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Judicious Judgment Meets Unsettling
Updating: Dilation, Sure Loss and
Simpson’s Paradox
Ruobin Gong and Xiao-Li Meng

Abstract. Imprecise probabilities alleviate the need for high-resolution and
unwarranted assumptions in statistical modeling. They present an alternative
strategy to reduce irreplicable findings. However, updating imprecise mod-
els requires the user to choose among alternative updating rules. Competing
rules can result in incompatible inferences, and exhibit dilation, contraction

and sure loss, unsettling phenomena that cannot occur with precise probabil-
ities and the regular Bayes rule. We revisit some famous statistical paradoxes
and show that the logical fallacy stems from a set of marginally plausible yet
jointly incommensurable model assumptions akin to the trio of phenomena
above. Discrepancies between the generalized Bayes (B) rule, Dempster’s
(D) rule and the Geometric (G) rule as competing updating rules for Choquet
capacities of order 2 are discussed. We note that (1) B-rule cannot contract
nor induce sure loss, but is the most prone to dilation due to “overfitting”
in a certain sense; (2) in absence of prior information, both B- and G-rules
are incapable to learn from data however informative they may be; (3) D-
and G-rules can mathematically contradict each other by contracting while
the other dilating. These findings highlight the invaluable role of judicious
judgment in handling low-resolution information, and the care that needs to
be take when applying updating rules to imprecise probability models.

Key words and phrases: Imprecise probability, model uncertainty, Choquet
capacity, belief function, coherence, Monty Hall problem.

1. THERE IS NO FREE LUNCH

Statistical learning is a process through which models
perform updates in light of new information, according to
a prespecified set of operation rules. As new observations
arrive, a good statistical model revises and adapts its un-
certainty quantification according to what has just been
observed. If a model a priori judges the probability of
an event A to be P(A), after learning event B happened,
it may update the posterior probability according to the
Bayes rule:

P(A | B) = P(A)
P (B | A)

P (B)
.
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Exactly one of three things will happen: P(A | B) >

P(A), P(A | B) < P(A) or P(A | B) = P(A). Moreover,
P(A | B) > P(A) if and only if P(A | Bc) < P (A), that
is, if B expresses positive support for A, its complement
must express negative support. The comparison of prior
and posterior probabilities of A encapsulates its associa-

tion with the observed evidence B , a fundamental charac-
terization of the contribution made by a piece of statistical
information.

Nevertheless, there exist modeling situations in which
associations do not comply with our well-founded intu-
ition. We sketch a series of such examples, well known
from textbook probability problems to real-life statistical
inference, which will serve as the basis of our analysis
throughout the paper. Many of them, known as paradoxes,
bear multiple solutions that have long been the center of
dispute and explication in the literature. What makes all
of them thought-provoking is the apparent change from
prior to posterior judgments of an event of interest that
most will find counterintuitive. That, as we will see, is a
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consequence of the ambiguity in the probabilistic specifi-
cation of the model itself, ambiguity that cannot be mean-
ingfully resolved by any automated rule.

1.1 Statistical Paradox or Imprecise Probability?

EXAMPLE 1 (Treatment efficacy before and after ran-
domization; Section 2.2). Patients Oreta and Tang are
participating in a clinical trial, in which one of them will
receive treatment I, and the other treatment II, with equal
probability. Let A denote the event that Oreta will im-
prove more from this trial than Tang (assuming no ties),
and let B denote the event that Tang is assigned to treat-
ment I. Before the treatment is assigned, we clearly have
P(A) = 1/2 because the situation is fully symmetric (in
the absence of any other information). However, after the
assignment is observed, we seem to have no good idea of
the value of either P(A | B) or P(A | Bc), other than they
are both bounded within [0,1].

Example 1 showcases a severe form of “confusion” ex-
pressed by the model as the prior probability updates to
posterior probability in light of any new information. The
precise prior judgments P(A) = 1/2 and P(Ac) = 1/2
are both bound to suffer a loss of precision by the sheer
act of conditioning on any event in B = {B,Bc}. A central
topic of this paper is the dilation phenomenon, revealed
by Good (1974) and investigated in depth by Seidenfeld
and Wasserman (1993), Herron, Seidenfeld and Wasser-
man (1994, 1997), Pedersen and Wheeler (2014). A for-
mal definition is given in Section 3.1.

EXAMPLE 2 (The boxer, the wrestler and the coin
flip (Gelman, 2006); Sections 3.1 and 6.2). The great-
est boxer and the greatest wrestler are scheduled to fight.
Who will defeat the other? Let Y = 1 if the boxer wins;
Y = 0 if the wrestler wins. Also, let X = 1 if a toss
of a fair coin yields heads; X = 0 if tails. A witness
at both the fighting match and the coin flip tells us that
X = Y . Given this, what is the boxer’s chance of winning,
P(Y = 1 | X = Y)?

EXAMPLE 3 (Three prisoners (Diaconis, 1978,
Diaconis and Zabell, 1983); Sections 3.2 and 6.3). Three
death row inmates A, B and C are told, on the night be-
fore their execution, that one of them has been chosen at
random to receive parole, but it will not be announced
until the next morning. Desperately hoping to learn im-
mediately, prisoner A says to the guard: “Since at least
one of B and C will be executed, you will give away no
information about my own chance by giving the name of
just one of either B or C who is going to be executed.”
Convinced of this argument, the guard truthfully says, “B
will be executed.” Given this information, how should A

judge his living prospect, P(A lives | guard says B)?

EXAMPLE 4 (Simpson’s paradox (Simpson, 1951,
Blyth, 1972); Section 5). We would like to evaluate the
effectiveness of a novel treatment (experimental) com-
pared to its standard counterpart (control). Let Z = 1
denote assignment of the experimental treatment, 0 the
control treatment, and let Y = 1 denote the event of a re-
covery, 0 otherwise. Let U ∈ {1,2, . . . ,K} be a covariate
of the patients, a K-level categorical indicator variable.
One could imagine K to be very large, to the extent that
the univariate U creates sufficiently individualized strata
among the patient population.

Suppose we learn from reliable clinical studies that the
experimental treatment works better than the control for
all K subtypes of patients. That is, for k = 1, . . . ,K ,

pk ≡ P(Y = 1 | Z = 1,U = k)

> qk ≡ P(Y = 1 | Z = 0,U = k).
(1.1)

Nevertheless, field studies consisting of feedback reports
from clinics and hospitals seem to suggest otherwise; that
on an overall basis, the control treatment cures more pa-
tients than the experimental treatment. That is,

p̄obs ≡ Pobs(Y = 1 | Z = 1)

< q̄obs ≡ Pobs(Y = 1 | Z = 0).
(1.2)

How do we resolve the apparent conflict between the con-
ditional inference in (1.1) and the marginal inference in
(1.2)?

The above examples will be examined in detail in Sec-
tions 2 through 4. All of them, despite disguised with cun-
ning descriptions, share the characteristic of an imprecise

model. Their narratives imply the existence of a joint dis-
tribution, yet only a subset of marginal information is pre-
cisely specified.

For instance, in Example 1, while the treatment assign-
ment (B) is known to be fair prior to randomization, the
improvement event A is not measurable with respect to
the B margin, effectively posing a Fréchet class of joint
distributions on the {A,B} space. The only statements
we can make about P(A | ∗) are the trivial bounds that
0 ≤ P(A | ∗) ≤ 1, whether ∗ is B or Bc, leading to the
dilation phenomenon. In Example 2, the coin margin X

is fully known a priori, but the relationship between the
fighters Y and the coin X, crucial for quantifying the event
{X = Y }, is unspecified. In Example 3, the guard’s ten-
dency to report B over C is unspecified in the case that A

was granted parole, yet A’s survival probability depends
critically on this reporting tendency. In Example 4, the
joint specification of {Z,U} is missing, and that happens
to be key to the seemingly paradoxical reversal effect. In
all of these examples, the water is muddied by an unspec-
ified but necessary piece of relational knowledge, which
in turn imposes on the modeler a choice among a multi-
plicity of updating rules, each supplying a distinct set of
assumptions to complement this ambiguity.
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1.2 What do We Try to Accomplish in This Paper?

Unsettling phenomena to be discussed in this paper re-
flect unusual ways through which more information can
seemingly “harm” our existing knowledge of the state
of matters. These phenomena are not foreign to statisti-
cians, but are seen as anomalies or even paradoxes, far
from everyday model building. In fact, whenever there is
a fully and precisely specified probability model, none of
these phenomena would occur. Would not we all be safer
then by staying away from any imprecise model? Quite
the contrary, we argue. Imprecise models are unavoidable
even in basic statistical modeling, and sometimes they are
disguised as precise models only to trick us into blindness.
Simpson’s paradox, re-examined in Section 5, is one of
such cases. Without acknowledging the imprecise nature
of modeling, one is ill-suited to make judicious choices
among the updating rules and treatments of evidence.

We aim to investigate these perceived anomalies as they
occur during the updating of imprecise models, and their
implications on the choice of updating rules. Imprecise
models in statistical modeling are ubiquitous and can be
easily induced from precise models through the intro-
duction of external variables. When model imprecision
is present, a choice among updating rules is a neces-
sity, and it reflects the modeler’s judgment on how sta-
tistical evidence at hand should be used. With the recent
surge of interest in imprecise probability-based and re-
lated statistical frameworks including generalized Fidu-
cial inference (Hannig et al., 2016), confidence distri-
bution (Hannig and Xie, 2012, Xie and Singh, 2013,
Schweder and Hjort, 2016) and inferential models (Martin
and Liu, 2016), we are compelled to bring attention to the
nonnegligible choice of combining and conditioning rules
for statistical evidence.

The remainder of this paper starts with an introduction
to some formal notation of imprecise probabilities in Sec-
tion 2.1, particularly of Choquet capacities of order 2 as
well as belief functions, a versatile special case which can
also be formulated as a precise model for imprecise states,
that is, set-valued random variables. Three main updat-
ing rules are introduced in Section 2.2, all of which are
applicable to Choquet capacities of order 2. Section 3 de-
fines dilation, contraction and sure loss as phenomena that
happen during imprecise model updating, and Section 4
compares and contrasts the behavior of the three updating
rules, especially as they exhibit dilation and sure loss, and
illustrates them with an additional example. Section 5 ex-
tends the discussion from conditioning rules to marginal-
izing rules by showing how Simpson’s paradox is a con-
sequence of an ill-chosen updating rule that induces sure
loss in aggregation. It also shows how imprecise models
can be easily induced from precise ones. When do the up-
dating rules differ, and how? We believe these questions
will shed light on the means through which information

could contribute to imprecise statistical models, a topic
we discuss in Section 6, among others.

2. IMPRECISE PROBABILITIES AND THEIR

UPDATING RULES

2.1 Lower and Upper Probabilities

This section introduces formal concepts and notation
for imprecise probability needed within the scope of this
paper. Readers who are familiar with the notions of lower
and upper probabilities, Choquet capacity and belief func-
tion may skip to Section 2.2.

DEFINITION 2.1 (Lower and upper probabilities). Let
� be a separable and completely metrizable space, B(�)

its Borel σ -algebra and M the set of all probability mea-
sures on �. The lower and upper probabilities of a set of
probability measures 5 ⊂ M are set functions

P(A) = inf
P∈5

P(A), and P (A) = sup
P∈5

P(A),

for all A ∈ B(�). P and P are conjugate in the sense that
P(A) = 1 − P(Ac).

The conjugacy of P and P means that knowing one is
sufficient for knowing the other. We may refer to either
one individually with the understanding of their one-to-
one relationship. Next, we introduce Choquet capacities,
an important class of imprecise probabilities widely used
in robust statistics (Huber and Strassen, 1973).

DEFINITION 2.2 (Choquet capacities of order k).
Suppose P is a lower probability such that {P ∈ M ;P ≥

P }, the set of probability measures compatible with P is
relatively compact .1 P is a Choquet capacity of order

k, or k-monotone capacity, if for every Borel-measurable
collection of {A,A1, . . . ,Ak} such that Ai ⊂ A for all
i = 1, . . . , k, we have

(2.1) P (A) ≥
∑

∅ 6=I⊂{1,...,k}

(−1)|I |−1P

(

⋂

i∈I

Ai

)

,

where |S| denotes the number of elements in the set S. Its
conjugate capacity function P is a called a k-alternating

capacity, because it satisfies for every Borel-measurable
collection of {A,A1, . . . ,Ak} such that A ⊂ Ai for all i =

1, . . . , k,

(2.2) P (A) ≤
∑

∅ 6=I⊂{1,...,k}

(−1)|I |−1P

(

⋃

i∈I

Ai

)

.

1A set of probability measures 5 on (�,B(�)) is relative compact
if every sequence of elements of 5 contains a weakly convergent sub-
sequence. By Prokhorov’s theorem, 5 is relatively compact if and only
if it is tight. See Chapter 1.5 of Billingsley (2013).
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If a Choquet capacity is (k + 1)-monotone, it is k-
monotone as well. The smaller the k, the broader the
class. In particular, Choquet capacities of order 2 satisfy
P(A ∪ B) ≥ P(A) + P (B) − P(A ∩ B) for all A,B ∈

B(�). A most special case of Choquet capacity is belief
function (Shafer, 1979).

DEFINITION 2.3 (Belief function). P is called a be-

lief function if it is a Choquet capacity of order ∞, that is,
if (2.1), and hence (2.2) hold for every k.

Precise probabilities are a special type of belief func-
tion. Indeed, one of the probability axioms requires that
the inequality (2.1) hold with equality for all countable
collections of sets {A,A1,A2 · · · } when A =

⋃

i Ai . In
turn, belief functions make up only a small class of impre-
cise probabilities, with their own specializations and lim-
itations when it comes to characterizing uncertain knowl-
edge. Pearl (1990) noted that many imprecise probabili-
ties expressed in conditional forms, a category in which
Examples 1 and 4 falls, cannot be fully captured by belief
functions. On the other hand, belief functions are versa-
tile in that they possess a second interpretation as a pre-
cise probability distribution over the subsets of �. In other
words, just as a probability function induces a (point-
valued) random variable on � itself, a belief function in-
duces a set-valued random variable on the power set of �.
This point is made clear in the next definition.

DEFINITION 2.4 (Mass function of a belief function).
Suppose � is finite, and P is a belief function on �. The
mass function associated with P is the nonnegative set
function m : P(�) → [0,1] such that

m(A) =
∑

B⊆A

(−1)|A−B|P (B),

for all A ∈ B(�)

(2.3)

where A − B = A ∩ Bc. The mass function m is
uniquely determined by P , and satisfies (1) m(∅) = 0,
(2)

∑

A⊆� m(A) = 1, and (3) P(A) =
∑

B⊆A m(B).

Formula (2.3), called the Möbius transform of P (Yager
and Liu, 2008), specifies a precise probability distribu-
tion over the subsets of �. Definition 2.4 is applica-
ble to finite �, suitable for our discussion of Exam-
ples 2 and 3 in Section 3 as well as Example 5 in Sec-
tion 4.5. Definitions for infinite � can be obtained upon
introducing extra regularity conditions (Nguyen, 1978,
Shafer, 1979), which we will not go into in this paper.

2.2 Updating Rules for Lower and Upper Probabilities

To update a set of probabilities 5 given a set B ∈ B(�)

is to replace the set function P with a version of the condi-
tional set function P •(· | B). The definition of P • is given
by the updating rule. We emphasize that, to say an event

is “given” does not necessarily mean it is observed. In hy-
pothetical contemplations, we often employ conditional
statements about all events in a partition, for example,
B = {B,Bc}, even if logically we cannot observe B and
Bc simultaneously. Therefore, the phrase “given” should
be understood as imposing a mathematical constraint de-
rived from B . When 5 contains a single, precise statis-
tical model, the Bayes rule entirely dictates how we use
the information supplied by B . But when 5 is imprecise
and does not possess sharp knowledge about B , that is,
P(B) < P(B) (Dempster, 1967), the updating rule itself
becomes an imprecise matter. As a consequence, there
exists multiple reasonable ways to use the information
B . For example, whether B supports an assertion A and
whether B fails to contradict A are two different criteria
for admissible evidence. This raises both flexibility and
confusion in defining the updating rules. Here, we sup-
ply the formal definitions of three viable updating rules
for lower and upper probabilities: the generalized Bayes

rule, Dempster’s rule and the Geometric rule. Important
differences and relationships exist among these rules, as
we shall present in Section 4.

To define the generalized Bayes rule, we recall Exam-
ple 1. Using the notation in 2.1, we rewrite the impre-
cise model in terms of its prior upper and lower probabil-
ities of event A, which are precisely one half: P(A) =

P(A) = 0.5. The question is: what are the upper and
lower probabilities of A given the treatment assignments
in B = {B,Bc}? For example, the answer could be

PB(A | B) = 0, PB(A | B) = 1, and

PB

(

A | Bc)= 0, PB

(

A | Bc)= 1.

The expressions PB and PB, where the subscript B is
for Bayes, signify the use of the generalized Bayes rule,
as defined below.

DEFINITION 2.5 (Generalized Bayes rule). Let 5

be a convex and closed set of probability measures
on � (with respect to the total variation topology, as
in Seidenfeld and Wasserman (1993)). The conditional
lower and upper probabilities according to the general-

ized Bayes rule are set functions PB and PB such that,
for A,B ∈ B(�),

PB(A | B) = inf
P∈5

P(A ∩ B)

P (B)
,(2.4)

PB(A | B) = sup
P∈5

P(A ∩ B)

P (B)
.(2.5)

That is, the conditional lower and upper probabilities
are respectively the minimal and maximal Bayesian con-
ditional probability among elements of 5. In their def-
inition, Seidenfeld and Wasserman (1993) required that
P(B) > 0, which guarantees P(B) > 0 for all P ∈ 5.
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This guarantees that the ratios in (2.4) and (2.5) are al-
ways well-defined.

The generalized Bayes rule is a most widely employed
updating rule for coherent lower and upper probabilities
(Walley, 1991), and notable for exhibiting dilation. In Ex-
ample 1, as a consequence of employing the rule, the con-
clusion appears puzzling: Tang will surely receive one
of the two treatments, and one would expect that, in the
worst case scenario, learning about the treatment assign-
ment is completely useless, that is, having no effect on
our a priori assessment of P(A). But how could it be that
the knowledge of something can do more harm than being
useless?

To better understand the behavior of the generalized
Bayes rule, we now present two alternative updating rules
for sets of probabilities as means of comparison. Both
Dempster’s rule of conditioning and the Geometric rule
were originally proposed for use with the special case of
belief functions; however, their expressions compose in-
triguing counterparts to the generalized Bayes rule. Sec-
tion 4 is dedicated to a comparison among the trio of rules.

Dempster’s rule of conditioning is central to the
Dempster–Shafer theory of belief functions (Dempster,
1967, Shafer, 1976). The conditioning operation is a spe-
cial case of Dempster’s rule of combination, equivalent
to combining one belief function with another that puts
100% mass on one particular subset, B ∈ B(�), on which
we wish to condition. Specifically, let P be a belief func-
tion such that P(B) > 0, and m be its associated mass
function given by (2.3). Let P 0 be a separate belief func-
tion such that its associated mass function m0(B) = 1.
The conditional belief function PD(· | B) is defined as

PD(A | B) = P(A) ⊕ P 0(B), for all A ∈ B(�),

where the combination operator “⊕” is defined in Shafer
(1976) to imply that the mass function associated with
PD(· | B) is

mD(A | B) =

∑

C∩B=A m(C)
∑

C′∩B 6=∅
m(C′)

,

for all A ∈ B(�).

(2.6)

Consequently, Dempster’s rule of conditioning yields
the following form.

DEFINITION 2.6 (Dempster’s rule of conditioning).
Let P be a belief function over �, and 5 the set of
probabilities compatible with P (in the sense of Defini-
tion 2.2). The lower and upper probabilities according to
Dempster’s rule of conditioning are set functions PD and
PD such that for A,B ∈ B(�) with P (B) > 0,

PD(A | B) = 1 − PD

(

Ac | B
)

,(2.7)

PD(A | B) =
supP∈5 P(A ∩ B)

supP∈5 P(B)
.(2.8)

Hence PD(A | B) differs from PB(A | B) of (2.5) by tak-
ing the ratio of the suprema, instead of the supremum of
the ratio P(A ∩ B)/P (B). An operational view of (2.8)
is helpful for understanding exactly what information is
retained by Dempster’s rule (Gong and Meng, 2021). De-
note by R the set-valued random variable whose distribu-
tion is dictated by the mass function corresponding to P .
Dempster’s rule of conditioning of P on set B is akin to
applying a B-shaped “cookie cutter” to all realizations of
R. It retains all the nonempty intersections B ∩R, and de-
fines the associated conditional mass function mD(· | B)

according to (2.6), that is, renormalizing m among the R’s
pertinent to the retained sets. The functional form of (2.8)
reveals that, Dempster’s upper conditional probability ad-
mits evidence to its numerator and denominator, both ac-
cording to whether the evidence fails to contradict A ∩ B

and B . This stands in contrast to the Geometric rule pro-
posed by Suppes and Zanotti (1977), as defined below.

DEFINITION 2.7 (The Geometric rule). Let P be a
belief function as in Definition 2.6. The conditional lower
and upper probabilities according to the Geometric rule

are set functions PG and PG such that for A,B ∈ B(�)

with P (B) > 0,

PG(A | B) =
infP∈5 P(A ∩ B)

infP∈5 P(B)
,(2.9)

PG(A | B) = 1 − PG

(

Ac | B
)

.(2.10)

Mathematically, the Geometric rule is a dual to Demp-
ster’s rule by replacing the latter’s suprema for upper
probability in (2.8) with the infima for lower probability
in (2.9). Viewed as a set operation, the Geometric rule dif-
fers from Dempster’s rule in that it only retains R if fully
contained within B , and renormalizes the mass function
among the retained sets. Looking at (2.9), the Geometric
lower conditional probability admits evidence to its nu-
merator and denominator, both according to whether the
evidence supports A ∩ B or B .Section 4 further describes
some relationships between the two rules.

Just like the generalized Bayes rule, both Dempster’s
and the Geometric rules suffer from updating anomalies.
In his review of Shafer (1976), Diaconis (1978) discussed
a paradoxical conclusion for the three prisoners example
(reproduced here as Example 3) using Dempster’s rule,
and inquired about the option of the Geometric rule as
an alternative rule of updating. As we will show in Sec-
tion 3.2, the Geometric rule does no better job than Demp-
ster’s rule for this paradox, as in fact both rules exhibit
the sure loss phenomenon. More updating rules for be-
lief functions exist beyond Dempster’s and the Geomet-
ric rule, including the disjunctive rule by Smets (1993)
based on set union operations, the open-world conjunctive
rule which is the unnormalized version of Dempster’s rule
as employed in the transferable belief models, as well as
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others, for example, Yager (1987), Kohlas (1991), Kruse
and Schwecke (1990). Smets (1991) provided a broad
overview of an array of updating rules.

2.3 IP Updating Rules Are Not Pure Conditional

Probabilities

A key distinction between the updating rules for impre-
cise probabilities and the Bayes rule for precise probabil-
ities is that the former does not follow pure conditional
probability calculations, but rather a mixture of proba-
bility and bound-seeking operations. This is most easily
seen in the following expressions obtained by Fagin and
Halpern (1991) for generalized Bayes rule:

PB(A | B) =
P(A ∩ B)

P (A ∩ B) + P(Ac ∩ B)
,(2.11)

PB(A | B) =
P(A ∩ B)

P (A ∩ B) + P(Ac ∩ B)
.(2.12)

Compared to the familiar Bayes formula

(2.13)

P(A | B) =
P(A ∩ B)

P (A ∩ B) + P(Ac ∩ B)

≡
P(A ∩ B)

P (B)
,

we see that the generalized Bayes rule not only replaces
P by P or P , but it also mixes them in one expression.
This mean that in general, the “conditional probability”
obtained by the generalized Bayes rule is not a genuine
probability under a single probability distribution. Worse,
the distributions which attain the extrema, P (S) or P (S),
in general depends on S itself. This is a clear case of
“overfitting,” as probabilities are “cherry-picked” to make
S most or least likely.

One might attempt to fix the mixing issue by replacing
the right-hand sides in (2.11) and (2.12), respectively, by

(2.14)

P (A ∩ B)

P (A ∩ B) + P (Ac ∩ B)
and

P (A ∩ B)

P (A ∩ B) + P (Ac ∩ B)
.

However, P(A ∩ B) + P(Ac ∩ B) generally is smaller
than P(B) because one may be sure that a state is in
B , but unsure if it is in A ∩ B or Ac ∩ B . Indeed,
P(A ∩ B) + P(Ac ∩ B) can be zero, while P (B) > 0.
Similarly, we can have P (A ∩ B) + P (Ac ∩ B) > 1 be-
cause evidence that does not contradict A ∩ B or Ac ∩ B

get double counted in the sum P(A ∩ B) + P (Ac ∩ B).
These observations should remind us that while the ex-

pressions in (2.14) may appear to be natural generaliza-
tions of the Bayes formula in the middle expression of
(2.13), they are not legit probabilistic quantities even in
the context of imprecise probability (e.g., no imprecise
probability can exceed one). Consequently, it makes more

sense to directly use P (B) or P(B) to replace P(B) in the
right-hand expression of (2.13). The results are exactly the
Geometric rule:

(2.15) PG(A | B) =
P(A ∩ B)

P (B)
,

and the Dempster’s rule:

(2.16) PD(A | B) =
P (A ∩ B)

P (B)
.

Expression (2.15) makes it clear that the Geometric rule
endorses a stringent interpretation of what counts as evi-
dence for both the query (A) and conditioning (B) events,
by admitting only evidence that supports its constituents
into the lower conditional probability. Similarly, (2.16)
shows that Dempster’s rule endorses a lenient interpre-
tation of both parts, by permitting all evidence that does

not contradict into the upper conditional probability.
In contrast, generalized Bayes rule optimizes not over

the space of admissible evidence, but over the set of
all conditional probabilities implied by the prior impre-
cise model. The expressions (2.11) and (2.12) reveal that,
compared to (2.16) and (2.15), the implied criteria of what
counts as admissible evidence is disparate for the query
and conditioning events on the numerator versus the de-
nominator. This results in the aforementioned “overfit-
ting” phenomenon, a point to which we will return in Sec-
tion 3.2.

2.4 Generalizations to Choquet Capacities

The generalized Bayes rule was designed to work with
sets of convex and closed probabilities, of which those
sets of probabilities generated by Choquet capacities of
order 2 are a special case. It has been shown that, when ap-
plied to prior sets of probabilities that are Choquet capac-
ities of order 2, the posterior sets of probabilities by the
generalized Bayes rule remain in the class (Walley, 1981,
Wasserman and Kadane, 1990). That is, Choquet capaci-
ties of order 2 are closed with respect to the generalized
Bayes rule. A natural question then if this property holds
for Dempster’s rule or the Geometric rule. The next the-
orem shows that the answer is yes: Choquet capacities of
order k, for any k ≥ 2, are closed with respect to both
rules.

THEOREM 2.1. Let P be a k­monotone Choquet ca­

pacity on �, and event B such that the set functions

PD(· | B) in (2.7) and PG(· | B) in (2.9) are well­defined.
Then PD(· | B) and PG(· | B) are both k­monotone.

PROOF. To say P is k-monotone implies for all Borel-
measurable collections {A1, . . . ,Ak},

P

(

k
⋃

i=1

Ai

)

≥

k
∑

i=1

P (Ai) −
∑

i<j

P (Ai ∩ Aj )

+ · · · + (−1)k+1P

(

k
⋂

i=1

Ai

)
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or, equivalently, P is k-alternating:

P

(

k
⋂

i=1

Ai

)

≤

k
∑

i=1

P (Ai) −
∑

i<j

P (Ai ∪ Aj )

+ · · · + (−1)k+1P

(

k
⋃

i=1

Ai

)

.

For Dempster’s rule, we have

PD

(

k
⋂

i=1

Ai | B

)

=
P((

⋂k
i=1 Ai) ∩ B)

P (B)
=

P (
⋂k

i=1(Ai ∩ B))

P (B)

≤
1

P(B)
·

[

k
∑

i=1

P(Ai ∩ B)

−
∑

i<j

P
(

(Ai ∩ B) ∪ (Aj ∩ B)
)

+ · · ·

+ (−1)k+1P

(

k
⋃

i=1

(Ai ∩ B)

)]

=

k
∑

i=1

PD(Ai | B) −
∑

i<j

PD(Ai ∪ Aj | B) + · · ·

+ (−1)k+1PD

(

k
⋃

i=1

Ai | B

)

.

Similarly, for the Geometric rule,

PG

(

k
⋃

i=1

Ai | B

)

=
P ((

⋃k
i=1 Ai) ∩ B)

P (B)
=

P(
⋃k

i=1(Ai ∩ B))

P (B)

≥
1

P (B)
·

[

k
∑

i=1

P (Ai ∩ B)

−
∑

i<j

P (Ai ∩ Aj ∩ B) + · · ·

+ (−1)k+1P

(

k
⋂

i=1

Ai ∩ B

)]

=

k
∑

i=1

PG(Ai | B)

−
∑

i<j

PG(Ai ∩ Aj | B) + · · ·

+ (−1)k+1PG

(

k
⋂

i=1

Ai | B

)

.

Hence k-monotonicity is preserved by both Dempster’s
and the Geometric rules of updating when applied to k-
monotone Choquet capacities. �

3. THE UNSETTLING UPDATES IN IMPRECISE

PROBABILITIES

An imprecise model permits, and indeed requires,
a choice of updating rule. Different choices may exhibit
updates with seemingly troubling interpretations, notably
dilation, contraction and sure loss. This section supplies
an in-depth look at these phenomena. The subscript “•”
used in the definitions below is crucial because, given the
same imprecise model specification, a phenomenon can
be induced by one rule but not by another. The choice
among updating rules is inseparable from the choice of
assumption of a missing information mechanism, and it
would be wrong to think that an observable event, as a
mathematical constraint, is taken literatim in imprecise
probability conditioning. The operational interpretations
of Dempster’s rule and the Geometric rule presented in
the previous section highlight clearly the different uses,
by different rules, of the information in the same event
being conditioned upon.

3.1 Dilation and Contraction

DEFINITION 3.1 (Dilation). Let A ∈ B(�) and B be
a Borel measurable partition of �. Let 5 be a convex and
closed set of probability measures on �, P its lower prob-
ability function, and P • the conditional lower probability
function supplied by the updating rule “•”. We say that B
strictly dilates A under the •-rule if

sup
B∈B

P •(A | B) < P(A) ≤ P(A)

< inf
B∈B

P •(A | B).
(3.1)

If either (but not both) outer inequality is allowed to hold
with equality, we simply say B dilates A under the said
updating rule.

Dilation means that the conditional upper and lower
probability interval of an event A contains that of the un-
conditional interval, regardless of which B in the space of
possibilities B is observed. Inference for A, as expressed
by the imprecise probabilities under the chosen updating
rule, will become strictly less precise regardless of what
has been learned. This is commonly perceived as unset-
tling, because one would expect that learning, at least in
some situations, ought to help the model deliver sharper
inference, reflected in a tighter probability interval. But
when dilation happens, it seems that as we learn, knowl-
edge does not accumulate and quite the contrary, dimin-
ishes surely.
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If dilation is something one finds unsettling, the oppos-
ing notion, contraction, should be nothing less. Contrac-
tion happens when the posterior upper and lower probabil-
ity interval becomes strictly contained within that of the
prior, regardless of what is being learned. If a tighter prob-
ability interval symbolizes more knowledge, when con-
traction happens, it is as if some knowledge is created out
of thin air. How could it be that whatever is learned, we
could always eliminate a fixed set of values of probabil-
ity that were a priori considered possible? If we could
have eliminated them by a pure thought experiment that
can never fail, why would we not have eliminated them a

priori? Formally, contraction is defined as follows.

DEFINITION 3.2 (Contraction). Let A, B and P • be
the same as in Definition 3.1. We say that B strictly con-

tracts A under the •-rule if

P(A) < inf
B∈B

P •(A | B)

≤ sup
B∈B

P •(A | B) < P(A).
(3.2)

If either (but not both) outer inequality is allowed to hold
with equality, we simply say B contracts A under the said
updating rule.

We now illustrate these two unsettling updating phe-
nomena using Example 2, although we defer the discus-
sion of their interpretations to Section 6.

EXAMPLE 2 CONT. (The boxer, the wrestler and the
coin flip). By the setup of the model, we know precisely
that the coin is fair:

(3.3) P(X = 0) = P(X = 1) = 1/2.

However, no information is available about either fighter’s
chance of winning. That is, if we assume the probability
of a boxer’s win P(Y = 1) = p1, p1 is allowed to vary
between [0,1]. Then according to the imprecise model,

(3.4) P(Y = 1) = 0, P (Y = 1) = 1

and similarly so for the wrestler’s win: P(Y = 0) =

0,P (Y = 0) = 1. The known probabilistic margins spec-
ify a belief function, as displayed in Table 1.

When told X = Y , how should the model at hand be
revised? Two aspects are worth noting:

TABLE 1
Example 2 (boxer and wrestler): mass function representation of the

belief function model

Coin lands heads, Coin lands tails,
either fighter wins either fighter wins

(X,Y ) ∈ {1} × {0,1} (X,Y ) ∈ {0} × {0,1}

m(·) 0.5 0.5

(i) Posterior inference for the fighters. As Gelman
(2006) noted, Dempster’s rule contracts the boxer’s
chance of winning, because

PD(Y = 1 | X = Y) = 1/2,

PD(Y = 1 | X = Y) = 1/2,

PD(Y = 1 | X 6= Y) = 1/2,

PD(Y = 1 | X 6= Y) = 1/2,

which are strictly contained within the vacuous prior
probability interval as in (3.4). The calculations given the
two alternative conditions X = Y and X 6= Y are identical
due to symmetry of the setup. In contrast, the generalized
Bayes rule cannot contract vacuous prior interval, in this
example (see below) and in general (see Theorem 4.8).

(ii) Posterior inference for the coin. The generalized
Bayes rule dilates the precise a priori information (3.3)
on the coin’s chance of coming up heads, because

PB(X = 1 | X = Y) = 0,

PB(X = 1 | X = Y) = 1,

PB(X = 1 | X 6= Y) = 0,

PB(X = 1 | X 6= Y) = 1.

In contrast, Dempster’s intervals remain identical to that
of the prior interval under either X = Y or X 6= Y . No-
tice that in this example, P(X = Y) = P (X 6= Y) = 0,
hence the Geometric rule is not applicable. The general-
ized Bayes rule in the sense of Seidenfeld and Wasserman
(1993) (see Definition 2.5) is not applicable either, how-
ever, since the the model is a belief function, we use the
result from Fagin and Halpern (1991) as given in (2.11)
and (2.12) to obtain the above expressions. This is equiv-
alent to minimizing and maximizing over the restricted
sets of probabilities {P : P ≥ P ,P (X = Y) > 0} and
{P : P ≥ P ,P (X 6= Y) > 0}, respectively, thus avoiding
ill-defined probability ratios.

3.2 Sure Loss

The next type of updating anomaly is even more unset-
tling, as it is usually regarded as an infringement on the
logical coherence of probabilistic reasoning.

DEFINITION 3.3 (Sure loss). Let A, B, P and P • be
the same as in Definition 3.1. We say that B incurs sure

loss in A under the •-rule if either

(3.5) inf
B∈B

P •(A | B) > P(A),

or

(3.6) sup
B∈B

P •(A | B) < P(A).
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Sure loss describes a universal and unidirectional dis-
placement of probability judgment before and after con-
ditioning on any event from a subalgebra. That is, after
learning anything, the event in question becomes alto-
gether more (or less) likely than before.

The terminology “sure loss” stems from the Bayesian
decision-theoretic context, where probabilities are seen to
profess personal preferences contingent on which one is
willing to make bets. If B incurs sure loss in A, the be-
holder of P and P • as her personal prior and posterior
imprecise probabilities, respectively, can be made to com-
mit a compound bet with a guaranteed negative payoff. To
see this, let s, t be two numbers such that

inf
B∈B

P •(A | B) > s > t > P(A).

We generate sure loss in the form of (3.5). Since t >

P (A), I shall accept a bet for which I pay 1 − t , get 1
back if A did not occur and nothing if it did. My expected
payoff is P(Ac) − (1 − t) = t − P(A) ≥ t − P (A) > 0.
On the other hand, since P •(A | B) > s for all B , con-
tingent on any B , I shall also accept bets for which I
pay s, get 1 back if A did occur and nothing if it did
not. Regardless of which B occurs, my expected payoff
P(A | B) − s ≥ infB∈B P •(A | B) − s > 0. It therefore
seems perfectly logical for me to take both bets, as both
are expected to have positive return. However, if I do take
both bets, then the compound bet is the one with guar-
anteed payoff of only 1, less than what I have paid for
1 − t + s because s > t . Therefore, endorsing P • as the
updating rule means I am willing to accept a finite collec-
tion of bets and certain to lose money, a typical form of
incoherent behavior.

Note that if B incurs sure loss in A in the form of (3.5),
it also incurs sure loss in Ac in the form of (3.6), though
perhaps the term sure gain would be more appropriate—
in Émile Borel’s words, the former the “imbecile” and the
latter the “thief.” Whenever a distinction is necessary, we
will use the term sure gain in addition to sure loss to high-
light the directionality of displacements of posterior prob-
ability intervals compared to that of the prior, and will
otherwise follow the pessimistic convention (which seems
to be a hallmark of statistical or probabilistic terms, such
as “risk,” “regret,” “regression”) of the literature and use
“sure loss” to refer to both situations if nonambiguous.

We emphasize again that both dilation and sure loss,
as concepts describing the change from prior to poste-
rior sets of probabilities, are contingent upon the updat-
ing rule. Even with the same imprecise probability model
P , the same partition B and the same event A, it can well
be the case that B dilates A under one rule and induces
sure loss in A under the other. Example 3 below is a situ-
ation in which all three rules behave very differently, and
Section 4 is dedicated to a characterization of their differ-
ential behavior.

TABLE 2
Example 3 (three prisoners): mass function representation of the

belief function model

A lives, B lives, C lives,
guard says {B, C} guard says C guard says B

m(·) 1/3 1/3 1/3

We are now ready to take a careful look at the three
prisoners paradox.

EXAMPLE 3 CONT. (Three prisoners). What do we
have about the probabilistic model behind the three pris-
oners? Since exactly one of the three prisoners will re-
ceive parole randomly, the prior probabilities of living for
each of them are all exact:

P(A lives) = P(B lives) = P(C lives) = 1/3.

Furthermore, since the guard cannot lie, he has no choice
on who to report if the inquirer A does not receive parole.
That is,

P(guard says C | B lives)

= P(guard says B | C lives) = 1.

The above probability specification can be expressed as a
belief function model, with mass distribution dictated by
the known model margins as represented in Table 2.

We see from the specification that what remains un-
known is, in case A indeed receives parole, the propensity
of the guard reporting either B or C as dead had he the
freedom to choose:

(3.7) δB = P(guard says B | A lives) ∈ [0,1].

As a consequence, the posterior probability of A living is

(3.8) P(A lives | guard says B) =
δB

1 + δB

.

This extra degree of freedom δB fully characterizes the set
of probabilities implied by the model.

There is a long literature documenting the variety
of modes of reasoning to this problem. For example,
Mosteller (1965) and Morgan et al. (1991) invoked a simi-
lar construction as the δB above, in explicating the reasons
why many of them are seemingly intuitive yet riddled with
logical fallacies. Four types of “popular” answers are re-
produced below, reflecting different ways of treating the
unknown value δB . What’s interesting is that, as we will
see, three of these answers correspond to those given by
the three conditioning rules respectively.

(i) The indifferentist: assumption of ignorability. One
of the most commonly made assumptions is that the guard
has no preference one way or the other about who to re-
port when given the freedom, that is, δB = 1/2, thus

P(A lives | guard says B, δB = 1/2) = 1/3.
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That is to say, prisoner A would not have benefitted from
the knowledge that B is going to be executed, precisely
as he claimed to the guard to begin with. The assump-
tion of guard’s indifference is equivalent to the ignorabil-

ity assumption commonly employed in the treatment of
missing and coarse data (Rubin, 1976, Heitjan and Ru-
bin, 1991, Heitjan, 1994). Despite being intuitive, the as-
sumption is not backed by the model description per se.
Neither the posited imprecise model nor the data as re-
ported by the guard can supply any logical evidence to
support the ignorability assumption. Therefore, the asser-
tion that ignorability is “intuitive” is a judgment that can
be as unreasonable as any other seemingly less intuitive
ones, such as the ones below.

(ii) The optimist: Dempster’s rule. Applying Demp-
ster’s rule, we have

PD(A lives | guard says B) = 1/2,

PD(A lives | guard says B) = 1/2.

Thus prisoner A felt happier now that his chance of sur-
vival increased from 1/3 to 1/2. This happiness is gained
from assuming the optimistic scenario of δB = 1, that
is, the guard chose a reporting mechanism that has the
highest likelihood given A lives. However, one realizes
that the guard could have only reported either B or C,
both fully symmetrical in the prior. Had the guard said
C would be executed, A would again apply Dempster’s
rule, thus grow happier following the same logic by ef-
fectively assuming δC = P(guard says C | A lives) = 1.
Under the assumption that the guard cannot lie and can-
not refuse to answer, δB + δC = 1, thus δB and δC cannot
be 1 simultaneously. Hence the reasoning that whatever
the guard says, the probability of A living will go up from
1/3 to 1/2, which is equivalent to assuming the impos-
sible δB = δC = 1, is a direct consequence of a logical
fallacy.

(iii) The pessimist: the Geometric rule. Applying the
Geometric rule, we have

PG(A lives | guard says B)

= PG(A lives | guard says B) = 0

and, by symmetry,

PG(A lives | guard says C)

= PG(A lives | guard says C) = 0.

This answer is perhaps the most striking among all, di-
rectly pointing at the absurdity of the assumptions behind
the updating rule within this context. Upon hearing any-
thing, prisoner A will deny himself of any hope of living,
effectively assuming δB = 0 if guard says B and δC = 0 if
guard says C, two assumptions that are incommensurable
with each other because δB + δC = 1, much in the same
way as the previous case with Dempster’s rule.

(iv) The conservatist: generalized Bayes rule. The so-
lution suggested by Diaconis (1978), and indeed supplied
by the generalized Bayes rule, is

PB(A lives | guard says B) = 0,

PB(A lives | guard says B) = 1/2.
(3.9)

This answer is a direct consequence of (3.8). As δB varies
within [0,1] without any further assumption, one is bound
to concur with (3.9). The caveat to it, however, is that
again due to prior symmetry of B and C, the generalized
Bayes rule will also yield

PB(A lives | guard says C) = 0,

PB(A lives | guard says C) = 1/2.

Hence, the generalized Bayes rule results in posterior
probability intervals strictly containing the prior proba-
bility in all situations.

Our use of the vocabulary “optimism,” “pessimism”
and “conservatism” to refer to the three updating rules is
informed by the interpretation of their respective poste-
rior inference under the effective assumptions they each
impose, and is reminiscent of that of Fygenson (2008) for
modeling of extrapolated probabilities. These ideological
differences illuminate the dynamics among the updating
rules for imprecise probability, and highlight the peda-
gogical significance of the three prisoners’ paradox itself.
In this example, Dempster’s rule updates its conditional
lower probability to be greater than that of its prior up-
per probability thus incurs sure loss of the form (3.5), the
Geometric rule behaves the opposite way and incurs sure
loss of the form (3.6), and the generalized Bayesian rule
exhibits dilation. As far as unsettling updating goes, there
seems to be no escape regardless of which rule to choose.
How on earth then do we draw a conclusion?

Reading through the literature, the dilated answer sup-
plied by the generalized Bayes rule is the most accepted
solution to the paradox. As counterintuitive as it may be,
dilation is a professed consequence of an overfitting na-
ture of the generalized Bayes rule, for the rule is inclusive
of all possibilities allowed within the ambiguous model,
to the point of simultaneously admitting assumptions that
are incommensurable with one another. As we saw pre-
viously, the upper conditional probability PB(A lives |

guard says ∗) = 1/2 is achieved under the assumption
δ∗ = 1, where ∗ can be B or C. Similarly, the lower
conditional probability PB(A lives | guard says ∗) = 0 is
achieved when δ∗ = 0. Since δC + δB = 1, δC and δB can-
not simultaneously be 0 or 1. Indeed, when one is 1 the
other must be 0. Hence the permissible value of the pair

{

x = P(A lives | guard says B),

y = P(A lives | guard says C)
}
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FIG. 1. Posterior probabilities of prisoner A receiving parole given the guard’s two possible answers, as a function of the guard’s reporting bias

δB (3.7).

forms a one-dimensional curve y = 1−2x
2−3x

inside the
square [0,1/2] × [0,1/2], as depicted in Figure 1. For
a given conditioning event ∗, the generalized Bayes rule
achieves its extremes by seeking a distribution that itself
depends on ∗, namely, a condition-dependent conditional
distribution P (∗)(· | ∗), a clear case of overfitting. Under-
standing the hidden incommensurability is important for
preventing logical fallacies such as reasoning under the
(wrong) assumption that {x, y} can take any value inside
the square [0,1/2] × [0,1/2]. We will return to the three
prisoners again in Section 6.3 to discuss its inferential im-
plications. In particular, the three prisoners’ paradox is a
direct variant of the Monty Hall problem, which possesses
a clean, indisputable decision recommendation.

3.3 What’s so Unsettling About Updating Paradoxes?

In case some readers are not yet completely put off by
the unsettling updates, we would like to offer a few words
about when, as well as when not, one should find dila-
tion or sure loss unsettling. It seems to us that the attitude
toward these phenomena should depend on the way the
underlying probability model is interpreted.

Dilation is troubling when the set of probabilities is
used as a description of uncertain inference. If the prob-
ability interval is regarded as an approximation to some
underlying true probability state, akin to a confidence or
posterior interval to an estimand, knowing that the interval
will surely grow wider in the posterior is indeed counter-
productive since the goal of inference in most cases is to
tighten the interval. But in this sense, the sure loss phe-
nomenon may just be fine, since it is common to derive
disjoint yet equally valid confidence or posterior inter-
vals from the same sampling posterior distribution, with-

out violating any classic rules of probabilistic calcula-
tion.

On the other hand, as explained in Section 3.2, the
lower and upper probabilities can be taken as acceptable
prices of a gamble. Under this interpretation, any strategy
that induces sure loss is absolutely unacceptable. Yet in
this case, dilation has much less to worry about, since a
strictly wider interval in the posterior will simply exclude
the player from engaging in the called-off bet, and does
not violate coherence in a decision-theoretic sense.

With precise probabilities, to condition on an observ-
able event is to impose a restriction to the subspace de-
fined by that event. The conditioning event itself must be
measurable with respect to the original probability space.
With imprecise probabilities, not all events are measur-
able with respect to the imprecise probability model spec-
ified on the full joint space. A crucial way the updating
rules differ from one another is how they make use of
this supplied conditioning information. Therefore, for any
of the updating rules to function at all, they must build
within themselves a particular “mechanism” of imposing
the mathematical restriction specified by the observable
event, when it is not currently measurable with respect to
the set of probabilities the rule aims to update, much in
the same way as a sampling mechanism (Kish, 1965) or
missing-data mechanism (Rubin, 1976). The fact that di-
lation and sure loss cannot happen under the precise prob-
ability does not necessarily render them undesirable: the
quality of this inference hinges on the quality of the final
action they recommend. Bringing these anomalies to light
allows us to study their implications, especially those un-
familiar or unexpected, on the final action.
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4. BEHAVIOR OF UPDATING RULES: SOME

CHARACTERIZATIONS

This section presents theoretical results on the behav-
ior of the three updating rules discussed in this paper. We
begin with the intuitive ones and progress toward those
that are perhaps surprising. Unless otherwise noted, this
section assumes that P is a Choquet capacity of order 2
on �, and 5 = {P ∈ M : P ≥ P }, the set of probabilities
compatible with P . Recall PB, PD and PG are the condi-
tional lower probability functions according to the gener-
alized Bayes (Definition 2.5), Dempster’s (Definition 2.6)
and the Geometric rules (Definition 2.7), respectively.

4.1 Generalized Bayes Rule Cannot Contract Nor

Induce Sure Loss

LEMMA 4.1. Let B = {B1,B2, . . .} be a measurable

and denumerable partition of �. For any A ∈ B(�), we

have

inf
Bi∈B

PB(A | Bi) ≤ P(A), and

sup
Bi∈B

PB(A | Bi) ≥ P(A).

PROOF. We prove by contradiction. Assume that
infBi∈B PB(A | Bi) > P (A). For the given A, because
5 is a closed set, there exists a P (A) ∈ 5 such that
P (A)(A) = P(A). The superscript notation reminds us
that this probability measure can vary with the choice of
A. This however does not affect the validity of applying
the total probability law under this chosen P (A), which
leads to

P(A) = P (A)(A)

=

∞
∑

i=1

P (A)(A | Bi)P
(A)(Bi)

≥

∞
∑

i=1

PB(A | Bi)P
(A)(Bi)

≥

∞
∑

i=1

inf
Bi

PB(A | Bi)P
(A)(Bi)

>

∞
∑

i=1

P (A)P (A)(Bi) = P (A),

resulting in a contradiction. The same argument applies
to the upper probability of A. If supBi∈B

PB(A | Bi) <

P (A), then using P (A) = P̃ (A)(A),

P(A) ≤

∞
∑

i=1

PB(A | Bi)P̃
(A)(Bi)

<

∞
∑

i=1

P (A)P̃ (A)(Bi) = P (A),

and hence again a contradiction. �

A direct consequence of Lemma 4.1 is the following
thorem.

THEOREM 4.2. Let B be a denumerable and measur­

able partition of �, and 5 be the set of probability mea­

sures compatible with P . For any event A ∈ B(�), under

the generalized Bayes rule,

• B cannot induce sure loss in A,
• B cannot contract A.

The first part of Theorem 4.2, that the generalized
Bayes rule avoids sure loss, is well known in the literature
and is the very reason that many authors such as Walley
(1991) and Jaffray (1992) consider it to be the sole choice
as coherent updating rule, or the “conditioning proper.”
However, as we will show next, the generalized Bayes
rule is also the most prone to dilation.

4.2 Generalized Bayes Rule Dilates More

LEMMA 4.3 (Generalized Bayes rule produces the
widest intervals). For all A,B ∈ B(�) such that the fol­

lowing quantities are defined, we have

PB(A | B) ≤ PD(A | B) ≤ PD(A | B)

≤ PB(A | B)
(4.1)

and

PB(A | B) ≤ PG(A | B) ≤ PG(A | B)

≤ PB(A | B).
(4.2)

That is, the conditional probability intervals resulting
from Dempster’s rule and the Geometric rule are always
contained within those of the generalized Bayes rule. The
fact that Dempster’s rule produces shorter posterior inter-
vals than that of the generalized Bayesian rule was dis-
cussed in Dempster (1967) and Kyburg (1987). Here is a
simple proof that applies to both sharper rules.

PROOF. For Dempster’s rule, the conditional plausi-
bility function satisfies

PD(A | B) =
supP∈5 P(A ∩ B)

supP∈5 P(B)
≤ sup

P∈5

P(A ∩ B)

P (B)

= PB(A | B)

and by conjugacy, also PD(A | B) ≥ PB(A | B). Simi-
larly for the Geometric rule, the conditional lower proba-
bility function satisfies

PG(A | B) =
infP∈5 P(A ∩ B)

infP∈5 P(B)
≥ inf

P∈5

P(A ∩ B)

P (B)

= PB(A | B)

and by conjugacy, also PG(A | B) ≤ PB(A | B). �
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THEOREM 4.4 (Generalized Bayes rule dilates more).
Let B ∈ B(�) be such that P(B) > 0. Denote sets of pos­

terior probability measures 5B = {P : P ≥ PB(· | B)},
5D = {P : P ≥ PD(· | B)} and 5G = {P : P ≥ PG(· |

B)}. Then

(4.3) 5G ⊆ 5B and 5D ⊆ 5B.

Theorem 4.4 is a direct consequence of Lemma 4.3,
noting that 5G, 5B and 5D are all convex and closed.
Two more consequences of Lemma 4.3 are stated below,
of which Examples 3 and 5 are respective embodiments.

COROLLARY 4.5. If B incurs sure loss in A under

Dempster’s rule and sure gain under the Geometric rule,
or vice versa, then B strictly dilates A under generalized

Bayesian rule.

COROLLARY 4.6. If B (strictly) dilates A under

either Dempster’s rule or the Geometric rule, then B

(strictly) dilates A under generalized Bayesian rule.

Theorem 2.1 of Seidenfeld and Wasserman (1993)
stated that, if dilation occurs with the generalized Bayes
rule, the associated set of probabilities 5 has a nonempty
intersection with that of the independence plane between
A and B . Thus following Corollary 4.6, we have the fol-
lowing.

COROLLARY 4.7. If B = {B,Bc} dilates A under ei­

ther Dempster’s rule or the Geometric rule, then there ex­

ists P ∗ ≥ P such that

(4.4) P ∗(A ∩ B) = P ∗(A)P ∗(B).

That is, dilation of an event by a binary partition under
either Dempster’s or the Geometric rules is a necessary
condition for the posited set of probabilities to postulate
event independence, since posterior intervals under both
rules are contained within the generalized Bayes posterior
interval.

4.3 Generalized Bayes Rule and Geometric Rule

Cannot Sharpen Vacuous Prior Intervals

THEOREM 4.8 (Sharpening of vacuous intervals). Let

P be such that for the event A ∈ B(�), P(A) = 0,
P(A) = 1. For any B ∈ B(�) such that P(B) > 0, we

have

(4.5) PG(A | B) = 0, PG(A | B) = 1

and

(4.6) PB(A | B) = 0, PB(A | B) = 1.

PROOF. If P(A) = 0 and P(A) = 1, then P (A∩B) =

P(Ac ∩ B) = 0 for any B . Therefore, by (2.9) we have

PG(A | B) = P (A ∩ B)/P (B) = 0

and PG(A | B) = 1 − PG(Ac | B) = 1, provided that the
denominator is greater than zero. Furthermore, by (4.1)

we have PB(A | B) ≤ PG(A | B) = 0 and PB(A | B) ≥

PG(A | B) = 1. �

The liberty to express partially lacking, and vacuous,
prior knowledge is a prized advantage of imprecise prob-
ability over their precise, or full Bayesian, counterparts.
Theorem 4.8 shows that both the generalized Bayes rule
and Geometric rule are incapable of revising a vacuous
prior interval to something informative for any possible
outcome in the event space, whereas Dempster’s rule is
capable of such revision, with Example 1 being an in-
stance. This again highlights the nonnegligible influence
imposed by the rule itself, as well as the difficulty to de-
liver all desirable properties in one single rule. Avoiding
sure loss and being able to update from complete igno-
rance both seem to be rather basic requirements, but to in-
sist on both is sufficient to eliminate all three rules studied
here. The following result perhaps is even more disturb-
ing, because it says that in the world of imprecise proba-
bilities, not only must we live with imperfections, but also
accept intrinsic contradictions.

4.4 The Counteractions of Dempster’s Rule and

Geometric Rule

THEOREM 4.9. If B = {B,Bc} dilates A under the

Geometric rule, then it must contract A under Demp­

ster’s rule. Similarly, if B dilates A under Dempster’s

rule, then it must contract A under the Geometric rule.
In both cases, the contraction is strict if the correspond­

ing dilation is strict.

PROOF. If B strictly dilates A under the Geometric
rule, then for either Z ∈ B

PG(A | Z) =
P (A ∩ Z)

P (Z)
< P(A),(4.7)

PG(A | Z) =
P (A ∪ Zc) − P(Zc)

P (Z)
> P(A).(4.8)

It follows then

PD(A | B)

P (A)
=

P(A ∩ B)

P (A) · P(B)

=
P(A ∩ B)

P (A) · (1 − P(Bc))

<
P (A ∩ B)

P (A) · [1 − (P (A ∪ B) − P (B))/P (A)]

=
P (A ∩ B)

P (A) + P (B) − P (A ∪ B)
≤ 1,

where the first inequality follows from (4.8) with Z = Bc,
and the second inequality is based on the 2-alternating na-
ture of P . (The 2-alternating nature was also implicitly
used in the first inequality to ensure P (A ∪ B) − P(B) <
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P(A), hence the positivity of the denominator after re-
placing P(Bc) with an upper bound.) In a similar vein,

PD(A | B)

P (A)
=

P(B) − P(Ac ∩ B)

P (B) · P (A)

=
P(A ∪ Bc) − P(Bc)

P (B) · P (A)

≥
P (A) − P(A ∩ Bc)

(1 − P(Bc)) · P(A)

=
P(A) − P(A ∩ Bc)

P (A) − P(Bc) · P (A)
> 1,

where the first inequality uses the 2-monotone nature of
P and the second inequality is based on (4.7) with Z = B .
Thus we have PD(A | B) < P(A) and PD(A | B) >

P(A), and clearly both inequalities still hold when we re-
place B by Bc because (4.7)–(4.8) hold for both Z = B

and Z = Bc. Consequently, B strictly contracts A under
Dempster’s rule. If B dilates A under the Geometric rule
but not strictly, the inequality in either (4.7) or (4.8), but
not both, may hold with equality, hence B contracts A un-
der Dempster’s rule but not strictly. This completes the
proof for the first half of the statement.

For the second half, when B strictly dilates A under
Dempster’s rule, we have for any Z ∈ B,

PD(A | Z) =
P (A ∩ Z)

P (Z)
> P(A),

PD(A | Z) =
P (A ∪ Zc) − P(Zc)

P (Z)
< P(A).

Noting both inequalities hold for Z and Zc, we have

1 >
P(A ∪ Z) − P(Z)

P (A) · P (Zc)
≥

P(A) − P(A ∩ Z)

P (A) − P(A) · P(Z)
.

Hence P(A) < P(A ∩ Z)/P (Z) = PG(A | Z). On the
other hand,

1 <
P(A ∩ Zc)

P (A) · P (Zc)
≤

P(A) − (P (A ∪ Zc) − P(Zc))

P (A) − P(A) · P(Z)
.

Hence P(A) > (P (A ∪ Zc) − P (Zc))/P (Z) = PG(A |

Z). The same argument applies that if B dilates A under
Dempster’s rule but not strictly, it contracts A under the
Geometric rule but not strictly. This completes the proof
for the second half of the statement. �

4.5 Visualizing Relationships and Complications

EXAMPLE 5 (Pre-election poll). Suppose that we in-
tend to study the voter intention prior to the 2016 US elec-
tion. For simplicity, assume there are only two parties,
represented respectively by Clinton and Trump, with one
to be elected. The preelection poll consists of two ques-
tions:

TABLE 3
Hypothetical data from a voter poll consisting of two questions

Q1 C T C T C T (n/a) (n/a) (n/a)
Q2 Dem Dem Rep Rep (n/a) (n/a) Dem Rep (n/a)
m(·) 0.1 − ǫ 0.2 + 8ǫ

1. Do you intend to vote for Trump or Clinton?
2. Do you identify more as a Republican or a Demo-

crat?

Among all surveyed individuals, some answered both
questions, some only one, and the rest did not respond.
Let Q1 = {Trump,Clinton} denote votes for Trump and
Clinton, respectively, and Q2 = {Republican,Democrat}
denote identification with the Republican and Democratic
parties, respectively. If all the percentages of response pat-
terns are fully known, this model can be represented as a
belief function. Assume the mass function m(·) reflecting
the coarsened sampling distribution for these set-valued
observations appears as Table 3 (of course, the numbers
are for illustrations only).

A “tuning parameter” ǫ ∈ [−0.025,0.1] is installed to
create a family of mass function specifications in order to
investigate the differential behavior among updating rules
as a function of the coarseness of the data. The smaller
the ǫ, the more the mass function concentrates on the pre-
cise observations (more survey questions answered). The
larger the ǫ, the closer the random set approaches the vac-
uous belief function. As a function of ǫ, the prior lower
and upper probabilities for Clinton are

P(C) = 0.3 − 3ǫ, P (C) = 0.7 + 3ǫ.

The prior lower and upper probabilities for Trump, as well
as for identification of either parties are numerically iden-
tical to the above, since the setup is fully symmetric with
respect to both voting intention and partisanship. For ex-
ample, when ǫ = 0, the table above shows that altogether
40% of the respondents diligently answered both ques-
tions, 20% only identified prior partisanship, 20% only
expressed current voting intentions, and another 20% did
not respond at all. Thus, m(·) determines a pair of belief
and plausibility functions which bounds the vote share for
both Clinton and Trump to be within 30% and 70%.

How will information on partisanship affect the knowl-
edge on voting intention? According to the three updating
rules, the lower and upper probabilities for Clinton condi-
tional on either values of partisanship Q2, are as follows:

PB(C | Q2) =
0.1 − ǫ

0.6 + 4ǫ
, PB(C | Q2) =

0.5 + 5ǫ

0.6 + 4ǫ
,

PD(C | Q2) =
0.2 − 2ǫ

0.7 + 3ǫ
, PD(C | Q2) =

0.5 + 5ǫ

0.7 + 3ǫ
,

PG(C | Q2) =
1

3
, PG(C | Q2) =

2

3
.

STS stspdf v.2021/02/04 F:sts765.tex; () p. 14



DILATION, SURE LOSS AND SIMPSON’S PARADOX 15

1 56

2 57

3 58

4 59

5 60

6 61

7 62

8 63

9 64

10 65

11 66

12 67

13 68

14 69

15 70

16 71

17 72

18 73

19 74

20 75

21 76

22 77

23 78

24 79

25 80

26 81

27 82

28 83

29 84

30 85

31 86

32 87

33 88

34 89

35 90

36 91

37 92

38 93

39 94

40 95

41 96

42 97

43 98

44 99

45 100

46 101

47 102

48 103

49 104

50 105

51 106

52 107

53 108

54 109

55 110

FIG. 2. Prior probability interval for Clinton’s voter support (black) and posterior probability intervals given reported partisanship according

to the three updating rules (blue: generalized Bayes, red: Dempster’s, green: Geometric). Due to full symmetry of the setup, contraction happens

under an updating rule whenever the corresponding posterior interval depicted is contained within the prior interval; vice versa for dilation.

See Figure 2 for the above quantities as functions of ǫ.
We observe that:

• Under the generalized Bayes rule, knowledge about
partisanship strictly dilates voting intention for either
candidate for all ǫ < 0.1. That is to say, learning the
prior partisanship of an individual dilates our inference
of her current voting intention, and vice versa, and this
is true no matter which party or candidate is said to be
favored;

• Under Dempster’s rule, partisanship strictly dilates vot-
ing intention for either candidate for −0.011 < ǫ < 0.1,
and strictly contracts both for −0.025 < ǫ < −0.011;

• Under the Geometric rule, partisanship strictly dilates
voting intention for either candidate for −0.025 < ǫ <

−0.011, and strictly contracts both for −0.011 < ǫ <

0.1. Moreover, the absolute value of the lower and up-
per posterior probability remained constant regardless
of the value of ǫ.

Furthermore, we observe some of the phenomena dis-
cussed previously in this section. For example, the extent
of dilation exhibited by the generalized Bayes rule is to
a strictly larger extent than that of both Dempster’s rule
and the Geometric rule, if either of them does dilate. The
dilation-contraction status of Dempster’s rule and the Ge-
ometric rule are in full opposition to each other, switching
precisely at ǫ = −0.011.

5. SIMPSON’S PARADOX: AN IMPRECISE MODEL

WITH AGGREGATION SURE LOSS

One may well think that all examples discussed so far
lie on the boundary, if not outside, of the realm of main-
stream statistical modeling. Imprecise models are not the

kind of thing one just stumbles upon, they exist by inten-
tional construction. We argue that such is not the case, that
all precise models are really just the tip of an “imprecise
model iceberg.” Every precise model is a fully specified
margin nested within a larger, ever-augmentable model,
with extended features not allowed to enter the scene as
the modeler lacks the knowledge to do so precisely.

Here is a concrete way to induce an imprecise model
from a precise one. Take a precise model with the state
space (X1, . . . ,Xp) that merits a known multivariate dis-
tribution. If we expand the model to include a previ-
ously unobservable margin Xp+1, the state space be-
comes (p + 1)-dimensional, and the augmented model
becomes imprecise. As many as 2p − 1 new marginal
relationships—between Xp+1 and any nonempty subset
of (X1, . . . ,Xp)—are left to be specified or learned. In
the regression setting where a multivariate Normal model
is assumed for the previous p variables, one seemingly
straightforward way is to model (X1, . . . ,Xp,Xp+1) as
jointly Normal. This is a very strong assumption that takes
care of all the new joint relationships. Even under such
drastic simplification, the new mean and the new bivariate
covariances are still left to specify, resulting in a family of
(p + 1)-dimensional Normal models.

In reality, the relationship between the existing state
space and a new margin is often something about which
the analyst is neither knowledgeable nor comfortable
making assumptions. This is the case in observational
studies, where Xp+1 is a lurking variable which may have
strong collinearity with subsets of the observed variables
(X1, . . . ,Xp). Using the language of imprecise probabil-
ity, we now turn to decipher Simpson’s paradox, a famous
and familiar setting with its far-reaching significance. The
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occurrence of Simpson’s paradox is proof that we have
employed, likely due to lack of control, an aggregation
rule that has incurred sure loss in inference.

EXAMPLE 4 CONT. (Simpson’s paradox). Following
the setup in Section 1, Simpson’s paradox refers to an ap-
parent contradiction between an inference on treatment
efficacy at an aggregated level, p̄obs < q̄obs, and the infer-
ence at the disaggregated level when the covariate type
of the patient has been accounted for: pk > qk for all
k = 1, . . . ,K . Indeed, how can a treatment be superior
than its alternative in every possible way, yet be inferior
overall?

5.1 Explicating the Aggregation Rules Underlying the

Simpson’s Paradox

Denote for k = 1, . . . ,K ,

uk = P(U = k | Z = 1), vk = P(U = k | Z = 0).

Here, u and v reflect the demographic distribution of the
populations receiving the experimental and control treat-
ments, respectively. By the law of total probability,

(5.1) p̄ = p⊤u and q̄ = q⊤v,

thus given fixed p and q, p̄ and q̄ are functions of u

and v, respectively. The marginal probabilities p̄ and q̄

are meant to describe an event under conditions of infer-
ential interest, in this case, patient recovery within the two
treatment arms. We refer to u and v as aggregation rules,
functions that map conditional probabilities to a marginal
probability. Aggregation rules point in reverse direction
as do updating rules as discussed in the previous sections,
which are maps from a marginal probability to a set of
conditional probabilities.

Typically, measurements between different conditions
are made for the purpose of a comparison, such as the
evaluation of an causal effect of treatment Z on outcome
Y . A comparison between p̄ and q̄ is fair if and only if the
aggregation rules they employ are identical, that is, u = v

as in (5.1). This is what it means to say the comparison has
been made between apples and apples. Such is the case if
no confounding exists between the covariate U and the
propensity of assignment, that is, U ⊥ Z.

Clearly, when u = v, p̄ > q̄ if pk > qk for all k. Hence
Simpson’s paradox is mathematically impossible within a
fair comparison. However, for a given observed pair p̄obs
and q̄obs, have we been careful enough to enforce the de

facto aggregation rules to equal the ideal one? That is, do
we have that the observed comparison is fair enough, that
is, a common rule v such that approximately,

(5.2) uobs
.
= v and vobs

.
= v?

For certain values of p and q, it is entirely possible
that suitable realizations of (uobs,vobs) could result in

p̄obs < q̄obs. To be exact, these are p and q values satis-
fying maxk qk > mink pk . At least one, and possibly both
realizations of uobs and vobs play differentially to the rela-
tive weaknesses of p, that is, coordinates of smaller mag-
nitude, and the strengths of q accordingly. When this pref-
erential weighting, also known as confounding, is strong
enough to reverse the perceived stochastic dominance of
the outcome variable under either treatment, an appar-
ent paradox is induced. Randomization procedures effec-
tively put quality guarantees on the fairness of compari-
son; as the sample size n grows larger, (5.2) holds with
high probability with deviations quantifiable with respect
to p and q that is immune against all U , observed or un-
observed.

5.2 The Paradox Is Sure Loss

Simpson’s paradox is reminiscent of the “sure loss”
phenomenon we saw in earlier sections. Indeed, when not
conditioned on U , if asked to pick a bet between the ex-
perimental and control treatments, we would prefer the
control treatment over the experimental one. But once
conditioned on U , the experimental treatment suddenly
became the superior bet regardless of U ’s value. One is
thus set to surely lose money by engaging in a combina-
tion of these two bets. This is formalized by the following
theorem, where SK is the standard K-simplex defined by
{(v1, . . . , vK) :

∑K
k=1 vk = 1;vk ≥ 0, k = 1, . . . ,K}.

THEOREM 5.1 (Equivalence of Simpson’s paradox and
aggregation sure loss). Let 3 be a convex hull in [0,1]K

characterized by the pair of elementwise upper and lower

bounds (p,q). That is,

3 =
{

λ ∈ [0,1]K : qk ≤ λk ≤ pk, k = 1, . . . ,K
}

.

Let V ⊆ SK be a closed set of aggregation rules, and u ∈

SK . Then u incurs sure loss on 3 relative to V if and only

if (u,v) induces Simpson’s paradox in (p,q) for all v ∈ V .

PROOF. Denote the set of marginal probability de-
rived from 3 under the set of aggregation rules V as
PV = {λ⊤v : λ ∈ 3,v ∈ V}. By the closeness of both 3

and V , we have

(5.3) infPV = inf
v∈V

q⊤v and supPV = sup
v∈V

p⊤v,

and

(5.4) p⊤u = sup
λ∈3

λ⊤u and q⊤u = inf
λ∈3

λ⊤u.

Employing Definition 3.3, to say that u incurs sure loss
on 3 relative to V means that

(5.5) sup
λ∈3

λ⊤u < infPV or inf
λ∈3

λ⊤u > supPV .

On the other hand, to say that for every v ∈ V , (u,v) in-
duces Simpson’s paradox in (p,q) means that

(5.6) p⊤u < inf
v∈V

q⊤v or q⊤u > sup
v∈V

p⊤v.
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FIG. 3. Ideal aggregating rules guarantee the comparison between treatment arms is made on a fair ground. Observed Simpson’s paradox is

strong evidence that the de facto aggregating rules are fair for comparison. Left: if pk > qk for all k, then p⊤v > q⊤v for all v; Right: disparate

uobs and vobs make possible pobs < qobs. Note that 5 in Theorem 5.1 is the convex hull sandwiched between the blue (p) and red (q) hyperplanes

in the first octant.

Identities (5.3)–(5.4) trivially imply the equivalence be-
tween (5.5) and (5.6). �

We remark that, in Definition 3.3, sure loss is defined
with respect to a single conditioning rule because the
prior/marginal lower and upper probabilities P and P are
treated as given. Such is not the case with the sure loss
concept in Theorem 5.1. We must first define V , a set
of aggregation rules deemed desirable for the purpose of
the study. V implies a prior/marginal probability interval,
only relative to which the behavior of the other aggrega-
tion rule u can be discussed. One can check that the rela-
tionship between u and v is reciprocal, that is, if u induces
sure loss relative to v, then v induces sure loss relative
to u. Thus, we can talk about an aggregation scheme as
an ordered pair of rules (u,v), and its characteristics as
whether it incurs sure loss relative to itself, whether it in-
duces the paradox in (p,q), and so on.

A connection between Simpson’s paradox and the
atomic lower and upper probability (ALUP) model of
Herron, Seidenfeld and Wasserman (1997) is made be-
low. A set of probabilities 5(p,q) is an ALUP generated
by (p,q) ∈ [0,1]2K , if

(5.7) 5(p,q) = {π ∈ SK : supπk = pk, infπk = qk}

LEMMA 5.2 (ALUP models). If an aggregation

scheme (u,v) induces Simpson’s paradox in (p,q), it in­

curs sure loss relative to itself on the ALUP model 5(p,q)

as defined in (5.7).

PROOF. Without loss of generality, suppose an aggre-
gation scheme (u,v) induces Simpson’s paradox in (p,q)

in the form of p⊤u = supλ∈3 λ⊤u < infλ∈3 λ⊤v = q⊤v.
But since 5(p,q) is a closed and convex subset of 3, we
have supλ∈3 λ⊤u ≥ supπ∈5(p,q)

π⊤u and infλ∈3 λ⊤v ≤

infπ∈5(p,q)
π⊤v, hence the “only if” part of Theorem 5.1

still holds. �

5.3 Implication on Inference

In Example 4, the description of the model is pre-
cise with the conditional values p and q, as well as the
marginal values p̄obs and q̄obs. The model is imprecise,
and in fact completely vacuous, on the aggregation rules
(uobs,vobs) which gave rise to the observed marginal val-
ues.

In order for the observed marginal probabilities p̄obs
and q̄obs to yield a meaningful comparison, we must have
clear answers to the following two questions regarding
uobs and vobs:

1. Are they equal?
2. What is the mutual value v they both should be equal

to?

An affirmative answer to the first question ensures that
p̄obs and q̄obs are at least on a comparable footing. For
example, for the evaluation of an causal effect of Z on
Y , regardless of the population of interest, it must be en-
sured that no confounding between the covariate U and
the propensity of assignment took place, that is, U ⊥ Z.
That is why Simpson’s paradox is a sanity check for any
apparent causal relationship, as the paradox constitutes
sufficient (but not necessary) evidence there is nonneg-
ligible confounding between U and Z, a telltale sign that
one is comparing apples with oranges.

Much classic and contemporary literature on causal in-
ference sensitivity analysis, for example, Cornfield et al.
(1959), Ding and VanderWeele (2016), hinge on estab-
lishing deterministic bounds to exclude scenarios that
are in essence Simpson’s paradoxes, as well as quanti-
fying the probability of population-level paradox given
observed paradox in the sample, for example, Pavlides
and Perlman (2009). If the assignment Z cannot be con-
trolled in one or both treatment arms, the aggregation rule
is no longer chosen by the investigator but rather left self-
selected, in all or in part by the observational mechanism.
In particular, if arbitrary confounding can be present in
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both treatment arms, u and v can take up any value in SK .
It is also entirely possible that controlled randomization or
weighting is available in only one of the treatment arms,
or on a subset of levels of U , reflecting an aggregation
rule as a mixture of intentional choice and self-selection.

It is also crucial that the ideal aggregation rule v, the
mutual value for uobs and vobs, is a conscious choice made
to reflect the scientific question of interest. Two typical
situations that give rise to natural choices of v are:

• to infer about population average treatment effect,
choose v to be the oracle probability distribution of
patients’ covariates in the population;

• to make inference about a particular patient’s treatment
effect, choose v = (0 · · · 0 1(Ui=k) 0 · · · 0)⊤, the indi-
cator vector matching the patient’s covariate value Ui

with its level k.

One can devise a range of choices of v to reflect any
amount of intermediate pooling within what is deemed as
the relevant subpopulation. As discussed in Liu and Meng
(2014, 2016), what defines the game of individualized in-

ference is picking the v at the appropriate resolution level
while subject to the tradeoff between population relevance
and estimation robustness.

Choosing the right v and enforcing uobs = vobs = v is
not merely a mathematical decision on paper, but rather
entails action in a real-life observational environment, one
that likely involves the physical activities of stratification
and randomization such as controlled experiments and
survey designs. Only through doing so can we make sure
the de facto aggregation rules are equal to the ideal rule,
or equivalently that we know executable ways to adjust
for the differences between these quantities, for example,
through retrospective weighting. Failure to acknowledge
the distinction and potential differences among v, uobs,
and vobs paves the way not only for Simpson’s paradox,
but also equivalently for endorsing mythical statistical ag-
gregation rules with the potential to exhibit incoherent be-
havior, and the worst of all, to mislead ourselves in mak-
ing the wrong treatment or policy decisions, a sure loss in
a real sense.

6. FOOD FOR THOUGHT

6.1 Imprecise Models: Extended Expressions of

Uncertainty

When more information is observed, we expect the
variability associated with the inferential target to de-
crease. This property is possessed by many trustworthy
Bayesian and frequentist procedures relying on precise
model structures. Those that bring the most variability
reduction for unit increase of observed information are
praised as statistically efficient.

However, efficiency is only desirable if we are ab-
solutely sure that information is utilized in the correct

way. The ability of an efficient method to distinguish be-
tween useful and harmful variations in the data is supplied
by the assumption underlying the model. These assump-
tions are sometimes made out of convenience, and some-
times out of the limited expressions of uncertainty that
precise statistical models permit. Balch, Martin and Fer-
son (2019) observed the paradox of probability dilution:
lower quality tracking data, when expressed via a sam-
pling model with inflated variance, apparently increases
the confidence in the inference that two satellites would
not collide. The uncertainty about data acquisition got co-
erced into a precise piece of modeling assumption, which
backfires and brings misleading precision in inference.

Probabilistic modeling is not all about convergence.
A responsible modeler certainly would like to know if she
does not actually have the right means to converge to the
truth. She would like to articulate uncertainty about the
state of knowledge, without conflating it with sampling
variability which will go away as data accumulate. If ad-
ditional data do not carry information beneficial with re-
spect to the current state of knowledge, a truly intelligent
model ought to refuse to further reduce inferential vari-
ability based on these data, such that additional data will
do no harm.

Even within the realm of precise models, “doing no
harm” is a requirement that can be easily violated when
the model is misspecified. As demonstrated in Meng and
Xie (2014), more data do not automatically lead to nar-
rower confidence intervals even in ordinary least squares
(OLS) regression. If a homogeneous variance model is ap-
plied to data with heteroskedasticity, the naturally equally
weighted OLS de-facto gives observations with larger
noise more weight than they deserve. The width of the
confidence interval can increase, sometimes substantially,
with the size of our data. Indeed, a heteroskedastic regres-
sion model without knowledge of how the heteroskedas-
ticity arises cannot teach itself to weight a new data point
without mixing signal with noise, an obvious reflection of
an inherent structural deficiency in the model.

Equipped with such intuition, it becomes natural to
view dilation and other anomalies with imprecise mod-
els not as annoying bugs, but rather helpful warning
signs. They reflect a genuine, structural kind of uncer-
tainty about the underlying set of probabilistic models
employed. The upper and lower probability intervals, be
they prior or posterior, marginal or conditional, do not
merely measure the lack of information from pinning
down the inferential target. They also reflect the incom-
plete knowledge on the modeler’s part, from knowing
even how to measure such lack of information. These un-
settling phenomena are all symptoms when the inherent
incompleteness of modeling knowledge gets in the way of
learning more about the inference question. That is when
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observations, which normally would bring in more infor-
mation, may just become points of additional confusion,
if we do not recognize their diagnostic values.

As discussed in Section 1, association characterizes
how probability about one thing should change after
another thing has been learned. It is the fundamental
means through which observed information contribute to
a model. The sign of the association gives the sense of
direction, such as seen from the coefficients in regres-
sion models. The magnitude of the association implies
an order of priority, such as in large scale genome-wide
association studies and elsewhere where correlation coef-
ficients are used as test statistics. Plentiful association is
the indication of signal strength, potential discovery and
the prospect of a causal relationship. The absence of asso-
ciation, on the other hand, is just as desirable when used
to justify independence assumptions, creating a blanket
of simplicity on which small-world models can be built
and trusted. The three types of associations (positive, neg-
ative and independence) correspond to the three possible
directions of change as the probability of an event updates
from the prior to the posterior according to the Bayes rule.
In precise probabilities, these three types of associations
exhaust all possibilities of information contribution from
one event to another.

Imprecise models expand the landscape of informa-
tion contribution, because the probabilistic description as-
signed to each event is no longer singular. The upper
and lower probabilities considered in this paper deliver
a closed interval [P (A),P (A)] of possibly nonnegligible
width. Generalized notions of association and indepen-
dence, which characterize the direction of change from
prior to posterior, are yet to be defined for sets of prob-
abilities. Phenomena like dilation, contraction and sure
loss explored in this paper are hinting at novel types of
information contribution, as model uncertainty revealed
through them can be particularly informative and wel-
come. The ability to send this message is a unique and
powerful feature of imprecise models, as well as those
that utilize nonadditive measures (Balch, Martin and Fer-
son, 2019).

6.2 Assumption Incommensurability and

Conditioning Protocol

As revealed in Section 3.3, each imprecise probability
updating rule is constantly faced with the problem that
the conditioning information may not be measurable with
respect to the very imprecise probability it is trying to up-
date. As a consequence, they each effectively build within
themselves a mechanism for imposing mathematical re-
strictions generated by a given event B . This is why, as
far as we can see, the situation in the world of impre-
cise probability is more confusing and clearer at the same
time. It is more confusing because the notation P • and

P • carry meanings contingent upon the •-rule we choose.
Yet, different rules are built upon different mechanisms
for imposing the mathematical restriction specified by an
event partition B, in a much similar vein to the sampling
and missing data mechanisms mentioned previously, po-
tentially supplying a variety of options suitable for differ-
ent situations that users may choose from, as long as they
are well informed of the implied assumptions of each rule.
In this sense, the situation is clearer, because the impre-
cise nature should compel the users to be explicit about
the imposed mechanisms in order to proceed. Below we
illustrate this point.

EXAMPLE 2 CONT. (The boxer, the wrestler and the
God’s coin). Recall the boxer and wrestler example in
which there exists a priori, a fair coin and vacuous knowl-
edge of the two fighters. Our analysis in Section 3 showed
that upon knowing X = Y , Dempster’s rule will judge
the posterior probability of boxer’s win to be precisely
half, whereas generalized Bayes rule will remain that the
chance is anywhere within [0,1]. We realize that the wit-
ness who relayed the message X = Y could have meant it
in (at least) two different ways:

1. that he happened to see both the coin flip and the
match between the two fighters, and the results of the two
events were identical;

2. that he somehow miraculously knew that the coin
toss decides the outcome of the match, as if the coin is
God’s pseudorandom number generator.

If the first meaning is taken, as most of us naturally do,
it seems that the generalized Bayes answer makes sense.
After all, since we do not know the relationship between
two co-observed phenomenon, the worst case scenario
would be to admit all possibilities, including the most ex-
treme forms of dependence, when deriving the probability
interval.

However, if the head of the coin dictates the triumph
of the boxer, and the former event is known precisely as a
toss-up, it makes sense to think of the match as a true toss-
up as well. In this case, it is rightful to call for a transferral
of the a priori precise probability of X onto the a priori

vacuous Y . The same logic would apply had we been told
X 6= Y , in the sense that the head of the coin dictates the
triumph of the wrestler. In both cases, the update is akin to
adding another piece of structural knowledge to the model
itself.

This example reflects a point made by Shafer (1985).
In order for probabilistic conditioning to be properly in-
terpreted, it is crucial to have a “protocol” specifying what
information can be learned, in addition to learning the ac-
tual information itself. Updating in absence of a protocol,
or more dangerously under an unacknowledged, implicit
protocol, can produce complications to the interpretation
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of the output inference. Dilation and sure loss, phenomena
exclusive to imprecise probability, are striking instances
that demonstrate such danger. Discrepancies among the
three updating rules reflect the different ways the same
incoming message might be interpreted. Each condition-
ing rule effectively creates a world of alternative possible
observations, hence a protocol is de facto in place, only
hidden behind these explicit-looking rules.

When performing updates in the boxer and wrestler’s
case, the distinction between conditioning protocols un-
derlying the solutions we have offered so far is one be-
tween factual versus incidental knowledge spaces. Know-
ing X = Y is a possible outcome and by chance observing
it constitutes incidental knowledge. Knowing that X = Y

is the factual state of the nature is knowledge of a funda-
mentally different type, one that is much more restrictive
and powerful at the same time: in other words, X 6= Y can-
not, could not and will not happen. Unlike their incidental
counterparts, claiming either X = Y or X 6= Y as factual
necessarily makes them incommensurable with one an-
other, even over sampling repetitions. That is to say, if ei-
ther X = Y or X 6= Y are to be hard-coded into the model,
they will each result in a model distinct from the other in
a way that their respective posterior judgments about the
same event, say Y = 1, are not meant to enter the same
law of total probability calculation. If we are willing to
admit either X = Y or X 6= Y as factual evidence to con-
dition on, they can no longer be regarded as a partition of
the full space like they did back in Section 3.1; the model
must also anticipate to deal with a whole range of other
possible relationships between X and Y that are nondeter-
ministic, as part of the conditioning protocol in Shafer’s
sense.

The distinction between factual versus incidental
knowledge updating are referred to as revision versus
focusing in the imprecise probability literature, and re-
flect the ideologies behind the updating rules; see Smets
(1991), Miranda and Montes (2015) for more on the mat-
ter. Whether a rule is applicable to a particular impre-
cise model would consequently depend on a judgment
of knowledge type, as well as what questions we want to
answer. Within a precise modeling framework, the knowl-
edge type for conditioning is typically coded into the con-
ditioning event itself, which might be on an enhanced
probabilistic space but without increasing the resolution
of the original (marginal) model because it is already at
the highest possible resolution. Hence, one universal up-
dating rule is sufficient. Under an imprecise model, such
a resolution-preserving encoding may not be possible be-
cause of the low resolution nature of the original model.
Various rules then have been and will be invented to carry
out the update as a qualitative rescue for the model’s in-
ability to quantify the knowledge types within its original
resolution. This makes the judgment of knowledge types

particularly pronounced, and serves as a reminder of the
precise nature of the conditioning operation in statistical
learning. If the applicability and subtitles of each updat-
ing rule is not explicated, the resulting inference is subject
to increased vulnerability and confusion, even leading to
paradoxical phenomena such as studied in this paper.

6.3 Imprecise Probability, Precise Decisions

Seeing a myriad of sensible and nonsensible answers
produced by the updating rules of imprecise models, one
may wonder if anything certain, or close to certain, can
be inferred from these models at all without stirring up
a controversy. To this end, we discuss a final twist to the
three prisoners’ story.

EXAMPLE 3 CONT. (Three prisoners’ Monty Hall).
Having heard from the guard that B will not receive pa-
role, prisoner A is presented with an option to switch his
identity with prisoner C: that is, the next morning A will
be met with the fate of C (and C that of A), both having
been decided unbeknownst to them. Is this a good idea for
A?

The answer is unequivocally yes. The above is a recast
of the Monty Hall problem in which you, the contestant
standing in front of a randomly chosen door (prisoner A),
have just been shown a door with a goat behind it (“B
will be executed”), and are contemplating a switch to the
other unopened door (the identity of prisoner C) for a bet-
ter chance of winning the new car (parole). By the calcu-
lations in (3.9), we know that under the generalized Bayes
rule

PB(A lives | guard says B)

= PB(C lives | guard says B),

suggesting that a switch will under no circumstances hurt
the chance of A’s survival. Without switching, A’s best
chance of surviving does not exceed C’s worst chance of
living. Moreover, as the most conservative rule of all, the
(almost) separation of the two generalized Bayes poste-
rior probability intervals guarantees the same for the other
updating rules as well. Therefore, the action of identity
switching should be recommended to A without reser-
vation, regardless of the choice of rule among the three
discussed. (Without changing the problem setup, it is es-
sentially disallowed for more than one prisoner to inquire
with the guard, either independently or simultaneously.
Thus we never have to recommend identity switching to
more than one prisoner, which would otherwise create a
different paradox.) The unanimity in decision is due to
the (very) low resolution nature of the action space, often
binary (e.g., switching or not), allowing different high-
resolution probabilistic statements to admit the same low
resolution classification in the action space.

STS stspdf v.2021/02/04 F:sts765.tex; () p. 20



DILATION, SURE LOSS AND SIMPSON’S PARADOX 21

1 56

2 57

3 58

4 59

5 60

6 61

7 62

8 63

9 64

10 65

11 66

12 67

13 68

14 69

15 70

16 71

17 72

18 73

19 74

20 75

21 76

22 77

23 78

24 79

25 80

26 81

27 82

28 83

29 84

30 85

31 86

32 87

33 88

34 89

35 90

36 91

37 92

38 93

39 94

40 95

41 96

42 97

43 98

44 99

45 100

46 101

47 102

48 103

49 104

50 105

51 106

52 107

53 108

54 109

55 110

ACKNOWLEDGMENTS

We thank Arthur Dempster, Haosui Duanmu, Keli Liu,
Glenn Shafer, Teddy Seidenfeld and anonymous review-
ers for helpful discussions and comments, and Steve
Finch for careful proofreading. Research of X.-L. Meng
is supported in part by the John Templeton Foundation
Grant 52366, and that of R. Gong by the National Science
Foundation DMS-1916002.

REFERENCES

BALCH, M. S., MARTIN, R. and FERSON, S. (2019). Satellite con-
junction analysis and the false confidence theorem. Proc. R. Soc.
Lond. Ser. A Math. Phys. Eng. Sci. 475 20180565, 20. MR3999720
https://doi.org/10.1098/rspa.2018.0565

BILLINGSLEY, P. (2013). Convergence of Probability Measures. Wi-
ley, New York.

BLYTH, C. R. (1972). On Simpson’s paradox and the sure-thing prin-
ciple. J. Amer. Statist. Assoc. 67 364–366, 373–381. MR0314156

CORNFIELD, J., HAENSZEL, W., HAMMOND, E. C., LILIEN-
FELD, A. M., SHIMKIN, M. B. and WYNDER, E. L. (1959).
Smoking and lung cancer: Recent evidence and a discussion of
some questions. J. Natl. Cancer Inst. 22 173–203.

DEMPSTER, A. P. (1967). Upper and lower probabilities induced by
a multivalued mapping. Ann. Math. Stat. 38 325–339. MR0207001
https://doi.org/10.1214/aoms/1177698950

DIACONIS, P. (1978). Review of “A mathematical theory of evidence”
(G. Shafer). J. Amer. Statist. Assoc. 73 677–678.

DIACONIS, P. and ZABELL, S. (1983). Some alternatives to Bayes’
Rule. Stanford University, CA. Department of Statistics.

DING, P. and VANDERWEELE, T. J. (2016). Sensitivity analysis with-
out assumptions. Epidemiology 27 368.

FAGIN, R. and HALPERN, J. Y. (1987). A new approach to updating
beliefs. In Proceedings of the Sixth Conference on Uncertainty in

Artificial Intelligence 317–325.
FYGENSON, M. (2008). Modeling and predicting extrapolated proba-

bilities with outlooks. Statist. Sinica 18 9–90. MR2416904
GELMAN, A. (2006). The boxer, the wrestler, and the coin flip:

A paradox of robust Bayesian inference and belief functions.
Amer. Statist. 60 146–150. MR2224212 https://doi.org/10.1198/
000313006X106190

GONG, R. and MENG, X. L. (2021). Probabilistic underpinning of
imprecise probability for statistical learning with low-resolution in-
formation. Technical Report.

GOOD, I. (1974). A little learning can be dangerous. British J. Philos.
Sci. 25 340–342.

HANNIG, J. and XIE, M. (2012). A note on Dempster–Shafer recom-
bination of confidence distributions. Electron. J. Stat. 6 1943–1966.
MR2988470 https://doi.org/10.1214/12-EJS734

HANNIG, J., IYER, H., LAI, R. C. S. and LEE, T. C. M. (2016).
Generalized fiducial inference: A review and new results. J. Amer.
Statist. Assoc. 111 1346–1361. MR3561954 https://doi.org/10.
1080/01621459.2016.1165102

HEITJAN, D. F. (1994). Ignorability in general incomplete-data mod-
els. Biometrika 81 701–708. MR1326420 https://doi.org/10.1093/
biomet/81.4.701

HEITJAN, D. F. and RUBIN, D. B. (1991). Ignorability and coarse
data. Ann. Statist. 19 2244–2253. MR1135174 https://doi.org/10.
1214/aos/1176348396

HERRON, T. SEIDENFELD, T. and WASSERMAN, L. (1994). The ex-
tent of dilation of sets of probabilities and the asymptotics of robust
Bayesian inference. In PSA: Proceedings of the Biennial Meeting of

the Philosophy of Science Association 250–259.

HERRON, T., SEIDENFELD, T. and WASSERMAN, L. (1997). Divisive
conditioning: Further results on dilation. Philos. Sci. 64 411–444.
MR1605648 https://doi.org/10.1086/392559

HUBER, P. J. and STRASSEN, V. (1973). Minimax tests and the
Neyman–Pearson lemma for capacities. Ann. Statist. 1 251–263.
MR0356306

JAFFRAY, J.-Y. (1992). Bayesian updating and belief functions.
IEEE Trans. Syst. Man Cybern. 22 1144–1152. MR1202571
https://doi.org/10.1109/21.179852

KISH, L. (1965). Survey Sampling. Wiley, New York, NY.
KOHLAS, J. (1991). The reliability of reasoning with unreliable argu-

ments. Ann. Oper. Res. 32 67–113. MR1128173 https://doi.org/10.
1007/BF02204829

KRUSE, R. and SCHWECKE, E. (1990). Specialization—a new con-
cept for uncertainty handling with belief functions. Int. J. Gen. Syst.
18 49–60.

KYBURG, H. E. (1987). Bayesian and non-Bayesian evidential updat-
ing. Artificial Intelligence 31 271–293.

LIU, K. and MENG, X.-L. (2014). Comment: A fruitful resolu-
tion to Simpson’s paradox via multiresolution inference. Amer.
Statist. 68 17–29. MR3303829 https://doi.org/10.1080/00031305.
2014.876842

LIU, K. and MENG, X-L. (2016). There is individualized treatment.
Why not individualized inference?. Annu. Rev. Stat. Appl. 3 79–
111.

MARTIN, R. and LIU, C. (2016). Inferential Models: Reasoning with

Uncertainty. Monographs on Statistics and Applied Probability

147. CRC Press, Boca Raton, FL. MR3618727
MENG, X.-L. and XIE, X. (2014). I got more data, my model is

more refined, but my estimator is getting worse! Am I just dumb?
Econometric Rev. 33 218–250. MR3170847 https://doi.org/10.
1080/07474938.2013.808567

MIRANDA, E. and MONTES, I. (2015). Coherent updating of non-
additive measures. Internat. J. Approx. Reason. 56 159–177.
MR3278790 https://doi.org/10.1016/j.ijar.2014.05.003

MORGAN, J. P., CHAGANTY, N. R., DAHIYA, R. C. and
DOVIAK, M. J. (1991). Let’s make a deal: The player’s dilemma.
Amer. Statist. 45 284–287.

MOSTELLER, F. (1965). Fifty Challenging Problems in Probability

with Solutions. Courier Corporation, North Chelmsford, MA.
NGUYEN, H. T. (1978). On random sets and belief functions. J. Math.

Anal. Appl. 65 531–542.
PAVLIDES, M. G. and PERLMAN, M. D. (2009). How likely

is Simpson’s paradox? Amer. Statist. 63 226–233. MR2750346
https://doi.org/10.1198/tast.2009.09007

PEARL, J. (1990). Reasoning with belief functions: An analysis of
compatibility. Internat. J. Approx. Reason. 4 5–6 363–389.

PEDERSEN, A. P. and WHEELER, G. (2014). Demystifying dilation.
Erkenntnis 79 1305–1342. MR3274419 https://doi.org/10.1007/
s10670-013-9531-7

RUBIN, D. B. (1976). Inference and missing data. Biometrika 63 581–
592.

SCHWEDER, T. and HJORT, N. L. (2016). Confidence, Likelihood,
Probability: Statistical Inference with Confidence Distributions.
Cambridge Series in Statistical and Probabilistic Mathematics 41.
Cambridge Univ. Press, New York. MR3558738 https://doi.org/10.
1017/CBO9781139046671

SEIDENFELD, T. and WASSERMAN, L. (1993). Dilation for
sets of probabilities. Ann. Statist. 21 1139–1154. MR1241261
https://doi.org/10.1214/aos/1176349254

SHAFER, G. (1976). A Mathematical Theory of Evidence. Princeton
Univ. Press, Princeton, NJ.

SHAFER, G. (1979). Allocations of probability. Ann. Probab. 7 827–
839.

STS stspdf v.2021/02/04 F:sts765.tex; () p. 21



22 R. GONG AND X.-L. MENG

1 56

2 57

3 58

4 59

5 60

6 61

7 62

8 63

9 64

10 65

11 66

12 67

13 68

14 69

15 70

16 71

17 72

18 73

19 74

20 75

21 76

22 77

23 78

24 79

25 80

26 81

27 82

28 83

29 84

30 85

31 86

32 87

33 88

34 89

35 90

36 91

37 92

38 93

39 94

40 95

41 96

42 97

43 98

44 99

45 100

46 101

47 102

48 103

49 104

50 105

51 106

52 107

53 108

54 109

55 110

SHAFER, G. (1985). Conditional probability. International Statistical
Review/Revue Internationale de Statistique 261–275.

SIMPSON, E. H. (1951). The interpretation of interaction in contin-
gency tables. J. Roy. Statist. Soc. Ser. B 13 238–241.

SMETS, P. (1991). About updating. In Proceedings of the Seventh Con­

ference on Uncertainty in Artificial Intelligence 378–385.
SMETS, P. (1993). Belief functions: The disjunctive rule of combi-

nation and the generalized Bayesian theorem. Internat. J. Approx.
Reason. 9 1–35.

SUPPES, P. and ZANOTTI, M. (1977). On using random rela-
tions to generate upper and lower probabilities: Foundations of
probability and statistics, III. Synthese 36 427–440. MR0517217
https://doi.org/10.1007/BF00486106

WALLEY, P. (1981). Coherent lower (and upper) probabilities Statis-
tics Research Report 22, University of Warwick, Coventry.

WALLEY, P. (1991). Statistical Reasoning with Imprecise Probabili­

ties. Taylor & Francis, Oxford, UK.
WASSERMAN, L. A. and KADANE, J. B. (1990). Bayes’ theorem

for Choquet capacities. Ann. Statist. 18 1328–1339. MR1062711
https://doi.org/10.1214/aos/1176347752

XIE, M. and SINGH, K. (2013). Confidence distribution, the frequen-
tist distribution estimator of a parameter: A review. Int. Stat. Rev.
81 3–39. MR3047496 https://doi.org/10.1111/insr.12000

YAGER, R. R. (1987). On the dempster–Shafer framework and new
combination rules. Inform. Sci. 41 93–137.

YAGER, R. R. and LIU, L. (2008). Classic Works of the Dempster–

Shafer Theory of Belief Functions 219. Springer, New York, NY.

STS stspdf v.2021/02/04 F:sts765.tex; () p. 22



1 56

2 57

3 58

4 59

5 60

6 61

7 62

8 63

9 64

10 65

11 66

12 67

13 68

14 69

15 70

16 71

17 72

18 73

19 74

20 75

21 76

22 77

23 78

24 79

25 80

26 81

27 82

28 83

29 84

30 85

31 86

32 87

33 88

34 89

35 90

36 91

37 92

38 93

39 94

40 95

41 96

42 97

43 98

44 99

45 100

46 101

47 102

48 103

49 104

50 105

51 106

52 107

53 108

54 109

55 110

THE ORIGINAL REFERENCE LIST

The list of entries below corresponds to the original Reference sec-

tion of your article. The bibliography section on previous page was

retrieved from MathSciNet applying an automated procedure.

Please check both lists and indicate those entries which lead to mis-

taken sources in automatically generated Reference list.

Balch, M.S., Martin, R.and Ferson, S. 2017. Satellite conjunc-
tion analysis and the false confidence theorem. arXiv preprint
arXiv:1706.08565.

Billingsley, P.2013. Convergence of probability measures. John Wiley
& Sons.

Blyth, C.R. 1972. On Simpson’s paradox and the sure-thing principle.
Journal of the American Statistical Association 67 338 364–366.

Cornfield, J., Haenszel, W., Hammond, E.C., Lilienfeld, A.M.,
Shimkin, M.B.and Wynder, E.L. 1959. Smoking and lung cancer:
recent evidence and a discussion of some questions. Journal of the
National Cancer Institute 22 173–203.

Dempster, A.P.1967. Upper and lower probabilities induced by a multi-
valued mapping. The Annals of Mathematical Statistics 38(2) 325–
339.

Diaconis, P.1978. Review of “A mathematical theory of evidence” (G.
Shafer). Journal of the American Statistical Association 73(363)
677–678.

Diaconis, P.and Zabell, S. 1983. Some alternatives to Bayes’ Rule.
Stanford University, CA, Department of Statistics.

Ding, P.and VanderWeele, T.J. 2016. Sensitivity analysis without as-
sumptions Sensitivity analysis without assumptions. Epidemiology
27(3) 368.

Fagin, R.and Halpern, J.Y.1991. A New Approach to Updating Beliefs
A new approach to updating beliefs. In Proceedings of the Sixth
Conference on Uncertainty in Artificial Intelligence Proceedings of
the Sixth Conference on Uncertainty in Artificial Intelligence (317–
325).

Fygenson, M. 2008. Modeling and predicting extrapolated probabili-
ties with outlooks Modeling and predicting extrapolated probabili-
ties with outlooks. Statistica Sinica 18(1) 9–40.

Gelman, A.2006. The boxer, the wrestler, and the coin flip: a paradox
of robust Bayesian inference and belief functions The boxer, the
wrestler, and the coin flip: a paradox of robust Bayesian inference
and belief functions. The American Statistician 60(2) 146–150.

Gong, R.and Meng, X.L. 2019. Probabilistic underpinning of belief
functions for low-resolution statistical modeling. In preparation.

Good, I. 1974. A little learning can be dangerous A little learning can
be dangerous. The British Journal for the Philosophy of Science
25(4) 340–342.

Hannig, J., Xie, M.g.2012. A note on Dempster-Shafer recombination
of confidence distributions A note on Dempster-Shafer recombina-
tion of confidence distributions. Electronic Journal of Statistics 6
1943–1966.

Hannig, J., Iyer, H., Lai, R.C.and Lee, T.C.2016. Generalized fiducial
inference: A review and new results Generalized fiducial inference:
A review and new results. Journal of the American Statistical As-
sociation 111515 1346–1361.

Heitjan, D.F. 1994. Ignorability in general incomplete-data models
Ignorability in general incomplete-data models. Biometrika 814
701–708.

Heitjan, D.F.and Rubin, D.B.1991. Ignorability and coarse data Ignor-
ability and coarse data. The Annals of Statistics 2244–2253.

Herron, T., Seidenfeld, T.and Wasserman, L. 1994. The extent of dila-
tion of sets of probabilities and the asymptotics of robust Bayesian
inference The extent of dilation of sets of probabilities and the
asymptotics of robust Bayesian inference. In PSA: Proceedings
of the Biennial Meeting of the Philosophy of Science Association

PSA: Proceedings of the Biennial Meeting of the Philosophy of
Science Association (1994, 250–259).

Herron, T., Seidenfeld, T.and Wasserman, L.1997. Divisive condition-
ing: further results on dilation Divisive conditioning: further results
on dilation. Philosophy of Science 64(3) 411–444.

Huber, P.J.and Strassen, V. 1973. Minimax tests and the Neyman-
Pearson lemma for capacities Minimax tests and the Neyman-
Pearson lemma for capacities. The Annals of Statistics 1(2) 251–
263.

Jaffray, J.Y. 1992. Bayesian updating and belief functions Bayesian
updating and belief functions. IEEE transactions on Systems, Man,
and Cybernetics 22(5) 1144–1152.

Kish, L. 1965. Survey sampling Survey sampling. John Wiley and
Sons, New York, NY.

Kohlas, J.1991. The reliability of reasoning with unreliable arguments
The reliability of reasoning with unreliable arguments. Annals of
Operations Research 32(1) 67–113.

Kruse, R., Schwecke, E. 1990. Specialization–a new concept for un-
certainty handling with belief functions Specialization–a new con-
cept for uncertainty handling with belief functions. International
Journal Of General System18149–60.

Kyburg, H.E. 1987. Bayesian and non-Bayesian evidential updat-
ing Bayesian and non-Bayesian evidential updating. Artificial
Intelligence313271–293.

Liu, K., Meng, X.L. 2014. Comment: A Fruitful Resolution to Simp-
son’s Paradox via Multiresolution Inference Comment: A fruitful
resolution to Simpson’s Paradox via multiresolution inference. The
American Statistician68117–29.

Liu, K., Meng, X.L. 2016. There Is Individualized Treatment. Why
Not Individualized Inference? There is individualized treatment.
Why not individualized inference? The Annual Review of Statistics
and Its Applications379-111.

Martin, R., Liu, C. 2015. Inferential Models: reasoning with uncer-
tainty Inferential Models: reasoning with uncertainty. CRC Press,
Boca Raton, FL.

Meng, X.L., Xie, X. 2014. I got more data, my model is more refined,
but my estimator is getting worse! Am I just dumb? I got more data,
my model is more refined, but my estimator is getting worse! am i
just dumb? Econometric Reviews331-4218–250.

Miranda, E., Montes, I. 2015. Coherent updating of non-additive mea-
sures Coherent updating of non-additive measures. International
Journal of Approximate Reasoning56159–177.

Morgan, J.P., Chaganty, N.R., Dahiya, R.C.and Doviak, M.J. 1991.
Let’s make a deal: The player’s dilemma Let’s make a deal: The
player’s dilemma. The American Statistician454284–287.

Mosteller, F. 1965. Fifty challenging problems in probability with
solutions Fifty challenging problems in probability with solutions.
Courier Corporation, North Chelmsford, MA.

Nguyen, H.T. 1978. On random sets and belief functions On random
sets and belief functions. Journal of Mathematical Analysis and
Applications653531–542.

Pavlides, M.G., Perlman, M.D. 2009. How likely is Simpson’s
Paradox? How likely is Simpson’s Paradox? The American
Statistician633226–233.

Pearl, J. 1990. Reasoning with belief functions: An analysis of compat-
ibility Reasoning with belief functions: An analysis of compatibil-
ity. International Journal of Approximate Reasoning45-6363–389.

Pedersen, A.P., Wheeler, G. 2014. Demystifying dilation Demystify-
ing dilation. Erkenntnis7961305–1342.

Rubin, D.B. 1976. Inference and missing data Inference and missing
data. Biometrika633581–592.

Schweder, T., Hjort, N.L. 2016. Confidence, Likelihood, Probability
Confidence, likelihood, probability. Cambridge University Press,
Cambridge, UK.

STS stspdf v.2021/02/04 F:sts765.tex; () p. 23



1 56

2 57

3 58

4 59

5 60

6 61

7 62

8 63

9 64

10 65

11 66

12 67

13 68

14 69

15 70

16 71

17 72

18 73

19 74

20 75

21 76

22 77

23 78

24 79

25 80

26 81

27 82

28 83

29 84

30 85

31 86

32 87

33 88

34 89

35 90

36 91

37 92

38 93

39 94

40 95

41 96

42 97

43 98

44 99

45 100

46 101

47 102

48 103

49 104

50 105

51 106

52 107

53 108

54 109

55 110

Seidenfeld, T., Wasserman, L. 1993. Dilation for sets of probabilities
Dilation for sets of probabilities. The Annals of Statistics2131139–
1154.

Shafer, G. 1976. A mathematical theory of evidence A mathematical
theory of evidence. Princeton University Press, Princeton, NJ.

Shafer, G. 1979. Allocations of probability Allocations of probability.
The Annals of Probability75827–839.

Shafer, G. 1985. Conditional probability Conditional proba-
bility. International Statistical Review/Revue Internationale de
Statistique261–275.

Simpson, E.H. 1951. The interpretation of interaction in con-
tingency tables The interpretation of interaction in contingency
tables. Journal of the Royal Statistical Society. Series B
(Methodological)132238–241.

Smets, P. 1991. About updating About updating. In Proceedings
of the Seventh Conference on Uncertainty in Artificial Intelligence
Proceedings of the Seventh Conference on Uncertainty in Artificial
Intelligence (378–385).

Smets, P. 1993. Belief functions: The disjunctive rule of combina-
tion and the generalized Bayesian theorem Belief functions: The
disjunctive rule of combination and the generalized Bayesian theo-
rem. International Journal of Approximate Reasoning911–35.

Suppes, P., Zanotti, M. 1977. On using random relations to generate
upper and lower probabilities On using random relations to gener-
ate upper and lower probabilities. Synthese364427–440.

Walley, P. 1981. Coherent lower (and upper) probabilities Coherent
lower (and upper) probabilities. Statistics Research Report 22, Uni-
versity of Warwick, Coventry.

Walley, P. 1991. Statistical reasoning with imprecise probabilities
Statistical reasoning with imprecise probabilities. Taylor & Francis,
Oxford, UK.

Wasserman, L., Kadane, J.B. 1990. Bayes theorem for Choquet ca-
pacities Bayes theorem for Choquet capacities. The Annals of
Statistics1831328–1339.

Xie, M.G., Singh, K. 2013. Confidence distribution, the frequentist
distribution estimator of a parameter: A review Confidence distri-
bution, the frequentist distribution estimator of a parameter: A re-
view. International Statistical Review8113–39.

Yager, R.R. 1987. On the Dempster-Shafer framework and new com-
bination rules On the Dempster-Shafer framework and new combi-
nation rules. Information Sciences41293–137.

Yager, R.R., Liu, L. 2008. Classic works of the Dempster-Shafer
theory of belief functions Classic works of the Dempster-Shafer
theory of belief functions (219). Springer, New York, NY.

STS stspdf v.2021/02/04 F:sts765.tex; () p. 24



1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

META DATA IN THE PDF FILE

Following information will be included as pdf file Document Properties:

Title : Judicious Judgment Meets Unsettling Updating: Dilation, Sure Loss and Simpson’s Paradox

Author : Ruobin Gong, Xiao-Li Meng

Subject : Statistical Science, 0, Vol. 0, No. 00, 1-22

Keywords: Imprecise probability, model uncertainty, Choquet capacity, belief function, coherence,

Monty Hall problem

Affiliation:

THE LIST OF URI ADDRESSES

Listed below are all uri addresses found in your paper. The non-active uri addresses, if any, are indicated as ERROR. Please check and

update the list where necessary. The e-mail addresses are not checked – they are listed just for your information. More information can be

found in the support page:

http://www.e-publications.org/ims/support/urihelp.html.

301 http://www.imstat.org/sts/ [2:pp.1,1] Moved Permanently

301 http://www.imstat.org [2:pp.1,1] Moved Permanently // http://www.imstat.org/

--- mailto:rg915@stat.rutgers.edu [2:pp.1,1] Check skip

--- mailto:meng@stat.harvard.edu [2:pp.1,1] Check skip

STS stspdf v.2021/02/04 F:sts765.tex; () p. 25



Submitted to Statistical Science

On the history and limitations of
probability updating
Glenn Shafer

Abstract. Gong and Meng show that we can gain insights into classical para-
doxes about conditional probability by acknowledging that apparently pre-
cise probabilities live within a larger world of imprecise probability. They
also show that the notion of updating becomes problematic in this larger
world. A closer look at the historical development of the notion of updat-
ing can give us further insights into its limitations.

Key words and phrases: Bayes’s rule of conditioning, Dempster’s rule, con-
ditional probability, conditionalization, imprecise probabilities, probability
protocols, relative probability, updating.

1. A BROADER PERSPECTIVE ON CLASSICAL PARADOXES

Conditional probability paradoxes, stories in which P (A|B) does not seem to be a rea-
sonable probability for A after we learn B, have been with us since the late 19th century.1

Many of these paradoxes turn on initial probabilities not telling us enough about the relation
between A and the event that we learn B. Many authors have explained this, but each in
their own way, often vociferously denying the cogency of others’ explanations. No consensus
having emerged, the paradoxes endure.

Roubin Gong and Xiao-Li Meng propose a broader perspective. Instead of trying to resolve
the paradoxes within standard probability theory, in which we have joint probabilities for all
events of interest, they propose that we use the theory of imprecise probabilities, in which
events of interest may have only upper and lower probabilities and quantities of interest may
have only upper and lower expected values. The theory of imprecise probabilities not only
generalizes the standard theory but also allows us to recognize formally the incompleteness
of any standard (a.k.a. “precise”) probability model. We do this by adding events to the model
without adding probabilities for them, thus obtaining a larger “imprecise” model. As Gong
and Meng put it,

Every precise model is a fully specified margin nested within a larger, ever-
augmentable model, with extended features not allowed to enter the scene as the
modeler lacks the knowledge to do so precisely.

This allows them to explain the conditional probability paradoxes this way:

Their narratives imply the existence of a joint distribution, yet only a subset of
marginal information is precisely specified.

The theory of imprecise probability has flourished for several decades, but largely outside
statistics journals. Bringing it into the statistical mainstream, as Gong and Meng have done
with this article in Statistical Science, is a welcome move. As Gong and Meng show, the
theory’s ideas can enrich statisticians’ understanding of longstanding questions within our
community. We can also hope that the critical resources of the statistical community can add
new depth to the theory. Gong and Meng tell us that dilation, contraction, and sure loss “hint
at novel types of information contribution”. Perhaps we need theories of these novel types.

University Professor, Rutgers University, Newark, New Jersey, (e-mail: gshafer@rutgers.edu).
1See Bertrand (1889). Bertrand’s paradoxes have been discussed by Shafer and Vovk (2003), Gorroochurn

(2012), and many others.
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2. DO ALL EVENTS HAVE NUMERICAL PROBABILITIES?

The theory of imprecise probabilities says no. Many events, perhaps most, do not have
numerical probabilities. Is this a new or controversial view?

Certainly it is not new. Before the 18th century, scholars who wrote about degrees of prob-
ability seldom suggested that these degrees could ever be put in numerical form (Knebel,
2000). Before 1713, when Jacob Bernoulli’s Ars conjectandi appeared, even expectations in
games of chance were not usually connected with the idea of probability. Bernoulli made the
connection and launched the project of finding numerical probabilities not only for games of
chance but also for civil, criminal and business matters. But Bernoulli did not believe that we
can always find probabilities for a thing and its contrary that add to one.

Jean Le Rond d’Alembert, the uncontested leader of French mathematics in his time, was
an avowed skeptic about Bernoulli’s ambition for numerical probabilities. In 1676, the same
year the teenage Pierre-Simon Laplace arrived in Paris seeking his patronage, d’Alembert
published his own views about the art of conjecture. According to d’Alembert, this art has
three branches (D’Alembert, 1767, Chapter VI):

1. The first branch is games of chance. Here we can count equally likely cases and reason
about them a priori.2

2. The second consists of topics such as insurance and inoculation, where we can learn
the number of cases and their ratios only from experience and only approximately.

3. The third consists of the many topics for which mathematical demonstration is rare or
impossible. D’Alembert included here physics, history, medicine, the law, and business.

Outside the small world of scholars who specialize in mathematical probability and its ap-
plications, these views probably found widespread assent when d’Alembert published them
and may continue to do so today. Over time, scientists and statisticians may have moved bits
of d’Alembert’s third category into the second or even the first, but the third still seems very
large.

When I began my own study of mathematical statistics in the early 1970s, I took it for
granted that only some events have probabilities. Both R. A. Fisher and Andrei Kolmogorov
had said so explicitly.3 I thought nearly all statisticians, philosophers, and mathematicians
agreed. Today I am not so sure. For decades now, Bayesians have insisted that a person can
supply a personal probability for anything. As realism has gained ascendancy in philosophy,
the claim that anything uncertain has an objective probability, usually unknown, has also be-
come common. Many physicists now imagine a universal wave function. Many mathematical
probabilists now imagine the whole course of the world being described by a single element
ω of a vast probability space Ω. In this context, I am tempted to see the increasing popularity
of the theory of imprecise probabilities as a return to d’Alembert’s common sense.

3. MODEL OR JUDGMENT?

As leaders in the “Bayesian, Fiducial & Frequentist” community, Gong and Meng want
to transcend the quarrels between proponents of different interpretations of probability and
different methodologies for statistical inference. This is visible in their choice of words. They
avoid saying whether the probabilities they discuss, precise or imprecise, are objective facts
or subjective beliefs, and they make heavy use of the word “model”. The first two sentences
of their article reveal, however, that the models being studied are akin to neo-Bayesians. They
update themselves:

2D’Alembert was also skeptical about some of this a priori reasoning. Can you really know a priori the
probability of getting a head tossing a coin when you are allowed to try twice? As Bernard Bru has argued, we
should hesitate to dismiss d’Alembert’s doubts on this point as a mere “gambler’s fallacy” (Bru, 1989, 2002).

3Kolmogorov’s most explicit statement that not every event has a probability may be in his article on probability
in the 1951 edition of the Great Soviet Encyclopedia (Shafer and Vovk, 2003, p. 50). Fisher was equally explicit,
stating in 1956, for example, that “in some cases no probability exists” (Fisher, 1956, p. 45).



HISTORY AND LIMITATIONS OF UPDATING 3

Statistical learning is a process through which models perform updates in light of
new information, according to a pre-specified set of operation rules. As new ob-
servations arrive, a good statistical model revises and adapts its uncertainty quan-
tification according to what has just been observed.

By the end of the article, however, I was wondering whether these first two sentences were a
declaration of faith or a straw man. Is “judicious judgment” limited to choosing an updating
rule before the fact, incorporating it into the model, and letting the model do our later thinking
for us? Or is “judicious judgment” most needed after something unexpected is observed? I
would welcome the second interpretation and see it as another step back to common sense.

4. FROM RELATIVE TO CONDITIONAL PROBABILITY

Two centuries before the formula

(1) P (B|A) =
P (A and B)

P (A)

became a definition, Abraham De Moivre provided a betting argument for what became
known as “the rule of compound probability”: the probability of two events both happen-
ing is the probability of the first times the probability of the second “when the first shall
have been consider’d as having happen’d” (De Moivre, 1738, p. 7). As this formulation re-
veals, De Moivre did not begin with a probability measure that gave joint probabilities for all
events he wanted to discuss. Instead he constructed joint probabilities from simpler ingredi-
ents. The probability of a second event given the first was one of these ingredients. It was not
a “conditional probability”; it was the probability of the second event in the new situation in a
betting game. The rule of compound probability remained one of the basic rules of probability
theory until the mid-20th century, when mathematical probabilists decided that it was more
convenient to make probability measures their starting point, thus shifting (1) from being a
consequence of the rule of compound probability to being a definition of P (·|·).

Nineteenth-century mathematicians sometimes wrote about “relative probability”. In his
popular French textbook on probability, first published in 1816, Sylvestre-François Lacroix
called the ratio P (A)/(P (A) +P (B)) the probabilité relative of A as compared to B . When
rolling two dice for example, where there are 6 chances for getting a 4 and only 3 chances
for getting a 4, the probability of 7 relative to 4 is 2/3 (Lacroix, 1816, pp.19–20). We see this
same notion of relative probability in (Liagre, 1852, §16).

It seems that “conditional probability” first appeared in George Boole’s Laws of Thought
(Boole, 1854, Ch. XX, §21). A logician, Boole was trying to make mathematical probability
part of logic, and he was accustomed to using “condition” and “conditional” in logic. Boole’s
used “conditional probability” only once, however, casually and perhaps even inadvertently,
as he was writing mostly about “conditional events”. In 1887, in his Metretike, Francis Edge-
worth, citing Boole, systematically called the probability of an effect given a cause a “con-
ditional probability” (Mirowski, 1994). We already see the German and Russian equivalents,
bedingte Wahrscheinlichkeit and óñëîâíàÿ âåðîÿíîñòü, in the early 20th century (Shafer and
Vovk, 2003, p. 6).

In the course of commenting on Boole, Charles Sanders Peirce wrote, “Let ba denote the
frequency of b’s among the a’s” (Peirce, 1867, p. 255). Because Peirce was identifying prob-
ability with frequency, this could be considered the first notation for conditional probability.
Others made other suggestions, mostly independently of each other. Hugh McColl, indepen-
dently of Peirce, wrote “The symbol xa denotes the chance that the statement a is true on the
assumption that the statement a is true" (McColl, 1880, 1881). Later he used A

B (MacColl,
1897). Andrei Markov (1900) wrote (A,B).

In 1911, John Maynard Keynes introduced what he called “the fundamental symbol of
probability”, A/H , for the probability of A given H . This symbol became popular at Cam-
bridge; we see it in books by C. D. Broad (Broad, 1914, p. 318), John Maynard Keynes
(Keynes, 1921, p. 177), and William E. Johnson (Johnson, 1924, p. 179). To all appearances,
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Keynes first used the symbol in the 1908 dissertation that grew into his book, and Johnson
popularized it in conversations and lectures.4

In 1901, the German mathematician Felix Hausdorff introduced the symbol PF (E) for
what he called the relative Wahrsheinlichkeit von E, posito F (relative probability of E given
F ). In his view, the absolute probability P (E) of an event E is simply the relative probabil-
ity PF (E), where F is our current knowledge. This knowledge can change, and Hausdorff
mentioned three examples (Hausdorff, 1901, pp. 154–155):

• When the absolute probability P (E) is a weighted average of possible objective prob-
abilities, F represents one of the possible objective probabilities, and we learn that F
is correct, then we change P (E) to PF (E).

• We may learn that there were more possibilities than we had realized, as when we learn
that the geometry of the world may not be Euclidean. In this case, we shift from PF (E)
to PG(E), where G permits this wider set of possibilities.

• We may learn that our knowledge F was flatly wrong and therefore shift from PF (E)
to PG(E), where G contradicts F .

Emmanuel Czuber followed Hausdorff’s terminology and notation in the second edition of his
influential textbook, except that he used WF (E) instead of PF (E) (Czuber, 1908, pp. 44–45).
Kolmogorov used PA(B) in his pathbreaking 1933 Grundbegriffe, but he called such a prob-
ability bedingte (conditional), not relative as Hausdorff and Czuber had done (Kolmogorov,
1933, p. 206).

Our current notation P (·|·) is apparently due to Harold Jeffreys. In 1919, Dorothy Wrinch
and Jeffreys had used P (p : q) (Wrinch and Jeffreys, 1919). In 1931, Jeffreys replaced this
with P (p|q), commenting on its advantage over P (p : q) and notation p/q in a way that makes
clear that he was not aware of any previous use of P (p|q) (Jeffreys, 1931, p. 31).

5. FROM CONDITIONAL PROBABILITY TO UPDATING

After World War II, mathematicians, statisticians, and philosophers began to take it for
granted that the proper setting for mathematical probability is a probability measure rather
than a collection of probabilities less structured or structured in some other way. Only then
did it become natural to recast the notion of conditional probability as an action with proba-
bilities as its object: a statistician or scientist “conditionalizes” or “conditions” or “updates”
the probabilities. This formulation seems to have slipped unheralded into many minds. The
earliest instance of it I have found is in Estes and Suppes (1957). After emphasizing the im-
portance for psychology of the concept of a probability measure (p. 11), Estes and Suppes
explained that “the experimenter may conditionalize the probabilities of reinforcement upon
preceding events of the sample space in whatever manner he pleases” (pp. 20–21). The use of
“update” in this context seems to have appeared much later, only in the late 1970s.

In the 1960s, A. P. Dempster was writing about his own rules for or of combination and
conditioning and comparing them with Bayesian rules (Dempster, 1967, 1968). In my 1976
book on the Dempster-Shafer theory (Shafer, 1976), I distinguished between Bayes’s rule of
conditioning, as I called it, and Bayes’s theorem.

• Bayes’s rule of conditioning says that when you learn A, you change your probability
for B from P (B) to P (B|A) as given by (1), regardless of the order in which the events
may have happened in the world. I attributed this rule directly to Bayes because he had
given a betting argument for it, which is erroneous in my opinion; see Shafer (1982).

4Keynes claimed originality for the symbol in correspondence with W. H. Macaulay in 1907 (Aldrich, 2020).
In his book he says that had not been aware of McColl’s earlier notation when he devised the symbol (Keynes,
1921, p. 177). In a review of Keynes’s book, Broad suggested that Keynes had borrowed the symbol from Johnson
(Broad, 1922, p. 78), but Johnson acknowledged Keynes’s priority, at least in publication. Johnson read Keynes’s
dissertation and likely used Keynes’s symbol subsequently in lectures attended by Broad and Dorothy Wrinch
(Aldrich, 2008, 2020).
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• Bayes’s theorem is more specific; it is the Bayesian rule for changing probabilities for
a parameter based on observations (or, in Laplace’s words, obtaining probabilities for
causes from events). Beginning with Cournot (1843), some authors called this Bayes’s
rule (règle de Bayes in French; Bayesschen Regel in German); others called it Bayes’s
formula or Bayes’s theorem.5 In English, it was often called the method of “inverse
probability”. Now that (1) is regarded as a definition, it is more often called a theorem.

The distinction between Bayes’s rule of conditioning (or updating or conditionalization; see
Teller (1973)) and Bayes’s theorem is now widely made, but it is remains unfamiliar to many
statisticians. Perhaps for this reason, Gong and Meng blur the distinction, calling

P (A|B) = P (A)
P (B|A)

P (B)

“Bayes rule”. I find this confusing, because when (1) is treated as a general rule for updating
a probability measure after observing an event, there is no presumption that the probabilities
of the event conditional on all other events had previously been singled out and calculated.

6. THE IMPLICATIONS OF INSISTING ON A PROTOCOL

Gong and Meng are kind enough to cite the 1985 article in which I insisted that Bayesian
updating after learning B is legitimate only in the presence of a protocol that singled out
B as one of the things we might learn (Shafer, 1985). It is only in this case, I argued, that
De Moivre’s betting argument and its variants (e.g., de Finetti (1937); Teller (1973)) justify
Bayes’s rule of conditioning and only in this case that paradox can be avoided. I would like to
add to their discussion an explanation of how I understand the consequences of insisting on a
protocol.

By a protocol, I mean what Joseph L. Doob and later probabilists have called a filtration.
Starting at time 0, you first learn X1, then X2, etc. In the simple special case where these
variables are all binary and we stop at fixed time n, we can visualize the protocol as a binary
tree. The sample space Ω is the set of all paths through the tree, from time 0 to time n. There
are 2n elements in Ω and hence 22

n

events. But there are exponentially fewer nodes in the
tree — only 2n − 1. But only a node in the tree can represent what you may have learned
at some point in time. If and when you reach a particular node, say by observing x1, . . . , xk,
your new probability for an event A will be your original probability “conditioned” on X1 =
x1, . . . ,Xk = xk. But you will never “condition” on any of the 22

n − 2n + 1 events not of this
form. So the notion that you have a methodology that allows you to “update” when your new
information is any subset B of Ω is illusory.

A common Bayesian response is that you should of course condition on everything you
have learned, including the fact that you learned it. This implies that the elements of Ω specify
what you will and will not learn at every point in time. So the Bayesian view already implicitly
calls for a protocol for how new information may arrive. In my view, leaving this need for
a protocol implicit is more than an invitation to paradox. It is deceptive. Once the demand
to provide a probability model for your entire learning process is made explicit, it becomes
obvious that the demand often cannot be satisfied.

Surely we should conclude that models with updating rules are only one limited set of tools
for assessing uncertainty. We also need ideas for evaluating and combining unanticipated evi-
dence, such as Jacob Bernoulli proposed in (Bernoulli, 1713, 2006, Part IV, Ch. 3), Dempster
and I proposed in the 1960s and 1970s, and others have proposed before and since.
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5Bayes’s friend and executor Richard Price used the phrase “Mr. Bayes’s rules” to refer to formulas Bayes
had derived for approximating what we now call posterior and predictive Bayesian probabilities in the binomial
problem (Dale, 1999, pp. 39–40).
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Comment on Gong and Meng’s “Judicious
judgment meets unsettling updating:
Dilation, sure loss, and Simpson’s paradox”
Chuanhai Liu and Ryan Martin

Abstract. Here we demonstrate that the inferential model (IM) framework,
unlike the updating rules that Gong and Meng show to be unreliable, pro-
vides valid and efficient inferences/prediction while not being susceptible to
sure loss. In this sense, the IM framework settles what Gong and Meng char-
acterized as “unsettling.”

Key words and phrases: belief function, efficiency, lower and upper proba-
bility, inferential models, validity.

1. INTRODUCTION

Ruobin Gong and Xiao-Li Meng are to be congratu-
lated for their thought-provoking article shedding light on
the paradoxical results that can surface when imprecise or
incompletely-specified models are updated, in light of ob-
served data, using formal rules like Dempster’s and gener-
alized Bayes. With scientific problems becoming increas-
ingly more complex, the idea that models describing the
phenomena under investigation can be precisely specified
is a fantasy, so Gong and Meng’s insights about the effects
of these updating rules are both important and timely.
However, after highlighting a number of cases where the
updates are “unsettling,” they give no recommendations
about which updating rule, if any, is reliable. In some
cases, generalized Bayes seems to be the right choice,
while in others it’s Dempster’s rule. Since we can’t rely
on any of the updating rules to give satisfactory answers
in every problem, apparently our only recourse is to use
“judicious judgment” on a case-by-case basis.

Here we argue that steps toward settling what’s unset-
tling about these updates can be made by taking a differ-
ent perspective on what a solution to the problem entails.
Gong and Meng make their perspective very clear:

Statistical learning is a process through which
models perform updates in light of new infor-
mation, according to a pre-specified set of op-
eration rules.

Chuanhai Liu is Professor, Department of Statistics, Purdue
University, West Lafayette, Indiana, USA (e-mail:
chuanhai@purdue.edu). Ryan Martin is Professor, Department
of Statistics, North Carolina State University, Raleigh, North
Carolina, USA (e-mail: rgmarti3@ncsu.edu).

What’s missing from this description is that inferences
drawn based on the updated models must be reliable or
valid in some specific sense, otherwise, the results are not
useful. So the question is not really about updating be-
liefs but, rather, how to ensure that the beliefs data sci-
entists construct for inference and prediction achieve the
desired reliability properties. From this perspective, Gong
and Meng’s goal is overly ambitious: for valid and ef-
ficient inference, rules that update beliefs are not nec-
essary. A less ambitious goal—but still in line with the
priorities of scientists—is to understand what it takes to
construct procedures for allocating beliefs such that in-
ferences drawn are valid and efficient. The first step is to
define what these terms mean, which we do below in Sec-
tion 2. We immediately take comfort in the fact that va-
lidity rules out the troubling sure loss phenomenon, and,
as we show in Section 3, validity and efficiency make it
possible to compare the solutions based on the different
updating rules. Of course, if validity and efficiency are
the goal, then it makes sense to follow a procedure that is
specifically design to achieve these properties. The infer-
ential model (IM) procedure introduced in Martin and Liu
(2013, 2015a) is just that, and in Section 4 we describe
this framework and show how it generally leads to better
solutions than those based on the formal updating rules
in Gong and Meng’s examples. The take-away message is
that, by following the validity- and efficiency-focused IM
approach, the “unsettling” phenomena identified by Gong
and Meng can be avoided. Finally, Section 5 concludes
with few topics for future investigation.

2. VALID AND EFFICIENT PREDICTION

The examples in Gong and Meng (2020) are most con-
veniently described as prediction problems, so that’s the
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perspective we take; all of this can be developed in a sim-
ilar way for inference. To set the scene, let X denote
the observable data and Y ∈ Y the quantity to be pre-
dicted. Next, let P denote the probability measure that de-
scribes the joint distribution of (X,Y ), at least partially
unknown or unspecified. As indicated above, we pro-
ceed by quantifying uncertainty about Y , given X = x,
via a pair of lower and upper probabilities, denoted by
(πx, πx), defined on Y. We refer to the map x 7→ (πx, πx)
as a probabilistic predictor, and the user’s degree of be-
lief in the truthfulness of an assertion A ⊆ Y concern-
ing the unobserved Y , given X = x, are described by the
pair (πx(A), πx(A)). Note that the probabilistic predic-
tor need not be based on updating a precise or imprecise
probability model.

Since the goal is for the probabilistic predictor to make
reliable predictions, i.e., not wrong too often, consider the
following prediction validity property.

DEFINITION (Cella and Martin 2020). A probabilis-
tic predictor is valid if

(1) P{πX(A)≤ α , Y ∈A} ≤ α, ∀ (A,α,P),

where the probability is with respect to the joint distribu-
tion of (X,Y ) determined by P and “∀” is over all asser-
tions A⊆Y, all levels α ∈ [0,1], and all P.

The intuition is that, at least for small α, the data ana-
lyst interprets the event “πX(A)≤ α” as evidence against
the truthfulness of the assertion A about Y , so the joint
event “πX(A) ≤ α,Y ∈ A” is one where an erroneous
prediction is possible. Then (1) requires that the user be
able to control the frequency of such erroneous predic-
tions. Thanks to the familiar duality between lower and
upper probabilities, a similar condition can be formulated
in terms of πx (Cella and Martin, 2020). To see what con-
dition (1) imposes on the probabilistic predictor, consider
the equivalent expression

(2) E{1πX(A)≤αP(Y ∈A |X)} ≤ α, ∀ (A,α,P),

where 1B is the indicator function, E is expectation with
respect to the marginal distribution of X under P, and
P(Y ∈ A | X) is the conditional probability based on
P. Clearly, if πx(A) equals or dominates the conditional
probability P(Y ∈ A | x) or the marginal probability
P(Y ∈ A), then (2) holds. This connection between va-
lidity and “dominance” leads to several interesting obser-
vations, as discussed in Cella and Martin (2020).

• Sure loss, the most unsettling of the three phenom-
ena studied by Gong and Meng, is ruled out by va-
lidity, that is, validity implies no sure loss.

• If the imprecise model is known to contain the true
joint distribution of (X,Y ), like in Gong and Meng’s
examples, then the generalized Bayes solution is
valid.

While generalized Bayes provides a strategy to achieve
validity, it’s not the only option and often will not be the
best; see below.

Beyond validity, efficiency is important too. Here, we
say that between a pair of valid probabilistic predictors,
with upper probabilities πx and π′x, the latter is no less
efficient than the former—with respect to a specified as-
sertion A—if π′x(A) ≤ πx(A) for all x. The idea is that
large upper probabilities are trivially valid, so the goal is
to find the smallest possible upper probabilities that sat-
isfy (1) or (2). By the duality between lower and upper
probabilities, similar intuition can be developed for πx.
We’ll not investigate validity or efficiency formally here,
only in the context of two examples in Section 3.

3. GONG AND MENG’S EXAMPLES

3.1 Three prisoners

Three prisoners—labeled A, B, and C—are in custody
and one will be randomly chosen to have their sentence
pardoned; the other two will be executed. Let Y denote
the pardoned prisoner. Prisoner A ask the guard to tell
him which of Prisoners B or C will be executed, and the
guard’s response is the data X . The goal is to predict Y
based on data X . What do validity and efficiency add to
the discussion?

As Gong and Meng argue, the joint distribution for
(X,Y ) is fully determined except for the conditional
probability θ = P(X = B | Y = A). So, for the most rele-
vant assertion, “Y = A,” the validity condition (2) can be
expressed as

(3) 1πB(A)≤α · θ3 + 1πC(A)≤α · 1−θ3 ≤ α.

As presented in Gong and Meng—see, also, Walley
(1991, Sec. 6.4.4)—the generalized Bayes solution re-
turns a probabilistic predictor with

πx(A) = 0 and πx(A) = 1
2 , x ∈ {B, C},

and, for this, it’s easy to check that (3) holds. Dempster’s
rule returns a probabilistic predictor with lower and up-
per probabilities for “Y = A” equal to 1

2 , for all x. This
satisfies (3) at “Y = A,” but not if we consider the comple-
mentary assertion. Indeed, with Dempster’s probabilistic
predictor at the assertion “Y ∈ {B,C},”, the validity re-
quirement in (3) boils down to

(4) 1 1

2
≤α · 23 ≤ α.

Taking α = 1
2 leads to a contradiction. This is basically

the proof of how sure loss leads to a violation of validity
in general. Similarly, the solution based on the geometric
rule, which also suffers from sure loss in this example, is
invalid.

A closer look at (3) provides some insight as to what
the “most efficient” solution is. If πx(A) = 1

3 for each
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x ∈ {B, C}, then (3) would be satisfied, and it would
be more efficient than the generalized Bayes solution. It
would also be valid since lower probability on the com-
plementary event is 2

3 , as opposed to Dempster’s 1
2 , so it

would not get caught by the trap (4). We’ll see below how
this “most efficient” solution can be achieved.

3.2 Boxer, wrestler, and coin

Let Y1 denote the outcome a fair coin flip, with Y1 = 1
and Y1 = 0 corresponding to Heads and Tails, respec-
tively, and let Y2 denote the outcome of the boxer ver-
sus wrestler match, with Y1 = 1 and Y1 = 0 denoting
a boxer and wrestler victory, respectively. The data is
X = |Y1 − Y2|, an indicator that Y1 and Y2 take the same
value. The goal is to predict the outcome of the fight (or
of the coin flip) based on the observed value of X .

Features of the joint distribution of (X,Y ), with Y =
(Y1, Y2), are left unspecified, in particular, the conditional
probabilities

θ1|y1 = P(Y2 = 1 | Y1 = y1), y1 ∈ {0,1}.

This pair θ = (θ1|0, θ1|1) of conditional probabilities can
take any value in [0,1]2. That is, the problem setup
doesn’t rule out the possibility that the fight’s outcome
is determined by the coin flip, or that the fight’s outcome
is independent of the coin and pre-determined.

As above, let’s start by specializing the validity con-
dition to the present example. That is, if πx(1) is the
probabilistic predictor’s upper probability at the assertion
“Y2 = 1,” i.e., a boxer victory, then (2) requires

1
2

{
1π0(1)≤α · θ1|0 + 1π1(1)≤α · θ1|1

}
≤ α.

Since (θ1|0, θ1|1) can take any value in [0,1]2, there is
no way to ensure that validity holds, except trivially, by
taking the upper probabilities identically equal to 1. This
is precisely the generalized Bayes solution in Gong and
Meng. Dempster’s rule, again, is invalid.

For assertions about the coin, the only satisfactory so-
lution based on the methods investigated in Gong and
Meng is that based on Dempster’s rule, which ignores the
data and uses the known marginal distribution of Y1. It’s
easy to check that the simple probabilistic predictor

πx(“Y1 = 1”) = πx(“Y1 = 1”) = 1
2 , x ∈ {0,1},

is valid and efficient. We’ll see below how this solution
can be achieved in the IM context.

4. INFERENTIAL MODELS

4.1 Formulation

The IM formulation starts by specifying an association
between what is being modeled, i.e., data X and quantity

of interest Y , the unknown parameter θ ∈ Θ, and an un-
observable auxiliary variable U , whose distribution PU is
known, via an equation or rule

(5) (X,Y ) = a(θ,U), U ∼ PU .

The mapping a(θ, ·) implicitly encodes what is known
about the joint distribution but explicitly depends on the
unknown θ. The details depend on the objectives of the
analysis: if (X,Y ) is observable and the goal is infer-
ence on θ, then we proceed as described in Martin and
Liu (2013, 2015a); if only X is observable and the goal is
prediction of Y , then we proceed as in Martin and Ling-
ham (2016) or Cella and Martin (2020).

For the case of prediction, the idea is as follows. Given
X = x, define a set-valued mapping u 7→Qx(u), into the
space Y×Θ of unknown quantities, as

Qx(u) = {(y,ϑ) ∈Y×Θ : (x, y) = a(ϑ,u)}.
If u satisfies the equation (5) with X = x, then Qx(u)
contains the correct prediction. It is impossible to know
for sure which u values satisfy the equation, but it is
possible—since the distribution PU is known—to con-
struct a random set U of u values that we believe is likely
to contain a solution. For such a U , the new random set

Qx(U) =
⋃
u∈U

Qx(u),

obtained by mapping through the association to the space
of unknowns, is equally likely to contain the correct pre-
diction. Then we can define the lower and upper proba-
bilistic predictor for Y , given X = x,

πx(A) = PU{Qx(U)⊆A×Θ}

πx(A) = PU{Qx(U)∩ (A×Θ) 6= ∅},
where PU is the distribution of the random set U and A
is an arbitrary subset of Y. The appropriate choice of ran-
dom set U is beyond the scope of this short note, but suf-
fice it to say that choosing U ∼ PU to achieve the validity
condition is relatively straightforward; see Martin and Liu
(2013, 2015a).

The above lower and upper prediction probabilities are
belief and plausibility functions, respectively, defined on
the power set of Y, determined by the association, data,
and user-defined random set. Our focus is on validity and
efficiency, so we don’t obligate ourselves to manipulat-
ing these functions using the Dempster–Shafer calculus of
belief functions (Shafer, 1976; Dempster, 2008). Instead,
the focus is on expressing the association between data
and unknowns in terms of an auxiliary variable whose di-
mension is as small as possible. When the dimension is
lower, the size of the random set needed to achieve valid-
ity is smaller, hence greater efficiency. General strategies
for reducing the dimension were presented in Martin and
Liu (2015b,c). The marginalization techniques in particu-
lar will be used below.
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4.2 Three prisoners

For an IM solution, start with an association

Y = U1

X = f(θ,U1,U2),

where U1 ∼ Unif({A, B, C}) and U2 ∼ Unif(0,1) are in-
dependent, and

f(θ,u1, u2) =

{
B if u2 ≤ 1u1=C + θ 1u1=A

C otherwise.

A unique feature of this problem is that the quantity of
interest, Y , the identity of the pardoned prisoner, has a
known marginal distribution.

Since θ is not of primary interest, there is an oppor-
tunity to potentially reduce the auxiliary variable dimen-
sion before carrying out the IM construction (Martin and
Liu, 2015c). Indeed, it is easy to check that, for every
(x, y,u2), there exists a θ such that x = f(θ, y,u2). By
the general IM marginalization theory, this implies the
second equation in the association can be effectively ig-
nored. This means valid (and efficient) prediction of Y
should proceed based on its known marginal distribution.
We say the second equation can be “effectively” ignored
because it wouldn’t make sense to predict that, say, Y = B
if we observe X = B. So we should account for this infor-
mation in some way.

Based on the argument above, the A-step concludes
by writing Y = U , where U ∼ Unif({A, B, C}). For the
P-step, we introduce a suitable random set U ∼ PU tar-
geting the unobserved value of U . There are many op-
tions, but here we recommend to take U with support{
{B, C},{A, B, C}

}
and masses assigned as

PU (U = {B, C}) = 2
3 and PU (U = {A, B, C}) = 1

3 .

With this choice, the probabilistic predictor returned by
the IM’s C-step is precisely the one described at the end
of Section 3.1, the one that is valid and most efficient,
superior to all the solutions presented in Gong and Meng
(2020) based on updating the imprecise model according
to formal rules.

4.3 Boxer, wrestler, and coin

For an IM solution, define an association as

Y1 = 1U1≤0.5 and Y2 = 1U2≤θ1|1,U1≤0.5+1U2≤θ1|0,U1>0.5,

with X = |Y1 − Y2| and (U1,U2) a pair of independent
Unif(0,1) random variables. Suppose, for example, that
X = 0 is observed, i.e., that the outcomes of the fight and
coin flip are the same; the case with X = 1 is analogous.
When X is observed, the outcome of the fight determines
the coin flip, and vice versa, so there’s no need to consider
both Y1 and Y2 after X is observed. We start with the case
of Y2, the fight’s outcome. A generic (u1, u2) is pushed

through the assertion, with X = 0, to a set in the (y2, θ)-
space:

Q0(u1, u2) =

{
{(1, θ) : u2 ≤ θ1|1} if u1 ≤ 0.5

{(0, θ) : u2 > θ1|0} if u1 > 0.5.

Since we’re only interested in Y2, our assertions about
(Y2, θ) take the form {y2}× [0,1]2, for y2 ∈ {0,1}. We’ll
leave out the details here, but it can be shown that, for any
suitable random set U ⊆ [0,1]2, the probabilistic predic-
tor for Y2 returned by the IM is vacuous, i.e., its lower
and upper probabilities are 0 and 1, respectively. As we
showed above, this is the only valid solution.

Finally, if interest was in predicting Y1, the outcome
of the coin flip, then we could proceed very much like in
the three prisoners example. That is, the general theory of
marginal inference in Martin and Liu (2015c) allows us
to ignore everything except Y1, hence valid and efficient
inference is achieved by using the marginal distribution of
Y1 to construct a valid and efficient probabilistic predictor.
This agrees with the solution based on Dempster’s rule
and is more efficient than that based on the generalized
Bayes rule.

5. CONCLUSION

The examples in Gong and Meng’s paper are simulta-
neously both simple and challenging, making them ideal
cases to test our understanding and to highlight the bene-
fits of our perspective that focuses specifically on the con-
struction of data-dependent beliefs that are both valid and
efficient. This note is already too long, so we’ll present
our IM analysis of Simpson’s paradox elsewhere.

It’s interesting to see that, at least in cases where the
imprecise model is known to be correctly specified, gen-
eralized Bayes is valid. But even in these relatively sim-
ple examples, we find that the IM solution can lead to
more efficient prediction. In more complex settings, there
the generalized Bayes solution faces certain challenges,
in particular, specifying an imprecise model that is both
sufficiently flexible and simple enough to compute the
lower/upper envelopes. So there are ample reasons to con-
sider alternative solutions. For example, Cella and Mar-
tin (2020) established a connection between valid IMs
and the powerful conformal prediction machinery (Vovk,
Gammerman and Shafer, 2005).

Finally, as we were preparing this discussion piece, it
occurred to us that the failure of Fisher’s fiducial argu-
ment and Dempster’s extension thereof to achieve valid
inference and prediction in general could possibly be un-
derstood in terms of the contraction, dilation, and/or sure
loss examined by Gong and Meng. This claim, too, will
be investigated further and our results will be presented
elsewhere.
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Professors Gong and Meng’s lucid and thought-
provoking article views imprecise probability
through the lens of three updating rules, highlight-
ing discrepancies in inference between the gener-
alized Bayes rule, on the one hand, and Dempter’s
rule and its dual, the geometric rule, on the other. In
doing so, Gong and Meng vividly illustrate two im-
portant points, namely (i) inferential anomalies in-
volving imprecise probabilities ought to be viewed
as a helpful warning sign that some structural un-
certainty looms in one’s model, and (ii) such uncer-
tainty is different in kind to sampling variability and
therefore not resolved by updating with additional
data.

Even so, the route Gong and Meng take to ar-
rive at these two conclusions risks leaving the im-
pression that the theory of imprecise probability is
wobblier than it is. Specifically, in writing that,

“in the world of imprecise probabili-
ties, not only must we live with imper-
fections, but also accept intrinsic con-
tradictions”,

Gong and Meng suggest little has changed from
the days of C.A.B. Smith’s outline for inference
with lower and upper personal “pignic odds” (Smith
1961), a proposal that Savage and de Finetti deemed
“not fit for characterizing a new, weaker kind of co-
herent behaviour” (de Finetti and Savage 1962).

In my remarks, I would like to offer a corrective
to the notion that inference with imprecise proba-
bilities is plagued by inherent contradictions. On
the contrary, for the contemporary theory of lower
previsions (Walley 1991; Troffaes and de Cooman
2014), which includes lower probabilities as a spe-
cial case, coherence preservation under inference is
inviolable. Yet, once sure-loss avoidance is pro-
moted to a fundamental principle, both Dempster’s
rule and the geometric rule fall by the wayside—
except in specific, benign circumstances where their
application is guaranteed to avoid sure loss.

1 Sure Loss Avoidance & Coherence

Whether to accept sure-loss avoidance as funda-
mental will depend on what you get from the
theory of lower previsions in return. Gong and
Meng rightly observe that if lower and upper previ-
sions are interpreted as acceptable one-sided betting
odds, with lower previsions denoting the maximum
buying price you would pay for a gamble and up-
per previsions denoting the minimum selling price
you would accept for that gamble, then it is natu-
ral to accept sure-loss avoidance as a principle of
rationality. They nevertheless contrast this direct
interpretation of a lower prevision, as a represen-
tation of your disposition to bet on a collection of
gambles, with an indirect interpretation that regards
a lower prevision as a summary of the set of prob-
abilities that are compatible with an incompletely
specified model. This indirect interpretation is cen-
tral to Bayesian sensitivity analysis, but it has also
played an important role in the historical develop-
ment of imprecise probabilities more generally.

For instance, Smith showed that every coher-
ent lower prevision may be understood as the lower
envelope of some set of linear previsions, a re-
sult that Walley later strengthened to a characteri-
zation (1991, §3.3): specifically, a lower prevision
P avoids sure loss if and only if there is a linear
prevision P such that P(X) ≥ P(X), for all gam-
bles X on a fixed domain, and P is a coherent lower
prevision if and only if there is a set of linear pre-
visions P such that P is the lower envelope of P,
that is P(X) = inf{P(X) : P ∈ P}, for all X on a
similarly shared domain. When the range of X is
restricted to {0,1}, X works as an indicator func-
tion and P(X) as a lower probability. Such sure-loss
avoidance and coherence conditions extend to con-
ditional lower previsions, too.

The question then is whether the inferential ca-
pabilities that one would need when approximating
a true but unknown probability distribution can be
subsumed under the machinery developed for lower
previsions based on a direct, behavioral interpreta-
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tion. Walley argued that it does (1991, §2.10) and I
agree, with one qualification.

That qualification, a benefit of hindsight, is to
concede that managing coherence conditions for
conditional lower previsions is complicated when
those conditions are tied to a set of linear previ-
sions in the (customary) manner sketched above.
One reason why is that the familiar equivalence
between additive probability and linear previsions
does not carry over to lower probability and lower
previsions. A linear prevision is simply the expec-
tation calculated by taking the integral with respect
to a given probability, and this equivalence licenses
Bayesians to treat “degrees of belief” expressed
over a language of events as fundamental. How-
ever, an analogous one-to-one correspondence be-
tween lower probability and lower previsions does
not hold. Specifically, unlike linear previsions, two
lower previsions can agree in values for all events,
and therefore express the same lower probabilities,
but still express different values over gambles. This
one-to-many relationship means that commonplace
probabilistic intuitions can go haywire in the con-
text of imprecise probabilities, resulting in some
forms of reasoning that are valid for precise prob-
abilities being invalid for imprecise probabilities.

Since Walley’s chef-d’œuvre, simpler and more
unified inference methods for conditional lower
previsions have been developed (Troffaes and
de Cooman 2014), but they have come about by
abandoning the notion that sets of probabilities are
elemental. Whereas the Old Testament approach
to imprecise probabilities closely links lower pre-
visions to sets of probabilities, thereby setting a dif-
ficult path for coherent inference to follow, the New
Testament puts coherence and inference first but de-
motes (closed convex) sets of probabilities to deriv-
able or dispensable representations, as need be. In-
stead, desirable or acceptable gambles are treated
as fundamental, where a gamble X on a set of pos-
sibilities is a real-valued map from those possibil-
ities, interpreted as the gain or loss that you asso-
ciate with each possible state. Then, P(X) repre-
sents the supremum price you are willing to pay in
exchange for the gamble X , and a conditional lower
prevision of the gamble X given the {0,1}-gamble
G, P(X |G) is your lower prevision for X contingent
on the event G occurring (G = 1), which is “called-
off” otherwise (G = 0).

Briefly, and to just give a flavor, there are four
simple yet constructive axioms for a coherent set D
of desirable gambles. The first two, which are ratio-

nality axioms, mandate that you ought to (i) never
accept a gamble you cannot win (i.e., do not include
in D an X whose vector of values is everywhere neg-
ative), and (ii) always accept a gamble you cannot
lose. The 0-gamble denotes status quo ante, and
there are variants of these axioms which include,
rather than exclude, 0-gambles among a coherent
set of gambles—a difference reflected, even if only
loosely observed, in the terminology used to refer to
the strict desirability of gambles or merely to their
acceptability. The second pair of axioms are closure
conditions, encoding the properties of a linear scale
for evaluating gambles, namely (iii) positive scale
invariance and (iv) a combination rule whereby if
X and Y are each acceptable gambles, then X +Y
ought to be acceptable to you, too.

The generalized Bayes rule in this scheme is
simply

P(G [X−P(X |G)]) = 0 (1)

where it is assumed that both P(G)> 0 and the con-
tingent gamble G [X−P(X |G)] are in D. Methods
for conditioning and updating on zero-probabilities
have been simplified, too (De Bock and de Cooman
2015).

2 What price for generality?

The New Testament’s full embrace of modeling un-
certainty in terms of the rationality of beliefs and
behavioral dispositions might appear to go too far,
even among those who otherwise favor the Bayes-
ian approach. Yet, the contemporary theory of
lower previsions is a general framework attuned
to foundational issues of the kind that Gong and
Meng raise, and as such includes traditional linear
previsions as a special case, much like first-order
logic includes propositional logic as a special case.
Lower previsions offer an alternative way of con-
ceiving and working with probability models, not
an alternative to probability altogether. Viewed in
this light, it is perhaps less surprising to find that
sets of probabilities are derivable from, rather than
foundational to, lower previsions.

The analogy to logic goes a bit further. Con-
sider some differences between propositional logic,
which dates back two millennia, and first-order
logic, which is just over a century old. Both the
syntax and semantics of first-order logic work very
differently than the syntax and semantics of propo-
sitional logic. First-order logic admits syntactically
well-formed “open” sentences which are neverthe-
less uninterpretable, semantically, until “closed”
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under quantification. There is no such thing as a
syntactically well-formed formula of propositional
logic that is semantically uninterpretable, however.
Every formula of propositional logic is interpreted
by evaluating all logically exhaustive combinations
of its interpretations, such as may be displayed in
a truth table, which is impossible to do for first-
order logic. As for inference, propositional logic
is decidable whereas first-order logic is not. Yet,
if one were to maintain that semantic interpretabil-
ity and syntactic well-formedness were inseparable
properties of logical formulas, truth tables funda-
mental to model theory, or decidability essential to
logic itself, the world of first-order logic would be
regarded as imperfect and contradictory, too. We
generally don’t take that view, however, and similar
slack should be afforded to lower previsions—or so
I would argue. Space prohibits more than a gesture
here, but a paper-sized treatment appears elsewhere
(Wheeler 2021).

The main point is this. Trouble for imprecise
probabilities rarely comes in the form of inherent
contradictions, but instead is more apt to arise from
seeking to preserve consistency at all costs. Dis-
junction, for instance, is missing from the vocabu-
lary of desirable gambles, and is tricky to deal with.
Recent work using desirable gamble sets to con-
struct choice functions (De Bock and de Cooman
2019) offers a promising avenue to address this de-
ficiency, however. This extension offers the capa-
bility to say of a set of gambles that at least one
is desirable without necessarily identifying which it
is. Accommodating set-based choice also suggests
a means, in a coherence preserving setting, to ad-
dress problems of the kind that motivate the use of
belief functions.

3 Dilation and Association

Which brings us to dilation. Dilation occurs when
the interval estimate of an event E is properly in-
cluded in the interval estimate of E conditional on
every element of some measurable partition B. As
Gong and Meng point out, in such cases, updat-
ing by the generalized Bayes rule on any value of
B would render your initial estimate of E less pre-
cise. Should you update or instead refuse informa-
tion that would resolve your uncertainty about B?
Would you be willing to pay some amount, however
small, to remain ignorant? With dilation, one could
be forgiven for thinking, so much for consistency.

Yet, the notion that you can be better off with

less information is not unheard of in the theory of
games. Akerlof’s study of market failures in the
used car market, circa 1970, is a prime example.
A customer will not know, but a used-car salesman
will know, which cars on the lot are lemons. Wary
of being fleeced, a customer will refuse to pay more
than the going rate for a bad car, if not refuse to
trade altogether. For the salesman then there is a
disadvantage knowing more about the quality of the
cars on the lot than his customers do, as no car, good
or bad, can command a good-car price.

Akerlof’s demonstration of adverse selection is
an example of a strategic interaction in which in-
formation asymmetry backfires on the player with
more information. Some textbook treatments of ad-
verse selection maintain that negative-valued infor-
mation cannot occur in single-person decision prob-
lems, however, as act-state independence would
rule out the type of act-state dependence that the
customer on the car lot fears will be used against
him. But this is only true for single-person deci-
sion problems with additive probabilities. Dilation
illustrates a form of state uncertainty, which lower
previsions capture, that is sufficient to break the in-
dependence condition that ordinary decision prob-
lems take for granted. Put more carefully, dilation
examples do not explicitly rule out that the pair of
events in question are dependent. And a cleverly de-
signed dilation example will prey on intuitions that
are misleading in an imprecise probabilities setting,
particularly those to do with structural properties of
independence and association.

At root, dilation is not so much an updating
paradox as a result of reasoning as if stochastic in-
dependence holds when it does not. Although Gong
and Meng remark that “generalized notions of asso-
ciation and independence...are yet to be defined for
sets of probabilities”, there are several logically dis-
tinct notions of independence for imprecise proba-
bilities (Couso, Moral, and Walley 1999). Here ref-
erence to an explicit sets of probabilities helps. For
instance, for an ordinary additive probability p ∈ P
and events A,B, you know that if B is irrelevant to
A with respect to this p, that is, if p(A|B) = p(A),
then A is irrelevant to B, and the joint distribution of
A and B is the product of the pair of marginal dis-
tributions. But each step in this sequence of valid
inferences is invalid for imprecise probabilities. Ir-
relevance for lower previsions is not symmetric, and
even when both A is irrelevant to B and B irrele-
vant to A, the set of joint distributions might not
factorize. The converse of each is valid, however,
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pointing to a range of strong to weak independence
concepts.

Wily dilation examples are often constructed to
satisfy weaker notions of irrelevance without satis-
fying full, factorized stochastic independence, and
will in fact include a distribution in P for which the
pair of events are positively associated and another
distribution for which they are negatively associated
(Pedersen and Wheeler 2014), an observation that is
easily adapted to include asymmetric cases in which
one event dilates another but not vice versa (Peder-
sen and Wheeler 2019).

But if this explains what dilation is, what should
be done about it? I agree with Gong and Meng
that dilation alone is not a problem, anymore than
an open formula of first-order logic is itself a prob-
lem. But instead of opting for an alternative updat-
ing rule, and braving the hazards they bring, I prefer
to stick to the generalized Bayes rule and simply se-
lect an appropriate decision rule. In fact, returning
to the questions above that suggest you might be ra-
tionally compelled by dilating probabilities to either
ignore information or even pay someone to avoid it,
such injunctions depend crucially on your choice of

decision rule. In fact, some decision rules for im-
precise probabilities preserve the principle that no
decision maker should be made worse off, in ex-
pectation, from receiving free information (Peder-
sen and Wheeler 2015).

To be fair, a remnant of the updating anomalies
that Gong and Meng discuss carries over to deci-
sion making with imprecise probabilities. There is
no single decision rule that is unequivocally best,
and the current state of the art is far less tidy. A
complaint might then be lodged that this only kicks
the inference can down the pick-the-right-decision-
rule road, and there is a kernel of truth to this. But,
that is a discussion to save for another day.

In closing, I commend Gong and Meng for their
valuable contribution and wish to stress once more
how much I agree with them in the main. Lower
previsions afford much greater expressive capacity
and, as a consequence, pull apart some notions that
are unitary concepts in standard, additive probabil-
ity models. Thus, it is a natural response to view
updating anomalies like dilation as a helpful pointer
to some of the novel implications that follow from
uncertainty in such settings.
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On Focusing, Soft and Strong
Revision of Choquet Capacities
and Their Role in Statistics:
Comments on Gong and Meng’s
Paper
Thomas Augustin and Georg Schollmeyer

Abstract. We congratulate Ruobin Gong and Xiao-Li Meng on their thought-
provoking paper demonstrating the power of imprecise probabilities in statis-
tics. In particular, Gong and Meng clarify important statistical paradoxes by
discussing them in the framework of generalized uncertainty quantification
and different conditioning rules used for updating. In this note, we charac-
terize all three conditioning rules as envelopes of certain sets of conditional
probabilities. This view also suggests some generalizations that can be seen
as compromise rules. Similar to Gong and Meng, our derivations mainly fo-
cus on Choquet capacities of order 2, and so we also briefly discuss in general
their role as statistical models. We conclude with some general remarks on
the potential of imprecise probabilities to cope with the multidimensional
nature of uncertainty.

Key words and phrases: Imprecise probabilities, Choquet capacities, Updat-
ing, Neighborhood models, Generalized Bayes rule, Dempster’s rule of con-
ditioning.

1. INTRODUCTION

In their stimulating paper “Judicious Judgment Meets Unsettling Updating: Dilation, Sure
Loss, and Simpson’s Paradox”, Ruobin Gong and Xiao-Li Meng (hereafter GM) offer a fresh
perspective on famous problems that have long shaken the foundations of statistical analysis.
GM manage to trace the paradoxes back to self-contradictory model assumptions about the
marginals and the joint distribution and creatively relate them to phenomena occurring in
updating imprecise probabilities. These insights are an excellent example of how the general
framework of imprecise probabilities, through its expanded understanding of uncertainty, not
only provides new opportunities for statistical modeling, but also helps to illuminate hidden
implicit assumptions in classical modeling.

In this short note, we provide in Section 2 some variations of the central topic of condi-
tioning under a generalized probabilistic setting. We will make explicit some mathematical
properties of Choquet capacities of order 2 that are contained implicitly in GM’s paper. In par-
ticular, these properties will allow us to characterize the three different ways of conditioning
as envelopes of certain sets of conditional probabilities. In the light of this characterization,
we will revisit the notions of “being cautious” and “overfitting”, contrasting the generalized

Thomas Augustin is Professor of Statistics and Head of the Foundations of Statistics and their
Applications Group at the Department of Statistics, Ludwigs-Maximilians Universität München (LMU
Munich), Germany. (e-mail: thomas.augustin@stat.uni-muenchen.de). Georg Schollmeyer is a
post-doctorial staff member there. (e-mail: georg.schollmeyer@stat.uni-muenchen.de).
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Bayes rule (GBR) and Dempster’s rule as extreme positions that also allow generalizations by
taking an intermediate position. In Section 3 we will address the question of how general the
assumed model class of Choquet capacities of order 2 actually is, and thus which practically
relevant models are covered by it. Section 4 is reserved for some general concluding remarks
on the potential of imprecise probabilities in the context of complex uncertainty.

2. ENVELOPE REPRESENTATIONS OF THE DIFFERENT CONCEPTS OF
CONDITIONAL PROBABILITIES

2.1 A Common Representation

Our argumentation below strongly relies on the following lemma, guaranteeing that for
Choquet capacities of order 2 the lower respectively upper probabilities P and P of chains of
events are simultaneously attained by a classical probability in the induced set of compatible
distributions. (For further reference and in accordance with the literature, we use the term
credal set (induced by P and P ) for this set of compatible distributions in the set M of all
distributions on the considered measurable space.)

LEMMA 1. 1 Let P be a lower probability such that its credal set P = {P ∈M, P ≥
P} is relatively compact. Then P is two-monotone if and only if for every chain of events
E1 ⊆ E2 ⊆ E3 . . . ⊆ En there exists a probability P ∈ P such that P (Ei) = P (Ei) for all
i ∈ {1, . . . , n}.

This lemma is used in GM’s paper implicitly, for instance, in the closed-form reformulation
of the generalized Bayes rule in (GM, 2.11f) valid for Choquet capacities of order 2. Using
it explicitly, and applying it to the events E1 = A ∩B and E2 = B, shows that the ratios in
(GM, 2.8), and in (GM, 2.9) respectively, are simultaneously optimized. Assuming P (B)> 0
to make all expressions well-defined, this allows to rewrite the considered types of conditional
probabilities in a unified way (cf., e.g., Gilboa and Schmeidler (1993)).

(1) PZ(A|B) = inf
P∈PZ

P (A∩B)

P (B)
and PZ(A|B) = sup

P∈PZ

P (A∩B)

P (B)
,

where

(2) PZ =


{P ∈M|p≥ P} def

= P Gen. Bayes Rule

{P ∈M|P ≥ P ∧ P (B) = P (B)} def
= PD in the case of Dempster’s Rule

{P ∈M|p≥ P ∧ P (B) = P (B)} def
= PG Geometric Rule

2.2 Focusing versus (Strong) Belief Revision

The envelope representation illustrates GM’s important distinction between two different
conceptualizations of updating, namely updating as belief revision versus updating as focus-
ing (cf., Dubois and Prade (1997)). In focusing, generic knowledge is not changed, instead, it
is only applied to the event that corresponds to the observed data. This leads to the generalized
Bayes rule. In contrast, in belief revision one modifies generic knowledge or factual evidence
about a problem in the light of new knowledge or evidence. Equation (2) underlines that both
the geometric rule as well as Dempster’s rule perform a rather strong revision, which may also
be interpreted as a strong “overfitting”. Constructing PD and PG, they both rely exclusively
on a single value taken from the interval [P (B), P (B)]. While the geometric rule confines
itself on the lowest value, Dempster’s rule concentrates on the highest one.2 In a classical

1For a proof, see, e.g., Chateauneuf and Jaffray (1989, Proposition 12, p. 277).
2This argumentation understands, in accordance with GM’s paper, Dempster’s rules of conditioning and com-

bination as producing a non-additive set-function enveloping a set of probabilities. To avoid misunderstandings,
it may be noted explicitly that in the so-called Dempster-Shafer Theory of Belief Functions popular in artificial
intelligence this interpretation is strongly rejected by many authors: “Most important, a probability-bound interpre-
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parametric Bayesian setting, where the prior distribution of a parameter ϑ is updated, based
on sample B, to the corresponding posterior distribution, P (B) is the predictive distribution
of the sample. Then, Dempster’s rule refines the underlying credal set P to contain only those
probabilities giving the sample the highest likelihood. Indeed, Gilboa and Schmeidler (Gilboa
and Schmeidler (1994, 1993), see also, Dubois and Prade (1997)) denote Dempster’s rule as
“maximum likelihood update”. Moreover, in particular if we understand P as parameterized
by a nuisance parameter, Dempster’s rule can be interpreted as an empirical Bayes approach.
It corresponds to the so-called ML-II approach (e.g., Berger, 1985, Section 3.5.4), originally
suggested by Good (see Good (1983, e.g., p. 46f)).

In this sense, one can also conceptually differentiate the generalized Bayes rule and
Dempster’s rule as an ideal type dichotomy between an optimistic view and a pes-
simistic/conservative view. While according to the generalized Bayes rule the conditional
lower probability is obtained as the worst conditional classical probability that is consistent
with the given lower and upper probabilities, Dempster’s rule can be viewed as a very opti-
mistic approach, radically excluding all probability functions that are not maximally plausible
in the light of the observed event B. Somewhere within (and to some extent also somewhere
beside?) this ideal type dichotomy, the geometric rule can be located as a rule, which, in
contrast to the GBR, restricts P for updating, however, in contrast to Dempster’s rule, in a
pessimistic way. It restricts P to all compatible probabilities that assign the lowest possible
probability to the observed event B. Although somehow parallel in construction to Demp-
ster’s rule, this way of restricting P by relying on the lowest possible likelihood is a minimax
perspective, that is very cautious from the learning point of view. Indeed, quite naturally, this
rule, can not sharpen vacuous prior information (compare Section 4.3 in GM’s paper).

2.3 Soft Revision and Likelihood Cuts

These deliberations suggest a quite natural compromise between optimism and pessimism,
between the conservative focusing on one hand and the strong revision of Dempster’s rule
(and the geometric rule) on the other hand, which can be suspected to posses a strong ten-
dency towards overfitting. Instead of basing the revision on one of the interval limits of
[P (B), P (B)], one relies on a subinterval of high or small values. More concretely, for a
fixed real value α ∈ [0,1], one replaces in (2) the condition P (B) = P (B) by the condition3

(3) P (B)≥ α · P (B) ,

or dually, the condition P (B) = P (B), which is equivalent to P (Bc) = P (Bc)), by

(4) P (Bc)≥ α · P (Bc)

to obtain suitable generalizations of Dempster’s rule and the geometric rule, respectively.4

For α= 0 we obtain GBR, and for α= 1 we reproduce Dempster’s rule or the geometric rule,
respectively. In this sense, α can be seen here as a ‘parameter of revision’. For a small, but
positive value α, these revision rules do not rigidly revise the model to only the compatible
probabilities that give the observed event B the most/least probability. Such soft revisioning
rules may be quite attractive when one feels uncomfortable with the overfitting character of
strong revision rules.

Soft revision rules are not coherent in the sense of Walley (1991)’s general coherence
theory justifying the GBR. In fact, the GBR does not perform any revisioning at all; it never

tation is incompatible with Dempster’s rule for combining belief functions. If we make up numbers by thinking of
them as lower bounds on true probabilities, and we then combine these numbers by Dempster’s rule, we are likely
to obtain erroneous and misleading results.” Shafer (1990, p. 335) Then, belief functions derived from Dempster’s
rule of conditioning, and more generally from Dempster’s rule of combination, are understood as providing an
uncertainty calculus of its own. (For a recent review see Denoeux (2016).)

3This approach has already been introduced by Cattaneo (2014).
4Another variant of generalization would be to replace P (B) = P (B) by P (B)≥ P (B)+α ·(P (B)−P (B))

and to replace P (B) = P (B) analogously. Other generalizations are, of course, thinkable as well, for instance
neighborhood-models around the maximizing/minimizing probabilities. As a further alternative, Held, Augustin
and Kriegler (2008) consider a mixture of the layers produced by the different values of [P (A), P (A)].
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changes the priori assessments, but merely focuses on the implication for situations in which
B is observed. As discussed in Section 4.3 of GM’s paper, one can thus not learn with the
GBR from vacuous prior knowledge.5 In contrast, the α-cut rule with α > 0 and congenial
rules are able to learn from vacuous priors.

3. ON THE ROLE OF TWO-MONOTONE CHOQUET-CAPACITIES IN STATISTICS

Many of the results in GM’s paper build on the condition that the lower and upper prob-
abilities are Choquet capacities of order 2. In this section, we look at the natural question
arising how restrictive this assumption is from a statistical modeling perspective.

From the principle point of view of the general theory of imprecise probabilities, the con-
dition of two-monotonicity seems artificial. Neither in the behavioral approach to imprecise
probabilities (see, in particular, Walley (1991)) nor within its frequentist counterpart (de-
veloped by Fine and students, e.g. Fierens, Rego and Fine (2009)), two-monotonicity has
a contextual meaning or natural interpretation. In addition, two-monotonicity plays also no
prominent role in the interpretation-independent branch of imprecise probabilities follow-
ing Weichselberger (2001). Nevertheless, two-monotone lower probabilities are quite attrac-
tive for statistics. In particular, following the prominent Huber-Strassen Theorem (Huber and
Strassen (1973), see also Augustin, Walter and Coolen (2014, Section 7.5.2) for a review of
work building on it), two-monotone lower probabilities allow for a rigorous generalization of
Neyman-Pearson tests to imprecise probabilities.

A very rich class of two-monotone lower probabilities, which historically also motivated
the development of the Huber-Strassen theorem, is provided by certain neighborhood mod-
els (see, e.g., Augustin and Hable (2010); Montes, Miranda and Destercke (2020a,b)). They
allow, quite attractively, to formalize the notion of “approximately true distributions”, for in-
stance, by considering all distributions close to a certain central distribution p∗. Therefore,
neighborhood models have been used in particular in robust statistics as an imprecise sam-
pling distribution or in robust Bayesianism as generalized prior distributions. Typical exam-
ples include the δ-total variation model, comprising all distributions where the total variation
distance to p∗ is smaller than δ, or the ε-contamination model formalizing the situation where
at least (1− ε) ·100% of the observations follow the central distribution p∗, but the remaining
ε · 100% may just follow any arbitrary distribution. Generally, many neighborhood models
can be written in the form f ◦ p∗, where convexity of f guarantees two-monotonicity.6

Other natural ways of constructing two-monotone models are discrete models with bounds
on the probabilities of singletons only (probability intervals, Weichselberger and Pöhlmann
(1990)) or bounds on distribution functions. The latter, often called p-boxes, play a promi-
nent role in generalized uncertainty quantification in reliability analysis (see, e.g., Destercke,
Dubois and Chojnacki (2008)).

Finally, also a natural connection between the granularity of observation and two-
monotonicity shall be mentioned. Given two measurable spaces (Ω,A), and (Ω,F) with
F ⊇ A, a two-monotone lower probability P ∗ can be constructed by extending a two-
monotone lower probability P on A to events in F by natural extension (cf. Walley (1981,
p. 52)), and the different concepts of conditioning can be applied. Naturally, if P is a classical
probability and conditioning is performed by considering only partitions in A, all considered
concepts of conditioning coincide in this case.

5To guarantee that GBR-like inferences with vacuous priors lead to non-vacuous posteriors, extreme prior
probabilities have to be excluded. This is achieved by the rather prominent Imprecise Dirichlet Model (Walley
(1996)) for inference from categorical data. Generally, so-called near-ignorance prior models can be considered
(see, in particular, Benavoli and Zaffalon (2014)’s approach for multivariate exponential families).

6Such models are also used in insurance mathematics as distorted probabilities, see, for instance, Wang and
Young (1998) for premium calculation in this context, where also the GBR and Dempster’s rule are discussed.
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4. SOME GENERAL CONCLUDING REMARKS

From a principled and general perspective, we unanimously share GM’s enthusiasm for
a generalized understanding and modeling of uncertainty. What had become obvious in the
first AI summer in the context of expert systems and general systems theory, is currently even
more important in the environment of ubiquitous and widely available data.“Uncertainty is
a multidimensional concept. [However, its . . . ] multidimensional nature was obscured when
uncertainty was conceived solely in terms of [classical] probability theory, in which it is
manifested by only one of its dimensions.” (Klir and Wierman, 1999, p. 1)

Indeed, as statisticians and data scientists, we have to pay more attention to the so-to-say
“big data uncertainty”, i.e. those dimensions of uncertainty that go beyond sampling uncer-
tainty and thus do not vanish with increasing sample size. Only generalized probabilistic
approaches used in a sophisticated way as in GM’s paper allow to distinguish between vari-
ability and indeterminacy, which is crucial for an appropriate modeling of the quality of prob-
abilistic information. These models are naturally imprecise, or – to avoid the unfortunate
misnomer ‘imprecise’ for actually better and more accurate models – rather, set-valued. This
set-valued character promises to express scarce, conflicting or simply incomplete information
without having to rely on unwarranted assumptions. We agree with GM that making strong
but untestable assumptions about unobservable structures just for the sake of a seemingly pre-
cise result undermines practical relevance of the statistical analysis, well aware of the “Law
of Decreasing Credibility”,

“The credibility of inferences decreases with the strength of the assumptions main-
tained” (Manski, 2003, p. 1),

as Manski and his followers put it in the area of partial identification, a rather parallel running
development of powerful set-valued analysis in econometrics.7
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Rejoinder: Let’s be imprecise in
order to be precise (about
what we don’t know)
Ruobin Gong and Xiao-Li Meng

Preparing a rejoinder is a typically rewarding, sometimes depressing, and oc-
casionally frustrating experience. The rewarding part is self-evident, and the
depression sets in when a discussant has much deeper and crisper insights
about the authors’ thesis than authors themselves. Frustrations arise when the
authors thought they have made some points crystal clear, but the reflections
from the discussants show a very different picture. We are deeply grateful to
the editors of Statistical Science and the discussants for providing us an oppor-
tunity to maximize the first, sample the second, and minimize the third.

1. LET’S ARGUMENT OUR SHOES TO FIT OUR GROWING FEET

The first discussion we received was from Professor Glenn Shafer, who kindly
sent us a draft weeks before the submission deadline. We immediately knew
that we would be in for a rare intellectual feast. His historically richly infused
and theoretically deeply fermented insights provide us with an intense savor-
ing and much lingering. Take as an example Shafer’s succinct summary of the
three branches of the art of conjecture of d’Alembert, which essentially lays out
the contours and interplay among (precise) probability, statistics, and impre-
cise probability. The first branch enters the game of conjecture by manipulating
theoretically precisely specified quantities and models, such as the proposition
of equally likely outcomes. This is essentially the game of precise probability,
deducing properties and consequences of a theoretical construct.

The second branch plays the same game empirically, by focusing on assessing
and approximating chances and risks from data. This captures the essences
of much of the current statistical practice, when such empirical assessments
are guided by the rules of precise probability. Principled statistical practices
fully recognize the multiple uncertainties in the empirical assessments, and
hence have build-in risk assessments for estimating the part of the uncertainties
that can be reasonably gauged empirically. For parts that cannot be empirically
assessed internally, sensitivity studies have been the primary tool, precisely
because by posting specific alternative scenarios, we can traverse within the
first two branches, and hence remain in our comfort zone.

Shafer’s summary makes it clear that the third branch is where our need to
pay far more attention than we currently do, because it is the branch that gives
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deep trouble–and much life–to our beloved subjects of precise probability and
statistics. This branch covers the vast majorities of inquires where precise proba-
bilistic descriptions, whether theoretical or empirical, are inherently incomplete
or impossible. In our own applied work (e.g., in astronomy or psychiatry), there
has been no exception that when we ask a subject expert to provide a prior, the
most precise answer would be of the kind “I’m quite sure that α is between 1
and 2.” Any further inquiry about how α is distributed on [1, 2] would be met
with either a puzzling face or an answer few of us like: “I have no idea.”

Such “no-idea” answers have motivated many to work harder throughout
history, from seeking deeper theoretical understanding to better empirical learn-
ing. Nevertheless, comparing the number of inquires where “no-idea” is the
real obstacle, to cases where it is a mild inconvenience, is a bit like comparing
irrational numbers to rational ones: the latter may appear to be everywhere,
but they are of no detectable measure compared to the former. As a result, the
vast majority of time we are forced to make up assumptions, such as α is dis-
tributed uniformly on [1, 2], for the sole purpose of applying available theories
or methods. Or as Shafer puts it, despite the effort made through out the his-
tory to move bits of the third branch into the first two, “the third still seems
very large.”

Instead of cutting foot to fit shoes, the framework imprecise probability (IP)
suggests a less painful paradigm: expanding the shoes to fit the foot. This
metaphor has another leg to stand on because the imprecise shoes are no less
functional than the precise ones. As Augustin and Schollmeyer emphasized, IP
should have been better named as “set-valued probability.” But sound statisti-
cal inference should also be (at least) set-valued in order to reflect uncertainty,
as classic inference paradigms have delivered via confidence intervals, Bayesian
creditable sets, and so on. In that sense, the set-valued output of IP models is
no less familiar a mathematical form than that from precise probability mod-
els, albeit carrying a different interpretation of “uncertainty”. It is therefore
very natural for us to ask why can’t we go from set-valued input to set-valued
output directly, instead of constructing a fake id—so to speak—in order to gain
access to the narrow tunnel of numerically valued probability?

2. THE TWO CONCERNS THAT MOTIVATED OUR WORK

To answer this question, and in light of the rich scope of topics that the dis-
cussions together encompass, we would like to elaborate further our view on
the role of imprecise probabilities and their accompanying updating rules. Our
view is not in fundamental disagreement with that of our discussants, never-
theless it is focused distinctively on the modern practice of statistical inference.
Our concern is centered around two arguments in near contradiction to one
another.

We surmise nearly all statisticians take it for granted that probability is the
language of uncertainty. By probability, the majority of statisticians specifi-
cally mean the kind of probability that obeys the Kolmogorov axioms dictating
countable additivity. Bayesians, Frequentists, as well as those who entertain
fiducial, structural and functional inference, all operate within a framework
that guides the expression of uncertainty that relates observable information
to unknown quantities of interest, and in this sense, update their knowledge in
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light of what’s been learned.
Probability is the magical lasso with which statisticians tame unruly vari-

abilities. We use probability to gloss over variabilities that we would rather
not delve deeper to understand. In nearly every statistical model, we invoke
some notion of independence or exchangeability assumption motivated by our
ignorance on any relational information, often rightly so. In fact, we use this
“ignorance” to our advantage: the theory of randomization is founded on vari-
abilities, artificially induced in a way that make us conclude that we are bet-
ter off not to delve deeper. The essence of every statistical analysis relies on
the judicious reduction of the unknown and the unknowable into a known or
knowable probability. One of us discussed (Meng, 2014; K. Liu & Meng, 2016;
Li & Meng, 2021) the multi-resolution nature of inference, which gives mean-
ing to the word “judicious” in this context via the choice of the resolution level.
Reduction is great - until when it has gone too far to the point of absurdity.
This is where imprecise probabilities comes in, and the primary motivation for
our work in the first place.

In general, we are concerned with the change of the “model” P(A) to PB(A),
after B has been learned. We borrow here Hausdorff’s notation for relative
probability, introduced by Shafer. The Bayes Rule, namely the assertion that
upon observing event B, the agent shall replace her prior belief P(A) about A
with the conditional probability P(A | B), has been justified as the rule to instill
such a change, even in the context that such learning is to happen dynamically
over time. Calling CrX,T(H) the degree of credence of agent X towards assertion
H at time T, and CrX,T(H | E) the conditional credence if X ascertained that
proposition E holds, Carnap (1962) maintained that if E is the observational
data received by X between times t1 and t2, the rational and coherent agent X
must transform their credence at time t1 to time t2 as CrX,t2(H) = CrX,t1(H | E).
Teller (1973)’s dynamic Dutch book argument attempted to compel the same
conclusion. He argued that if an agent engages in a mixture of regular and
called-off bets at prices that differ from their assessed marginal and conditional
probabilities of the uncertain outcome, they would be made a sure loser by the
exploitative (and know-it-all, we must add) bookie.

These fine arguments that are applicable only within a limited and highly
idealized scope. As compelling as they may be, the proposal to dynamically
update one’s credence via Bayesian conditionalization require that the agent
knows the “full road map” ahead of them. The proposal does not address the
complexity of uncertainty reasoning that modern statisticians and quantitative
researchers at large typically faced with, that is, when we only have a partial
map or no map at all. This is why, first and foremost, we celebrate the potential
of IP tools in resolving this matter. We are therefore happy to see the support
and enhancement from the discussants from multiple angles. Augustin and
Schollmeyer provide us with a succinct overview of the use of credal sets in
statistical inference, and their envelope representation is particularly appealing
because it is rooted in distributional families, a concept familiar to statisticians.
Liu and Martin, here and more generally in their work on inferential models
(IM; Martin & Liu, 2015), argue that to achieve the validity as they defined, we
must resort to IP models. Wheeler opened our eyes further by introducing us
to a world with constructs that are even more general and more primitive to
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credal sets.
Nevertheless, to invoke IP quantification resolve only one aspect of what we

consider as an overly aggressive reduction to uncertainty reasoning that re-
quires precise probabilities. In some–and one may argue, most–situations, the
statistician regardless of persuasion must contemplate how to update knowl-
edge, not in terms of uncertainty but rather in the presence of uncertainty. By in
the presence we mean that the analyst is not certain of what model structure they
are to construct in the first place, or that they do not have an idea how isolated
pieces of information, such as individual observations, interact with each other.
In the terminology of Liu and Martin, it is the “association equation” that is ill-
defined, or that we know certain margins of the association equation, but not
how they behave together jointly. This is why the focus of our article is not on IP
description itself, but rather conditioning (and by extension, combining) rules
for IP. There, what is our equivalent go-to assumption, like exchangeability in
the precise world?

The examples presented in our article were chosen for their simple nature.
Thus, when disagreement arise among the rules in question, not only is the
effect stark, but also the reader may appeal to their own intuitive judgment
as to which answers are more sensible than others. The IM treatment offered
by Liu and Martin work well in these situations, because it is apriori known
to the modeler what kind of inferential conclusion is more desirable. Their
model building process, including the specification of the association and the
choice of the predictive random set, reflects these convictions of the modeler
and produces— without surprise—results that are both desirable and intuitive.
Pedagogical examples can only go so far, however. The leap from simple exam-
ples to reality deprives the modeler the luxury of intuition, and the decision on
how to update becomes nontrivial when it is no longer preceded by the answer.
Just like other modes of IP-based frameworks of inference, the IM framework
is faced with a nontrivial choice of rules when it comes to combining marginal
models (Martin & Syring, 2019). A fundamental question in all these situations
is whether this choice shall be guided by so-called desirable properties that
pertain to the resulting answer, knowing that our notion of what properties are
desirable is riddled with inaccurate assumptions, which IP models intend to
address in the first place.

3. PARTIAL ORDERING: IS IT A FEATURE OR A BUG?

Mathematically, the multiplicity of rules is a result of using sets to capture
the low-resolution nature of our data or information (Gong & Meng, 2021). Sets
only obey partial ordering: a set A can be neither larger nor smaller than an-
other set B. Or in terms of evidence, knowing M is in A may imply neither M
is in B nor it is not. But in life, ambiguity is the rule, not the exception. Just as
ambiguities in life typically lead to multiple scenarios or considerations, partial
ordering permits multiple ways to revise our probabilistic assessments when
we need to take into account additional considerations, whether for updating,
focusing, or any other reasons that require a reassessment. We therefore ar-
gue partial ordering necessitated by treating sets as the fundamental building
blocks for probability specifications is rather a feature, not a bug, for dealing
with imprecise data, information, or other forms of inconclusive evidence.
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Perhaps because of our initial (immature) desire of a single rule of such re-
assessments for the third branch of art of conjecture, just as Bayes rule does for
the first two branches, our article focused mostly on studying and comparing
individual rules, instead of seeking deeper unification. We are therefore par-
ticularly grateful to Augustin and Schollmeyer for giving us a healthy dosage
of depression, as their elegant envelope representation is the unification we
missed when we attempt to discuss the “optimism” of Dempster’s rule, the
“pessimism” of the Geometric rule, and the “conservatism” of the generalized
Bayes rule, in the three-prisoner example. Their envelop representation makes
it crystal clear that (1) ideological differences are inherently embedded into the
rules, hence are omnipresent; and (2) behavioral differences among the rules
are driven by their underlying ideology.

The significance of the envelope representation is that it puts all three rules as
seeking extreme probabilities in the space of a family of distributions, subject to
different (further) constraints. The generalized Bayes rule assumes no further
constraint, and hence the resulting set-valued probability [P, P] is the widest
possible, hence the most conservative when we take the width of the interval
as a measure of the sharpness of our probabilistic assessment or lack thereof.
To better understand the optimism of Dempster’s rule and the pessimism of
the Geometric rule, especially for readers who are yet comfortable with the
language of IP, it helps to consider the case of belief function, corresponding to
Choquet capacity of order infinity, where we can map a set of probabilities to
an ordinary probability of sets (see e.g., Gong & Meng, 2021).

Specifically, under the precise probability formulation, when we need to re-
assess a probability by moving from its original state space Ω to a subset S ⊂ Ω,
we will permit and only permit any ω ∈ S, no less or more. In contrast, in the
setting of belief function, “moving from Ω to B” can have multiple interpreta-
tions due to the ambiguity reflected by the partial ordering. We can take most
generous route by permitting any (non-zero mass) set A ∈ Ω that is not ruled
out by B, that is, any A ∩ B 6= ∅. This is the route that Dempster’s rule takes,
and its optimism should be quite evident, since A ∩ B 6= ∅ permits (far) more
states ω than A = B would. In contrast, the Geometric rule takes the most re-
strictive route by only permitting any A ⊆ B, that is, a state ω (and its parental
set A) is permitted only if it is in B, hence the most pessimistic–or putting it
more positively–the most cautious route. As we summarize in our article, these
ideological preferences can and often lead to very different results, making the
judicious choice of rules a necessary part of the game of inference. Of course,
one can pretend to not make a choice by seeking extremes over the rules, but
that merely means that one has decided to adopt the generalized Bayes rule, as
the envelope representation implies. This, in our view, brings another kind of
trouble, as we will discuss in Section 5.

4. ARE WE TOO PESSIMISTIC?

Wheeler and Liu-Martin cast their discussions at very different levels and
from very different perspectives. Wheeler’s supplied rich background from the
IP literature accompanied by a logician’s rigor and insight. Liu and Martin took
an operational perspective with an utilitarian flavor. They, however, reached es-
sentially the same conclusion, that our article projects a sense of pessimism by
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6 GONG AND MENG

(overly) emphasizing “intrinsic contradictions” with the IP paradigm. Wheeler
pointed out that we missed the entire contemporary theory of lower previsions,
which includes lower probabilities as a special case, and where “coherence
preservation under inference is inviolable.” Liu and Martin criticized us for
not imposing criteria of reliability, which could cure or at least reduce our un-
settling feeling.

Wheeler was entirely correct that we missed the theory of lower previsions,
because we simply did not know. We are frustrated by our ignorance, and
the long learning curve. This is a reflection of Shafer’s observation that “the
theory of imprecise probability has flourished for several decades, but largely
outside of statistics journals.” We therefore particularly appreciate the editors of
Statistical Science, especially executive editors Cunhui Zhang and Sonia Petrone,
for seeing the value of this topic and for organizing this discussion, which also
provides us with a great learning opportunity.

Liu and Martin were also correct that we did not explicitly impose any reli-
ability criteria. We of course agree that whatever rules one puts forward, there
must be some rationales to justify them. In the sentence Liu and Martin quoted,
we made it explicit that the rules are “pre-specified”, and we consider the
choices of criterion a part of the pre-specification. But we did not elaborate
on any additional choices of the criteria because of the nature of the topic we
present. To us, precise probability is the grammar for statistical inference un-
der the highest-resolution specifications, that is, when we can–or pretend we
can–postulate probability specifications on all individual elements in however
complicated or high-dimensional joint state spaces, for all quantities involved
in our inference. The Bayes theorem is a consequence of the precise probability
as we all taught. Adopting Bayes theorem as a rule, or rather adopting the Bayes
rule as suggested by the Bayes theorem, can be viewed as a reliable, criteria-
driven exercise (e.g., by imposing the coherence requirement). But as Shafer
correctly pointed out, the distinction between Bayes rule and Bayes theorem
has been essentially ignored in the statistical literature (and we certainly accept
Shafer’s criticism for our own “confusing” mix of the two). We surmise this
was largely due to acceptance of precise probability as a reliable grammar for
statistical inference, and hence any rules set or implied by it would be accepted
without the need for further criterion to justify them.

An initial motivation for our work was our desire to learn what is the nat-
ural generalization of the Bayes rule, as given by Shafer’s (1), in the world of
imprecise probabilities. The singular form of “generalization” was intended,
as for decades, one of us believed (or hoped) that Dempster’s rule was the
natural generalization of Bayes rule, implied by some “Dempster theorem”, a
consequence of the belief function apparatus. The dream was broken when the
other of us actually studied the issue (not just dreamt about it), and what we
presented was a part of that broken dream.

We were therefore hoping that we were wrong, and that our “pessimism”
was a result of our ignorance, that is, we had not looked hard enough. Con-
sequently, we were excited initially by Wheeler’s emphasis that what we ex-
plored only reflected what was known before either of us was born. Whereas
we definitely want to and will study the more contemporary theory of lower
previsions, a more careful reading of Wheeler’s discussion reignited our un-
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REJOINDER 7

settling feeling because the lower previsions only preserves the coherence, and
Wheeler’s conclusion is that the generalized Bayes rule is still his preference.
That is, our pessimism is not a reflection of our ideology, but fundamental to
the marriage of coherence with IP, as we explain below.

5. SHOULD WE ALSO AVOID FATAL ATTRACTION?

If coherence is the only desirable criterion, we would feel comfortable to
settle with the generalized Bayes rule, especially as there is no other (common)
rule which possesses that property. However, generalized Bayes rule suffers
from a flaw that in our view is no less serious or fatal than being incoherent,
that it, it cannot get itself out of the vacuous state of knowledge, regardless the
amount of data or information one accumulates. In other words, the vacuous
state is a fatal attraction state of the generalized Bayes rule. If we insist on
having rules that avoid this fatal attraction, which we see no practical or logical
justification, then generalized Bayes rule would be out of the window. We want
to emphasize that the “vacuous state” is not a straw man. Much of “objective
Bayes” or fiducial inference hope to conduct distributional inference without
imposing any prior knowledge, that is, to start with the vacuous state. Any
updating rule that has the vacuous state as its fatal attraction clearly will be
eliminated from the start.

Similarly, the fact that Liu and Martin’s “validity” requirement can lead to
vacuous state as the only solution (e.g., see Section 4.3 of Liu and Martin) raises
the question of the general desirability or even the validity of this “validity”
requirement. Indeed, Liu-Martin’s validity requirement is fundamentally a fre-
quentist calibration construct, like unbiasedness for testing. Hence it inherits
the known defects of their classic counterparts (e.g., controlling Type I error),
such as a lack of relevance, or making the wrong trade-off by assigning higher
confidence to harder problems, as discussed in K. Liu & Meng (2016).

We raise these points not to suggest that we have better solutions, but to
reaffirm our message that judicious judgment and choices are inevitable. In the
grand scheme of things, this emphasis itself is vacuous, since inference is not
possible without making any assumption, and any assumption is a judgmental
call, judicious or not. The apparent dominating emphasis on coherence in the
IP literature suggests that itself is a choice, very judicious indeed. But that does
not suggest that it is necessarily coherent with other considerations, such as
avoiding fatal attraction of the vacuous state. If generalized Bayes rule is the
only sensible one by the coherence requirement, then indeed we have to accept
the intrinsic contradiction between being coherent and avoiding fatal attraction.

6. THE DEMAND (AND SUPPLY) FOR JUDICIOUS JUDGMENT

Give judicious judgment is inevitable, the key question then is how do we
make them? Even in the precise probability situation, often is the situation that
the analyst does not quite know what model to specify, except that their partial
and meta-knowledge makes them realize that the Bayesian recipe of condition-
alization may not be the right thing to do under the model they are forced to
come up with. In these practical situations, the analyst is not so much motivated
by coherence – for the price may well be too high to pay, as Wheeler pointed
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8 GONG AND MENG

out, but rather regard their experience and expertise as meta-information to
guide their constructions of ad hoc fixes to deal with the lack of information.

An example of this is the literature on modularized Bayesian inference and
cut distributions (F. Liu et al., 2009; Lunn et al., 2009; Plummer, 2015; Jacob
et al., 2017), inspired by Bayesian pharmacokinetics and pharmacodynamics
(PKPD) models. The analyst has information that a certain margin of the joint
model may involve poor quality data or information, and would like to “cut
off” the contribution of this margin into other parts of the model for which
the analyst has scientific interest. In theory, if we know how to quantify data
or information quality, we can incorporate such quantification properly in our
probabilistic model. Then following the Bayesian recipe, such as conditioning,
would lead to a sensible inference that properly weights various pieces of infor-
mation by their quality index. However, other than for linear estimates and esti-
mators (Meng, 2018), quantifying deterioration in quality due to non-sampling
mechanisms is currently out of reach in theory and in practice.

A common practical approach is then to attach zero weight to the problem-
atic aspects of the data or model, that is, to “cut them off.” This is often a
better strategy than keeping them, because zero weight is likely a better ap-
proximation to the (unknown) optimal weights than blindly pretending that all
parts of the data or model should be given the standard treatments, e.g., equal
weighting. Evidently, such “updating” procedures through cut distributions do
not conform to Bayesian conditionalization. However, they tend to yield better
results in practice, because they are better approximations to the optimal but
inoperable Bayesian approach under the fully correctly specified model, than
mechanically applying the Bayesian rule to the mis-specified model.

We therefore thank Augustin and Schollmeyer again for their proposal of soft
revision, as a customizable updating rule that bridges the pessimist Geometric
rule and the optimist Dempster’s rule, to which they drew a connection to the
maximum Bayes factor approach of Good (1967) and an analogy with empir-
ical Bayes. We were reminded of Lindley’s declaration that “there is no one
less Bayesian than an empirical Bayesian” (Lindley, 1969, in discussion of Co-
pas (1969)). As much as the proposed soft revision ventures outside the realm
of coherent Bayesianism, it is nevertheless a useful and welcome addition to
the toolbox of the practical statistician, one that could help us avoid the fatal
attraction.

As we call for the use of imprecise probabilities, which invariably relies on
some kind of new guiding principle to account for new information, call it a
rule, protocol, or otherwise, there is risk in harming the operationalizability
of the statistical inference framework. We view this is yet another instance of
the omnipresent no-free lunch principle. Indeed, there is a price to pay even
for every precise generalization of the ordinary probability calculation. Good
(1966) advocated for probabilities of higher types as a candidate measure of non-
measurable events. He remarked, however, that probabilities of higher types are
expressible only in terms of inequalities that are fuzzy in nature, and quickly
lose practical importance the higher in type they go. Similarly, if we let go
the notion of a relatively well-defined protocol, and possibly other aspects of
routine practice of model building, it would not be long before a necessary
level of operationalizability is lost. When that happens, any theory without
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computational feasibility can deter practically minded users even if they are
sympathetic to the idea.

As widely endorsed as Bayesian analysis among applied statisticians, the
computational challenge was once insurmountable. If it wasn’t for the MCMC
revolution in the 1990s, Bayesian statistical methods would not have taken off,
at least not this rapidly. Customizable computational apparatuses, such as Win-
BUGS and Stan, made Bayesian computation on large scale datasets possible.
By way of contrast, computation for IP models in statistical inference is still in
its early development. The SIPTA (Society for Imprecise Probability: Theories
and Applications) community has seen recent advances on the use of MCMC
to estimate lower expectations (Fetz, 2019; Decadt et al., 2019). The statistical
literature is starting to catch up in that regard. The recent work of Jacob et al.
(2021) developed the first workable sampler for the random convex polytope
proposed fifty years prior (Dempster, 1966, 1972), characterizing the Dempster-
Shafer inference for categorical data.

The motto to the SIPTA community is that “there are more uncertainties than
probabilities”. As statisticians, we are eager to see it reflected in the practice of
statistical inference. By conducting imprecise probability inference, we can be
precise about what we do not know, an hence deliver more replicable results
because we avoid making up assumptions forced upon by the limitations of
the precise probability framework. We therefore invite anyone who cares about
scientific replicability to look into what the world of IP can offer.
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