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Abstract
The use of improper priors flourish in applications and is as such a
central part of contemporary statistics. Unfortunately, this is most
often presented without a theoretical basis:

“Improper priors are just limits of proper priors ... ”

We present ingredients in a mathematical theory for statistics which
generalize the axioms of Kolmogorov so that improper priors are
included. A particular by-product is an elimination of the famous
marginalization paradoxes in Bayesian and structural inference.
Secondly, we demonstrate that structural and fiducial inference can be
formulated naturally in this theory of conditional probability spaces.
A particular by-product is then a proof of conditions which ensure
coincidence between a Bayesian posterior and the fiducial distribution.
The concept of a conditional fiducial model is introduced, and the
interpretation of the fiducial distribution is discussed. It is in
particular explained that the information given by the prior
distribution in Bayesian analysis is replaced by the information given
by the fiducial relation in fiducial inference.
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The Large Picture

4 / 22



A motivating problem gives it all
I Initial problem: Generate data X = χ(U, θ)

conditionally given a sufficient statistic T = τ(U, θ) = t.
I Tentative solution: Adjust parameter value θ for simulated

data so that the sufficient statistic is kept fixed equal to t
(Trotter-Tukey, 1956; Engen-Lillegård, Biometrika 1997).

I Corrected solution: The simulated data must be weighted,
and the weight depends on an arbitrarily chosen improper
distribution for the parameter (Biometrika 2003 & 2005).

I Realization after many years: Oh . . . the resulting
unweighted adjusted parameters are fiducial and the
weighted are Bayes posterior . . . (Comm.Stat. 2015)

I Ingredients: Optimal inference (Ann.Stat. 2013), Improper
distributions (Am.Stat., 2010), Sufficiency, Fiducial versus
Bayesian distribution, Borel paradox, Marginalization
paradox, Axioms for statistics (Comm.Stat. 2016).
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Mathematical statistics
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Axioms for a statistical model (Ω,X,Θ)
I The basic space Ω is a conditional probability space

(1) (Ω, E ,P)

given by axioms that generalize the axioms of Kolmogorov.

I The model observation X is a measurable function

(2) X : Ω→ ΩX

I The model parameter Θ is a measurable function

(3) Θ : Ω→ ΩΘ
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Conditional probability and more
I Conditional probability and conditional expectation are

defined by conditioning on a σ-finite σ-field F of events.

I If Y is σ-finite, then:

(a) (ΩY, EY,PY) is a conditional probability space.

(b) Py(A) = P(A |Y = y) is well defined.

I If Θ and X are σ-finite, then model
{

Pθ
X(A) = Pθ(X ∈ A)

}
and posterior {Px

Θ(B) = Px(Θ ∈ B)} are well defined.

I Convergence Yn → Y in distribution can be defined by
q-vague convergence (Bioche & Druilhet, Bernoulli 2016).
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The uniform law PΘ on the real line R . . .

I A common, but sadly imprecise statement:

“It’s just a limit of the uniform law U[−n,n]”

I What kind of limit?

I Limit in what space?

I Compare with:

“Real numbers are just limits of rational numbers”
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The uniform law PΘ on the real line R
I Renyi: The uniform law PΘ for Θ is defined by

(4) ∀n ∈ N, (Θ | −n ≤ Θ ≤ n) ∼ U[−n,n]

I The family of sets B = {[−n,n] |n ∈ N} is a bunch of sets,
and the family of conditional probabilities

(5) {PΘ(· |B) |B ∈ B}

defines a conditional probability space.
I The uniform law is not defined by a limit. Consider instead

all the conditional uniform laws together as a (new) concept:
A conditional probability space

(6) (ΩΘ, EΘ,PΘ)
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Improper priors and sufficiency

I T is sufficient relatively to X for the parameter θ if
X |(T = t,Θ = θ) does not depend on θ.

I Equivalently (∀ priors): X,Θ are conditionally independent
given T, so (Θ |X,T) ∼ (Θ |T). If, additionally, T = τ̂(X),
then (Θ |X) ∼ (Θ |T) ∼ Bayes posterior.

I Theorem: Sufficiency implies that
[X |(T = t,Θ = θ)] ∼ [X |T = t].

I Proof in discrete case: Eθ(ϕ(X) |T = t) =

Eθ(ϕ(X)(T = t))
Eθ(T = t)

=

∫
π(θ)Eθ(ϕ(X)(T = t)) dθ∫

π(θ)Eθ(T = t) dθ
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Sufficiency and optimal inference

I Sufficiency principle: Valid inference must be based on T
for all sufficient T. It can be disputed. Halmos argument
relies on accepting randomized procedures.

I If ϕ(X) is an estimator, then Eθ(ϕ(X) |T) is an estimator
with smaller (or equal) convex risk. If T is complete (and
minimal), then it is the unique optimal estimator.

I An exact test for (H0 : α = α0, θ arbitrary) is obtainable if
T is sufficient for the nuisance parameter θ. This gives
exact confidence distributions. Lehmann: Optimality
follows from this with additional assumptions.

I Accepting randomized procedures is equivalent to
accepting construction of an improved alternative
experiment. It can be disputed.
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Statistical inference (BFF)
I Bayes: Uncertainty Px

Θ directly for the particular
experiment at hand based on observation x, model Pθ

X, and
prior PΘ.

Challenge: Calculate characteristics of the posterior Px
Θ.

I Fiducial: To be discussed on the next slides!

I Frequentist: Uncertainty indirectly from properties of the
instrument in use based on observation x and model Pθ

X.

Challenge: Construct a suitable instrument ϕ.

I Bayesian and Fiducial arguments can sometimes be used to
obtain excellent instruments y = ϕ(x) beyond the case of
y = ϕ(x) equal to a confidence distribution (Ann.Stat.,
2013).
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A fiducial model

I Based on x = χ(u, θ) for simulation of data x.

I A fiducial model (U, χ) for the observation X

(7) Ω ΩU × ΩΘ ΩX

X

U,Θ χ

I The law Pθ
U and the fiducial relation χ give the law Pθ

X of
the statistical model.

I There exist many possible fiducial models for a given
statistical model. This is an advantage!
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Simple fiducial inference

I Let X = Θ+ U with (U |Θ = θ) ∼ N(0, I).
I Assume that x = X(ω) = (x1, x2) has been observed.
I Can You give a probability judgement regarding the

unknown parameter θ = Θ(ω) when ω is unknown?

The simple fiducial argument:

1. Known: x = X(ω) = Θ(ω) + U(ω)

2. Epistemic probability: x = Θx + Ux with Ux ∼ N(0, I)

3. Fiducial distribution: Θx = x − Ux ∼ N(x, I)

The judgement Ux ∼ (U |Θ = θ) based on the fiducial
model and x replaces the use of a prior judgement PΘ.
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Conditional fiducial inference
I Let X = Θ+ U with (U |Θ = θ) ∼ N(0, I).
I Assume that x = (x1, x2) has been observed.
I Assume that it is known that C(θ) = θ1 − θ2 = 0.
I Can You give a probability judgement regarding the

unknown parameter θ?

The conditional fiducial argument:

1. Unconditional fiducial distribution:

Θx
u = x − Ux

u ∼ N(x, I)

2. Fiducial distribution: Θx ∼ (Θx
u |C(Θx

u) = 0)

The judgement Ux ∼ (Ux
u |C(Ux

u) = x1 − x2) with Ux
u ∼ N(0, I)

and x = Θx + Ux give the same result.
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Conditional fiducial models

Level curves for a bi-
variate fiducial together
with three possible curves
for restriction on the
parameter space (Fisher,
1973 ed, p.138).

I A conditional fiducial model (U, χ,C) is given by a fiducial
model (U, χ) for the observation X and a condition
C(Θ) = c.

I Fiducial inference is then based on the observation x, the
law Pθ

U, the fiducial relation χ, and the condition C(Θ) = c.
I Cs(θ) = θ1/θ2 = 1 and Cl(θ) = θ1 − θ2 = 0 both give the

level curve θ1 = θ2, but the conditions are not equal!
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Fiducial inference for quasi-group models

I Fiducial model: X = ΘU

I Fiducial: Θx = x[Ux]−1 with Ux ∼ (U |Θ = θ)

I Theorem: The fiducial gives a confidence distribution

I Theorem: If Θu ∼ Θ, then Θx ∼ (Θ |X = x)

I Theorem: A right-invariant measure does not always exist

I Theorem: The fiducial determines optimal inference
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Optimal inference from fiducial arguments

A simple calculation demonstrates that a fiducial model can be
used in frequentistic decision theory to determine possible
optimal instruments ϕ (Ann.Stat. 2013):
r = Eθ ℓ [θ, ϕ(X)] Risk = expected loss
= Eθ ℓ [θ, ϕ(θU)] Fiducial model X = ΘU
= Eθ ℓ [θ, θϕ(U)] Equivariance of instrument ϕ

= Eθ ℓ [e, ϕ(U)] Invariance of loss ℓ

= Eθ ℓ [Θx,Θxϕ(U)] Invariance of loss ℓ

= Eθ ℓ [Θx, ϕ(ΘxU)] Equivariance of ϕ
= Eθ ℓ [Θx, ϕ(x)] Fiducial equation

Conclusion: The risk is determined by the fiducial
distribution, and an optimal instrument ϕ - if it exists -
is determined by the fiducial distribution. There is no
need for a Bayes prior in this argument! 21 / 22



Final comments on the involved ideas
I Intuition: The information in the prior is replaced

by the (weaker) information in the fiducial relation.

I Instead of deciding a prior PΘ: Decide on a distribution for
Ux for a given observation x and the given fiducial relation.

I Fiducial distributions can give more than confidence
intervals: Good, possibly optimal, instruments more
generally.

I A theory with improper priors has been used repeatedly
above. This is useful also more generally. It gives for
instance precise limit statements involving priors, and
resolves marginalization type of paradoxes.

I In the above arguments the law of (U |Θ = θ) does not
depend on θ. Fraser considers interesting models where
(U |Θ = θ) has a distribution that depends on θ through a
shape parameter.
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