Lee emphasize Pearson’s (1920) point that Fisher’s likelihood is not useful for pre-
dicting future observations. Fisher (1956, Chapter 5, Section 7) does in fact develop
a type of predictive likelihood for future binomial observations (precisely Pearson’s
problem).

PIERO VERONESE (Bocconi University, Milano, Italy)

Professor Meng raises a very interesting issue concerning the relationship among
pivotal predictive distribution, posterior predictive distribution and h-distribution.

In Section 7 of Meng (2009a), the author considers the general points previously
discussed with reference to the exponential distribution in detail. In particular, in
Section 7.5 of Meng (2009a), he emphasizes how it is important “moving from the
original scale of yn+1 to the v = log(yn+1) scale” in order to obtain a predictive
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pivotal quantity and in Section 7.6 of Meng (2009a) he adds “the scale of the pa-
rameter also plays a role, especially for the adjusted profile h-likelihood ... (making)
in the current example ... the adjustment ... immaterial”. Furthermore he com-
pares the pivotal predictive distribution, the posterior predictive distribution (under
a non-informative prior) and the h-distribution and concludes that there exists an
intimate connection “a truly 3-in-1!”

This final result is not completely surprising and part of the explanation can be
found by extending a result due to Lindley (1958), and considered also by Consonni
and Veronese (1993), who explains the relationship between a fiducial distribution
and a posterior distribution. More precisely, Lindley shows that a fiducial distri-
bution for a real parameter θ is, under some regularity conditions on the model, a
posterior distribution if and only if:

i) the distribution function (d.f.) of the sufficient statistics Un given θ, where n
denotes the sample size, can be written as

F (un|θ) = Gn(t(un)− η(θ)), n = 1, 2, . . . , (32)

for some (known) d.f. Gn, which we assume defined on IR, and monotone
function t and η,

ii) a constant prior on the parameter η(θ) is assumed.

It’s interesting to note that equation (32) establishes automatically the correct
scale of both variables and parameters, advocated by the Author. Thus, from now
on, we will work with Tn = t(Un) and η = η(θ). It is immediate to verify that the
density of Tn given η is given by

f(tn|η) = gn(tn − η), (33)

where gn is the density corresponding to the d.f. Gn.

Now suppose that condition (33) holds, and let y = (y1, . . . , yn) denote the
sample. It follows that the likelihood of η is proportional to f(tn|η) and consequently
the maximum likelihood estimate (M.L.E.) of η is given by η̂ = tn − Cn where
Cn = argmaxx gn(x).

The likelihood of ν, using the plug-in technique as far as η is concerned, is
proportional to g1(ν− η̂) and consequently the M.L.E. of ν is given by ν̂ = η̂ +C1 =
tn − Cn + C1, where C1 = argmaxx g1(x).

Since the distribution of ν̂ can be derived from that of Tn, we can compute the
distribution of w = ν̂ − ν, given η, which is

f(w|η) =

∫
fν(ν|η)fν̂(ν + w|η)dν =

∫
g1(ν − η)gn(ν + w + Cn − C1 − η)dν. (34)

Making the change of variable z = ν−η, it follows that the result of the integra-
tion does not depend on η. This shows that, under condition (33), the distribution
of ν̂ − ν is a real fiducial distribution.

Consider now the predictive posterior density of ν given y, under the constant
prior on η, π(η). We have

fB(ν|y) =

∫
f(ν|η)π(η|y)dη. (35)
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Because ν̂ = Tn−Cn +C−1 is a linear transformation of the sufficient statistics Tn,
also ν̂ will be sufficient for η and thus π(η|y) = π(η|ν̂). Consequently

fB(ν|y) = fB(ν|ν̂) =

∫
g1(ν − η)gn(ν̂ + Cn − C1 − η)dη∫

gn(ν̂ + Cn − C1 − η)dη

=

∫
g1(ν − η)gn(ν̂ + Cn − C1 − η)dη. (36)

Recalling that ν̂ = ν + w and that gn is defined on IR, it follows that fB(ν|y)
coincides with the fiducial distribution (34).

In the example of the exponential distribution it is easy to see that condition (32)
holds, with sufficient statistic Un =

∑
Yi, Tn = t(Un) = log(

∑
Yi) and η = log(λ)

with the function gn(x) = 1/Γ(n) exp(nx − ex). It follows that ν = t(yn+1) =
log(yn+1) and thus we have the scaled transformations suggested by the Author.
Furthermore it is easy to check that Cn = log(n) and C1 = log(1) = 0. Thus

η̂ = Tn −Cn = log(
∑

Yi)− log(n) = log(Y ) and ν̂ = η̂ + C1 = log(Y ), as expected.

Conditions (32) realizes 2-in-1, but it must be stressed that it is a strong con-
ditions. For example, inside the exponential family it holds only for distributions
that can be reinterpreted as normal or exponential.

It would be interesting to investigate the role of condition (32) from an asymp-
totical point of view and, in this case, relate it also to the third, and more crucial
element of the paper, the H-likelihood.

REPLY TO THE DISCUSSION

H for Heartfelt Thanks!

In my now 20 years of professional career, I had over half a dozen opportunities
to prepare a discussion article with a rejoinder. I do not recall having had a more
enjoyable time than the current one. All three discussants have been superb, offering
constructive insights and real food for thoughts. My heartfelt thanks therefore go
to all of them: to Professor George for being a fabulous “podium-mate” at Valencia
9 and for the witty discussion, both in oral presentation and in writing, and to
Professors Desmond, Xie and Veronese for deep and historical insights – I learned a
great deal by studying the discussions. Thanks also to Desmond and Veronese for
correcting much of my Chinglish!

I, of course, want to thank Professor Jose Bernardo again for inviting me and for
insisting that I prepare a written article in addition to my presentation at Valencia 9,
which was mostly based on my discussion of Lee and Nelder (2009). For that piece
(Meng, 2009a), I am grateful to Professor David Madigan, the Executive Editor
of Statistical Science, who is responsible for starting my journey to the land of
H-likelihood and for publishing my journey diary in its entirety.

Response to George

Professor Ed George is known for his great clarity and abundant humor in delivering
speeches, technical or otherwise, something I also strive to mimic. It was therefore
a true professional joy to have Ed, a great friend, share the Valencia 9 podium.
In between all the laughter, however, are his four insightful and critical questions
(i)-(iv), which are reproduced at the end of his written discussion.
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As for (i), my investigation so far supports a “yes” answer, especially in view of
Lindley’s (1958) and Veronese’s results discussed in the previous section. I, however,
need to emphasize that the investigation so far is in a rather restrictive setting of
“unobservables”, namely univariate future observations. When dealing with more
general unobservables, especially in high dimensions, things could be much more
complicated or unexpected. Similarly for (ii) — pivotality is a form of invariance,
and indeed invariance has played a critical role in the literature of predictive likeli-
hood (e.g., Lauritzen, 1974; Hinkley, 1979; Butler, 1986). In particular, the sampling
pivotal predictive distribution I discussed in Meng (2009a) is closely related to both
the marginal predictive likelihood based on an ancillary quantity a(y, u) and the
conditional predictive likelihood, which is constructed by conditioning on a sufficient
quantity s(y, u) (Butler, 1986). For our exponential model, we can choose

a(y, u) = log(yn+1/ȳn), s(y, u) =
∑n+1

i=1
yi

(recall u = yn+1). But until a more general investigation is conducted, especially in
multiple dimensions, I had better resist the temptation of drawing too many conclu-
sions from the investigation so far – I perhaps already have milked the “exponential
cow” too much!

The answer to question (iii) perhaps can be a safe “yes”, since it is almost always
useful to consider the decision theoretic angle, even if it is just to confirm what we
already know. Indeed, it may even shed some light on (iv), the answer to which
seems to lie in understanding Lee and Nelder’s “utility” consideration in their quest
for avoiding specifying a prior. The Section 6 of my article indicated their desire to
infuse different schools of inference, and avoiding prior specifications seems to be an
integrated part of that effort.

I have some additional remarks inspired by Professor George’s written discussion.
First, George is absolutely correct that the theoretical results I obtained demonstrate
the limitations of H-likelihood more than its applicability. As mentioned in Meng
(2009a), I ended up devoting five weekends to H-likelihood because I was intrigued by
Lee and Nelder’s perseverance despite the fact that nearly all the published feedback
they had received was on the negative side. Like George, the Bayesian interpretation
of APHL was obvious to me. But I told myself to keep as open minded as possible –
after all, it is healthy especially in foundational research to push arguments as hard
as one can, even to play as the devil’s advocate. I was indeed a bit surprised by
how easy it is for an H-likelihood to satisfy the Bartlett identities, relative to what I
initially expected. However that “easiness” also reminded me of a hidden message,
namely Bartlett identities are minimal requirements. Without them we can almost
be sure that the corresponding “likelihood” will not deliver sensible results if we use
it as if it were a real one (e.g., making inference based on its “Fisher information”).
But H-likelihood provides a vivid demonstration that Bartlett identities alone do
not guarantee correct inference. This was not a message that I had come across
prior to my study of H-likelihood, though surely I hope this negative implication is
not the only tangible benefit of my “heroic effort”! ¨̂

Second, George attributed the failure of H-likelihood largely to the fact that
it is not a genuine likelihood. Whereas a genuine likelihood obviously does not
suffer the kind of problems H-likelihood does, by now there are plenty of artificial
likelihoods in the literature that generally do not satisfy George’s description that
“a likelihood is a reversal of a conditional probability distribution.” These include
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partial likelihood, empirical likelihood, dual likelihood, quasi-likelihood, composite
likelihood, etc. Unlike H-likelihood, these “likelihoods” are much better received in
the literature even by some Bayesians (I now can claim to be one of those, having
finally been inducted to the Valencia Hall of Fame), because they lead to useful
methods that generally cannot be recast from the Bayesian perspective. Indeed, how
to conduct Bayesian inference with artificial likelihoods is still an underdeveloped
area (see Lazar, 2003).

Third, I noticed that George was careful in using the term “conditional prob-
ability distribution” instead of “conditional probability density.” The difference is
not semantic, because defining a likelihood via a density is a trickier business than
we routinely tell our students. A good example is to explain to students why the
likelihood function is unbounded when our model is a mixture of N(µ1, σ

2
1) and

N(µ2, σ
2
2), and when the parameter θ = (µ1, µ2, σ

2
1 , σ2

2 , α) is unrestricted, other
than the obvious constraints such as the mixing proportion α is between 0 and 1
(and the order of the mixture is known). A student may wonder why MLE does
not exist regardless of the sample size, given clearly we can estimate θ consistently,
and that the method of moments dates back to Pearson (1894). The non-existence
of MLE actually carries a hidden message: there is a problem in defining likelihood
using the mixture of normal densities with respect to the Lebesgue measure. The
family of models admits a mixture of a continuous component, say, N(µ1, σ

2
1) and

a singleton, δ{y=µ2} ≡ N(µ2, 0). This mixture forms a sub-class of non-degenerated
models, yet it does not have a density with respect to the Lebesgue measure.

Finally, there is no known principle to explain why the reversal in “a likelihood
is a reversal of a conditional probability distribution” is the right thing to do. The
reversal was of course a huge success for Fisher’s likelihood formulation, building
the foundation of much of statistical science as we have today. However, when
Fisher invoked a similar “reversal” operation to f(y|θ) as a distribution instead
of an objective function, he ended up with his “biggest blunder”, as viewed by
many to this date, namely, the fiducial distribution. Another byproduct of my H-
likelihood journey is the detour to the fiducial land, but the more I understand it
(I hope!) the more I feel Fisher’s agony, or at least as I imagined. How could the
reversal operation work so beautifully for interval inference but so frustratingly for
distributional inference? What could be the hidden message here?

Response to Desmond and Xie

Regarding Professors Desmond and Xie’s question about terminology, I fully agree
that “what’s in the name?” is often more than a trivia question. I also agree that
“unobservable” random effects and future observations (and other form of unob-
served but potentially observable quantities) do have some logical differences. The
reason that I agreed that “ ‘unobservables’ is semantically more appropriate” than
“missing data” is because of what my thesis advisor Donald Rubin once told me
about Sir David Cox’s objection to the phrase “missing data.” The word data is
the plural of datum, which is a Latin word meaning something given. Therefore, se-
mantically, “missing data,” is a self-contradictory phrase, meaning “something given
but is not given.” The use of “unobservables” as an all-encompassing term at least
avoids this contradiction. But it does have its own problems, one of which is that
it might leave the impression that the quantities being described are unobservable
under any circumstance. This may be true for some constructed latent variables,
such as a person’s true ability in item response theory or latent trait models (e.g.,
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Rasch, 1960/1980; Bock and Aitkin, 1981; Meng and Schilling, 1996; Sijtsma and
Junker, 2006), but not so for other “unobservables” such as a future observation.
Just because something is not observed for a problem at hand does not automatically
imply that it can never be observed.

From Desmond and Xie’s wording, I gather they were wondering if the difference
between “potentially observable” and “never observable” has something to do with
whether or not Lee and Nelder’s H-likelihood methods are applicable. I had a similar
suspicion, but then I realized that the matter is rather complicated. For example,
whereas latent variables typically are “unobservable” in the real sense of the phrase,
aspects of them can produce observable manifestations that can be tested against the
observed data; see Junker (1993) and Junker and Sijtsma (2000). Although these
manifested signals tend to be weak, they nevertheless pose theoretical difficulties
in our quest for separating random-effect like latent constructs from potentially
observable “unobservables” for the purpose of identifying when Lee and Nelder’s
H-likelihood methods may provide acceptable results.

Desmond and Xie are also correct that as we collect more data our information
about future observations should also increase. My point is that there is a limit to
this accumulation, same as Professor George’s emphasis in his presentation, that
is, no matter how much past data we have, at the best we can only pin down
our model perfectly, but not any future observations. This is in contrast to the
usual inference of the model parameter, where the increase of the data size will
eventually accumulate the information to infinity, that is, reduce the uncertainty in
our estimator to zero (at least in theory). Retrospectively, perhaps I should have
adopted the term “non-vanishing of uncertainty” instead of “lack of accumulation
of information”.

I am also literally flattered by Professor Desmond and Xie’s identification that
my “3-in-1” distribution (16) is a special case of Fisher’s (1956) “fiducial predic-
tion” distribution, his (70). There is no other pioneer’s work I’d like to reproduce
(unknowingly) more than Fisher’s! On the other hand, it is not hard to do so either
because R. A. Fisher had done so much that I yet need to find a major modern
advance that I would be willing to bet my annual salary on it that it absolutely
cannot be traced back to Fisher’s work in some way. I could only invent excuses for
not having read Fisher (1956) (e.g., it was published before I was born). If there
is any silver lining in my ignorance of Fisher’s work, it is that Desmond and Xie’s
identification boosted my self-confidence for having accidently wondered about the
type of philosophical issues that seemed to be on Fisher’s mind when he wrote the
statement on page 118 of Fisher (1956), as quoted by Desmond and Xie.

Fisher’s statement also solved a minor puzzle I had initially, that is, why it is
necessary to invoke the label “fiducial prediction” when there is a perfectly clear
sampling interpretation of (16) on the joint space. My initial thinking, along the
line as documented in Section 6.3 of Meng (2009a), was that the term “fiducial”
was used to turn the probability statement on the joint space of future and cur-
rent observations into a conditional statement of the future observation given the
current ones. But Fisher’s statement seems to emphasize more the use of such dis-
tributions for inferring “hypothetical parameters” once the probability statements
about them can be made—or rather, understood—to that of predictions. Fisher is
not known for invoking unnecessary arguments, but he did have the tendency of
making statements without crisply spelling out their meanings. I surmise that this
equivalence transformation from an estimation problem (for hypothetical parame-
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ters) to a prediction problem (for a future observation), albeit not having a clearly
explained meaning, is nevertheless Fisher’s best attempt of bringing an empirically
verifiable statement (on the aforementioned joint space)—and hence avoiding “log-
ical vagueness”—into an inferential statement about the “relatively unobservable”
hypothetical parameter, and without resorting to Bayesian philosophy.

Incidently, this in a way also answers Desmond and Xie’s question about as
whether we should talk about “estimation” or “prediction” of unobservables. Fisher’s
statement suggests that both terms are relevant because it is the interplay between
them that permits the equivalence transformation. Although it is unclear how this
transformation can be done in general, the “somewhat intriguing” phenomenon I
was wondering about, as noted by Desmond and Xie, does seem to have a close
connection with this transformation. But of course I had better read Fisher this
time before trying to figure out what the connection is!

Response to Veronese

Professor Veronese quoted a result of Lindley (1958), which I had not read either so
I can only invoke the same invented excuse. But I cannot even invent any excuse
for not knowing Consonni and Veronese (1993), for I actually studied it at the
time of cooking SOUP (Meng and Zaslavsky, 2002). Although that cooking was for
a different dish, namely identifying a prior such that the corresponding posterior
mean of a parameter is an unbiased estimator of the same parameter, in hindsight,
the key ingredient is the same. Both are about determining prior densities such
that the resulting posterior densities have certain pre-specified characteristics; in
the current content it is about when a posterior distribution coincides with Fisher’s
(1956) fiducial distribution. Now I feel really ashamed for writing about fiducial
arguments without reading Fisher (1956), but it is nice to be reminded once again
that unexpected returns on research investment only take positive sign, unlike the
stock market!

Lindley’s (1958) and Veronese’s results demonstrate further the impossibility of
having “3-in-1” in general, even when Fisher’s fiducial distribution exists. Lind-
ley’s (1958) results show that even without “unobservables”, within the exponential
families, Fisher’s fiducial distribution can be viewed as a Bayesian posterior distri-
bution only if the underlying problem can be transformed into a normal distribution
or a Gamma distribution (which includes the exponential distribution). Although
Lindley’s setting is restrictive (e.g., his requirement that the distribution admits
univariate sufficient statistics for any sample size), Veronese’s derivation for its gen-
eralization to unobservables suggested that such restrictions are perhaps inevitable
in order to maintain mathematical tractability or theoretical interpretability.

Indeed, in my attempt to extend Professor Veronese’s result to include the h-
distribution, I came to appreciate why he concludes his discussion, where all results
are based on finite-sample exact calculations, with a call for its investigation only
from an asympototic point of view. Specifically, following Lindley (1958), Veronese
started with a model f(Y1, . . . , Yn|θ) such that there exists a univariate sufficient
statistics Tn = Sn(Y1, . . . , Yn), where n is arbitrary, such that its CDF belongs to a
location family with parameter η = η(θ) (which does not depend on n):

Fn(t|θ) ≡ Pr(Tn ≤ t) = Gn(t− η), n = 1, 2, . . . . (37)

Since n here is arbitrary, this setting also implies that for a future (independent)
realization yn+1, the transformation given by v = S1(Yn+1) has the CDF G1(v−η).



H-Likelihood 27

Hence, by the usual sufficiency reduction argument, the H-likelihood for (η, v) is

H(η, v|y1, . . . , yn) = gn(tn − η)g1(v − η), (38)

where gn is the density function of Gn (for arbitrary n) and tn is the observed value
of Tn, that is, tn = Sn(y1, . . . , yn), where yi is the observed value of Yi(i = 1, . . . , n).
Note that by “usual sufficiency reduction argument” we mean that f(y1, . . . , yn|θ)
can be replaced by f(tn|η) = gn(tn−η) in arriving at (38). It would be a mistake to
conclude, however, that we can also replace f(y1, . . . , yn, Yn+1|θ) with gn+1(Tn+1 −
η), where Tn+1 = Sn+1(y1, . . . , yn, Yn+1), which would imply that the H-likelihood
is given by gn+1(Sn+1(y1, . . . , yn, S−1

1 (v)) − η), assuming the function S1(·) is in-
vertible. Its discrepancy with (38) is because that in invoking sufficiency for θ via
Tn+1, we have ignored a factor that depends on the unobservable v, which is not
legitimate when v itself is a part of the likelihood argument.

Given (38), it is quite obvious that the MHLE for (η, v) is any (η̂, v̂) such that

tn − η̂ = Cn and v̂ − η̂ = C1, (39)

where Cm is any global maximizer of gm(m = 1, n). This yields the result Veronese
reported. However, in order to derive the APHL of (3), we need to maximize (38)
with respect to η for any given v, which does not permit any closed-form expression
in general. Therefore, we do not have a useful expression for the corresponding
profile H-likelihood, even if we ignore the adjustment part.

Intriguingly, Veronese defines the likelihood for v as the “plug-in likelihood”, that
is, with η in (38) replaced by its MLE (which is also MHLE because of the factor-
ization in (38)), leading to the simple expression g1(v− η̂). Whereas this simplicity
is of considerable appeal, it is well-known that “plug-in” methods generally lead to
“misleadingly precise” (e.g., Aitchison and Dunsmore, 1975; Butler, 1986) inference
statements because they ignore the uncertainty in the plug-in estimator. Of course,
Veronese did not treat his “plug-in likelihood” as the H-likelihood for v, nor did he
use it for inference. Rather, he showed that the sampling distribution of w = v̂− v,
as a random variable on the joint space of v̂ (which is determined by f(Y1, . . . , Yn|θ)
only) and of v (which is independent of v̂) is identical to the posterior predictive
distribution of v under the constant prior on η, achieving “2-in-1”. Clearly there
is little chance for 3-in-1 even under this restrictive setting because we do not even
have a workable profile H-likelihood expression for v under (38). Nevertheless, as
usual, it is easier to expect that asymptotically different schools of inferences tend
to produce similar results. For the current setting, since APHL of (3) is simply
the Laplace approximation to the Bayesian integration, we obviously can expect a
3-in-1 asymptotically, as long as the errors in the Laplace approximation become
negligible as n →∞.

Indeed, even for the “plug-in” predictive distribution g1(v− η̂) the same asymp-
totics kicks in when the posterior for η, gn(tn−η), becomes increasingly concentrated
around gn(tn− η̂) = gn(Cn), the maximal value, the usual asymptotic phenomenon.
As a trivial demonstration, for our exponential example, the “plug in” predictive
distribution for v is g1(v − η̂), where η̂ = log(ȳn) and g1(x) = exp(x − ex). Conse-
quently, the corresponding distribution for r = yn+1/ȳn = ev−η̂ (with η̂ considered
as fixed) will simply be the exponential distribution f(r) = e−r. This clearly is the
limit of the “3-in-1” distribution in (16) as n →∞. It is intriguing to note that the
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finite-sample difference between them is analogous to that between a t density and a
normal density. Mathematically the difference essentially is between (1+x/n)n and
ex, and statistically the difference is between whether or not we take into account
the uncertainty in the “plug-in” estimator (for scale parameter in both cases) in
forming our predictive/influence distributions.
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