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SUMMARY 

This review article looks at a small part of the picture of the interrelationship 
between statistical theory and computational algorithms, especially the Gibbs 
sampler and the Accept-Reject algorithm. We pay particular attention to how 
the methodologies affect and complement each other. 
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1. INTRODUCTION 

Computations and statistics have always been intertwined. In particular, 
applied statistics has relied on computing to implement its solutions of 
real data problems. Here we look at another part of the relationship 
between statistics and computation, and examine a small part of how 
the theories not only are intertwined, but how they have influenced each 
other. 

With the explosion of methods based on Monte Carlo methods, par- 
ticularly those using Markov chain algorithms such as the Gibbs sampler, 
there has been a blurring of the distinction between the statistical model 
and the algorithmic model. This is particularly evident in the examples 
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of Section 3. There, the statistical model will typically be a hierarchical 
model, while the computational algorithm will be based on a set of con- 
ditional distributions. We will see that the manner in which we view the 
model can have a large impact on the validity of the statistical inference. 
It is therefore important to consider the statistical model that underlies 
the Monte Carlo algorithm. 

We can also turn things around. When one uses a Monte Carlo 
algorithm to do a calculation, it is common to process the output by 
taking an average. However, we should realize that the output from a 
Monte Carlo algorithm can be viewed as data, with the algorithm itself 
playing the part of a statistical model. As such, taking a naive average 
may not be the most effective way of processing the output. In Section 4 
we look at this question, and investigate the effect of classical decision 
theory on output from the Accept-Reject algorithm. We consider these 
improvements as a post-simulation processing of a generated sample, 
which is statistically superior to the original estimator, although they may 
be computationally inferior in taking more computer time. However, this 
latter concern can also be addressed with estimators that offer statistical 
improvement while only requiring a slight increase in computational 
effort. 

We also emphasize that our approach and, in particular, the opti- 
mizations involved in the derivation of some of the improved estimators, 
is based on statistical rather than computational principles. The overall 
goal of the statistician is to process samples in an optimal way, and to 
make the best inference possible. To do so requires treating an algorithm 
as a statistical model, and (as far as possible) ignoring the computational 
issues. 

Another consideration in the interplay of statistical theory and al- 
gorithms is the prospect of using the structure of the algorithm to more 
efficiently construct an optimal procedure. We illustrate this in Sec- 
tion 5, where we look at three examples. These examples use the Gibbs 
sampler, and show that we can use the iterative nature of the algorithm 
to implement procedures that are sometimes computationally feasible 
and can result in an optimal inference. We end the paper with a short 
discussion section. 
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2. SYNTHESIS 

Given the audience of this presentation, a digression may be in order into 
the Bayes/frequentist approaches to statistics. The topic of algorithms, 
particularly Monte Carlo algorithms, is a prime example of an area that 
is best handled statistically by a mixture of the Bayesian and frequentist 
approaches. Moreover, it seems that to completely analyze, understand, 
and optimize the relationship between a statistical model, its associated 
inference, and the algorithm used for computations, both Bayesian and 
frequentist ideas must be used. 

The Bayesian approach provides us with a means of constructing an 
estimator that, when evaluated according to its global risk performance, 
could result in an optimal frequentist estimator. This highlights impor- 
tant features of both the Bayesian and frequentist approaches. Although 
the Bayesian paradigm is well-suited for the construction of possibly 
optimal estimators, it is less well-suited for their global evaluation. The 
frequentist paradigm is quite complementary, as it is well-suited for 
global evaluations, but is less well-suited for construction. 

We look at two examples, taken from Lehmann and Casella (1997). 

Example 1. Rao-Blackwellizing the Gibbs Sampler. The Gibbs sam- 
pler (Geman and Geman 1984, Gelfand and Smith 1990) provides a 
method of computing Bayes estimators. These estimators are computed 
by averaging random variables and this averaging is improved if the 
Rao-Blackwell theorem is applied (Liu, Wong and Kong 1994, 1995). 
More precisely, in a typical use of the Gibbs sampler, our estimand is the 
actual Bayes estimator, which we are computing by generating random 
variables and averaging them. The validity of our method rests on the 
Ergodic Theorem (Law of Large Numbers). When the Rao-Blackwell 
theorem is applied to these averages, we get a new average with the same 
expectation (the actual value of the estimator) and smaller variance. 

Thus, the calculation of a Bayes estimator is improved using a fre- 
quentist methodology. Moreover, monitoring convergence of the Gibbs 
sampler is essentially a frequentist problem, so again frequentist tech- 
niques can be used to improve Bayes estimators. ,~ 

The preceding example shows how frequentist methods can aid a 
Bayesian approach. The reverse is also true. 
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Example 2. REML variance estimation. In the one-way random effects 
model 

Yij = / 3 + u i + e i j  ( j = l , , . . , n i ,  i =  1 , . . . , k )  (1) 

where/3 is the overall mean, ui is a random effect, and ~ij is error, it 
is often of primary interest to estimate 0-2 and 0-~, the variance of the 
random effects ui and ~ij, respectively. Two basic problems must be 
overcome. 

(a) Elimination of the effect of/3 from the estimates of 0 -2 and 0-2. 
As the latter are estimates of dispersion, they should not be 
affected by a change in the mean level. 

(b) Interpretation of possibly negative estimates of variance, which 
can arise from some classical estimation methods (see Searle, 
et al. 1992, Section 3.5c). 

Both (a) and (b) can be dealt with using frequentist methodologies. 
For example, the effect of/3 can be eliminated by requiring the vari- 
ance estimates to be translation invariant (one derivation of the so-called 
REML variance estimates; see Searle et al. 1992, Section 6.6 and Chap- 
ter 9) and the negativity problem can be handled by truncation. 

Alternatively, a Bayesian model can eliminate both of these prob- 
lems in a straightforward way. First, the parameter/3 can be integrated 
out using a prior distribution, creating a marginal likelihood. Moreover, 

2 will never be negative. Bayes estimates of o .2 and 0-e 

Note that we are using the Bayesian approach to construct the es- 
timators. The evaluation of the estimators, and establishment of any 
optimality properties, can still be done using a frequentist global risk 
approach. < 

Thus, it is important to view these two approaches as complemen- 
tary rather than adversarial, as together they provide a rich set of tools 
and techniques for the statistician. Moreover, there are situations and 
problems in which one or the other approach is better-suited, or even a 
combination may be best, so a statistician without a command of both 
approaches may be less than complete. 
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3. ALGORITHMS AND STATISTICAL INFERENCE 

In this section we look at how an algorithmic approach to a problem has 
fundamental repercussions on the statistical inference. In Section 3.1, 
where we mainly give details for the mixed linear model, we will see 
that approaching a problem through a Gibbs sampler can mask posterior 
impropriety. This can have a profound effect on the possible statistical 
inferences. In the most extreme cases, which are in no way pathological, 
evaluating a statistical model only through a Gibbs sampler can lead to 
erroneous, even nonsensical, inferences. This latter point is examined 
in Section 3.2. 

3.1. How the Algorithm Affects the Posterior 

The model equation of a general linear mixed model is given by 

t = x / 3  + + (2) 

where Y is an n x 1 vector of observations,/3 is a p • 1 vector of 
fixed effects (parameters), u is a q x 1 vector of random effects (random 
variables), X and Z are known design matrices whose dimensions are 
n x p and n x q, respectively, and e is an n x 1 vector of residual errors. 

A typical set of error distributions (or priors) for the mixed model 
2 ~,~ N q ( O ,  D )  where u has e[~r~ ~ Nn(O, Icr~) and ulcr12,. . . ,o r = 

�9 .. u r ) ,  ui  is qi x 1, D = and ~-~4=1 qi = q. The '-~i=1 qi i ' 
r subvectors of u correspond to the r different random factors in the 
experiment. It is also common to put a flat prior (Lebesgue measure) on 
the so-called fixed effects, represented by the vector/3. In classical mixed 
model inference, such an assumption is used in REML, or restricted 
maximum likelihood estimation. As it turns out, the type of prior used 
on/3 has no impact on what follows. 

The variance components themselves, which are often the prime 
targets of inference, are often given power-type priors of the form 

71"e(o'21b) (2((0-2) -(b+l) , 7ri(~lai)~ (o?) -(ai+l)  , (3) 

where the ai 's and b are known and the following conditional indepen- 
dence assumptions are in force: (1) given u, Y is conditionally indepen- 
dent of o-~,. . . ,  o-2, (2) given o-2, . . . ,  o-2, u is conditionally independent 
of/3 and 0-2, and (3)/3, 0-2, and o-~,. . . ,  0-2 are a priori independent. 
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All of these assumptions can be summarized in the hierarchical 
model 

Y l u ,  cr2,/3 ~ Nn(X/3 + Zu, Ia~) 

2 ,.~ Nq(O,D) 7re(cr2lb) c< (0"2) -(b+l) (4) rr(/3) c~ 1 u1 12,.. 
rr/(a~[ai) c((0?)  -(ai+l) . 

With the increased popularity of Monte Carlo algorithms such as the 
Gibbs sampler, the experimenter tends to pay less attention to the model 
specified by (4), and rather concentrates on the set of full conditionals, 
which make up the input into the Gibbs Markov chain. For our mixed 
model, these conditionals are given by 

2/3) i C ( a , + q i  f (o2lo"_i, y, u, fie, = 2 '  u (5) 

n 
f (a2elo-,y,u,/3) = IG b+-~, 2 { ( y - ( X / 3 +  Zu)) '  

(y - (X/3 + Zu))}  -1) 

2 ( _2 n - l ~ - I  ,w! f (ulo- ,y,o- , , /3)  = Nq (Z 'Z+o,J_~ ) i_, 

(y- -  X/3), f f2(Z'Z q- cr2D-1) -1)  

( (  2 ( X t X )  -1 ) 2 u) = Np X t X )  -1 X ! (y Zu) ,  o- e f (/310", Y, o" e , 

where o" = (o-2,...,0-2), o"-i = (0"2,...,cri-1,0"i+1,...,0"2), IG 
stands for inverted gamma and we say that X ~ IG(r, s) if f x ( t )  c( 
t -r-1 exp( -1 / s t )  for positive t. 

If 2ai < - q i  for some i or 2b < - n ,  then at least one of the con- 
ditionals is improper, since the inverted gamma density is defined only 
when both parameters are positive (Berger 1985, p. 561). Clearly, one 
improper conditional implies an improper posterior. 

Although it may be tempting to assume that propriety of the condi- 
tionals in (5) implies propriety of the posterior distribution, this is false. 
Indeed, there are many values of the vector (al, a2,. . ,  at, b) which si- 
multaneously yield proper conditionals (2ai > -qi  Vi and 2b > - n )  
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and an improper posterior. Thus, in general, if one incorrectly assumes 
propriety of a posterior and writes down a (false) proportionality state- 
ment like 

2 2 ~r(a2, . . . , crr, a~ , u ,  ~]y )  c< f (y]u ,  a2, f~) f (ula2,  . . . , r 2) 
r (6) 

7r(~)Tr~(~ H 7ri(ty2]ai) 
i=1 

where f is used to represent a generic density, it may happen that the 
Gibbs conditionals are all proper densities. Such a situation is very 
dangerous because, if the output from the Gibbs sampler fails to warn 
the user that the posterior is improper (which seems to be the common 
situation), the result could be an inference about a nonexistent posterior 
distribution. We will return to this point in Section 3.2. 

We now state a theorem that will insure the propriety of posterior 
distributions coming from the model. This theorem is similar, in spirit, 
to those given in Ibrahim and Laud (1991), who consider the use of 
Jeffreys's prior in generalized linear models (GLM's), Dey, Gelfand and 
Peng (1994), who discuss the use of improper priors in overdispersed 
GLM's, and Natarajan and McCulloch (1995), who deal with mixed 
models for binomial responses. Another related paper is Zeger and 
Karim (1991) who discuss the use of improper priors and Gibbs sampling 
in GLM's. For a proof of the theorem see Hobert and Casella (1996). 

Theorem 1. L e t t  = r a n k  ( P x Z )  = r a n k  ( Z ' P x Z )  < q where 

we define P x = ( I  - g ( X ' X )  -1 X ' ) .  There are two cases: 

1. I f  t = q or i f  r = 1 then conditions (i), (ii), and (i i i)  
below are necessary and sufficient f o r  the propriety o f  the 
posterior distribution o f  model  (4). 

2. I f t  < q a n d r  > 1 thencondit ions (i), (ii), and (i i i)  below 
are sufficient f o r  the propriety o f  the posterior distribution 
o f  model  (4) while necessary conditions result when (ii) is 
replaced with (ii ~) qi > - 2 a i .  

(i) ai < 0 

(ii)  qi > q -  t -  2ai 
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(iii) n + 2 E a i + 2 b - p > O .  

Thus, we see that it is relatively easy to check if the posterior distri- 
butions are proper, being merely a matter of counting categories. Also, 
conditions (i)-(iii) are intuitively reasonable, and can be interpreted as 
requiring that we have enough observations, in particular enough obser- 
vations on the variance components o -2 , to adequately control the tails 
of the posterior (large enough qi). 

3.2. How the Algorithm Affects the Inference 

In this section, we look at what can happen to the inference if one uses a 
set of Gibbs conditionals, all of which are proper, that do not correspond 
to a proper posterior. This situation was investigated in detail by Hobert 
and Casella (1995), and we will discuss a few of their findings. 

A set of conditional densities such as those in (5) may, or may not, 
result in a proper posterior. However, the fact that may obscure the 
impropriety of the posterior is the functional compatibility of the set of 
densities. First consider the following simple example from Casella and 
George (1992). 

Example 3. The exponential conditional densities 

fl(x[Y) = ye -yz and f2(ylx) = xe -xy. 

appear to be a pair of conditional densities, but there is no joint density 
function which will yield f l  and f2 as conditional densities. If such a 
joint density did exist, the pair f l  and f2 would be compatible. As one 
does not exist, this pair is incompatible. However, the non-integrable 
function 9(x, y) = e x p ( - x y ) ,  if treated as a joint density, does yield 
f l  and f2 as its "conditionals". In such a case, where no proper 9(') 
exists, but an improper one does, we say that f l  and f2 are functionally 
compatible. This is the dangerous case, as f l  and f2 appear to be a set 
of conditional densities. This is exactly what can happen in (5) if the 
conditions of Theorem 1 are not satisfied. <~ 

When there are more than two variables, the definitions of compati- 
bility and functional compatibility become more involved, but the idea is 
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the same. Compatibility of a set of densities was investigated by Besag 
(1974), Arnold and Press (1989), and Gelman and Speed (1993). They 
tended to focus on conditions under which a set of conditional densities 
could be used to uniquely determine the joint density, assuming that such 
a density existed. In our case, however, we cannot assume that such a 
joint density exists. 

The major concern for a user of a Gibbs sampler based on a set of 
functionally compatible densities that are not compatible (that is, for 
which not proper joint density exists), is what inference can be made 
from the resulting Markov chain? This is the question investigated in 
detail by Hobert and Casella (1995), and the results are quite negative. 
They prove the following theorem. 

Theorem 2. Let f l , . . . , f m be a set o f  functionally compatible con- 
ditional densities on which a Gibbs sampler is based. The resulting 
Markov chain �9 is positive recurrent i f  and only i f  f l ,  . . . , fm  are 
compatible. 

Thus, a set of densities that are only functionally compatible will 
not result in a positive recurrent Markov chain. Hence, there cannot 
be any stationary probability distribution for the chain to converge to. 
Moreover, there is virtually no reasonable inference that can be made. 
Under some additional technical conditions (which are satisfied for most 
typical Gibbs samplers), it can be shown that if t : A --~ ~+ is a bounded 
measurable function for which, given e > 0, there exists a compact set 
C E A such that t (y) _< c V y E C c, then 

l iminf  1 ~  t ( ~ i )  -- 0 a.s. (7) 
n ----~ o o  n 

i =1  

In a typical Gibbs sampling application, one might estimate a posterior 
density 7r(Oly ) with an average of conditional posterior densities, say 
7r(OIy ) ~--~ ( l / m )  Eim__l 7r(O]y, ,~i). It will often be the case that the den- 
sities 7r(Oly , hi) satisfy the conditions on the function t above. Hence, 
the only place the average ( l / m )  y'~im__l Tr(Oly ,/~i) can converge to is 0; 
or else it will not converge. 

Gibbs samplers based on a set of densities that are not compatible 
result in Markov chains that are null, that is, they are either null recurrent 
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or transient. In either case, there is no limiting probability distribution. 
However, output from the Gibbs sampler may produce nice looking pic- 
tures of the supposed marginal posterior densities, particularly when 
the posterior density is computed as an average of conditional densities. 
But there can be no actual distribution to which the Gibbs picture cor- 
responds. This was the problem with the Gibbs-based conclusions of 
Wang et al. (1993, 1994) and Gelfand et al. (1990) as they used models 
for which a posterior distribution did not exist. 

An insidious feature of this situation is that a null Gibbs chain may 
be undetectable to the practitioner, that is, the resulting Monte Carlo ap- 
proximations appear completely reasonable. Moreover, not only do the 
Gibbs averages look reasonable, but the actual output from the Markov 
chain may appear reasonable. (Consider Geyer 1992, who published 
what he first believed to be proper Gibbs output, but later found that it 
corresponded to an improper posterior. He noted, in proof, that, "...(the 
model) produces an improper posterior, so the Gibbs sampler apparently 
converged when there was no stationary distribution for it to converge 
to. A run of one million iterations gave no hint of lack of convergence.." 
Thus, it is not surprising that a practitioner can be fooled into believing 
that the Gibbs chain is giving a reasonable inference. 

In order to demonstrate just how reasonable some of these null Gibbs 
chains can appear, we give an example. 

Example 4. The one-way random effects model (1) with a typical set of 
priors is 

2 

2 ~ (cr2~-(b+l) (8) /3 ,~ d/3 u ~ Nk  (O, Io- 2) o-, , - , ,  

o-2 ~ (o-2)-(a+1).  

For a simulation study we set k = 7, ni = n = 5, o -2 = 5,  o.2 = 2,  

and /~ = 10. The vector (Ul , . . . ,UT) was simulated by generating 
seven iid N(0,  5) random variables and the vector (e11, . . . ,  c75) was 
simulated by generating 35 iid N(0,  2) random variables. We also set 
a = b = 0, which yields an improper posterior. A Gibbs chain was 
constructed using the conditionals given in (5). We denote the chain by 

(O "2(j) , O "2(j), U/(j), fl(J)), j > 1. At the start, all parameters were set to 
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one, except for the overall mean, 13, which was set to eight. The chain 
was first allowed to run for 55,000 iterations; keep in mind that the word 
"bum-in" is not appropriate for these initial iterations because the chain 
is null and is therefore not converging (in the usual sense). The sole 
purpose of these initial iterations was to provide the chain with ample 
opportunity to misbehave and alert us that something may be wrong; it 
never did. We chose 15,000 because a typical burn-in would probably 
be in the hundreds (see Gelfand et al. 1990 and Wang et al. 1993) so that 
if our chain did not misbehave during the burn-in stage, neither would 
that of an unknowing experimenter. 

After the initial 55,000 iterations, the output from the 15,001st 
through the 16,000th was collected. Figure 1 is a histogram of the 
1,000 effect variances from the null Gibbs chain, that is, 0-2(j+15,000), 
j = 1, 2 , . . . ,  1000, with a Monte Carlo approximation of the supposed 
marginal posterior density superimposed. Figure 2 is the analog of Fig- 
ure 1 for the error variance component. The density approximations in 
Figures 1 and 2 were calculated using the usual "average of conditional 
densities" approximation. All of these plots appear perfectly reasonable 
even though the posterior distribution is improper and the Monte Carlo 
density approximations have almost sure pointwise limits of zero or no 
limit at all. Clearly, if one were unaware of the impropriety, plots like 
these could lead to seriously misleading conclusions. 

This particular posterior is improper due to an infinite amount of 
mass near 0 -2 = 0. One might suspect that if the starting value of 0-2 

were near zero, the o .2 component of the Gibbs chain would be absorbed 
at 0. This is not the case, however. In fact, the o .2 component and 
the random effects components move towards zero, but eventually they 
all return to a reasonable part of the space. For example, we started the 
chain with 0 .2 • 10  - 5 0  and after 20,000 iterations the 0-2 component was 
a p p r o x i m a t e l y  10 -122 and the largest magnitude of any of the random 
effects components was about 10 -60  . The chain was allowed to run 
for a total of one million iterations, after which all of the components 
were back in a reasonable part of the parameter space. This Gibbs chain 
behaves somewhat like one constructed with the exponential conditionals 
of Example 3 in that it leaves the "center" of the space for long periods 
of time, but eventually returns. Such behavior is consistent with null 
recurrence. 
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Histogram of Effect Variances 

110 

55 

I I I 

0 0 5 10 15 20 

Figure 1. Histogram of the 1000 values of the effect variance from the 
null Gibbs chain, that is, a histogram of or 2(j+15'~176176 for j = 1, 2 , . . . ,  1000. 
Superimposed is the approximate (supposed) marginal posterior density of 
cr 2. An appropriately scaled version of #a21y (t]y) is on the ordinate with 
t on the abscissa. (Actually, 15 of the l,O00values of the effect variance, 
ranging from 21.0 to 45.1, were not included in the histogramJ 

Lastly, we note that it seems virtually impossible to detect a null 
chain with a diagnostic measure. Standard "convergence diagnostics" 
proposed in the MCMC literature (see, for example, Raftery and Banfield 
1991, Gelman and Rubin 1992, Roberts 1992, Tanner 1993, and Robert 
1995) assume that the chain is positive recurrent and use the output to 
provide information about when Monte Carlo approximations are "close 
enough" to the true values. They are not designed to detect if the Gibbs 
chain converges (positive recurrence), nor even when the Gibbs chain has 
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Histogram of Error Variances 
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F i g u r e  2. Histogram of the 1000 values of the error variance from the 
2(j+15,ooo) ~ . null Gibbs chain, that is, a histogram of a~ for 3 = 1, 2 , . . . ,  1000.  

Superimposed is the approximate (supposed) marginal posterior density of 
2 An appropriately scaled version ofr ( t [ y )  is on the ordinate with 0"~. 

on the abscissa. 

converged; as it never does. Thus, one should not count on "convergence 
diagnostics" to detect an improper posterior. 

4. DECISION THEORY AND ALGORITHMS 

Now that we have looked at the effect of the algorithm on the statistical 
inference, we will somewhat turn things around and look at the effect of 
statistical theory on the output from the algorithm. We can consider a 
Monte Carlo algorithm as outputting data about an underlying process, 
with the goal being the construction of an estimate of some feature of the 
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process. In this light, we can ask how to best process the data, and answer 
that question by applying statistical principles. In what follows, we apply 
one of the simplest principles, that of Rao-Blackwellization, to the output 
of an Accept-Reject Algorithm. For more details, including applications 
to the Metropolis-Hastings Algorithm, see Casella and Robert (1995, 
1996a, 1996b, 1996c). 

4.1. The Accept-Reject Algorithm as a Statistical Model 

The Accept-Reject algorithm is based on the following lemma. 

L e m m a  1. I f  f and 9 are two densities, and there exists M < oc 
such that f ( x )  < M g ( x  ) for every x, the random variable X pro- 
vided by the algorithm 

1. Simulate Y ~ 9(Y); 

2. Simulate U ~ /g[0, 1] and take X = Y i fU <_ f ( Y ) /  M 9 ( Y ) ;  
otherwise, repeat step 1. 

is distributed according to f . 

When viewed statistically, we have the following description of the 
algorithm. A sequence Y1, Y2,.. �9 of independent random variables is 
generated from g along with a corresponding sequence U1, U2, . . .  of 
uniform random variables. Given a function h, the Accept-Reject es- 
timator of 7- = E { h ( X ) } ,  based upon a sample X 1 , . . . ,  Xt  generated 
according to Lemma 1, is given by 

t 
1 

= T Z h(Xi). (9) 
i = l  

Note that, conditional on the value t, the random variables X1, �9 �9 �9 Xt  
represent an iid sample from the distribution f .  The Accept-Reject 
algorithm is usually implemented with a prespecified value of t, and the 
number of generated Y/'s is a random integer N satisfying 

N N - 1  

I(Ui <_ wi) = t and E I(Ui <_ wi) = t -  1, 
i=1 i=1 

where we define wi = f (Y i ) /M9(Yi ) .  
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When  we evaluate (~AR as an estimator of ' r ,  we see an estimator that 

1. Is based on extraneous information (the uniform random vari- 
ables). 

2. Is, in fact, a randomized estimator, that scourge of statistics. 

Classical statistical theory tells us that 

1. We need an estimator that does not depend on the observed 
values of the uniform random variables. 

2. I f  an estimator is constructed by averaging over the uniform 
random variables, such an estimator will dominate 5AR by the 
Rao-Blackwell theorem. 

It is straightforward to "Rao-Blackwel l ize"  5AR by noting that it can 
be written 

N 
1 

5AR = -~ E I(Ui < wi)h(Y/) ,  (10) 
i=1 

so the condit ional expectat ion 

5RB = t "'" 
i=1 

improves upon (10) by  the Rao-Blackwel l  Theorem. 

Details  of  this calculation are carried out in Casella and Rober t  
(1996a), where  it is established that 

1 n 
=  pih( ) (12) 

i=1 

where, for i = 1, �9 �9 �9 n - 1, Pi satisfies 

Pi = P(Ui < wi lN = n, ~1 , . . . ,  Yn) 
n-2 

E(il,...,it_2) E~ -2 Wij E j = t _ l ( 1  -- Wij) (13)  

----- Wi ~_~(il,...,it_l ) yi~_l Wij YIjn=tl(1 -- Wij) ' 

while Pn = 1. The numerator  sum is over all subsets of  { 1 , . . . ,  i - 
1, i + 1 , . . . ,  n - 1} of  size t - 2, and the denominator  sum is over all 

subsets  of  size t - 1. The resulting est imator 5RB is an average over 
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all the possible permutations of the realized sample, the permutations 
being weighted by their probabilities. The Rao-Blackwellized estimator 
is then a function only of (N, 1Q1),. . . ,  ]QN-1), YN), where ]Qi) denotes 
the order statistics. 

Because of the identity 

var(5) = var[E{6(U, Y)IY}] + E[var{5(U, Y)[Y}]. (14) 

we see that the improvement that 5RB brings over 5AR is related to 
the size of E[var{5(U, Y)IY}]. This latter quantity can be interpreted 
as measuring the average variance in the estimator that is due to the 
auxiliary randomization, that is, the variance that is due to the uniform 
random variables. In some cases this quantity can be substantial. 

Example 5. The target distribution is a Gamma distribution ~(a , /3)  with 
a > 1. We set/3 = 2c~ so that the mean of the distribution is 1/2. The 
candidate distribution we select is the Gamma G (a, b) distribution with 
a = [a] and b =/3a/c~. 

We require a < a in order for M in Lemma 1 to be finite. The choice 
b = 2a improves the fit between the two distributions since both means 
match. We consider two cases which reflect different acceptance rates 
for the Accept-Reject algorithm. In Case 1 we set a = 2.434, a = 2 
and 1/M = 0.9 and, in Case 2, a = 20.62, a = 2 and 1/M = 0.3. 

For each case we estimate the mean, chosen to be 1/2, using both 
the simple Accept-Reject algorithm and its Rao-Blackwellized version. 
We also include mean squared error estimates for the Accept-Reject 
estimator and the improvement brought by Rao-Blackwellizing. This 
improvement is measured by the percentage decrease in mean squared 
error. From the table, it can be seen that the Rao-Blackwellisation pro- 
vides a substantial decrease in mean squared error, reaching 60% in 
the case where the acceptance rate of the algorithm is 0.3. The im- 
provement is better at the lower Accept-Reject acceptance rate partially 
because the Rao-Blackwellized sample is about three times bigger, with 
approximately two thirds of the sample being discarded by the Accept- 
Reject algorithm. Another interesting observation is that the percent 
improvement in mean squared error remains constant as the Accept- 
Reject sample size increases, implying that the variance of the original 
Accept-Reject estimator does not approach the variance of the Rao- 
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Table 1. Estimation of a gamma mean, chosen to be 1/2, using the Accept- 
Reject Algorithm, based on 7,500 simulations. 

Acceptance rate .9 

AR AR RB AR Percent 
Sample Estimate Estimate MSE Decrease 

Size 5An 5RB in MSE 

t0 .5002 .5007 .0100  17.02 
25 .5001 .4999 .0041  18.64 
50 .4996 .4997 .0020  20.81 
100 .4996 .4997 .0010  21.45 

Acceptance rate .3 

AR AR RB AR Percent 
Sample Estimate Estimate MSE Decrease 

Size 5A~ 5RB in MSE 

10 .5005 .5004 .0012  52.85 
25 .4997 .5000 .0005  58.62 
50 .4998 .5001 . 0002  60.49 
100 .4995 .5001 .0001  61.60 

Blackwellized estimator even as the sample size increases, We will 
return to this point in Section 5.2. 

Computation of the Pi'S of (13) can be accomplished with a recursion 
relation, and will typically require a calculation of order n 2. This may 
represent, to some, an unacceptable increase in computation time given 
the size of the anticipated decrease in mean squared error. To some- 
what address this point, in Casella and Robert(1996b) we considered a 
simpler version of the Rao-Blackwell strategy that led to (12). Notice 
that, in what follows, we will simultaneously decrease computational 
complexity and increase statistical complexity. 
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4.2. Termwise Rao-Blackwellization 

Starting from the Accept-Reject estimator (10), rather than calculating 
the full conditional expectation, we can instead calculate the termwise 
conditional expectation. This accomplishes the goal of removing the 
uniform random variables but retains computational simplicity. 

To calculate the termwise conditional expectation of (10), condi- 
tioning the ith term on (N, I~), we need the conditional distribution of 
Ui l, Y/, N = n. Although the original random variables are independent, 
the Accept-Reject algorithm stopping rule introduces a dependence in 
the sample. For example, for i = 1 , . . . ,  n - i the marginal distribution 
of Y/is 

- 1 i n - t g ( y )  - - - ~ f ( y )  t f ( y ) +  1 
re(y) -- n -  n - 1 1 M 

(15) 

and Yn has marginal distribution f (y ) .  It then can be shown that the 
resulting estimator, 5TRB is given by 

1 n 
(~TRB -~ -s E E[Z(gi < wi)lY/]h(Yd 

i=1 
n-1 (16) 

1 ( h ( y n ) + E b ( y i ) h ( Y i ) )  , 
t i=1 

where 

t -  1 f(y ) 
, i = l , . - - , n - 1 .  (17)  

n - i m(yi)  

See the Appendix for details of these calculations. 

We now have a seemingly reasonable estimator that is not compli- 
cated to compute, but its statistical properties are not as easy to establish 
as the full Rao-Blackwellized estimator (12). In fact, the Rao-Blackwell 
theorem does not apply to the estimator (16) because we did not con- 
dition on the entire estimator. To establish dominance of (~TRB of  (16) 

over (~AR of (9), we must calculate the variance of 5TRB, which involves 
n(n  - 1)/2 covariance terms. Moreover, it can easily be seen that 5TnB 
cannot dominate 5AR in mean squared error. This is because the sum 
of the weights in (17) is random, and if the target function h(.) is a 
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nonzero constant function, ~TRB will not estimate it correctly, while 
5AR will. This major difficulty is also common to some importance 
sampling schemes and prohibits uniform domination results there. A 
solution to this drawback is to force the estimators to estimate constant 
functions correctly, which can be achieved by dividing the weights b(yi) 
by their sum, thus replacing (STt~B by its rescaled version 

1 t - l ( ~  b(yi) h(y i ) ) .  (18) 
= (h(yn) + ---i-- Ejn:-  b(V ) 

Such rescalings seem common in practice, despite any concern about 
the effect of introducing a bias in the estimator. Such concerns need 
not cause worry, however, as the bias induced by this rescaling is of 
an higher order than the variance (Casella and Robert 1996b). The 
following theorem can then be established. 

Theorem 3. For every function h, ~STr asymptotically dominates 
5AR in terms of quadratic risk. More precisely, as t ~ ~ ,  if 
N = Op(t) then, 

- _< E[( AR - -  

where ~- = E[h(X)]. 

Moreover, the size of the improvement brought about by the rescaled 
estimator is truly impressive. 

Example 6. (Continuation of Example 5). Table 2 gives MSE reductions 
for the rescaled estimator ~T~, along with a rescaled importance sampling 
estimator and the full Rao-Blackwellized estimator (12). 

For comparison, we included in Table 2 a rescaled importance sam- 
pling estimator, derived as follows. A typical importance sampling es- 
timator is of the form 

1 ~ f(Yi) 
5IS ~- n i =1  g(Yi) h(yi), (19) 

which would be unbiased under a random sampling scheme. However, 
the Accept-Reject Algorithm renders (19) biased. More importantly, 
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Table 2. Estimation a gamma mean, chosen to be 1/2, using rescaled 
estimators from the Accept-Reject Algorithm, based on 7, 500 simulations. 

Acceptance rate .9 

AR % Dec. % Dec. % Dec. % Dec. 
Sample inMSE inMSE inMSE inMSE 

Size 6rnB 6T,. 6ISr 6RB 

10 14.01 16.88 20.27 17.03 
25 14.67 18.45 20.04 18.64 
50 17.48 20.77 21.68 20.81 
100 18.11 21.37 2 1 . 5 0  21.45 

Acceptance rate .3 

AR % Dec. % Dec. % Dec. % Dec. 
Sample inMSE inMSE inMSE inMSE 

Size 6TR B 6Tr 61,5, r 6RB 

10 -259.62 5 3 . 7 6  54.07 52.85 
25 -277.80 5 9 . 0 4  59.23 58.62 
50 -272.18 60.73 60.78 60.49 
100 -281.77 61.82 61.91 61.82 

(19) is not correct for constants, and will suffer f rom the same problems 

as 6TRB. We thus want to rescale 6 i s ,  which results in the rescaled 
importance sampling estimator 

1 t-l(  h(vd). 
 ISr = -[h(yn) + \ i = 1  Ejn -ll f ( Y J ) / g ( Y J )  

(20) 

The last observation comes f rom the correct density, and doesn ' t  have to 

be reweighted. The remaining n - I terms are rescaled. As it turns out, 
this estimator performs quite well in our simulation studies. This is really 

no surprise, as it is very close to the rescaled termwise Rao-Blackwell  
estimate. 
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There are a number of interesting points to notice about Table 2. 
First, termwise conditional expectation can actually make things worse, 
as @RB increases the MSE o v e r  •AR. Although we knew that @_~B 
could not dominate for constant functions, the numerical example shows 
that even for more variable functions there may not be dominance. 

The second striking thing to notice is that the improvement from 
the rescaled estimators @T and ~IsT is actually better than that of the 
Rao-Blackwellized estimator ~RB- This, no doubt, represents a favor- 
able variance/bias trade-off, but is still quite startling. The decrease in 
computation time of @r and ~SiSr over ~SRB can be quite substantial, 
and the fact that mean squared error is improved really underscores the 
power of rescaling. 

It is interesting to note that the rescaling idea, making the weights 
sum to one, arose naturally as "the right thing to do", especially in light 
of the performance of the estimators when h(-) is constant. Many times 
we notice, or intuit, empirical adjustments that help in certain cases. We 
can use the structure of decision theory to formalize our intuition, and 
see if the empirical improvements will, in fact, be useful in a wide variety 
of cases. Here we see that the value of the rescaling is confirmed by the 
decision-theoretic calculation of Theorem 3 and a simulation study. We 
thus have a nice interplay between using our intuition to construct what 
we think is an improved estimator, and using theory to establish that we 
have, in fact, done so. 

5. OTHER CONSIDERATIONS 

In this section we review some recent work that further explores the 
structure of Monte Carlo algorithms, particularly the Gibbs sampler. 
The goals of these investigations are to understand how to better, or 
even optimally, process the output of the algorithm, and also to use 
the structure of the algorithm to help construct optimal procedures. It is 
interesting to note that both frequentist and Bayesian inferences benefit in 
the following examples. Unfortunately, these illustrations are somewhat 
less detailed, as some of the work is still in progress 
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5.1. Constructing the Inference from the Algorithm 

An endpoint of a Gibbs sampler is typically a sample from a poste- 
rior distribution 7r(Oly ), a distribution which may itself be intractable to 
work with. If a confidence set, or more specifically, a credible set, 
for 0 is desired, we may have to solve a difficult integral equation 
where the integrand may not be expressible in closed form. Specif- 
ically, suppose that we have a pair of conditional posterior densities 
zc(O[y, A) and zr(Aly, 0) in a Gibbs sampler Markov chain, and we are 
interested in inferences about zc(Oly). If we use the Gibbs sampler to 
generate the pairs (Oi, Ai), i = 1 ,2 , . - . ,  then, from the ergodic theo- 
rem, 7r(0]y) = l i m m ~ ( 1 / m )  ~2"~ i=1 7c(O]y, Ai). Suppose that, for a 
specified value of o~, we are interested in finding the value a* such that 

f ~ *  7r(O]y)dO = o~, a lower confidence bound, a first approach would 
be to solve for a* in 

2 - -  7c(Oly, Ai)dO = c~. 
m ec i = 1  

As this calculation could be quite involved, we ask if the value a* can 
be constructed from the Gibbs sequence (Oi, Ai) in any simple way? 

A first approach on the problem, developed in Eberly (1997), is 
the following. Writing II(-) for a distribution function, for example, 
I I (a ty  ) = f~Tr(Oty)dO,  calculate for each Ai a value ai such that 
II(ai lY, Ai) = "7, where the value of'7 will be determined shortly. (Note 
that in a typical Gibbs sampler, the full conditionals are usually very nice 

1 m densities, so solving for the ais should be very quick.) Now ~ ~ i = 1  ai = 
~ a ~, for some value a/, but it is not necessarily the case that a I = a*. 

However, expanding II(ai lY, Ai) in a Taylor series around ~ yields 

II(ai[y, Ai) ~ Yi(~ly, Ai ) + ( a i -  ~)~-(fi[y, Ai). 

Now sum both sides, and remember that II(aily, Ai) = '7 to get 
1 m 1 m 

"7 "~ - -  E I-I(alY' Ai) + - -  ~ (ai - ~)7c(g]y, Ai). 
m m 

i = 1  i = 1  

1 It can be established that ~ Em=l II(d[y, Ai) ~ II(a '[y),  so we have 
the approximation 

m 

I Z ( a i _ ~ ) T r ( ~ l y ,  Ai) ' 
i----1 
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1 m a which suggests setting 3' = c~ + ~ E i = l (  i - a )71(a lY,  ,~i), with the 
hope that g ~ a I ~ a*. 

This linear approximation seems to perform adequately in some 
situations, but can be improved upon by a quadratic Taylor series ap- 
proximation. Further work, in understanding the value and limitations 
of this approximation, and thoroughly developing the theory, is presently 
being done. 

5.2. The Effect of Rao-Blackwellization 

In Section 4.1 we alluded to the fact that Rao-Blackwellization will al- 
ways result in an appreciable variance reduction, even as the sample size 
(or the number of Monte Carlo iterations) increases. To address this 
point more precisely, consider the work of Levine (1996), who formu- 
lated this problem in terms of the asymptotic relative efficiency (ARE) 
of 50 = ( l / m )  ~ h(Xi) with respect to its Rao-Blackwellized version 
51 = (1/m) ~ E[h(Xi) IY/], where the pairs (Xi, Yi) are generated from 
a Gibbs sampler with Xi ,~ f(xlY/_l ) and Y/,-~ f(ulXi). (Levine 1996 
considers more complex Gibbs samplers, but we will only use this sim- 
ple case for illustration. The key property that the sampler need have 
is reversibility.) The ARE is a ratio of the variances of the limiting 
distribution for the two estimators, which are given by 

(X3 

o-~o = var(h(X)) + 2 ~ cov(Xo, Xk) (21) 
k= l  

and 

(3O 

0-~1 = var(E[h(X)lY]) + 2 ~ cov(E[Xo[Yo],E[XklYk]). (22) 
k= l  

Levine then proves the following theorem. 

Theorem 4. If  a sample { (Xi, Yi) }in0 is generated by the bivari- 
ate Gibbs sampler, then for all h(.) with finite variance, the ratio 

2 2 o-60/o-61 _> 1, with equality if and only if var(h(X)) = 
var(E[h(X)lY]) = O. 
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To see the amount of possible improvement, consider the following 
example. 

Example 7. Let 

where - 1  < p < 1. Assume interest lies in estimating # = E(X) .  The 
Gibbs sampler can obtain samples from the bivariate normal distribution 
by alternately drawing random variables from 

X I Y  ~ N(pY, 1 - p2) 

Y I X  ,.~ N(pX,  1 - p2). 

It can be shown that coy(X1, Xk) = p2k, for all k, and 

1 0.2~ 2 
60/0"61 = -~  > 1. 

So, if 61 is less than 1/,o 2 times more complex than 60, then 61 should 
be used. Since E ( X  I Y) = PY, it takes n + 2 floating point operations 
(flops) to compute 61 = ( I / n )  ~ . = 0  E ( X  I Yk) as compared to n + I 

X flops to compute 60 = ( I / n )  ~ = 0  k. Therefore, the cost of compu- 
tation, in terms of flops, is essentially the same, but there can be a vast 
gain in precision by using 61. ,~ 

5.3. Minimax Gibbs Samplers 

An interesting example of the interplay between decision theory and 
Monte Carlo algorithms is given by the problem of optimizing the ran- 
dom scan Gibbs sampler (see, for example, Rosenthal 1995, Amit 1996, 
Roberts and Sahu 1996). The random scan Gibbs sampler is character- 
ized by selection probabilities c~1, �9  OLd. These probabilities determine 
the percentage of visits to a specific site or component of the d • I vector 
of interest X = ( X 1 , . . . ,  Xa) during a mn of the sampler. A standard 
approach is to choose the selection probabilities to provide the sampling 
strategy with the smallest convergence rate. However, choosing the se- 
lection probabilities according to such a criterion may be undesirable in 
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practice. For example, the convergence rate is not only typically diffi- 
cult to compute  and possibly mathematically intractable, but also may 
also ignore important features of the target distribution necessary for 
determining the optimal random scan, as we will see below. 

Levine (1996) considers an alternative measure derived from statis- 
tical decision theoretic considerations, which seems to provide an attrac- 
tive criterion for choosing an appropriate random scan. Assume a ran- 
dom d • 1 vector X is generated by a random scan Gibbs sampler which 

generates a Markov chain { X ( i ) } ~ I  with stationary distribution 7r. Sup- 
pose interest lies in estimating # = E~(h(X)) where v a r ( h ( X ) )  < oc. 

1 n If we estimate # with the sample mean/2 = g Y]'~i=l h(X( i ) ) ,  the optimal 
mean squared error scan is the one that minimizes the risk 

(23) 

Alternatively, we may consider the asymptotic risk 

R(o~,h) = l im nR(n)(o~,h) 
n--.-+ o o  

n - 1  

i = 1  
O 0  

= w r  (h (X) )  + cov (h(X(~ 
i = 1  

(24) 
as a basis for choosing a random scan. 

We note that the convergence rate of the random scan, the norm of 
the forward operator, can be expressed as 

h 

where the supremum is over all functions with finite variance. Thus 
we see that, when compared to (24), the convergence rate contains less 
information about the variance and covariances of the chain. It is in this 
sense that we feel that (24) is a better optimality measure. 
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To use (24) as a criterion for selecting a scan, we would like it 
to produce a reasonable scan for any function h. This suggests that 
we might want to protect against the worst possible function h, with 
finite variance, by minimizing the maximum risk suPhR(O~, h). Levine 
(1996) develops a method for doing this, implementing an adaptive scan 
of the state space. That is, at each iteration the selection probabilities 
are updated via a sequence of sample points from the previous iteration, 
and may even use information from past iterations (which could destroy 
the Markov nature of the chain). However, the chain does converge, 
approaching the optimal random scan according to (24). Levine also 
discusses examples where this procedure can be implemented, however 
full implementation in a general setting is presently too computationally 
intensive to be useful. Approximations are being investigated for these 
cases. 

6. DISCUSSION 

Even though we have covered a lot of ground in understanding the in- 
terplay between statistical theory and computational algorithms, there 
is an enormous amount of work that we have not mentioned. We only 
alluded to the fundamental papers of Liu, Wong and Kong (1994, 1995), 
which provide an elegant and comprehensive treatment of the structure 
of the Gibbs sampler. Other work, such as Tanner and Wong (1987), 
Liu (1994), Tierney (1994) or Robert (1995), illustrates how statistical 
theory interfaces with Monte Carlo algorithms, most notably the Gibbs 
sampler and the Metropolis algorithm. 

The other body of work we have not discussed is that which deals 
with missing data problems, using techniques such as the EM algorithm. 
Although EM and Gibbs share a similar underpinning, (see Casella and 
Berger 1995 for a view of the EM algorithm as a Gibbs sampler) they 
tend to be used in somewhat different ways. However, research in these 
methods, which also combines statistical theory with the computational 
algorithms, continues to flourish; see for example Smith and Roberts 
(1993), Meng and Rubin (1993), Liu and Rubin (1994), Meng (1994), 
Besag et al. (1995) and Meng and van Dyk (1996). 

The message of this paper, which by now may be obscured in these 
sometime incoherent ramblings, is one that bears repeating. What we 
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have done is to approach a new methodology, that of  iterative Monte 
Carlo calculation, with the standard tools of the theoretical statistician. 
What resulted are procedures whose output and performance have been 
optimized from a statistical view. It sometimes may happen, as with the 
Rao-Blackwellized estimator of (12), or Section 5.3, that a statistically 
optimal answer may result in a difficult, or even prohibitive computa- 
tional burden. In such cases, statistical theory, in particular decision 
theory, can still provide answers. It then becomes a matter of specify- 
ing an alternate optimality criterion, or loss function, to take these other 
matters into account. 

7. APPENDIX: THE TERMWISE WEIGHTS 

To calculate the weights for the termwise Rao-Blackwellized estimator 
(16), it is necessary to derive the distribution of the uniform random 
variable conditional on the generated value of the candidate random 
variable. This is a rather straightforward exercise in distribution theory, 
and is only made complicated by the stopping rule of the Accept-Reject 
Algorithm. 

From the Accept-Reject Algorithm of Lemma 1, we get a sequence 
Y1, ]I2,. . .  of independent random variables generated from g along with 
a corresponding sequence U1, U2,.. �9 of uniform random variables. For 
a fixed sample size t, i.e. for a fixed number of accepted random vari- 
ables, the number of generated Y~'s is a random integer N. The joint 
distribution of ( N ,  Y1, . . . , Y N ,  U1, . . . , UN ) is given by 

P ( N  = n,  Y1 <_ Y l , . . .  , Y n  <_ yn, U1 <_ U l , . . .  ,Un  ~ Un) 

-~ g(tn)(Un A wn)dtn .. .  g ( t m ) . . , g ( t n - 1 )  

t-I n-I 
X E I I ( w i j  AUij ) I I ( u i j - - W i j  )+d t l ' ' ' d t n - l ,  

(il ..... it_l) j = l  j=t 
(2s) 

where wi  = f ( Y i ) / M g ( y i )  and the sum is over all subsets of { 1 , . . . ,  n -  
1 } of size t - 1. 
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We next want to get the joint distribution of (Y/, Ui)IN = n, for any 
i = 1 , . . - ,  n - 1. Since this distribution is the same for each of these 
values o f / ,  we can just derive it for ( ~ ,  U 0 .  Recall that Yn ~ f .  

If we set Yl = Y, ul  = u, Y2 = Y 3  . . . .  - -  Y n  = c<) and u2 = 

u3 = " .  = Un = 1, we can derive the joint distribution of (N, 1~, U1). 
Assume, without loss of generality, that limy__,~ f ( y ) / g ( y )  = 1. (If this 
is not the case, we just have to adjust the constant M in what follows). 

a and Then, aside from the pair (Wl, ul) ,  we have (wij A uij) = 

-- " ) + =  ( 1 - ~ / ) , h e n c e  (Uij Wzj 
t-1 n-1 
1-I(w,j ^ u,j)  1-I (~,,~ - . , , j )+  = 

(il,'..,it-i) j=l j=t 
-- (Wl /kUl) (?_~2) (~)t-2 (1-- ~ )  n-t 

q-(Ul--Wl)+ (nnT21)  (~)t-1 ( l - - ~ )  n-t-1. 

Noting that (,:_~) = _ t _ ,  ( , , _ ~ )  , ( , ,  _ _~ ) _ _ , ,_ ,_  (o_,) 
n i t -  n t 1 n - 1  t - 1  ' 

and v n  oo f~_oog(tn)(un A wn)dtn = f~_oog(tn) ( ~ )  dtn = 1 ,  we have 

P ( N  = n, Yx <_ U, U1 <_ u) = 

= (?-11) (~---)t-1 (1-~ --) 
• [n~l~(WlAUl)  ( 1 - ~ - - - )  "~- 

x fYoog(tl)dtl �9 

n-t-1 

n ,  (1)]  
n - 1 (ul - Wl) + 

(26) 

(27) 

From (27) we can immediately get the negative binomial marginal 
distribution of N,  

n-t 
- 1  P ( N = n ) = ( ?  1 )  ( 1 ) t ( X  - 1 )  , 
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the marginal distribution of ]I1, re(y)  of (15) and, most importantly, we 
get the conditional distribution of U11Y1, N and can calculate 

P(U1 < w(y)lrl = y , N  = n) = g(y)w(y)M~=--11 , ( 2 s )  

which is the same as b(yi) of (17). 
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DISCUSSION 

JUAN FERRANDIZ (Universitat de ValOncia, Spain) 
First of all I would like to thank Professor Casella for this stimulating 

paper. I have enjoyed reading these many good ideas exposed in so clear 
a style. I found his main message very important telling us that not only 
statistical practice can benefit from Markov Chain Monte Carlo (MCMC) 
methods but that these MCMC methods can still take advantage of well- 
known statistical ideas. 

His second message, related to the Bayesian-frequentist controversy, 
has been particularly pleasing to me. I strongly agree with Professor 
Casella that 

"... there are situations and problems in which one or the other approach 
is better-suited, or even a combination may be best, so a statistician without 
a command of both approaches may be less than complete." 

In fact, as I was reading the paper, I was thinking how his sugges- 
tions could apply to a frequentist context: likelihood methods for spatial 
models arising from random variables associated to geographical sites 
(see e.g. Ferrfindiz et al., 1995). 

Gibbs distributions are a natural choice in this context. Among 
them, the proposed automodels in Besag (1974) are particularly ap- 
pealing because the full conditionals determining joint distributions are 
well-known members of the exponential family. 

The corresponding density of these models can be expressed as 

p(x 10) = exp(t'O)h(x) 
c(O) (1) 

through a suitable sufficient satistic t, where the normalizing constant 
c(0) is difficult to compute by standard numerical methods. This fact 
causes major problems on any inferential procedure based on the likeli- 
hood function (including Bayesian posteriors from any prior). 

Geyer and Thompson (1992) propose estimating the ratio of con- 
stants 

d(O) - c(0) _ E [ e x p ( t , ( 0 _ 0 0 ) ) 1 0 0  ] 
c(Oo) 

by means of 

d(O-") = 1 ~ exp(t~(O - 0o)) (2) 
n 
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from a Markov chain simulation {xi : i = 1 , . . . ,  n} o fp (x  [ 00). We 
can then estimate the likelihood function p(x [ O) in (1) up to a constant 
c(Oo). 

Compatibility of Full Conditionals. Spatial automodels were proposed 
by Besag (1974) in his pioneering work after he considered the com- 
patibility of full conditionals in order to establish well-defined spatial 
models. For a finite number of sites and under the positivity condition 
(the support of the joint distribution equals the product of supports of 
the full conditionals) we have only to check summability of the joint 
density. This is not always easy to verify theoretically and it would 
be very interesting to develop statistical techniques to detect lack of 
summability directly from the output of the simulation algorithm. A 
first approach could be to run the algorithm several times from random 
starting points and check the homogeneity of the produced outputs in 
the long run. Example 4 in Section 3.2 probably would fail to show any 
anomalous behavior. I think this is an interesting problem that deserves 
further research. 

Another interesting area of  research could be how to relax the pos- 
itivity condition, which seems quite restrictive in some circumstances 
like, for instance, when we consider temporal concatenation of spatial 
distributions in order to build space-time models. It would also be the 
case, in the Bayesian context, when particular combinations of values 
of the random variables in the model are impossible. 

Rao-BlackweUization. The main difficulty in the likelihood estimation 
approach for spatial models based on (2) above is the strong variability 

of d(O) as [ 0 - 00 I becomes moderately large, producing a useless 
estimate of the likelihood function outside a small neighborhood of 00. 
The exponential form of the terms in the rhs of (2) make the extreme 
outliers of the simulated sequence {ti : i = 1 , . . . ,  n} dominate the sum. 

This is a case where it would be worth considering the statistical 
processing of the output of the simulation algorithm in order to improve 
our likelihood estimates. 

Gibbs sampling is easily implemented in this context because full 
conditionals p(xi [ x-i ,  O) are well-known distributions, and no accep- 
tance-rejection mechanism is present. I can not see how the Rao- 
Blackwellization proposed by Professor Casella in w could be applied. 
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Perhaps, in this case, a robust estimator of the mean could be a good 
alternative. 

Rao-Blackwellization, as proposed in Section 4, seems limited to 
acceptance-rejection algorithms, where ancillary uniform random vari- 
ables are used. Gibbs sampling can be stated as a particular case of 
Metropolis-Hastings algorithm, but with probability one of accepting 
every move, so that it is not possible to benefit from conditioning on 
the accepted values in the corresponding accept-reject process. Neither 
does it seem feasible to apply the ideas proposed in Section 5.2 of Rao- 
Blackwellising a data augmentation sampling scheme, For this to be 
done we need a convenient decomposition (t, s) of the observed vector 
:e in order to alternate sampling from p(t  I s ,  00) and p(s  [ t, 00). This 
is not an obvious task. 

Nevertheless, I think that the research' lines proposed by Profes- 
sor Casella are very promising. MCMC methods allow the growing 
complexity of the statistical models considered, and more complex 
Metropolis-Hastings algorithms are being used. Gibbs sampling has 
a poor mixing performance in high dimensional problems (as is usually 
the case of geographical: data) and more sophisticated algorithms are be- 
ing proposed (see e.g. Geyer and Thompson, 1995): The development 
of statistical treatments of their output has to be welcome as a means to 
strengthen their utility. 

Inference from the Algorithm. On the other hand, the suggestions ex- 
posed in Section 5.1 seem worth exploring in the problem at hand. In 
fact, when we are trying to maximize a log-likelihood function estimate 
based on (2), 

A 

g(O l ~c ) = t ' O -  log(d(0)) + constant (3) 

the ratio of constants estimate d(O~) is mostly determined by the extreme 
outliers of the simulated sequence {ti : i -- 1 , . . . ,  n}. Maximization 
of (3) to get 0, our estimate of the true maximum likelihood estimator 
0, will be based only on a few outermost observations ti. 

Maybe it could be better to partition the whole sequence into small 
subsamples {{ti  : i = ra + ] , . . . , ( r + l ) a }  : r = O , . . . , n / a -  
1}, from which we could get a sequence of log-likelihood estimates 

{g(O I x)r  : r = 0 , . . .  , n / a  - 1}. Their maximization will produce a 
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sample: {Or : r  = 0, . . .  ,n/a - 1} of estimates of the true maximum 
likelihood estimator/). The characteristics of this sample could help in 
monitoring the maximization process: This is a challenging point whose 
potential benefits deserve further research. 

B a y e s i a n  readers can translate the problem above to their favorite 
framework by just adding the required prior 7r(O) to the likelihood (1) 
and trying to find the mode of the posterior. 

Decision Theory and Algorithms. This is the idea in the paper that I 
liked the most: to embed MCMC algorithms in appropriate decision 
problems:. There are many decision s to make when running an MCMC 
procedure (sampling scheme, choice of estimator, stopping rule, etc.). 
Professor Casella has illustrated the benefit of this approach in some 
interesting cases. The relevant aspects in practice will come up once we 
establish the problem in a complete decision framework that takes into 
account the consequences of our choices. Although it seems in its first 
steps, I believe in a quick enriching development of this subject whose 
usefulness is foreseeable. 

DANIEL PEiqA (Universidad Carlos III de Madrid, Spain) 

When I first read this paper I was very disappointed. I found that 
I was in complete agreement with the main ideas presented on it and 
therefore my duty as a referee of playing devil's advocate was a very 
difficult one. Finally I accepted my limitations to be a good discussant of 
this paper and decided to say what I really believe: This is a wise paper 
and I am thankful to the editor of Test for giving me the opportunity to 
comment on it. 

From my point o f  view the paper: has three main messages. The 
first one is that: we can become better statisticians by  adopting a prag~ 
matic approach in which Bayesian and frequentist inference are seen as 
complementary rather than adversariaL The second one is, that there is 
a risk that today's computer facilities lead us to forget about the intemal 
consistency of the model we are using. This point is very well illustrated 
by an example in which we may end up estimating, by Gibbs sampling, 
anon existent posterior distribution. The third messageis that we should 
apply the statistical analysis wepreach to the data generated by a com- 
puter algorithm a n d  in this way we can: not only improve the present 
algorithm but also create new better ones. 
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Professor Casella's point of view is that the Bayesian approach is 
better for the construction of optimal estimators whereas the frequentist 
one is better for the global evaluation of their properties. I agree on this 
point. Conditioning on the data has proved to be a very useful method to 
build estimators but it is not as useful to evaluate their properties which 
requires integration over the sample space. The same idea has been 
expressed in a different way by Box (1960) to explain the complementary 
role of these two statistical methodologies: we need Bayesian inference 
for estimation and frequentist inference for model checking. 

The advantage of Bayesian inference is that it provides a general 
framework to combine different sources of information in model param- 
eter estimation. Also, as it is well known, any admissible frequentist 
estimate has a Bayesian interpretation and the Bayesian approach pro- 
vides straightforward solution in situation in which classical methods 
are controversial. To quote just but one example, consider the problem 
of estimating a vector parameter 0 by combining information from two 
normal random variables X and Y where E ( X )  = 0, E ( Y )  = 0 + ~, 
V a t ( X )  = o-21, and V a t ( Y )  = 7"21. Maximum likelihood leads to the 
simple estimate 0 -- X, and ( = Y - 0, in which information about 
0 coming from Y is not taked into account in the estimation. Assum- 
ing prior distributions 7r(0) ,-~ N(0, voI), 7r(~) ~ N(O, "~I), and letting 
v0 --~ c~, it is easy to show that the mean of the posterior distribution is 
given by 

0 .2 

E(OIX, Y)  = X -  (0.2 + r2 + 72 ) ( X -  Y) 

and this estimate minimizes the Bayes risk and is admissible under weak 
regularity conditions. A related frequentist solution to this problem, in 
the spirit of James-Stein shrinkage estimator, has been developed by 
Green and Strawderman (1991). In particular, as they showed in their 
paper, this estimate can be seen as an empirical Bayes estimate. In 
general, sensible shrinkage estimators have a straightforward Bayesian 
justification whereas their derivation in terms of frequentist inference is 
not so clear. On the other hand, when testing a model without any specific 
alternative in mind, that is when we look at our model and data and try to 
see if our hypothesis and the observed data are compatible, we need to 
have in mind all the samples that might have been observed if the model 
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was right. The justification of this is better understood in a frequentist 
point of view. This duality explains why developments in model criticism 
have mostly been carried out in the frequentist approach and much of the 
Bayesian literature in the area has just tried to justify frequentist ideas and 
procedures. For instance, we can find many examples in which Bayesian 
estimation ideas have lead to better frequentist procedures but there 
are very few examples of Bayesian diagnostic procedures which have 
improved the way we do model checking in practice. Some authors have 
argued that the Bayesian way to deal with this problem is to transform it 
in a model selection problem which is solved by computing the posterior 
probability 

p(Y[Mi)p(Mi) 
p(MiIY) = Ep(YiMi)p(Mi ) 

where Y is the sample data and (M1, M2, ..., Mk) is a set of possible 
models to be considered. However this formulations has several prob- 
lems: (i) sometimes we do not have a set of alternative models and we 
just want to see if the one entertained can be considered a reasonable 
approximation; (ii) even if we have several models in mind the present 
application of Bayes theorem requires that we have a partition of the 
model space, that is the models must be incompatible. In general this 
is not the case. This is obvious when some models are nested, as when 
selecting between a linear or a quadratic regression, but in general if 
we are considering two alternative non-nested models they usually have 
some degree of overlap. Sometimes we can avoid the overlap by defin- 
ing all the possible combinations of cases as in selecting the best set of 
explanatory variables or in outliers problems in which the number of 
models is 2 n. However, this partitioning of the model space can not be 
carried out in a clear way in many situations in which we need to choose 
between several non nested nonlinear models. 

In closing my comments on the first message of the paper I would 
like to stress my full agreement with the final statement of section 2 
that both approaches provide to the statistician a better understanding 
and a more complete approach to statistics. For instance, Samaniago 
and Renau (1994) showed that the method to be recommended in a 
particular application depends crucially on the quality of the available 
prior information. The conclusion of all this is that both approaches 
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needs to be taught and both should be present in any graduate training 
in statistics in either the Master or Ph.D. level. 

The second important point made in the paper is that the algorithm 
approach used in a problem has fundamental repercussions on the sta- 
tistical inference. In the mixed model presented in the paper, assuming 
some standard non-informative priors for the variances, the posterior dis- 
tribution does not exist and the inference we obtain by Gibbs sampling 
does not make any sense. This result stress the need of a careful as- 
sessment of the prior distribution in the multiparameter situation mainly 
in the case in which have mean and variance parameters. Ibrahim and 
Laud (1991) have showed that if we use Jeffreys's priors under general 
conditions in generalized linear models the posterior does exit. The pa- 
per gives a theorem for the mixed model that is similar in spirit to the 
one given here and I would ask the author to comment a little bit more 
on this relationship. 

I have found very interesting the application of the Rao-Blackwell 
theorem toimprove the Accept-Reject algorithm. It is a nice example 
of using the output of a statistical algorithm to improve it, and I would 
like to add three other examples to the ones presented in the paper. 

The first one is using the information provided by Gibbs sampling 
to improve the convergence of the algorithm when the parameter space 
is high dimensional and there exists strong correlations among the pa- 
rameters. This idea has been used by Justel and Pefia (1996b) in outlier 
regression problems with strong masking. These authors showed that 
Gibbs sampling will fail in this case (Justel and Pefia, 1996a) and devise 
a procedure in which the first runs from the Gibbs sampling are used 
to learn about the structure of the problem and to modify the starting 
condition. In this way this modified adaptive Gibbs sampling converges 
to a solution whereas the standard algorithm does not. The second one 
is in resampling methods to compute robust estimators. The present 
algorithms are based on random sampling, and do not take into account 
the information obtained from previous drawing or from the structure of 
the problem. For instance, in regression problems we know that points 
with X variables close to the mean cannot at the same time be outliers 
and have a small residual. On the other hand we know that high leverage 
outliers will have a small residual whatever the value of the response 
variable. If we want to build robust estimates by sampling it seems to 
be more efficient than random sampling to use stratified sampling where 
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the allocation takes into account the likelihood that each strata includes 
unidentified outliers. Pefia and Tiao (1992) showed, in a related prob- 
lem, that if instead of random sampling we use preliminary information 
to stratify the observations we can obtain a bettei" procedure. Finally, I 
believe that the use of time series models in the analysis of the output 
of sequential algorithm can lead to substantial improvement in judging 
convergence. In particular the use of multiple time series models in the 
analysis of the output of a parallel algorithm seems to be a promising 
area of future research. 

In summary a have found this paper very stimulating and full of 
insights. It gives me a great pleasure to congratulate Professor Casella 
for this outstanding contribution to our journal. 

DAVID RIOS INSUA (Universidad Politgcnica de Madrid, Spain) 

Professor Casella makes a very interesting contribution to the study 
of relations between statistics and algorithms. This topic is extremely 
vast ranging from Monte Carlo tests and confidence intervals to resam- 
piing methods and the probabilistic analysis of algorithms. Casella has 
concentrated on the hottest topic in the area, that of Markov chain and 
Monte Carlo methods. 

Since their popularisation in Gelfand and Smith (1990), these meth- 
ods have had a tremendous impact on Bayesian statistics, facilitating 
analysis of complex models, far more complex than we would have 
dreamed of a decade ago. Yet, with practice, we are recognising that 
life is not as simple as promised. Anyone who has done serious work in 
the area must have faced some of the many potential problems awaiting. 
As an example, in an earlier version of joint work with Peter Muller on 
Bayesian analysis of neural network models, we produced a seemingly 
sensible posterior described by a nice looking histogram. Many readers 
and listeners of this work were not able to suggest that the reported pos- 
terior was not right. We later discovered a bug in our programs, leading 
to the, what we believe now, right version of the posterior, see Muller 
and Rios Insua (1996). Incidentally, that was an example in which some 
of the MCMC folk theorems did not work. For example, blocking of 
some of the parameters did speed up the algorithms, but the same did not 
happen for other groups of parameters. A similar phenomenon happened 
with marginalisation. 
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Reflecting on our experience and Casella's paper, three main ideas 
come to mind. The first one is that there is a clear need in the field 
to provide guidelines on reporting computational experiments. This 
is becoming more important given the increasing impact of simulation 
methods in Statistics, and the many phantom posteriors that we are dis- 
covering. Perhaps, an updated version of Hoaglin and Andrews (1975), 
not much followed so far, seems in order. These guidelines exist in other 
fields like mathematical programming, with very healthy effects. 

The second one is that Markov chain Monte Carlo seems like a 
minefield and we need some kind of roadmap with suggestions of when 
to use what. Of course, we still need much more experience with the 
methods. Casella's paper is a nice step on uncovering the dangers of 
using improper priors within MCMC, namely that the posterior may 
be improper and this may be difficult to detect. One way forward, 
if, for convenience, we insist on adopting improper priors, could be 
to use sensitivity analysis, as follows. In many cases, there will be 
a sequence of proper priors converging to the desired improper prior. 
We could then compare the output produced with those proper priors 
and the improper prior. Computationally, the approach would not be 
too onerous, since we could adopt a sampling-resampling perspective, 
Smith and Gelfand (1992). Conceptually, the approach would provide 
a much better exploration of the posterior. Theoretically, the approach 
also entails a number of interesting problems. 

As far as the specific example (Figures 1 and 2) in the paper is 
concerned, one would have expected much more mass near zero. We 
could wonder whether the sample sizes used are big enough, or whether 
there might have been problems with the random number generator used, 
which typically have problems generating numbers very close to 0 or 1. 

The third idea is that in spite of Tierney's (1994) review, the sta- 
tistical literature has remained relatively ignorant of the operations re- 
search and traditional simulation literature, on issues like initialisation 
bias, output analysis and variance reduction, see Rios Insua et al (1997). 
In that direction, Casella's paper is also a fine contribution analyzing a 
strikingly powerful conditioning technique for variance reduction, based 
on variants of Rao-Blackwellization. One could wonder how this tech- 
nique compares with more traditional output analysis or variance reduc- 
tion methods, specially in the case of dependent data, rather than with 
independent data as with the Accept-Reject algorithm. 
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As a final comment, in consonance with Casella's discussion on the 
interface between classical and Bayesian approaches, and his suggestion 
of viewing the output from a Monte Carlo algorithm as data, we would be 
curious to know whether, in his opinion, Bayesian statistics have much 
of a role in their analyses, given that in this context we are able to gather 
endless amounts of data. 

JOSI~ M. BERNARDO (Universitat de Valkncia, Spain) 
I have very much enjoyed Professor Casella's exposition, and find 

myself in basic agreement with most of his points. There are, however, 
some differences of interpretation that I would like to point out: 

1. Proper versus improper priors. The disturbing fact that people 
have published Bayesian posteriors which apparently do not exist, be- 
cause they are based on undetected null Gibbs chains, may tempt some 
readers to conclude that this is yet another instance of the dangers of 
using improper priors and that all will be fine if proper priors had been 
used in the first place. But this is certainly not the case. 

What probably happens in the examples described is that the Gibbs 
algorithm in fact is using an "automatic" proper approximation to the 
assumed improper prior, by selecting points in bounded approximations 
to the unbounded spaces, mirroring the proper approximation to an im- 
proper prior which may usually be obtained by truncation. However, 
if the prior (proper or improper) does not make sense in the problem 
at hand, the results are not going to be sensible. A prior which leads 
to an improper posterior will never make sense, but a proper approx- 
imation to that prior will not make sense either, even if it technically 
leads to a proper posterior. Generally speaking, one should not blame 
impropriety for the unsatisfactory results often obtained in multiparam- 
eter situations from the use of na'fve "default" priors, --marginalization 
paradoxes (Dawid, Stone and Zidek, 1972), strong inconsistency (Stein, 
1959) or the null Gibbs chains discussed here--, for proper approxima- 
tions to those priors will not work either. What it is necessary is either 
to specify a true multivariate subjective prior, what is pragmatically of- 
ten next to impossible, - -and for some people it is even undesirable--, 
or to use a "sensible" default prior which, in particular, must lead to a 
posterior for the quantity of interest which is dominated by the data. 

In the one-way random effects model discussed in Example 4, the 
use of the "standard" improper power priors on the variances is a well 
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documented case of careless prior specification; I would really like to see 
the example reanalyzed with what I would argue to be the appropriate 
default prior to make inferences about the variances in that problem, 
namely the reference prior 

7r(/3,~r2,o -2) oc cr-Cno'/-2 (n - 1) + cr 2 + TtO" 2 

where Cn = 1 - v / ~  - l ( v / - ~ + ~ )  -3 (BergerandBernardo, 1992), 
which, naturally, leads to proper reference posteriors, for both ~r 2 and 
cry, for any sample of size n _> 2. 

2. Bayesian evaluation of improved algorithm. The idea of using 
statistical techniques for improving the result from MCMC runs by us- 
ing more sophisticated estimates than the obvious arithmetic average is 
certainly appealing, and the results on Section 4 provide a frequentist 
argument for its use, by showing a decrease in the mean squared error. 

However, as a convinced Bayesian who would use Gibbs to numer- 
ically estimate a posterior I cannot analytically obtain, I wonder what 
the advantages are from a Bayesian viewpoint. Presumably, one would 
expect to see an appreciable reduction of the variation of the estimated 
posterior when several Gibbs chains are run with the same data and, say, 
different starting points. It would be nice to see how this works is the 
simple Ga(x l a, 2a) model discussed in Example 5. 

~(~) 
8 

Figure 1. 

(2 

2 4 6 8 i0 

Reference prior for the parameter of a Ga(z I a, 2~) model. 
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Of course, the results may depend on the prior used. Since this is a 
one-parameter regular model, the reference prior is also Jeffreys' prior 
(Bernardo, 1979), namely 

( 1)1, 
@,() 

c~ 

where ~b t (.) is the trigamma, or first derivative of the digamma function, 
and c = (7r2/6 - 1) 1/2 ~ 0.65, shown in Figure 1. It may be seen 
that, in this case, the refence prior is actually close to the naive "positive 
parameter" prior 7r(a) ec c~ -~. 

R A. GARdA-LOPEZ and A. GONZALEZ 
(Universidad de Granada, Spain) 

We should first like to congratulate Professor Casella for his clear and 
detailed explanation of all the aspects concerning the interrelationship 
between statistical theory and computational algorithms, in particular 
the Gibbs sampler and the accept-reject algorithm. His talk has been 
highly methodological as far as all aspects of the choice of algorithm 
and its subsequent effects on the inference are concerned. What we 
consider to be especially important are the conditions for generating 
proper posteriors starting from proper conditionals in the Gibbs sampler. 
Some of the published results on this subject ought to be treated with a 
degree of caution because the compatibility of the proper conditionals 
(cf. Theorem 2 in Prof. Casella's paper) have not been adequately 
investigated. 

Thus, one question we should like to put to Professor Casella refers 
directly to a technical aspect of his approach to the application of the 
Gibbs sampler. There are at least two widely known methods of gen- 
erating the Gibbs sample, the so-called single-path and multiple-path 
methods. Let us suppose that we have a random vector 

U =  (U1,.  . . , Uk) 

and that we can simulate the conditional distribution of 

Ui [ ( V l , . . . ,  Ui-1,  U i + l , . . . ,  Uk) 
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by using the multiple-path method we draw m independent replicates 
of the first n cycles of Gibbs samples from the distribution of U, thus 
obtaining the vector 

U(n j) {rr(J) rr(J) ~ = ~t~nl , . . . , t - ' n k ]  

where (j) denotes the j-th replicate. It is clear that the successive cycles 

on a particular path, U~ j), u~J),..., "U~ ~) are not independent but that 

cycles from different paths, U (1), U(2), . . . ,  U(n m), are indeed indepen- 
dent. 

With the single-path method you have only to generate one path 
long enough to obtain q values for r -t- q, where r is a point at which the 
Gibbs sampler converges. These q values then provide the basis for our 
estimation and they all obviously depend upon the starting values. 

It has already been demonstrated (cf. Geman and Geman, 1984 
and Liu, Wong and Kong, 1992a), that under general conditions, both 
methods result in convergence, i.e. 

d 
Un ,U 

Nevertheless, the dependence between the values generated with the 
single-path method exerts an influence on the resultant estimators (cf. 
Gelman and Rubin, 1991). 

On the basis of these observations we consider it worth asking Pro- 
fessor Casella the following questions: 

1. Are the Gibbs samples in his study based on single or multiple 
starting values? 

2. Has he investigated to see how the choice of cycle values might 
affect the Gibbs samples thus produced and how this may in 
turn affect the main result (Theorem 2) with proper posteriors? 

3. Do any results exist (similar to those of Theorem 2) for variations 
of Gibbs sampling as data augmentation (cf. Tanner and Wong, 
1987) and substitution sampling (Gelfand and Smith, 1990)? 

To come to another point raised in professor Casella's talk, that 
of improving the estimators by Rao-Blackwellizing them. It is known 
that in general the main problem lies in computing the estimators, but 
there are other, non-parametric methods of improving them, such as the 
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double-bootstrap. Thus our question is: Have any empirical studies 
been made to compare the accuracy of the Rao-Blackwellization and 
double bootstrap methods? 

The following contributions were later received in writting. 

J. BERGER (Purdue University and Duke University, USA) 
I congratulate Dr. Casella on a very interesting article. He raises 

important philosophical and practical questions. 
Perhaps the main emphasis of the article is the recommended blend- 

ing of Bayesian methods (at least regarding MCMC) with frequentist 
methods. I am certainly also in favor of such, but do have one point of 
qualification that I think is important. The blendings that Dr. Casella 
actually uses as examples in the paper primarily involve the use of certain 
frequentist tools, as opposed to the use of frequentist inferences. For in- 
stance, he demonstrates uses (to a Bayesian) of the law of large numbers 
and the Rao-Blackwell theorem, two common frequentist tools. Few 
Bayesians would quarrel with use of such tools (although some might 
argue that the law of large numbers is as much a Bayesian as a frequentist 
tool - after all, the first general development of the central limit theorem 
was by Laplace, and done in an entirely Bayesian way). On the other 
hand, it is much harder to convince Bayesians that frequentist infer- 
ences themselves are of particular use. In the Bayesian's ideal world of 
the future, numerous frequentist tools will be taught and used, but little 
in the way of actual current frequentist inference would likely survive. 
(Many methods that are currently considered to be frequentist, such as 
maximum likelihood, would still be around, but would be explained as 
approximations to the Bayesian answers.) Today's frequentists operate 
in the reverse fashion; they typically admit the considerable value in 
use of Bayesian tools, but do not find much value in use of Bayesian 
inferences. 

I have a question about Example 4. It has been claimed that, in 
situations such as this where the impropriety is due to a nonintegrable 
singularity, the Gibbs sampling output is often reasonable if one does 
not run the chain for too long. To be more precise, an easy "fix" for such 
problems is to remove the singularity from the space by, say, introducing 
the constraint o -2 > e, and the "claim" is that one will often get essentially 
the same answers from the original Gibbs chain if it is of moderate length 
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and starts at a reasonable value. This can occur, of course, only if the 
chain is unlikely to visit too close to the singularity. From the author's 
experience, is this claim reasonable? 

A different issue concerning impropriety, which I have experienced, 
relates to impropriety due to nonidentifiability. In Andrews, Berger, 
and Smith (1993) we encountered the fascinating phenomenon that the 
Gibbs chain for a very high dimensional improper posterior gave con- 
vergent estimates for "identifiable" parameters, but not for "nonidentifi- 
able" parameters. This allowed us to determine which parameters were 
nonidentifiable, and to adjust the model to correct the problem. Taken 
together with the "claim" in the previous paragraph, this might suggest 
that impropriety is not necessarily such a concern in hierarchical models; 
impropriety due to nonidentifiability will be obvious, while that due to 
singularities is unlikely to affect the answer. Although such a statement 
verges on sounding ridiculous, we must remember that we are operating 
in an arena where we will typically never be certain that the Gibbs chain 
has converged, even if we know that the posterior is proper. Hence all 
we really need is assurance that, in practice, problems do not seem to 
arise for the type of problem being considered (e.g., standard normal 
hierarchical models). While it is fun to speculate about such issues, I 
must admit that I would not really want to use an improper posterior my- 
self; see also Berger and Strawderman (1996) for additional conditions 
ensuring proper posteriors in hierarchical models. 

Section 4 was quite interesting and had some nice surprises, but I 
note that it ends up essentially with the "status quo" being supported. 
The common understanding in use of "accept-reject" and "importance 
sampling" includes: 

(i) Importance sampling gives more accurate estimates for a single 
h. 

(ii) If one wants to simultaneously compute expectations for many 
h, but the same Y, accept-reject will often be computationally 
faster, especially if the acceptance rate is low (since then t will 
be considerably smaller than n). 

iii) Rescaling by a correlated estimate of one is an important vari- 
ance reduction technique. 
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Use of versions of Rao-Blackwellization does not really appear to add 
much here. Later examples in the paper do, however, show considerable 
gain in use of Rao-Blackwellization. 

In Section 5.3, I am curious as to whether use of the optimal random 
scan based on the minimax criterion is actually superior to the optimal 
scan based on convergence rate (for other than the least favorable function 
h, of course). 

A. R DAWID (University College London, UK) 

The general idea of "Rao-Blackwellisation", as a way of improving 
an inference by eliminating unwanted stochastic variation, is an impor- 
tant and powerful one, as this paper reconfirms. I am surprised it is 
not used more widely, particularly in its simpler variants. For example, 
why does any one still do accept-reject sampling (Section 4.1) for Monte 
Carlo estimation of f based on a sample from 9? If the improvement 
~RB of ~AR seems over-complex, a simpler approach is just to replace 
I(Ui <_ wi) by E{I(Ui  < wi)} =- wi, leading back to the very simple 
importance sampling estimate 5z. This is the exact Rao-Blackwell im- 
provement on ~AR when the number N of I,~'s generated from 9 (but 
possibly rejected) is fixed, so that the number of retained terms in the 
accept-reject formula is random. I am not sure of the practical value of 
Casella's more intricate analysis, which takes into account the random- 
ness in N; and its dependence on the stopping rule offends against some 
of my deep intuitive feelings about inference. Does this extra complexity 
have a real pay-off? 

A good way of thinking about importance sampling is as follows. 
We want to approximate the distribution with density f .  To do so, 
we generate points (Yi) from another density 9, and to each Yi we attach 
weight wi = f (Yi)/9 (Yi). We end up with a discrete measure ~N, having 
mass wi at Yi (i = 1 , . . . ,  N).  Normalizing this (by N for unbiasedness, 
or, better, by }---~N 1 wi to ensure total mass 1 and thereby improve overall 
accuracy) to PN, we get PN ~ P, the desired distribution with density f .  
The expectation of any function under PN then provides the importance 
sampling estimate of its expectation under P. From this viewpoint, 
accept-reject operates by forming an approximating distribution to P by 
thinning out the (Yi), only retaining Yi with probability proportional to 
wi; and attaching equal weights to the retained points. Its inefficiency 
is self-evident, and that it should have been proposed at all may be 
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attributed to a subconscious feeling that a discrete distribution must 
have equal weight on every point - -a  position that does not stand up to 
a moment's scrutiny. 

Metropolis-Hastings simulation has similar features to accept-reject. 
Consider a M-H chain with proposal density q(y/ I Y) and acceptance 
probability c~(y, y/), satisfying detailed balance for a target distribution 
P having density f :  

f ( y )q (y ,  l y ) a ( y , J )  - f ( y , )q (y  l y , ) (~( j , y ) .  

Let /3(y)  := f a(y ,  y')q(y'  I y)dy'  be the overall probability of ac- 
cepting a proposal to move from y. Suppose that we continue until 
a fixed number N of proposals have been accepted. Ignoring burn- 
in, thinning, etc., estimation of # := E p { h ( Y ) }  by its corresponding 
chain average is equivalent to estimating P by the (normalised) dis- 
crete measure on the successive accepted proposals x l , . . . ,  XN, with 
xi being assigned weight Wi, the number of trials starting from xi be- 
fore the next proposal is accepted. But Wi is random, with a geomet- 
ric distribution (conditioned on past x's) having mean wi := /3(xi) -1. 
"Rao-Blackwellisation" thus suggests it would be better to replace the 
observed number Wi of repetitions of xi by the new weight wi (assum- 
ing this can be calculated). If we can actually simulate directly from 
the embedded Markov chain of accepted proposals xl ,  x2, �9 �9 �9 XN, with 
transition density "/(x' I x) : = q(x' I x)c t (x ,x ' ) / /3(x) ,  a much more 
efficient procedure is obtained. If not, and we still have to generate and 
reject proposals, it should still be more efficient; and it seems likely that 
still further advantage could be taken of the rejected values, parallel to 
suggestions of Casella and Robert (1996b). 

THOMAS J. DICICCIO and MARTIN T. WELLS 
(Cornell University USA) 

It is a pleasure to participate in this discussion of Professor Casella's 
paper on the interplay between Markov Chain Monte Carlo (MCMC) 
algorithms and statistical inference. The underlying theme of this paper 
is statistical inference for parameters based on MCMC output. This dis- 
cussion begins with a few specific questions and then focusses on some 
relationships between the Casella's minimax decision theory approach of 
Section 5.3 and the literature on rates of convergence of MCMC methods 
via the second dominant eigenvalue. 
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Professor Casella begins with a very welcome call to use Bayesian 
and frequentist approaches in a complementary way; in particular, his 
suggestion of using frequentist performance to distinguish between and 
improve upon estimators that arise from Bayesian considerations is most 
reasonable. In the context of the popular general linear mixed model, 
Professor Casella vividly demonstrates some seemingly catastrophic pit- 
falls that choosing a prior distribution can present. Theorem 1 identifies 
priors for this model that are appropriate from a Bayesian perspective. 
A natural question is whether any of these prior distributions produce in- 
ferences that are correct or nearly correct from a frequentist perspective. 
In particular, is there any compelling inferential rationale for choosing 
a = b = 1 in Example 4? 

Figures 1 and 2 are certainly startling and distressing from aBayesian 
perspective. However, Professor Casella appears to have a firm under- 
standing of their behavior from the underlying "null Gibbs chains." Is it 
possible that, despite the Bayesian catastrophe, the algorithm could be 
used to produce reasonable frequentist inferences? 

The Rao-Blackwellization and related methods described in Section 
4 are ingenious and potentially very useful. It is not unreasonable to con- 
sider them from the viewpoint of frequentist inference, given the current 
interest in noninformative priors and probability matching. Typically, 
the upper 1 - o~ quantile of the marginal posterior density for a scalar pa- 
rameter of interest is an approximate upper 1 - oL confidence limit having 
coverage error of order O(n-1/2). Ifa Welch-Peers noninformative prior 
is used, this error might be reduced to O(n-1). If frequentist inference 
is the ultimate goal, given that the inferences obtained from the exact 
posterior distribution are at best rather approximate, is there any benefit 
necessarily to using Rao-Blackwellization? What is the interpretation 
of Tables 1 and 2 in connection with noniformative priors? 

To view Professor Casella's minimax decision theory approach in 
connection with rates of convergence of MCMC methods and second 
dominant eigenvalues, some background results and notation is neces- 
sary. Let { X j }  be a discrete-time homogenous Markov chain on X, 
with transition probability matrix P = {p(x,  y) : x, y E 32}, where 
P ( x , y )  = P { X j  = y I X j_ l  = x}. Define the k-s tep  transition 
probabilities by pk  = { p ( k , x , y )  : x , y  E 32}. The stationary mea- 
sure 7r(x) on 32 of course satisfies 7rP = 7r, that is, ~-~zTr(x)p(x,y) = 
7r(y) Vff C A2. Let g2(Tr)be the Hilbert space of real-valued functions 
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on ,-V with inner product < f I g > =  ~-,x 7r(x)f(x)g(x). The equi- 
librium expectation o f f  under 7r is then < f > - <  f I 1 > =  E~r(f), 
and we can think of (Pkf) (x)  and (IIf)(x) as operators on g2(Tr) given 
by Pk(Z)(x ) = y~yp(k ,x ,y ) f (y )  and (1- i f ) (x)=  ~-'~yTr(y)Z(y). The 
matrix II has rows equal to 7r and is an orthogonal projector on g2 (Tr) with 
range the constant functions. The autocovariance function of ~ i  f (X i )  
is 

Cf(l i - J l) = E~{[f(Xi)  - E~f(Xi)][ f (Xj)  - Er f (Xj ) ]} ,  

which also equals < f I (pli-Jl  _ I I ) f  > = <  f I (P - II)li-Jlf > = <  
f I ( I -  I I )pIJ-Jl ( I -  I I ) f  >. The autocorrelation function is pf(Itl) = 
Cf([tl) 
c f ( o )  �9 

In Section 5.3 Professor Casella discusses the minimax properties of 
the Monte Carlo average estimate of the parameter # = Erh(X) .  The 
limiting risk function R (n) (h) in (23), can be developed further by using 
the results of Peskun (1973). The fundamental matrix of Markov chains 
(Kemeny and Snell, 1983) Z = ( I -  ( P -  II)) -1 = I + } -~_ l (Pk  - II) 
arises naturally in this limiting expression. It can be shown that 

lira R(n)(h) = <  h lQh >, 
n - - - , c ~  

where Q = 2 Z - I - I I  = ( I + P ) ( I - p ) - l ( I - I I ) .  Moreover, by using 
the series representation of Z and the definition of the autocovariation 
function, it can be shown that limn--,~ R (n) (h) = ~-~-o Ch(k). 

In this case of where {Xi} are independent, l imn-~R(n)(h)  = 
< h [ ( I  - I I )h  > =  Ch(O). The ratio 

Th = 
1 < h l O h >  
2< h l ( I - I I ) h  > 

is known as the integrated relaxation time, see Sokal (1989) and Gidas 
(1995). There are n/2rh effectively independent samples in a run of 
length n. Note that "rh = �89 Y'~,i ph(i). 

Professor Casella asserts that the risk function contains more infor- 
mation than is contained in the rate of convergence. This assertion can 
be seen using the ideas above. In the case where P is self-adjoint on 
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g2(rc), that is < 9 [ Ph > = <  Pg [ h >,  one can relate the rate of con- 
vergence of the chain to the limiting risk. Let the ordered eigenvalues 
of P are 1 = /30 > /31 ~ f12 2 " '" ~ /3 > - 1 ,  where/3 equal the 
smallest eigenvalue. Much work (see Diaconis and Stroock, 1991) has 
focused on methods for bounding/31, fl, and/3, = max(/31, ] /3 [) that 
give rise to bounds on the rate of convergence of the chain to its station- 
ary distribution. As pointed out in Diaconis and Stroock (1991), there 
are advantages to studying I - P instead of P. The spectrum of I - P 
consists of numbers Ai = 1 - /3 i .  Using the minimax representation of 
eigenvalues 

< h [ ( I  P)h > 
A1 = inf = i~fl l  - ph(1)] 

h < h l ( I - l - I ) h >  

where the infimum is over all nonconstant functions h E g2 (~), this ratio 
is called the Rayleigh quotient and its numerator may be represented as 

1 E ~ ( i ) p ( i ' J ) [ f ( i ) -  f(j)12 . 
2 

i,j 

The rate of convergence of the chain is determined by ~1 and hence by 
the infimum of ph(1) over h C g2(~) �9 Therefore, as limiting risk is 
essentially a series in ph(k) and/31 is related to ph(1), the limiting risk 
contains more information. 

Using the ideas above we can study a special case of the random scan. 
Suppose the transition matrix is a mixture of two transition matrices, 
that is, P;~ = (1 - ,~)P1 + kP2. First, it is easy to see that Al(Pk) 
is a concave function of )~ using the minimax representation. As for 
%(P,x), a bit more work is needed. On the orthogonal complement of 
the constant functions, we have that Q = 2(1 - p ) - i  _ I .  Using the 
result of Caracciolo et al. (1990) that 

< f t (A -l  + B - 1 ) - l f  >_< I< f t A f  >-l  + < f t B f  >J-1 

for A and B positive definite self-adjoint matrices, with A = (1 - 
A ) - I ( I  - / : ' 1 )  -1 and B = A - I ( I  - P1) -1 it follows that 

(1 - ,k)  < h i ( I -  P1)-lh > +A < h i ( I -  P2)-IA > 
< < h i [ ( 1  - A)(1 - P1) + A ( I -  P2)J - lh  > - 1 ,  
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and 

(Th(PA) -~ 1/2)  -1 ~ (1 - A)[Th(P1) q- 1] -1 -}- ~[Th(P2 ) Jr- 1] -1 .  

Hence both [-rh(P~) + 1] -1 and A2(P2) are concave functions of A. A 
consequence of this convexity is that 

A2(Px) > min(A, 1 -  A) sup Ae(P~,) 
0<A<I 

and 

[wh(P~) -}- 1/2] -1 > min(A, 1 -- A) sup ['rh(PA ) ~- 1/2] -1. 
O<A<I 

Hence the randomized approach with A = �89 is never more than a factor 
of 2 from the best value of A. 

PAUL GUSTAFSON (University of British Columbia, USA) and 
LARRY WASSERMAN (Carnegie Mellon University, USA) 

George Casella has presented us with an interesting perspective on 
the relationship between computing and statistical theory. He makes it 
clear that the two are inexorably intertwined. Each area enriches and 
informs the other. He has also emphasized that there is an inevitable 
mixture of Bayesian and frequentist ideas when one considers statistical 
computing algorithms and their relationships with inference. 

We agree that both Bayesian and frequentist methods are necessary 
and that statistics is at its best when the two are in happy coexistence. Of 
course there are many who do not agree on this point and we hope that 
George's article will help convince the doubters (Bayesian or frequentist) 
of the need for both. 

As should be clear by now, we have little disagreement with anything 
in this article. We do wish to raise a few points. 

1. Averaging Conditional Densities Can Fail. The paper discusses 
several aspects of the "Rao-Blackwellization" of estimators applied to 
Monte Carlo output. The author also mentions the "usual average of 
conditional densities" estimator of a marginal density, which is in the 
same spirit as Rao-Blackwellized estimators of expectations. For brevity 
we will refer to this estimator as the ACD (Average of Conditional Den- 
sities) estimator. Conventional wisdom dictates that the ACD estimator 
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of a posterior marginal density is the preferred estimator in any context 
where it can readily be calculated. We would like to point out a curi- 
ous and undesirable feature of the ACD estimator in certain hierarchical 
model settings. 

We look at an artificially simple hierarchical model in order to il- 
lustrate this feature clearly. Specifically, consider a simplified version 
of Example 4, where/3 and 0 .2 are known, and the prior o n  o.2 is locally 
uniform (a = -1 ) .  Further, assume that ni = 1 for i = 1 , . . . ,  k, so 
that we can write Y/unambiguously. It is simple to verify that the joint 
posterior distribution on/_t and o.2 is proper. In what follows below, a 
density for o -2 evaluated at zero will be defined as the obvious limit. 

If the goal is estimation of the marginal posterior density of o.2, the 
ACD estimator is 

m 

PACD(') -- ~'a21y('ly) = __1 Z lra2l~,y(" I#(i)' y) '  
m 

i=1 

(1) 

where {#(i)}ira__ 1 a r e  the # vectors sampled by the Monte Carlo scheme. 
The conditional posterior distribution of o.2 I#, Y, which appears on the 
right-hand side of (1), is inverse gamma, with shape (k/2)  - 1 and 

x--,k #2 scale (1/2) z-~i=l i. On the other hand, the true marginal posterior 
distribution of o.Zly is identical to the conditional distribution of (T - 

2 where T has an inverse gamma distribution with shape ~ > o.e, 

(k/2)  - 1 and scale (1/2) ~']ki_l(y i - /3 )2 .  Thus the true posterior 
marginal density for o .2 is finite and positive at 0 .2 = 0. But since 
the inverse gamma density is always zero at 0 .2 = 0, the ACD density 
estimate is always zero at 0 .2 = 0, no matter how large a Monte Carlo 
sample is drawn. In other words, 7r 2[y(0]y) > 0 yet PACD(O) = O. 

Thus the ACD estimator is inconsistent at 0 -2 = 0. It might be tempting 
to dismiss this concern, since it is only an issue at the boundary of the 
parameter space. But in fact an ACD estimate is going to be misleading 
about the shape of the posterior marginal density near zero. This is 

especially true for data sets with ( l / k )  ~-~i=lk (Yi --/3)2 < o.e'2 In such 
cases, the true posterior marginal density for o .2 takes on its maximum 
value at zero and is monotone decreasing, which can be interpreted as 
evidence in favor of o .2 = 0. But for any Monte Carlo sample the ACD 
density estimate will be zero at o .2 = 0 and will be increasing on at 



302 George Casella 

least some small interval extending right from zero. This suggests that 
o .2 > 0. Thus the ACD estimator has great potential to be misleading 
about the posterior evidence concerning small values of o .2 . 

This aberrant behavior has been illustrated in a very simple model 
where the posterior marginal distribution of the variance component can 
be obtained analytically. The behavior seems to occur quite generally, 
however, whenever a prior density which is positive at zero is specified 
for a variance component. The use of such priors seems quite appropriate 
in many contexts, even though inverse gamma priors, which vanish at 
zero, are much more commonly specified for variance components. The 
data cannot rule out the absence of a random effect (o .2 = 0), so it seems 
overly confident to use a prior which vanishes as o .2 goes to zero. In 
fact, one might argue that monotone decreasing prior densities should be 
specified, in order to favor parsimonious models. The Jeffreys prior for 
the simple model discussed above has a monotone decreasing density 
which is finite and positive at zero. One disadvantage of not using an 
inverse gamma prior is that the "conditional conjugacy" which drives the 
Gibbs sampler will be lost. The ACD approach can be extended to deal 
with this, however, based on work of Chen (1994). But Chen's density 
estimator will still have aberrant behavior near zero. 

In one sense it is not surprising that the ACD estimator does not 
work well for variance component marginals with prior densities which 
are positive at zero. In such problems, the Bayes factor for testing the 
absence of random effects can be expressed as the Savage-Dickey density 
ratio, which is the ratio of posterior to prior marginal densities for the 
variance component, both evaluated at zero. For details see Verdinelli 
and Wasserman (1995). If the ACD estimator worked well for estimating 
the posterior marginal density at zero, then we would have an easy and 
reliable way to estimate the Bayes factor. But invariably Bayes factors 
are harder to compute than other posterior quantities. In this regard, we 
are not surprised that there is no free lunch via the ACD estimator. 

2. Priors for Hierarchical Models. As discussed in the paper, choosing 
priors for hierarchical models is delicate. The dangers of improper 
posteriors are real and insidious. The theorems reviewed in the paper 
should prove valuable for guiding statistical practice. However, it seems 
that many statisticians try to deal with this problem by replacing improper 
priors with vague proper priors. This merely approximates an ill-defined 
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posterior with a nearly ill-defined posterior. We would like to mention 
another solution to the problem. 

One output of an inference from a hierarchical model is shrunken 
estimates. In some cases, conditionally on the hyperparameters, the 
shrunken estimates lie between the prior mean and the m.l.e's from a 
non-hierarchical model, i.e. ~Shrunk ~-- O~00 -~- (1 - a)0, say. It seems 
reasonable to place a uniform prior on the degree of shrinkage a. This 
implies a (proper) prior on the hyperparameters. This idea has been 
used by Strawderman (1971), Christiansen and Morris (1994), Daniels 
and Gatsonis (1996) and others. It is similar to a prior suggested by 
DuMouchel (1994). The full generality of the idea is explored in Daniels 
(1996). This prior seems to be a general way for providing proper 
reference priors for hierarchical models. Yet another alternative is to 
place a proper prior (such as half normal or half Cauchy) on the distance 
from the "null" sampling model in which the random effect is 0. Jeffreys 
pointed out that such strategies often lead to useful, proper reference 
priors. 

As a general remark we would add that any time improper priors 
lead to trouble, we should not use vague proper priors. To do so is simply 
to approximate an ill defined solution. Instead, proper reference priors 
are called for. Similar problems occur in using Bayes factors to compare 
models. It is well known that improper priors lead to ill-defined Bayes 
factors. As Jeffreys made clear, the solution is not to use vague proper 
priors but rather, to use proper reference priors. 

EDWARD I. GEORGE (University of Texas at Austin, USA) 

Let me begin by congratulating Casella for a masterful paper which 
synthesizes and interweaves so many different ideas and points of view. 
There is much to comment on, as Casella seems to open up a whole new 
vista of ideas with each new section. However, for the sake of focus 
(and space), I would like to confine my comments to Section 3.2 which 
is concerned with the properties of Gibbs Markov chains when the Gibbs 
conditionals do not correspond to a proper posterior. 

The key result of Section 3.2 is Theorem 2 which tells us that a Gibbs 
Markov chain will be positive recurrent if and only if the full conditionals 
correspond to a proper posterior. Just after presenting this, Casella goes 
on to show us (7), which at first glance suggests that useful information 
cannot be extracted from Markov chains which are not positive recurrent. 
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I believe that such a conclusion is incorrect. To see why, I would like 
to discuss some examples where lower dimensional positive recurrent 
components can easily be extracted from Markov chains which are not 
positive recurrent. 

The simplest and most obvious such example is obtained by in- 
terleaving a positive recurrent Markov chain 551 _= 55~, 551. . . ,  with 
a non positive recurrent Markov chain 552 = 552, 55~,..., to obtain 
55 -- (55~, 5512), (55~, 55~),... which is clearly not positive recurrent. Triv- 
ially, information in 55 about 551 can be exploited by simply ignoring the 
552 components. Note that (7) does not apply to such functions because 
the conditions on t require that it be arbitrarily small outside of a com- 
pact set. This rules out functions which ignore the 552 components, since 
these cannot be controlled over the range of 552. 

Based on this example, it may be tempting to think that the indepen- 
dence of 551 and 552 is what allows us to extract the positive recurrent 
chain. However, independence is not needed, as is illustrated by the 
following two examples. 

In the first example, suppose the Gibbs sampler is used to generate 
a Gibbs chain ( X l ,  Y l ) ,  (Z2 ,  Y2),  �9 �9 �9 from the full conditionals 

f l ( x [ y )  c< e -(x+y)2/2 and f2 (y lx )  a< e -(z+y)2/2.  (1) 

The conditionals f t  and f2 are only functionally compatible, correspond- 

ing to an improper joint density of the form f ( x ,  y) c< e -(z+y)2/2.  Thus, 
by Theorem 2, the Gibbs chain cannot be positive recurrent. Indeed, the 
subsequences xl ,  x2 , . . ,  and Yl, Y2,..- are interrelated random walks. 
This can be seen by noting that the Gibbs chain is obtained by successive 
substitution into 

y 
x and Yi : - x i  + ~i xi = -Yi-1 + ~i (2) 

x Y are independent N(0,  1) variables. However, it is also where Q and s 
clear from this representation that the derived Markov chain Zl, z2,.  �9 

Y is simply an i id  N(O, 1) sequence, obviously where zi = xi + Yi ~ -  c i 

positive recurrent. 
The second example is the one from Casella and George (1992) 

where the Gibbs sampler is used to generate a Gibbs chain from the full 
conditionals 

fl(xlY) o( ye - zy  and f2 (y lx )  o( xe  -zy .  (3) 
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As Casella points out the conditionals f l  and f2 are only functionally 
compatible, corresponding to an improper joint density f (x ,  y) oc e -xv. 
Here too, the Gibbs chain cannot be positive recurrent. However, here the 
Gibbs chain (Xl, Yl), (x2, Y2), �9 �9 �9 is obtained by successive substitution 
into 

x ~ / x i  (4) xi = e i /Y i -1  and Yi = 
x and  Y where Q c i are independent exponential variables with mean 1. 

Y is Thus, the derived Markov chain Zl, z2 , . . ,  where zi =- xiYi : e i  

simply an iid exponential sequence, again positive recurrent. 
In both of the above examples, a positive recurrent chain Zl, z2,. �9 �9 

was constructed from the non positive recurrent chain ( x l , y l ) ,  
(x2, Y2), . . . .  It is interesting to consider how the distribution of z arises 
through formal transformation of the improper density f ( x ,  y) corre- 
sponding to the Gibbs conditionals. In the first example, where f (x, y) c< 

e -(x+y)2/2, the joint distribution of z = x + y and w = y is obtained as 

f ( z ,  W) O( e -z2/2. In the second example, where f ( x ,  y) c( e -zy,  the 
1 c - z  joint distribution of z = xy  and w = y is obtained as f ( z ,  w) o( - 5  �9 

In both of these examples, an improper joint distribution has been trans- 
formed into the product of a proper distribution on z and an improper 
distribution on w. Thus, in both of these examples f ( x ,  y) contains 
a proper one-dimensional component which can be extracted from the 
output of a Gibbs sampler. 

In light of these examples, I would like to ask Casella about the 
Gibbs subsequence of overall means/3(/), j > 1 from Example 4 where 
a = b = 0. When (if ever) is this subsequence a positive recurrent 
component of the Gibbs chain? I have a hunch that it will be positive 
recurrent when 7r(/3[y), the posterior of/3, is proper, in which case the 
subsequence will converge to 7r(/3[y). Can this be checked for the Gibbs 
output from Example 4? 

JUN S. LIU (Stanford University, USA) 
Professor Casella has provided us with a timely exposition of an 

important aspect of modem Monte Carlo methods. Stimulated by this 
reading, I would like to take the liberty of bringing up a few ideas on 
two interesting issues. 

Rao-Blackwellizing an Importance Sampler. Consider an importance 
sampling scheme for a two-component random vector. Following no- 
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tations of Professor Casella, we let the target distribution of (X, Y) be 
f (x ,  y) and let the trial sampling distribution be g(x, y). Of interest is 
the estimation of, say, ~- = E l {h (X ,  Y)}, for a given integrable function 
h. This can be achieved by using either rejection sampling, as demon- 
strated by Professor Casella, or importance sampling (IS). Suppose that 
we have drawn samples ( X X ,  Y I ) ,  �9 �9 � 9  (Xn, Yn) from g(x, y). A standard 
IS estimate of 7- is 

1 n f (x ,y )  
~- = - E w(xi, yi)h(xi, Yi), where w(x, y) = 9(x, y) 

n i = 1  

A rescaled estimate, as illustrated in Section 4.2 and used in Casella and 
Robert (1996b), Kong et al. (1994), Liu (1996) etc., is 

1 n n 
~---~ ~ E w ( x i , Y i ) h ( x i , Y i ) ,  where W =  E w ( x i , Y i ) .  

i = 1  i = 1  

Besides the advantage mentioned by Professor Casella, using the resca- 
led estimate ~ allows us the flexibility of knowing f and 9 only up to 
a normalizing constant. This advantage is much more pronounced in 
complicated problems (Kong et al. 1994). Because asymptotically the 
two estimates are equivalent and also because "7- is much more approach- 
able mathematically, we will use ? for theoretical discussions, although 
practically we advocate using "~ all the time. 

There are two ways of Rao-Blackwellizing: conditioning on either 
X or Y. If conditioned on Y, for example, we have 

Ea{w(X ,Y )h (X ,Y )  I Y = y} = / h ( x , y ' ~  f (x ' y )  g(x 

= Wy(y)Ef{h(X, Z) I Z = y}, 

where Wy(y) = fy(y)/gy(y). A more efficient estimate than ? results: 
n 

1 ~Wy(ydEf{h(X,Y))]Y=yi}. 
i = 1  

When h is a function of one component alone, say h(x, y) = h(y), the 
estimate ;rrby is reduced to 

n 

1 E Wy(Yi)h(yi). 
i = 1  
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A quite different intuitive interpretation of this R-B effect is that margi- 
nalization reduces importance sampling variation. MacEachern, Clyde, 
and Liu (1996) derived one special case of this fact, and Rubinstein 
(1981, Section 4.3.7) recorded another. 

Under this formulation, the importance sampling can be treated ap- 
proximately as a Rao-Blackwellized rejection sampling; hence, it is 
statistically more efficient. This fact has been established by Casella 
and Robert (1996b) in a sophisticated setting and will be re-derived here 
more directly and heuristically. Let (Ii, y~), i = 1 , . . . ,  n, be jointly 
drawn according to the acceptance-rejection rule; that is, the Yi are iid 
from a trial distribution g(Y), and the conditional distribution [Ii I yi] 
is Bernoulli(r(yi)) with r(y) = f(y)/Mg(y). Suppose the stopping 
effect of this rejection sampling can be safely ignored. Then Ii plays the 
role of xi in the foregoing argument; and the R-B counterpart of tSAR in 
(10) of Casella is 

1 n -E  5IS = n w(yi)h(yi). 
i-----1 

Without loss of generality we assume that T = 0. Then, since M >_ 
maXy{W(y) }, 

nvar(SAR) ,~ Mvarf{h(Y)} > f Wmaxh2(y)Z(y)dy 

f f(Y) h 2 - ~  (y)f(y)dy = Eg{w2(y)h2(y)} > 
J 

= varg{w(y)h(y)} -= nvar(Sis ). 
An effort of comparing the two samplers with the Metropolized inde- 
pendence sampling was made in Liu (1996). Since the advantage of 
the rejection method is that exact draws from f can be obtained, it is 
sometimes useful to combine the two samplers when one wants to reduce 
importance sampling variations (Liu, Chen, and Wong 1996). 

In many practical problems, the marginal weight Wy(y) is difficult 
to compute, whereas the conditional expectation Ef{h(X) [ Y = y} is 
relatively easy to obtain. In such cases, as shown in Kong et al. (1994), 
one can use a partial RB-estimate 

n 

1 E w ( x i ' Y i ) E f  {h(X'Y)  IY  = Yi}, 
i = 1  
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which is easily seen to be unbiased and consistent. Although many 
numerical results show that significant improvements can be obtained, 
optimality properties of "7-prb are difficult to come by. 

Imagine that a partial R-B is applied twice; then each summand of 
"~prb, Ey{h(X,Y) I Y = Yi}, is substituted by Ef[Ef{h(X,Y)IY}[ 
X = xi]. By applying partial R-B repeatedly, each summand has the 
form of iterative conditional expectations: 

Ef[.. .EI{EI{h(X,Y) I Y} I X} . . .  I'], 

whose limit converges to the true value T. This form alludes to the 
Gibbs sampling structure (Liu, Wong and Kong 1994, 1995). When 
analytical evaluation of these iterative conditional expectations is not 
feasible, one is naturally reminded of the Gibbs sampler. A suggestion 
thus derived is that incorporating a Gibbs sampler or any MCMC step 
into an importance sampling scheme can be useful (MacEachern et al. 
1996). 

The Gibbs Sampler for Incompatible Conditionals 
An impressive result of Hobert and Casella (1996) is concerned 

with the stochastic instability of Gibbs sampling with incompatible - -  
but functionally compatible - -  conditionals. I would like to venture 
on the functionally incompatible case. Consider the following exam- 
ple: suppose that the two conditionals f l (y lx)  and f2(xly ) are given as 
follows: 

y = l  y = 2  x = l  x = 2  

f l ( y [ x ) :  x = 1 0.9 0.1 f2(xlY): y = 1 0.4 0.6 
x = 2 0.3 0.7 y = 2 0.2 0.8 

It is easy to show that f l  and f2 are not functionally compatible using 
Besag's (1974) criterion. When running a systematic-scan Gibbs sam- 
pier, the concept of "limiting distribution" becomes a little complicated. 
In fact, the sampler has two limiting distributions depending on whether 
stopping at x or at y, i.e., whether (x, y) or (y, x) is defined as a joint 
state. Thetwol imi t ing  distributions are 

y = 1 

~ l ( x , y ) :  x = l  0.26591 
x = 2 0.21136 

y=2 

0.02955 
0.49318 
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y = l  y = 2  

7r2(x,y) �9 x = 1 0.19091 0.10455 
x = 2 0.28636 0.41818 

The sampler is, therefore, a combination of two positive recurrent Mar- 
kov chains; and depending on how to define the joint state, the sampler 
converges into two different, though very close, distributions. When 
running a random-scan Gibbs sampler, however, a proper limiting dis- 
tribution - -  that is the mixture of the two distributions given above - -  
exists. 

Under some regularity conditions that are satisfied in most prac- 
tical situations, Tx(xo,zl) = ff l(y[xo)f2(xl[y)dy defines a posi- 
tive recurrent transition function for the X space, and Tu(yo, yl) = 
f f2(xlyo)fl (yl [x)dx defines that for the Y space. Hence two limiting 
distributions 7rl (x) and 7r2(y), for Tx and Ty, respectively, are uniquely 
determined. In the incompatible case, we observe that 

71"I(X,y) ~ 7rl(x)fl(y l x) 7 s 7r2(Y)f2(x l Y) = 7r2(x, y). 

But 

Trl(X)fl(y l x)dx = 7r2(y) and /Tr2(y)f2(x l Y)dY = 71"l(X).  

Let 791 be the set of all probability distributions compatible with 
f l (y lx) ,  and let 792 be that for f2(xly). Then 7rl(X, y) C 791, 7r2(x, y) C 
792, and 71" 1 and 7r2 have identical marginal distributions. On the other 
hand, if two distributions Pl (x, y) C 791 and P2 (x, y) C 792 have identical 
marginal distributions, they have to be the same as 7rl and 7r2. 

Due to numerical approximation in practice, we may end up having 
slightly incompatible conditionals. If the numerical error is small, the 
resulting Tz will be very close to the one, say, T~, resulting from the 
compatible conditionals. This implies that the eigenvalues and eigen- 
vectors of Tz and T~ are close to each other (true in the finite state space 
case); hence, the resulting limiting distributions are similar. It further 
suggests that no disasters are to be expected as long as the numerical 
approximation is reasonably accurate. The argument may be extended 
to a Gibbs sampler with more than two components. For a k component 
sampler, a systematic scan with a particular sweeping order will have 
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k limiting distributions, depending on which component the sampler 
stops. The total number of such limiting distributions is kt. The limit- 
ing distribution for a random-scan sampler is then a mixture of these k! 
distributions. 

XIAO-LI MENG (The University of Chicago, USA) 
Posterior Checking. My discussion will focus on only one issue: check- 
ing the propriety of a posterior resulting from the Gibbs-sampler speci- 
fications. Professor Casella's article is much broader, touching on many 
issues that are of current interest to me (e.g., the emphasis on being re- 
ceptive to both frequentist and Bayesian perspectives; the interplay of 
algorithms and inferences; the connection between EM-type algorithms 
and the Gibbs sampler). However, due to stringent time constraints 
(being a father of a newborn and a 16-month-old, I had to prepare this 
discussion in between frequent posterior checking; no impropriety was 
found, though I did learn why it is a good idea to avoid a sensitive 
posterior), I have to skip this great opportunity for advertising several 
related papers that I authored or co-authored. Nevertheless, I want to 
thank the Editor, and of course the author, for providing me with such 
an opportunity. 

Recursive De-conditioning and Conditional Compatibility. The need for 
checking the compatibility of conditional distributions reminds me of an 
identity I learned more than a year ago. Let p(xl, x2) be a probability 
density function with respect to a product measure # = #1 • #2 and 
with a support in the form ~1 • f~2; we thus are assuming the positivity 
assumption of Hammersley and Clifford (c.f., Besag, 1974). Then ]1 

p(Xl) = p(x2 I Xl) #2(dx2) (1) 
2 p(Xl Ix2) 

which is a trivial consequence of the well-known identity 

p(x2 Ix1) p(x2) 

p(ml l m2) p(xl)" 
(2) 

While identity (1) also provides an explicit formula showing how p(xl I 
x2) and p(x2 I Xl) uniquely determine p(xl, x2), it seems to be much 
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less well-known than the standard formula for proving uniqueness: 

p(Xl I Xt2) for any fixed E ft2, (3) 
p(xl) P (4  I z 0 '  

which also is an immediate consequence of (2). 
I learned the expression (1) from a presentation by Ng (1995). My 

immediate reaction was that it must be my ignorance that I had not seen 
(1) in this explicit form. However, Ng assured me that he had checked 
with several leading experts in this area (e.g.J.  Besag, W. H. Wong), 
and it seemed that the identity (1) was "mysteriously" missing from the 
general literature. An apparent explanation for this "mystery" is that (1) 
is not useful in general for calculating p(xa) and thus p(xl, x2) since a 
main reason we use the Gibbs sampler is our inability to perform ana- 
lytical integration, which is required by (1). However, in the context of 
checking the compatibility ofp(xl  { x2) and p(x2 ] Xl), the expression 
(3) offers no advantage over (1). Both require us first to check whether 
p(xl { x2) and p(x2 I Xl) are functionally compatible, which amounts 
to checking whether (2) is possible, that is, whether we can write 

p(X2 I Xl ) p2(X2) 
p ( x l l x 2 )  pl(Xl) 

(4) 

for some (positive) functions Pi, i = 1, 2. Given (4) holds, we then 
need to check, for (1), whether ff~2 b2(x2) #2(dx2) is finite, or, for (3), 

whether fa  I i~1 (xx) #1 (dxl) is finite. Under (4), these two integrations 
must yield the same value (allowing +e~) by Fubini's theorem, and thus 
one can always choose one to check (e.g., xl and X2 may be of very 
different dimensions), as emphasized by Arnold and Press (1989). Of 
course, these arguments also imply that there is no advantage to using 
(1) in the simple case involving only p(xl I X2) and p(x2 I Xl). 

Reading Section 3 of Casella's article (and Hobert and Casella, 1995) 
made me wonder about the comparison between (1) and (3) for checking 
the compatibility of {p(xi I X-{i}), 1 < i < m} when m > 2, where 
X = {Xl , . . . ,  Xm} and X - s  denotes {xj, j ~ S}. I thus decided to take 
a closer look at this comparison and the rest of this discussion reports 
what it generated. I doubt anything I discuss here is new (though I have 
not seen the recursive scheme described below), since everything follows 
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in a straightforward manner from (2); my discussion is thus more of a 
review nature, intended as a technical supplement to Casella's general 
review of the important issue of checking compatibility. 

For m > 2, a direct generalization of (3) is (see Besag, 1974; Gelman 
and Speed, 1993; Hobert and Casella, 1995) 

m I I-Ij=2p(xj l x l , x2 , . . .  , X j - I , X j + I , . . .  ,Xtm) 
m ! YIj=2p(x} l x l , x2 , . . .  , X j - I , X j + I , . . .  ,X~)  

for any fixed (x~ , . . . ,  X~m) C 1-I f~k. 
k_>2 

(5) 
Since the indices ( 1 , . . . ,  m) are arbitrary, we actually have m! ways of 
obtaining p ( x l , . . . ,  Xm) via (5). Specifically, Hobert and Casella (1995) 
define 

YIjm=l P(Xli I Xl~,' ' ' ,Xl~_l" ,X t.lz ," " " ,X t. ) 
3 j+l l~ 

m 'l~ g i (X l , . . .  ,Xm) : r i j=2p(x l  i i X l~ ,Xl~ , . . . ,X l~_l ,X  . . .  ,xt .  ) ' 
t j  +1 ~ l~n 

(6) 
where l i = (l~,/~,..., I/m) represents a permutation of ( 1 , . . . ,  m) and 

(x~ , . . . ,  X~m) is a fixed point in f~deff~l •  • f~m. Hobert and Casella 
(1995) then show that {p(xi I X-{i}), i = 1 , . . . ,  m} are functionally 
compatible if and only if there is a (positive) function g(x l , . . . ,  Xm) on 
f2 such that gi(xl , . . .  ,Xm) c< g(xl , . . .  ,Xm). Furthermore, if {p(xi I 
X_{i}), i = 1, . . . ,  m} are functionally compatible, then they are com- 
patible if and only if 

f " " f ~  g(x l , . . . ,Xm)#m(dxm) '"# l (dx l )  <oc. (7) 
1 m 

Finally, p ( x l , . . . ,  Xm) ~: g ( X l , . . . ,  Xm) when (7) holds. 
To apply (1) for m > 2, we first note a conditional version of (1), 

that is, for any A ~ { i , j} ,  i r j ,  

p(xj I xi,X-A) (dxj) (S) 
p(xi  I X _ A )  --~ p(xi  I x j , X _ A ) # J  

J 
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The right-hand side of (8) may be viewed as a "de-conditioning" operator, 
that is, with the help of p(xj I xi, X-A), it turns p(xi I xj, X-A) into 
p(x i  I X - A )  - -  de-conditioning out xj. It is obvious that this de- 
conditioning operator can be applied recursively to further de-condition 
out variables in X-A. To be more precise, let .T" be the set of positive 
functions (allowing the value +oo) on f2 (almost surely with respect to 

def 
# = #1 x -. .  x Pro; hereafter, I will not repeat such measure-theoretic 
statements). For any 1 _< k < m, we define a mapping 7) k from 5 c x 9 t- 
to b c, such that for any f l ,  f2 E ~ :  

 ki,l: l= f2(Xl ,  -Xk, -Xm) #k(dxk) 

-1 

(9) 

Now for a given set of conditionals {p(xi I X_{i}), i = 1 , . . . ,  m}, 
we view them as elements of 5 and label fil  : p(xi t X-{ i} ) ,  i = 
1 , . . . , m .  Wethendef ine{f i j ,  i = j , . . . , m ;  j = 2 , . . . , m }  recursive- 
ly via 

fij = {Dj- l [ f j - l , j - l  : fi,j-1], i =  j , . . .  ,m; j = 2 , . . . ,m .  (10) 

Clearly, fij depends on X only through {xj , . . .  ,Xm} so we write 
f i j (x j , . . . , xm)  whenever explicit arguments are needed. By (8), it 
is easy to show via induction that if {fil, i = 1 , . . . ,  rn} are derived 
from a joint density p(x l , . . . ,  Xm), then 

f i j (X j , . . .  ,Xm) = p(xi ] X_{1,...,j_l,i}), 

and in particular 

for any i _ > j ,  j _ > 2 ,  
(11) 

m 

p(xl , . . . ,Xm) = I I  f j j (x j , . . . ,Xm).  (12) 
j=l 

We thus learn that, in order to have compatibility of {fil, i = 1 , . . . ,  rn}, 
it is necessary that for any rn - 1 _> j _> 1 and i _> j + 1 �9 

(I) f j j  and fij are functionally compatible conditional on X_Aij 
where Aij = { 1 , . . . ,  j ,  i}; namely, we can find functions fi(xi; X-Aij) 
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C 5 c and -fj (xj;X_Aij) E .Y~ such that 

fjj(xj,...,xm) X-A j) 
f i j (x j , . . . ,Xm) - ?i(xi;X_Aij)' 

and 

for  (xj,... ,Xm) e H f~k; 
k>j 

(13) 

(II) The functions f i  and .fj found in (13) must satisfy 

f ?j(Xj; X-Aij) #j(dxj) = f ?i(Xi; X-Aij ) 

for X_Ai j C H ~k. 
k > j,kT~i 

~i(dxi) < +0<2, 
(14) 

Conditions (I) and (II) amount to the conditional compatibility of f j j  
and fij  conditional o n  X_Ai j . Because of (12), these conditions are also 

sufficient for the compatibility of  {fi l ,  i = 1 , . . . ,  m) .  In other words, 
{p(xi ] X-{i}) ,  i = 1 , . . . ,  m}  are compatible if and only if (I) and (II) 
are satisfied for all m - 1 > j _> 1 and i _> j + 1. 

A matrix representation of {fij ,  i >_ j ,  j = 1 , . . . ,  m} perhaps can 
help to visualize the recursive de-conditioning process defined by (10). 
Table 1 gives the representation with m = 4, where we use [. I ~ .] to 

denote conditional density (e.g., [4[3]aefp(x41x3)) and "k" to indicate 
the elimination (i .e. ,"de-conditioning") of Xk from the variables that are 
being conditioned on. 

Table 1. A Matrix Representation of Recursive De-conditioning 

f~j j = l  j = 2  j = 3  j = 4  

i = 1 [1 1234] 
i = 2 [2[ 1341 [21/I34] ~ [2 134] 
i = 3 [31 124] [31/124] ~ [3124] [31241 ~ [314] 
i = 4  [41 123] [41/I23]- [41 23] [4123]-  [41 3] [4J~] -- [4] 
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The matrix representation makes it easier to track the de-condi- 
tioning process, especially because each column corresponds to de- 
conditioning out one variable, starting from the finest conditioning (j = 
1) recursively down to no conditioning (j = m). It also makes it clear 
that { f i l ,  i = 1 , . . . ,  m} are compatible if and only if {f i j ,  i > j }  
are conditionally compatible (as defined by (I) and (II)) for each j = 
1 , . . . , m - 1 .  

To illustrate the use of (I) and (II) for checking compatibility, let us 
consider the normal example used by Hobert and Casella (1995): 

m 
1 

fil =--p(xi I X_{i}) (x exp{ - - -~(x i - -p iExk)2} ,  i~- 1,...,m. 
kr 

(15) 
Here the pi's are constants, and the goal is to identify conditions on pi's 
under which {p(xi [ X_{i}), i = 1 , . . . ,  m} are compatible. Since for 
any i > 1 the only term in the exponential part of f l l / f i 1  involving x lx i  
is ( P l  - -  p i ) x l x i ,  (13) is satisfied if and only i fp l  = Pi. This yields a 
necessary condition for the compatibility: Pi -~ P for all i. Under this 
necessary condition, 

fll exp {--(1-: 2) (Xl-- lP-~Tli) 2} 

{ ( f i l  exp (1-~p21 xi -- lP--_pTli 
(16) 

where Tli = Y~kr xk. It then follows that (14) holds if and only if 

p2 < 1, under which 

{ / fi2 c< exp (1 - -  p2) xi Tl i  i = 2 , . . . ,  m. (17) 
2 1 - p  ' 

No further integration is needed if we notice that checking the conditional 
compatibility of (17) is the same as that of (15) with Pi -- P, in the sense 
that both can be written as 

fij  c< exp - - ~ ( x i  - /3j E xk) 2 } ,  i = j , . . . , m ,  j = 1 , 2 ,  
k>j, kr 

(18) 
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w h e r e  c l  = 1, 2 = 1 - p 2 , 9 1  = P ,  92  = Z l / ( 1  - Z l )  = p / ( 1  - p ) .  
Thus {fi2, i = 2 , . . . ,  m} are conditionally compatible if and only if 
/322 < 1. By induction, f o r j  = 3 , . . . , m  - 1, { f i j ,  i = j , . . . , m }  are 
conditionally compatible if and only if/3~ < 1, where ~j = /3 j_1 / (1  - 
/3j-l)  = p / ( 1 -  ( j -  1)p). Thus {fi l ,  i--- 1 , . . . , m }  are compatible 
if and only if/32 < 1 for all j = 2 , . . . ,  m - 1, which is equivalent to 
- 1  < p < 1 / ( m  - 1). Hobert and Casella (1995) used (5)-(7) to reach 
this conclusion, which can also be obtained by noticing that the common 
correlation among { x l , . . .  ,Xm}  is given by p / ( 1  - (m  - 2)p), which 
must be between - 1 / ( m  - 1) and 1, exclusively. 

Of course, the simplicity of this example is largely due to the sim- 
plicity of the model, especially due to the normality which is preserved 
under de-conditioning. In general, the requirement of analytically cal- 
culating the 79k mapping contradicts the goal of using the Gibbs sampler, 
and thus the recursive de-conditioning method via the 79k mapping, when 
used as a sufficient check, is typically useless in practice when m > 2 
(except for special conditional densities, such as normal). This perhaps 
further explains why this method, though mathematically interesting, 
has been ignored in the literature (except, perhaps, in the written version 
of Ng (1 995), which I have not had an opportunity to study). 

Fortunately, the comparative study is not without any positive mes- 
sage. The recursive de-conditioning scheme itself, as depicted in Table 
1, has something to be recommended. In contrast to (5)-(7), it involves 
only two (conditional) functions at a time, and the check of the integra- 
bility only involves marginal integrations (see (14)). More importantly, 
it can tell us at which level of conditioning the densities (in fact which 
conditional density) become improper (e.g., for the normal example, 
{P(Xi I X-{1 ..... j - l , /}) ,  i >_ j}  are proper for all j _< k but are im- 
proper when j = k + 1 if and only if (k - 1) - 1  > p > k -1, where 
2 _< k _< m - 1). Such specific information can be useful when we 
modify parts of the model in order to achieve compatibility. In partic- 
ular, the conditional compatibility at the j = 1 level (see Table 1) can 
and should be checked first, since such a check does not require explicit 
calculation of the 79 mapping and if the conditional compatibility is vi- 
olated (e.g., if some of fi2's are determined to be improper) then our 
check is completed. (For the normal example, such a check immedi- 
ately declares that if any Pi 7 ~ Pj, or if the common p2 _> 1, then the 
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conditional distributions given in (15) are incompatible.) As a necessary 
check (i.e., a screening check), this can be considerably simpler than the 
check using (6)-(7), which operates on the entire joint space. In some 
cases, it might even be possible to continue this check for conditional 
compatibility for a few more levels (e.g., j = 2 or 3) if we can arrange 
the variables x a , . . . ,  Xm such that the first few Dj mappings are analyti- 
cally feasible. It is also not entirely inconceivable that we can check the 
integrability of ratios of 79j's without explicitly calculating Dj. 

Of course, ideally we would like to have a recursive de-conditioning 
scheme, similar to Table 1, using mappings that do not involve integra- 
tion. For example, it would be ideal if we could use the mapping defined 
by the following conditional version of (3): 

p(Xl 
p(Xl [ Xt2,X-A) 

I X-A) C< 
p(x~2 l x l , X _ z )  ' 

for any A ~ {1, 2} and any fixed x~ E ~2. 

(19) 

Although (19) is true, it does not yield a correct de-conditioning process 
when used recursively in a fashion similar to (10) because the normal- 
izing constant in (19) depends on A. I suspect that it is impossible to 
perform the type of recursive de-conditioning depicted in Table 1 with- 
out invoking integration (i.e., marginalization). However, it might be 
possible to construct a recursive checking scheme that is more effec- 
tive than the check based on (6)-(7), which is essentially a brute-force 
method and can be rather complicated (see, e.g., Hobert and Casella's 
(1996) proof of the quoted Theorem 1). I know Professor Casella enjoys 
working on challenging theoretical constructions, so I'd like to conclude 
my discussion by inviting him to a fishing trip for an effective recursive 
checking scheme. I cannot promise we will get anything, but the excite- 
ment of fishing (my favorite sport) is not knowing what you will get or 
when you will get it - -  there is always a bigger one out there, the one 
that snapped my line before I could see it! 
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A. PHILIPPE (Universitd de Rouen, France) 
I first want to congratulate Professor Casella on such a coverage 

of the multiple facets of the relationship between statistical theory and 
computational algorithms. I want to take advantage of this tribune to 
point out links between the Monte Carlo method with numerical methods 
used to approximate integrals. The standard Monte Carlo estimator is the 
empirical average. The convergence of this type of estimator is ensured 
by the Law of Large Numbers or the ergodic theorem. In this paper 
Professor Casella looks at the amount of statistical theory in the Monte 
Carlo method. The outputs of the Monte Carlo algorithm are considered 
as statistical data and therefore we can apply frequentist principles to 
improve upon the standard approach. An alternative to this approach is 
to consider the output as a set of points on which we can apply numerical 
quadrature. In particular, when we generate a sample from a density f,  
we can use it to build a Riemann sum, i.e. the trapezoidal approximation 
of the integral. 

This method has been introduced by Yakowitz et aI (1978) in the par- 
ticular case of the uniform distribution, i.e. for functions with compact 
support. They show that the estimator thus produced improves (in terms 
of convergence rate) upon the empirical average as it reduces its variance. 
The properties obtained for this particular density can be generalized for 
arbitrary densities f (Philippe 1996). We discuss the different aspects 
of using Riemann sums in the Monte Carlo method. In the case of the 
Gibbs sampler, we show that we can produce an efficient estimator based 
on the Rao-Blackwellisation method and Riemann sums. 

1. Riemann sums and the Monte Carlo method. Consider the estimation 
of the expectation IEY[h], where f is a density and h E /~1 (f) is a 
continuous function. For a sample (Xl , . . . ,  xn) from f, we denote the 
ordered sample by x(1 ) < . . .  < z(n ). The resulting estimator (called 
Riemann's estimator) is given by 

n - 1  

= - h I 

i=1 
The convergence properties of the Riemann estimator are given in the 
following propositions. 
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Proposition 1.1. If h e E l ( f )  then 

[ Zl : 

Moreover if the function h is bounded on the support of f then the 
convergence rate of the bias is O(n-1). 

Proposition 1.2. If  h C/:2( f )  then 

[( End]) lim IF, 6 ~ - I E  6 = 0 .  
n---~oo 

Moreover if h and h I are bounded on the support of f then the 
convergence rate of the variance is O(n-2). 

These convergence properties clearly show the improvement brought 
by this approach upon the standard Monte Carlo averaging approach. 
Indeed, when the previous conditions on h are satisfied, the behavior of 
the Riemann estimator is very satisfactory since it reduces the variance 
by an order of magnitude, that is, from 1In to 1In 2. However, in many 
statistical problems, the function h is not bounded. For example, a 
classical problem, in Bayesian statistics, is the evaluation of the Bayes 
estimator. Under the quadratic loss, this is the mean of the posterior 
distribution, so h(x) = x which is unbounded for infinite support. 

An additional appeal of our approach is that the importance sampling 
method can improve upon the Riemann estimator, while keeping the 
same convergence properties for bounded h's. This improved Riemann 
estimator follows from the choice of an instrumental function 9 such that 
the ratio h f / 9  and its derivative are bounded. It is produced through 
IEf[h] = lEg[h f /g]  and equals to 

n - 1  

(Y(i+l) - Y(i)) h (Y(i)) f (Y(i)) 
i=1 

where Y0) -< "'" -< Y(n) is an ordered sample of variables with density 
9. Note that the density does not appear explicitly in the expression of 
the estimator. A good choice of the instrumental function is a density 
proportional to [h If. This choice is optimal in terms of reduction of the 
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variance when the support of the density is bounded. Furthermore it 
gives an unbiased estimator when the function h is positive. 

This choice is also optimal for the standard importance sampling 
method (see Rubinstein 1981), although this result is formal. Indeed 
the estimator depends on the ratio f / g ;  therefore the unknown integral 
of interest appears in the expression of the estimator. The Riemann 
estimator based on the instrumental density proportional to I hL f is easy 
to derive via an accept-reject algorithm. The only requirement is to find 
9 such that the ratio I h l f / 9  is bounded. 

Example  1. Consider the example of the gamma distribution intro- 
duced by Professor Casella. The gamma distribution ~a(oL, 2o 0 with 
a = 2.434 is simulated from an accept-reject algorithm where the can- 
didate distribution is the gamma distribution ~a(a ,  2a) with a = 2. 
We want to estimate the expectation IE f (z). With the same instrumen- 
tal density Ga(a,  2a), we can also generate a sample from the density 
proportional to h f .  Table 1.1 illustrates the behavior of the different 
Riemann estimators. We can appreciate the superior properties of the 
Riemann estimator obtained with the sample simulated from the density 
proportional to h f .  Moreover, this estimator dominates the estimators 
produced by the Rao-Blackwell strategy, since the percent improvement 
in mean squared error (MSE) is superior for this Riemann estimator. 

Table 1.1. Comparison of the mean squared errors for the estimation of 
a gamma mean given by the empirical average, the Riemann estimators 6~ 
and <5~ obtained respectively with the sample simulated from Ga(a, 2a) and 
from the density proportional to h f, based on 7500 simulations. 

AR 6 E 61 ~ 6~ Pourcent 
sample MSE MSE MSE Decrease 
size (t) in MSE for ~5~ 

25 .0041 .0060 .0021 48.78 
50 .0020 .0026 .0006 70.00 
100 .0010 .0009 .0001 90.00 
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Table 1.2. Comparison of the mean squared errors for the estimation of 
a gamma mean given by the Riemann estimators recycling the N values 
produced by the accept-reject algorithm, for the sample from Ga(a, 2a) 
( 61 n) and for the sample from the density proportional to h f ( 52n), based on 
7500 simulations. 

AR 5~ 5-2 R 
sample MSE MSE 
size (t) 

25 .0031 .002 
50 .0012 .0002 
100 . 0004  .0001 

For fixed t, the accept-reject algorithm generates ( Y l ,  �9 � 9  YN) from 
the instrumental distribution and yields a sample (Xl,- �9 �9 xt) of size t 
from Ga(o~, 2o 0. The number of values N is a random integer which 
is distributed according to a geometric random variable. However, this 
sample can be interpreted as a sample simulated from the instrumental 
density Ca(a, 2a), and therefore we construct the Riemann estimator 
from the sample (Yl , ' - ' ,  YN) according to the importance sampling 
approach. This method recycles all the random variables produced by 
the accept-reject algorithm. We apply also this principle for the accept- 
reject algorithm which produces a sample from the density proportional 
to hr. Table 1.2 illustrates the behavior of the Riemann estimators. 
When we recycle the rejected variables, the performances of the Riemann 
estimators are superior since the mean squared errors is reduced. 

2. The Rao-Blackwellisation method and the Riemann estimator. 
An important problem with this form of estimators is that it requires 

explicit densities. However, in many statistical problems this condition 
is not satisfied (see for instance the Gibbs sampler) and (1.1) cannot be 
used. The Gibbs sampler method can generate a sample from f when 
the density is not directly available. It is indeed sufficient to know the 
conditional distributions. An alternative is to consider a modified form 
of the Riemann estimator by replacing the term which depends on f by 
an approximation. Note that this integral can also be considered as a 
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multiple integral. However, the generalization of the Riemann estimator 
to larger dimensions is not efficient, as shown by Yakowitz et al. (1978). 

The Rao-Blackwellisation method produces an estimator of the mar- 
ginal density (see Gelfand and Smith, 1990). This estimator of the 
density is given by 

n 

} ( x )  = n -1 ~ ~ (x14 , . . .  , 4 ) -  (2.1) 
t= l  

Note that, when we use the Gibbs sampler algorithm, this estimator is 
available. Therefore, we can always get the following generalized form 
of the Riemann estimator : 

n 

,qR/RB -1  ~ " ~ ( ( t + l )  vn = n s ~,Xl -- x(t))h(x (t)) 7r(x ) 1 1 I~k2 ," ' ,  x �9 
t= l  \ k = l  

(2.2) 
The computational cost of this estimator is higher than for the standard 
Riemann estimator but the efficiency is quite similar and it definitely 
improves upon the empirical average. The performances are illustrated 
in the case of the auto exponential model (Besag, 1974). 

Example 2. Consider the density 

f (Yl ,Y2)  o( exp(--yl -- Y2 -- YlY2). 

The corresponding conditional distribution are given by 

YlIY2 ~ gxp(1 + Y2), 

Y21Yl ~ $xp(1 + Yl). 

Since the marginal density is known up to a constant factor, i.e. 

e-y1  
f l ( Y l )  0( - - ,  

1 +Yl 

we can compare the Riemann estimators (1.1) and (2.1) with the empiri- 
cal average and the Rao-Blackwell estimator. By running a Monte-Carlo 
experiment 200 times, we build equal tailed confidence regions Cn such 
that, for fixed n, 

P(e~n C C n ) =  1 -  Ol. 
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Figure 2.1. 95% confidence band for the estimation of]Ef (z)  for the auto 
exponential model: the emp(rical average (plain), the Riemann estimator 
(1.1) (dots), the modified Riemann estimator (2.2) (dashes) and the Rao- 
Blackwell estimator (long dashes). For n = 5,000, the confidence band are 
[0.6627, 0.6932], [0.6761, 0.6806], [0.6738, 0.6825], and [0.6728, 0.6807] 
respectively and the true value is 0.6768. 

Figure 2.1 shows the behavior of the confidence band for o~ = 0.05. The 
amplitude of the confidence band of the Riemann and Rao-Blackwell 
estimators are quite similar. The three estimators improve upon the 
empirical average. 

JOSEPH L. SCHAFER ( The Pennsylvania State University, USA) 

I would like to thank Dr. Casella for a thoughtful and well-written 
paper. In this era of rapidly improving computer environments, many 
are tempted to adopt an algorithmic approach to inference. Monte 
Carlo (MC) methods--and Markov chain Monte Carlo (MCMC) in 
particular--have become a popular paradigm for statistical problem solv- 
ing, but the results of MC or MCMC runs are only as good as (a) the 
underlying statistical model and (b) the manner in which the ouput stream 
is collected and summarized. Improvements to (b) are certainly worth 
considering; Casella and his colleagues have suggested some potentially 
useful methods. With regard to (a), of course, we should not expect MC 
to yield useful information if the underlying statistical model is nonsen- 
sical. 
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The methods of Sections 4-5 were motivated by principles of clas- 
sical decision theory. A decision theoretic perspective can be helpful, 
provided that we pay attention to the MC simulation's original purpose. 
If the goal is to draw inferences about a parameter h(O) of the data model 
for y, the Bayesian perspective suggests that we examine the posterior 
mean, variance, quantiles, etc. of h(O). MC algorithms yield estimates of 
these quantities which can, in principle, be made as accurate as desired 
by lengthening the simulation run. Casella et al. focus on improving 
the efficiency of these MC estimates. That goal, however, is one step 
removed from the statistician's ultimate purpose. Any reasonable MC 
estimator of E(h(O) [ y), even if it is not highly efficient, will be good 
enough if its mean-squared error is small relative to V(h(O) [ y). Im- 
proving the efficiency of MC estimators is not necessarily profitable if 
it does not substantially improve the quality of the point and interval 
estimates for h(O) itself. 

A major theme of this paper is the interplay between the data model 
and the MC simulation method. I prefer to view the MC simulation an 
additional step of data collection, much like a second stage of sampling in 
a multistage survey. Let S(ra) denote the output stream from a simulation 
run of length m. If computational resources were unlimited, we could 
generate S (~176 and obtain inferences equivalent to those from the actual 
posterior distribution P(h(O) [ y). In reality we can generate only S (~), 
so the best inferences attainable will be those based on the reduced 
information in the posterior P(h(O) [ S(m)). Perhaps we should focus 
our efforts on approximating P(h(O) [ S(m)). 

Rubin's (1987) rules for combining point and variance estimates 
from a multiply-imputed dataset are based on this type of argument. 
Multiple imputation (MI) assumes that we have m independent draws 
of the missing data from their posterior predictive distribution given the 
observed data. The MI point estimate is simply a Rao-Blackwellized 
estimate of the posterior mean of h(O), and the MI interval is a credible 
set based on an approximation to P(h(O) [ S (m)) where m may be very 
small. Allowances for the smallness of m are thus a built-in feature of 
the MI interval. Further discussion on the relationship between MI and 
Rao-Blackwellization is given by Schafer (1996). It may be profitable 
to consider how to approximate P(A(O) [ S(m)) for larger values of 
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m, where S (m) represents possibly dependent draws of some type of 
sufficient statistic arising from MCMC. 

ROBERT L. STRAWDERMAN (University of Michigan, USA) 

It is a pleasure to be asked to participate in this discussion of Pro- 
fessor Casella's paper, which does an excellent job in describing the in- 
terplay between Monte Carlo (MC) algorithms and statistical inference. 
MC itself is an inherently frequentist idea, with "long-run average" con- 
vergence properties being the primary justification behind its use in most 
applications. I find it particularly interesting that the vast majority of 
applications in which MC methods (particularly of the Markov chain va- 
riety, or MCMC) have been put to use is in solving Bayesian problems. 
Evidently, frequentist and Bayesian techniques complement each other 
more than is often explicitly recognized. 

A prominent underlying theme of this paper is that MC methods are 
a very useful yet imperfect tool for statistical inference. Since MC meth- 
ods have by definition a probabilistic basis, they can often be improved 
through clever statistical thinking. "Rao-Blackwellization" is indeed 
a clever method for optimizing an accept-reject (AR) algorithm; how- 
ever, it is easy to see this procedure becomes impractical very quickly. 
Termwise conditional expectation is shown to be quite useful, partic- 
ularly in conjunction with rescaling. The estimator 5Tr (Eqn. 18) is 
really an importance sampler in disguise; its rescaled pure importance 
sampling competitor 5Isr (Eqn. 20) is obviously so.  It is known (e.g., 
Hesterberg, 1991, 1993) that simply dividing by the sum of the weights, 
while often effective, isn't necessarily an optimal procedure for improv- 
ing importance-based sampling estimates. I wish to comment briefly 
on this aspect in somewhat more detail, with the particular objective 
of improving upon both 6rr and 5rSr through the use of control vari- 
ares. Then, I'd like to propose one possible solution to the problem that 
Professor Casella poses in Section 5.1. 

Let Y[N = n be a random variable having density re(y) (Eqn. 15). 
Then, we may write -r = Ey[h(X)] = E N [ E Y I N [ h ( Y ) f ( Y ) / m ( Y ) ]  ] 
by  the usual importance sampling identity. Notice the similarity here 
to the weights used in calculating 5TT, hence the importance sampling 
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interpretation of @r- Setting d(Y) = h ( Y ) f  (Y) /m(Y) ,  then obviously 

EN[EYIN[h(Y)f(Y)/m(Y)] ] = tEN[EYIN[C(Y)] ] 
+ EN[EyIN[d(Y ) - tic(Y)]] 

for any function c(Y) and some constant 8. This is the key identity behind 
control variates in disguise; the optimal choice for t in terms of achieving 
minimum variance is t -= cov(d(Y), c(Y))/var(c(Y)) (cf. Hesterberg, 
1991). Ideally, the more correlated c(Y) and h ( Y ) f ( Y ) / m ( Y ) ,  the 
larger the reduction in variance. This may be a difficult choice in practice; 
thus, for convenience, consider setting c(Y) = d (Y ) f (Y ) /g (Y )  = 
h(y ) f2 (Y) / (m(Y)g(Y) ) ;  then, it is easy to see that #c = E[c(Y)] = 
Eg[h(Z)f2(Z)/g2(Z)], where Z has density g(-). 

Now, let ~ bethe slope of the regression of d(yi) = h(yi)f(yi)/  
m(yi) on c(yi), i - 1 . . . n  - 1 where (Yl, . . . ,Yn-1) are the first n-1 
accepted and rejected rv's. Although Yi and yj are correlated, each is an 
observation having marginal density m(.). I propose 

as a competitor to (~Tr and 6ISr, Where dn-1, en-1 respectively denote 
the sample averages. Note that if y/, i = 1 . . .  n - 1 were an iid sample, 
then @v asymptotically achieves the minimum variance among linear 
estimators of the form t # c  + (dn -1  - fie-n-l). In practice, we may 
replace #c by an initial MC estimate/2c, the latter usually being very 
quick to obtain since g(-) (the AR density) is generally easy to sample 
from. I reran a small portion of the simulation study done by Professor 
Casella (with code written in S-Plus) to investigate whether this new 
estimator provides any additional improvement. The results, represented 
as a percentage decrease in MSE over  6AR , are summarized in Table 1. 

The gains provided by 6cv are impressive here, and have been essen- 
tially obtained via linear regression; there are few techniques which are 
more statistical than that! An interesting question here is the asymptotic 
relative efficiency of this procedure compared to full Rao-Blackwelliza- 
tion. 

Turning now to the question posed in Section 5.1, we wish to deter- 
mine a* such that 

_1 [~* ~m r ( O l Y ,  Ai)dO = ol 

m a - ~  i=1 
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Table 1. Estimating E[h(X)] for X a Gamma random variable (E[X] = 
1/2, 2500 simulated datasets via AR algorithm) 

Acceptance Rate 0.9 Acceptance Rate 0.3 

AR % Dec. % Dec. % Dec. % Dec. % Dec. % Dec. 
Sample h(x) inMSE inMSE inMSE inMSE inMSE inMSE 
Size 6TT 61Sr 6CV 6Tr 618r 6OV 

10 x 16.3% 19.2% 93.1% 63.2% 63.3% 99.6% 
25 x 19.3% 21.0% 94.8% 68.7% 68.7% 99.7% 

10 x ~ 16.9% 19.8% 55.2% 62.1% 62.2% 93.3% 
25 x ~ 26.3% 26.6% 75.2% 68.2% 68.2% 94.3% 

based on the Gibbs sequence (01,)~1), ( 0 2 , ) t 2 ) ,  . . . .  This problem can 

be immediately generalized to finding a* such that fa~ 9m(8)d8 = c~, 
where 

gin(0) = 1 s r 
i=l f(Oi'Ai)f(8'Ai) 

for any proper conditional density r having the same support as 
7r(OlY, )0 and f(O, X) cx 7r(8, ~), the latter being the joint posterior den- 
sity of (0, A) given y. The function 9m(8) is the importance weighted 
marginal density (IWMD) estimator of Chen (1994), and reduces to 
m-1 ~iml 7f(81Y, I~i) for r ) = 7r(0iA ). The ensuing proposal there- 
fore covers both possibilities. The density estimate gm (8) may not inte- 
grate to 1 (cf. Chen, 1994, w it is useful to note here that the following 
will only require gin(8) tO integrate to c for some c > 0, and thus no 
numerical renormalization of 9m(8) is necessary. 

Given a Gibbs sequence ( 8 1 ,  "~1),  ( 8 2 , / ~ 2 ) ,  . .  � 9  (8m, "~m), we can 
easily calculate the corresponding IWMD estimate. Suppose that m is 
reasonably large and that ~r(8ly) ~ c-lgra(O) is unimodal with 0 = 
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argmaxogm(O ). Then, under some regularity conditions, 

(-k(2)(O))v2 } 
P{O > a} (I'(Ra) + Ra I -- k(l)(a ) r 

for k(O) = loggm(O), k(J)(o) = dk(o),  and R a : sign(0)[2(k(0) - 

k (a))] 1/2 (cf. DiCiccio and Martin, 1993, Eqn. 5). An exactly analogous 
result obtains in any higher dimensional problem; that is, the formula is 
exactly the same in the case where a marginal probability calculation is 
desired for a single component of a vector-valued parameter. 

Let H(a; ~) = P{O > a} - o~; note that H(a; c~) is monotone in 
a. Replacing P{O > a} by the tail probability approximation above, 
the resulting approximation is monotone in a away from the posterior 
mean and the extreme tails. Hence, a bisection algorithm will quickly 
solve H(a*; o~) = 0 for a*; the advantage of bisection over, say, New- 
ton's method is that the former works without requiring derivatives. Use 
of this tail probability approximation requires maximization and taking 
derivatives of k (0) = log gm (0). This should not be of great concern, and 
will typically not pose a problem in practice. For simplicity, suppose that 
we have calculated { (ai, gm(ai)), / = 1 . . .  b} on a reasonably fine grid 
(al  . . .  ab). Then, for example, to obtain an accurate estimate of 0 (the 
marginal posterior mode), one can fit a quadratic regression to k(O) in a 
neighborhood about the approximate mode (i.e.,, argmaxa i 9rn(ai)), and 

then analytically calculate Oq (and also approximate k(Oq) and k (2) (bq)) 
using the estimated regression equation (cf. DiCiccio et al., 1996). Al- 
ternatively, we can take 0 = argmaxa i 9rn (ai) and calculate all derivatives 
numerically. Each keeps in the spirit of constructing the answer only 
from the Gibbs sequence. 

To illustrate this technique we reanalyzed data from Farewell and 
Sprott (1988). A mixture model was proposed for analyzing count data; 
the two-parameter (conditional) likelihood function is given there, as 
are asymptotic confidence intervals based on the MLE's of the model 
parameters. This particular example can also be found in Spiegelhalter 
et al. (1996, BUGS Examples Manual, Volume II, pp. 11-12), where 
Gibbs sampling is used to construct 95% posterior intervals for the model 
parameters, both of which are probabilities (p and 0, say) and are assumed 
independent. The intervals there are found by generating a Gibbs chain 
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based on 11,000 iterations (the first 1000 of which are treated as "burn- 
in"), and then marginal posterior intervals are respectively calculated via 
the empirical cdf's of the 10,000 iterates of p and 0. 

The full conditionals are not "nice" in this problem, and it is ad- 
vantageous to use the IWMD estimator. Based on the Gibbs output, I 
estimated the marginal densities of p and 0 as discussed above; qS(. 1.) 
was taken to be a Beta density with mean and variance matching the 
empirical mean and variance of the parameter whose marginal density 
was being computed. To calculate the posterior marginal HPD region 
for 0, I generated the IWMD estimate for 0 on an equally-spaced grid of 
points (mesh = 0.01). Tail probabilities at any given point (away from 
the very extreme tail) were then calculated using the tail probability for- 
mula above. This was accomplished by setting t) = argmaxai9m(ai ) 
and then computing k(~)) and k(J)([9),j = 1,2, the latter via stan, 
dard formulas for numerical derivatives. Recalling that H(a ;  c~) ---- 
P{O > a} - o~, the equations defining the 95% marginal HPD limits are 
H(Ou; 0.025) = 0 and H(OL; 0.975) = 0. As an approximation to Ou, I 
used 0 u j  = 0.5(al + a2)where  al  = argmaxa{H(a;O.025 ) > 0} and 
a2 = argmina{H(a; 0.025) _< 0}; OL was determined similarly. The 
results are summarized in Table 2. 

Table 2. Comparison of Highest 95% MPD Regions for PVC data 
from Farewell and Scott (1988) computed based on 10,000 Gibbs iterates 

Parameter MLE BUGS Proposed method Exact] 

0 (0.300, 0.810) (0.289, 0.823) (0.305,0.805) (0.3012,0.8037) 

p (0.270, 0.520) (0.264, 0.514) (0.265,0.515) (0.2693,0.5151) 

~ based on renormalized IWMD estimate using 32-point Gaussian quadrature 

The DiCiccio and Martin formula performs extremely well here, 
given that it is based completely on numerical approximations. For com- 
parison, the quadratic regression method (based on a symmetric window 
of 10 points containing argmaxai9 m (ai)) mentioned earlier yields iden- 
tical answers to the precision reported here. 
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REPLY TO THE DISCUSSION 

First of all, I want to thank the organizers of the meeting, Professors 
Jos6 Bernardo and Elias Moreno for providing such a lively forum for 
the exchange of many stimulating ideas. Then I want to thank all of the 
discussants, who have raised so many interesting points and concerns 
that I could keep myself and my students busy for many years trying to 
answer them. For now, I will only try to provide a few thoughts. Since 
we are all working under time constraints, many of my comments will 
not be as complete as I would like them to be, but I still hope they will 
add something. (Indeed, I wish that I had more time to fully digest all 
of the extremely interesting points raised by the discussants, many with 
which I wholeheartedly agree.) 

It seems to be most logical to arrange my responses by subject rather 
than people, and I will start with the one that, perhaps evoked the most 
comments. 

1. The Bayes/Frequentist Synthesis 

It is gratifying that most people agree that, as statisticians, our main con- 
cern should be to solve problems as best as we can, and use whatever tools 
are available. Such are the sentiments of Professors Berger, Gustafson 
and Wasserman, Ferr~ndiz, Pefia, and Strawderman, with Berger raising 
a particularly interesting point. My Examples 1 and 2 indeed show how 
the tools of one approach can help the other approach. The question of 
the inference, to me, is a somewhat different one in that the appropriate 
inference is a decision of the experimenter. Although I believe that, in 
many cases, the frequentist inference is the appropriate one, there are sit- 
uations where a Bayesian inference is more appropriate. Again, even in 
the question of inference, there is no (or, at least, little) need to argue. In 
consultation with the statistician, the experimenter should decide on the 
appropriate inference, and the statistician should help the experimenter 
make that inference in the best way possible. 

The point is that we shouldn't have Bayesian and frequentist statis- 
ticians, we should have Bayesian and frequentist inference, to be appro- 
priately used and recommended by all statisticians. 
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2. Computational Algorithms 

At the very least, I am heartened that some of this work has resulted in 
people being sensitized (but not in the sense of Professor Meng) to the 
impact of the algorithm on the inference. The concerns of Professor Pefia 
are well founded, and the guidelines of Professor Rios Insua are quite 
important. As Professor Schafer points out, focusing on the algorithm 
may be one step removed from our ultimate purpose, but it is an important 
step. As we will see in Section 4.2, problems can appear even with 
seemingly reasonable MC estimators. But even more importantly, I 
believe that we are all beginning to approach theoretical problems in 
a new way, always thinking of the computations, and being concerned 
more with algorithms than theorems. Such an approach can only enhance 
our thinking and broaden our influence. 

3. Posterior Distributions 

The power variance priors of model (4) are mainly chosen because (i) 
experimenters tend to believe that improper priors reflect impartiality and 
(ii) they result in easy to simulate conditionals. As Professor Pefia notes, 
the Jeffreys priors considered by Ibrahim and Laud (1991) indeed give 
proper posterior distributions, as will Professor Bernardo's reference 
priors, as they both control the tail at zero. Any reanalysis with these 
priors will result in coherent inferences, the only drawback being that 
the conditional distributions are not as easy to sample from. However, 
the inferences are definitely superior. 

The popularity of the power prior is an example of the algorithm 
overshadowing the statistics. Experimenters were so keen to make the 
Gibbs sampler work that they forgot to check the fundamentals of the 
model. Moreover, choosing a = b = 0 in (4), which usually is justified 
through an invariance argument, is extremely unfortunate as, for exam- 
ple, a = b = 1/2 would yield easily obtained conditionals and proper 
posterior distributions. 

Many discussants had extremely interesting comments and concerns 
about this topic. I can loosely group those concerns in the following 
subsections. 

3.1. Incompatibility. The property of compatibility of densities has 
received a lot of comment, and I am heartened that the discussants feel 
that this property is as important as Jim Hobert and I do. I should first 
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mention that, in response to Professors Garcfa-L6pez and Gonzfilez, the 
results of Theorem 2 hold for the Data Augmentation Algorithm, which 
can be considered bivariate (but possibly vector valued) Gibbs sampling. 

Professor Meng's discovery of his equation (1) is very interesting. 
It is one of those neat facts that, in hindsight, are totally obvious but, in 
foresight, are maddeningly difficult to see. I am not aware of the history 
of the representation, but had seen it presented as a special case of the 
Hammersley-Clifford Theorem by Robert (1996, Section 5.1.4, Lemma 
5.3). It is a wonderful learning equation. 

Professor Liu's comments on incompatible densities are also very 
interesting, and I would like to discuss how they fit in with Theorem 2. In 
Liu's notation, f l  and f2 are proper densities which are not functionally 
compatible, but Tx(x,x') = f fl(xly)f2(ylx')dy and its counterpart 
Ty define positive recurrent transition functions. In some sense this is 
"almost as good" as being compatible, as there will exist limiting prob- 
ability distributions. Thus, although the inference is more complicated, 
there is a legitimate inference to be recovered here. 

The key fact that gets these limiting distributions is that Tx and Ty 
define positive recurrent Markov chains. But what happens in the func- 
tionally compatible (but not compatible ) case? In this case, again using 
Liu's notation, the marginal distributions 71-1 and 7r2 will not be proper. 
This follows because, for example, f 71" 1 (y)dy = f f 7r 1 (x, y)dxdy and, 
by Theorem 2, this latter integral must be co, or else the densities would 
be compatible. Thus, the situation illustrated by Professor Lib cannot 
occur in the functionally compatible, but not compatible, case. As an 
example, consider the exponential densities of Example 3, which are not 
compatible. There we have 

f x, = Ye-xYx 'e -yX 'dy-  (x + ' 

and the invariant distribution is 7rl(X) = l /x,  which is easily verified 
to be the solution to ~-l(X) = f Tx(X,X')Trl(x')dx', and is not a proper 
distribution. 

Perhaps Professor Lib has uncovered a property more fundamental 
than compatibility. Compatibility will insure the existence of one lim- 
iting probability distribution, but if Tz and Ty define positive recurrent 
Markov chains there will be a collection of limiting probability distri- 
butions. In some cases, this may be enough to recover a reasonable 



Statistical Inference and Monte Carlo Algorithms 333 

statistical inference. Which leads us to subchains and submodels and 
the discussions of Professors George and Berger. 

3.2. Inferences from an Improper Posterior. The arguments of Professor 
George are not compelling, because in every case the full Gibbs chain 
clearly contains extraneous pieces. To put it more formally, suppose that 
we are interested in inference about the parameter fl, and have a model 
that results in the full, improper posterior 7r(a, fl[y), where a is another 
parameter of the model, considered as a nuisance parameter when the 
inference is about/3. Inferences about/3 would be based on the marginal 
posterior 7r(/3[y), which should satisfy 

7r(/3[y ) = / 7r(a, /31y)da. 
If so, then it is impossible for 7r(/31y ) to be proper, as 

f ~r(/3,y)d/3= f Tr(a,/3,y)dad/3=cc. 
Thus there is no meaningful inference about the parameter/3 that can be 
recovered from the full model. (I also suspect that any inference about 
/3 in this model would be incoherent in the sense of Heath and Sudderth 
1989). 

So what about the experience of Berger, and the examples of George? 
These are instances in which there is reason to abandon the full model. 
That is, the transformations of George, and the "identifiability" of B erger 
are procedures for changing the model. In my illustration above, the 
parameter a would be somehow eliminated, and only/3 would be con- 
sidered, with a proper 7r(/3ly ). So my point is that if a model results 
in an improper full posterior, there is no lower dimensional inference 
based on the full model that can make sense. However, there may be a 
lower dimensional model that makes sense. I have no problem with this 
solution, but realize that the model is being changed in a fundamental 
way; we are not recovering anything from the improper posterior distri- 
bution. The interesting procedure discussed by Meng, that of recursive 
deconditioning seems to be an excellent candidate for searching for such 
lower dimensional models 

3.3. Fixing Impropriety. If the posterior distribution is improper, an 
obvious fix is to replace it with a sufficiently "vague" proper prior that 
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is close to it. This is the spirit of Berger's suggestion to constrain cr > 0 
in Example 4. As the values of cr do not spend too much time near the 
singularity at zero (as noted at the end of Example 4), the constrained 
prior might be a reasonable approximation here. However, such a fix may 
not always work. Natarajan and McCulloch (1996) investigate the effects 
of replacing improper priors with vague, proper priors and find that there 
is no happy medium between "proper but diffuse" and "improper". In 
particular, in situations where the posterior does not exist, the Gibbs 
sampler can break down before the prior becomes diffuse enough to yield 
estimates that are reasonable approximations to the MLE. But I guess 
that my sentiments on this problem are most in line with Gustafson and 
Wasserman, when they state that to use a proper vague prior is "..simply 
to approximate an ill defined solution". 

The behavior of this Gibbs chain also answers the comment of Rios 
Insua, who expected more mass near zero. Such behavior was not ex- 
hibited by the chain, even with many restarts and many long runs (which 
should have eliminated any problems due to sample size or starting points 
- a concern of Garcia-L6pez and Gonzalez). This also illustrates, once 
again, the (apparent) futility of trying to have the Gibbs output check 
itself for propriety. 

4. Rao-Blackwellization 

The technique of Rao-Blackwellization has expanded beyond the origi- 
nal idea of conditioning on a sufficient statistic. Indeed, in my thinking, 
it has expanded to encompass a class of techniques that aim at improv- 
ing estimators by taking advantage of the structure of the problem in 
whatever manner is available. 

I don't believe that we have returned to the status quo, as stated by 
Berger. Even in situations where we end up with the same procedures, 
we also end up learning a lot (the gains of Rao-Blackwellization can 
be huge, and easy to obtain) and have not always returned to the status 
quo (the full Rao-Blackwellized estimator is still the only one to achieve 
substantial gains while retaining unbiasedness.) Although Femindiz 
rightly points out that the Rao-Blackwellization in the paper only applies 
to algorithms with ancillary random variables, the general approach goes 
far beyond this case. Perhaps the most important contribution is that we 
have stimulated thinking to search for better ways to process the output, 
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searches that have resulted in procedures such as those put forth by 
Professors Phillipe and Strawderman which, in our expanded definition, 
are again some sort of Rao-Blackwellization. 

Rao-Blackwellization is a type of smoothing, and the advantages 
of such smoothing are well documented. I was particularly interested 
in the interpretations of Professor Dawid that cast new light on impor- 
tance sampling, accept-reject, and weighted averages. Dawid's discus- 
sion clearly shows the drawback of the naive accept-reject average, and 
the advantage of the "Rao-Blackwellization" brought on by importance 
sampling. 

Before replying to some of the other comments on Rao-Blackwell- 
ization, I would like to elaborate on a small point that has intrigued me 
for a while. Although it is clear that importance sampling is a desir- 
able technique when compared to accept-reject or Metropolis-Hastings 
averages, its usefulness in the Gibbs sampler is not at all clear. For 
a bivariate Gibbs sampler (X1 ,  ]I1), (X2 ,  ]I2), "" ", (Xm, Ym), where 
we generate Xi ,.o f(xlYi) and Y/+I ~ f(ytXi), a Gibbs estimate 

1 m 
~G = N }--~i=1 h(Xi)  has  an  importance sampling counterpart 

1 ~ f(Xi) 
(~IS = -'~ i=1 f(XilYi) 

h(Xi) 

(ignoring the possibility that the marginal f(x) may not be computable). 
An interesting fact is that 

E [ f~)f(Xi) h(Xi) Xi] = h(Xi), 

so, here, the naive Gibbs average is the "Rao-Blackwellization" of the 
importance sampling estimate. However, dominance does not follow 
immediately, as there are covariances to contend with. But, I can show 
that for m = 2, var(Sa) < vat(Sis). Thus, this may be saying that 
the Gibbs sampler is already "smooth enough", and there is no room for 
further smoothing. 

4.1. Termwise Rao-Blackwellization. First a short comment on the 
discussions of Liu and Dawid about termwise conditioning, and the 
importance of the stopping rule-it cannot be ignored. The stopping rule 
brings us the fact that the accept-reject estimator (10) is both unbiased and 



336 George Casella 

"correct for constants". This is perhaps more clear when the estimator 
is written in the form (9), which can only be done with the knowledge of 
the value of t, that is, with knowledge of the stopping rule. The estimator 
6is of Liu's discussion, that is, 

n 
1 (m) 

~Is = n 

/=I 

cannot be directly related to either (9) or (10). It is a Rao-Blackwelliza- 
tion of 

60 = - I[Ui < w(yi)]h(yi) 
n 

i=1 

under independent sampling and 

v&r((~0) : v&r[E((~olY1,""",  Yn)]-1- E [ v a r ( 6 o l Y 1 , . - .  Yn)] 
n 

- -  + E [ v a r ( 5 o l Y 1 , - . .  
i=1  

= var[61s] + E[var(6olY1,..- Yn)] 
_> var[5is]. 

But this does not prove dominance of (R1) over 5AR of (10) and, in- 
deed, this is not the case as bAR will dominate for constant functions as 
indicated by Table 2. So, in fact, without correcting for constants, or 
taking into account  the stopping rule, neither 5Is nor 50 are particularly 
attractive estimators. 

Professors Liu and Dawid also make similar points about the desir- 
ability of using weights based on marginal chains, where possible. The 
marginalization seems to smooth things out, and make it sometimes pos- 
sible to achieve variance reduction. However, there are some unforeseen 
pitfalls here-a built in computational difficulty in the marginalization. 
There is a need for trade-off in that the original algorithms will often 
replace an analytic calculation with computer time and random variable 
generation, and the marginalization may require a difficult analytic cal- 
culation, a point noted by Liu. For example, the proposal of Dawid, 
which seems to carry along with it some excellent variance reduction 
potential, also carries along a large computational burden. The follow- 
ing simple example was pointed out by Christian Robert, where we take 
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7v(y) ~: e x p ( - y 2 / 2 )  , q(y[x) c< exp(-[x 2 + y2]/2) and the result- 
ing c~(x, y ) =  min{u(y)q(xly)/Tr(x)q(y[x), 1}, the usual Metropolis- 
Hastings choice. We then get a fl(x) of the form 

e (x )  =  (Ixl- x) - x) 

exp(x2/4) {1 - x)] + + x)]} + 

making for a difficult simulation algorithm. Perhaps this problem should 
be approached using decision theory, where we balance ease of compu- 
tation with variance reduction through a loss function. 

4.2. Subtleties. Next, I would like to elaborate on the point made by 
Gustafson and Wasserman about the failure of the average of conditional 
densities (ACD) to accurately estimate the marginal. At first, their ex- 
ample was bewildering to me, and there seemed to be no reason for such 
behavior. To better understand the "paradox" I reduced it to bare essen- 
tials, and learned the following. The failure of the ACD estimate has 
nothing to do with Gibbs sampling, impropriety, or Markov chains. It is, 
in fact, a failure to satisfy the assumptions of the Lebesgue Dominated 
Convergence Theorem! 

Consider that in their example all of the relevant distributions are 
proper, and the Ergodic Theorem applies. Thus, if we obtain the random 
variables ul ,  u2 , . . . ,  we must have for each t 

%21~,y(tlu(i), y) --+ %21~,u(tlu, y)m(uly)du, (R2) 
i=1 

where m(uly ) is the proper marginal distribution of u. So (R2) holds 
for each t in the Gustafson/Wasserman example. It seems that there is a 
real mystery as to why the convergence fails at 0. But a little reflection 
brings an interesting realization. Write 

7r(01y ) = lim 7rG21y(tly ) = lim J[" %21~,u(tlu, y)m(uly)du. t--~O t~O 
At t = 0, indeed for any t = to, the Monte Carlo sum converges to 

m 

1 > .%el~,y(tolu(i),y ) ~ f %zl~,v(tolu, y)m(uly)d u 
- -  d 

m i=1  

= / l i r a  %21~,y(tlu, y)m(ulu)du. 
J t-~t 0 
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Thus, when we construct a Monte Carlo sum such as in (R2), we are 
implicitly interchanging the order of limit and integration ! It is straight- 
forward to check that Dominated Convergence will hold here for every 
to > 0, but fails at to = 0. This example illustrates that things can go 
wrong even when all distributions are proper. 

4.3. Other Estimates. Comparing the performance of Rao-Blackwelli- 
zation to a weighted bootstrap, or double bootstrap, as suggested by 
Garcia-L6pez and Gonz~ilez, would be an interesting endeavor. As these 
procedures are related to importance sampling, we would expect reason- 
able performance and perhaps easy implementation. I hope to look into 
this in the future. 

There were other very interesting competitors to the Rao-Blackwell 
improvement suggested by other discussants. First, I would like to 
further explore the control-variate estimator proposed by Strawderman, 
and try to understand why it does so incredibly well. The simple answer 
seems to be that it is based on a much bigger sample size. But the more 
interesting answer is that it takes even better advantage of the algorithmic 
construction. 

I think of control variates as finding the appropriate unbiased es- 
timator of zero. To improve on an estimator 50(x) by the method of 
control variates, we find another estimator u(x), with known mean/z,  
and construct 61(x) =- 60(x) + b[u(x) - #] for some constant b. Then 
50 and 61 have the same expected value, and var(61) -- "car(60) + 
var(u) + 2cov(60, u). If we choose b to have the optimal value b = 
-cov(60,  u), then we achieve the maximal variance reduction var(51) = 
(1 - p2)var(60), where p is the correlation between 60 and u. Straw- 
derman has given us a methodology for implementing such a control 
variate scheme in any importance sampler. And why does it do so much 
better? The answer lies in his calculation of/2c.  In a control variate 
scheme, this is a known parameter, and Strawderman estimates it by 
taking a very large sample from 9. So, in effect, his estimator is based 
on a much larger sample size than 6Tr or 6ISr. Is this an unfair com- 
parison? You bet it is! Is this an unfair estimator. No! In fact, it shows 
us another clever way of recycling the rejected random variables! This 
control variate scheme deserves further investigation. I would be very 
interested in seeing how it compares to 6Tr or 6ISr when we keep the 
number of generated random variables the same for each estimator. 
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The discussion of Professor Phillipe is literally brimming with inge- 
nious ideas that not only yield new (and seemingly excellent) estimators, 
but also illustrates the benefits of intertwining algorithmic and statisti- 
cal thinking. Her Riemann sum estimator (1) appears to be a serious 
competitor to all of the other estimators developed in these pages, but I 
think the most interesting developments are in her subsequent estimator, 
where the instrumental density 9 is chosen to satisfy the boundedness 
requirements of her Propositions 1 and 2. What a terrific blending of 
algorithms and theory ! The use of the Gibbs average as a substitute for 
the marginal also has nice potential, although one must be on guard for 
difficulties such as those illustrated in Section 4.2. 

5. Other Concerns 

5.1. Multiple Paths. The question of multiple path Gibbs sampling was 
raised by both Bernardo and Garcfa-Ldpez and Gonzfilez, although in 
different contexts. Firstly, the number of paths used in the Gibbs sampler 
will not have any impact on propriety or compatibility, as these are 
properties of the underlying model, and the manner in which we observe 
the model cannot have any bearing. The question of how multiple paths 
can affect the variance of our estimate is also an interesting one, and 
prompted me to write the following. 

Suppose that we have data Y, and want to calculate an estimate 5(Y) 
of 7- = E[5(Y)]. Using a Monte Carlo algorithm to calculate 5(Y) , 
we obtain an output string from the algorithm, a sample T of length k, 
and calulate ~Sk(Y ) as our approximation of 5(Y). Note that we could 
refer to 6(Y) as 6oo(Y), the value of the estimate based on an infinite 
sample from our algorithm, that is, a sample Too of infinite length. We 
then also have that E[Sk(Y)[Too] = 5(Y). Now suppose that we run the 
algorithm many times ( for example, a multiple path Gibbs sampler), and 
let T1,. �9 �9 Tm be m independent output strings from the algorithm, each 

of size k. For each Ti calculate the valjues 5~ i) and take as our estimate 

~k -- ml ~im__l 5~i). The following variance analysis, which may be 
similar in spirit to those discussed by Schafer, should apply whether we 
are considering Bayesian or frequentist measures. 
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The variance of 5k is given by 

var[6k(Y)] = var(E[Sk(Z)lT~]) + E[var(Sk(Y)lT~)] 
1 2 

= var[5(Y)] + mE[~-~] 
(R3) 

where -r~ = var(b~ i) tTi), the variance that is only due to the algorithm, 
and is not due to the model. Now we can see the effect of multiple paths 
(m) and increasing the length of the chain (k). As k -* co, -r~ -+ 0, 
so increasing the length of the chain will reduce the variation due to the 
algorithm and also diminish the effect of Rao-Blackwellization (but, as 
we saw in Section 5.2, not erase it). However, increasing m, the number 
of paths, has no direct effect on z~, but still will reduce var(5). But 
this latter situation is less desirable, as we should strive to eliminate 
the variation due solely to the algorithm (which is under our control). 
Thus, this naive analysis seems to show that there is less to be gained 
in variance reduction, whether the criterion is Bayesian or frequentist, 
from running multiple chains. 

Equation (R3) may also answer the concern of Rfos-Insua that our 
stream of "endless data" eliminates the role of Bayesian statistics. In- 
deed, a more careful analysis of (R3), and the effects of changing k and 
m would almost certainly need some form of prior input to help balance 
the effects of the model and the algorithm. 

5.2. Accurate Approximations. Professor Strawderman reminds me of 
one of my own lessons, that of not forgetting that we are statisticians with 
a large box of tools. He brings the methods of higher-order asymptotics 
to bear on the Gibbs sampler, showing that the DiCiccio/Martin tail prob- 
ability approximation results in an extremely accurate approximation to 
the desired posterior probability in Section 5.1. Bravo. Professors Di- 
Ciccio and Wells also note the place for higher-order asymptotics, and 
make an interesting point about recovering a frequentist inference in the 
face of the Bayesian "catastrophe". Of course, whether the posterior 
distribution is proper has no bearing on the frequentist inference, which 
can always be made. However, under such catastrophic priors, such as 
a = b = 1, the Gibbs sampler cannot be used to produce reasonable fre- 
quentist inferences. Indeed, conjecturing based on the results of Nataran 
and McCulloch (1996), such catastrophic priors could leave us quite far 
from reasonable frequentist inference. 
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Also, as noted by DiCiccio and Wells, there is much interest now 
in "probability matching", or finding prior distributions (such as Welch- 
Peers) that result in posterior probabilities that match frequentist prob- 
abilities. Although such priors are necessarily improper, they also nec- 
essarily must result in proper posterior distributions, hence avoiding the 
impropriety problems. This suggests that probability matching could be 
a reasonable basis for choosing a default prior and should be acceptable 
to an experimenter as an "impartial" choice. Moreover, I think there is 
still room for Rao-Blackwellization for, at the very least, it will serve to 
minimize the error due solely to the Monte Carlo algorithm. 

5.3. Decision Theory. It is quite gratifying that the mixing of Decision 
Theory with algorithmic performance is viewed favorably by many of the 
discussants. The sentiments of Femindiz perhaps most closely reflect 
my own, in that I am hopeful for many benefits from embedding the 
algorithm in the appropriate decision problem. 

The research here is still in the beginning stages, so although we have 
interesting possibilities, there are still few definite recommendations. I 
have no answer for Berger on the performance of the optimal minimax 
scan, but it seems that the calculations of Professors DiCiccio and Wells 
hold promise that we are looking at a good criterion. They have provided 
more convincing evidence that the risk function does a more complete 
job in capturing the essentials of the Markov chain. 
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