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matrices based on cross-validation took roughly 12 min, with
the main computational burden being the repeated evaluation
and inversions of the 550× 550 matrices G(�) and G(�).
Due to the increased computation time, finding the “optimal”
� and � matrices in each step of the sequential algorithm ap-
peared no longer practically feasible. When adding 450 addi-
tional function evaluations (based on the components selected
by iterLap), computations were considerably slowed down: in-
version of the involved 1000× 1000 matrix took six times
longer compared with the 550× 550 matrix, and one might
expect an increase in the total computation time by a simi-
lar factor. Note that this is roughly in agreement with the fact
that matrix inversion is roughly a O(n3) process (if n denotes
the size of the matrix). From these considerations, it becomes
clear that the interpolation technique, as presented now, will
become quickly infeasible when a large number of function
evaluations is required to obtain an adequate approximation,
as matrix inversions are the main factor driving computation
time.

The essential difference between the two methods is thus in
their usage of target density evaluations. If it is cheap to per-
form a large number of evaluations, it appears iterLap (and also
well-chosen and efficiently implemented MCMC algorithms)
will outperform the interpolation technique, because the inter-
polation technique will itself get computationally intensive due
to the required matrix inversions. If evaluations of the target
are extremely expensive, so that only few evaluations are pos-
sible anyway, the interpolation technique seems to make better
usage of the evaluations performed.

3. FINAL REMARKS

The main computational bottleneck of the proposed proce-
dure is the need to evaluate and invert large-dimensional matri-
ces repeatedly (as in all kriging-type interpolation approaches).
This can get quite computationally expensive, but might pay
off, for example, when the posterior density is extremely time-
consuming to evaluate or when it is of great interest to obtain
a high-accuracy approximation of the posterior density itself.
However, an improvement of the procedure in this regard seems
possible and would certainly be of high interest.

In summary, I would like to congratulate Professor Joseph
for an interesting article that provides an innovative approach
on how to apply kriging-type techniques for interpolation of
positive functions, and I hope Professor Joseph’s article stim-
ulates further research in the application of these methods for
Bayesian computational problems. I would like to end my dis-
cussion with the wish that an implementation of the method will
be made publicly available, with concrete recommendations for
default or automated choices that have been tested on a variety
of example posteriors. The chance that that the methods gets
more widely adopted by applied statisticians will be increased
if an efficient and easy-to-use implementation is provided.
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1. IS DOIT JUST FOR QUASI-MONTE CARLO?

The key idea in this article is to approximate a complex poste-
rior density by a weighted average of normal densities, where the
weights are chosen by fitting a kriging model that interpolates
the unnormalized posterior. The accuracy of approximation de-
pends on the choice of evaluation points, and can be improved by
augmenting additional points. The method therefore is a gen-
eralization of the standard Laplace approximation based on a
single design point, namely a posterior mode. Mathematically
speaking, the proposed DoIt is a case of quasi-Monte Carlo
(QMC), which has an extensive literature on how to strategi-
cally place (deterministic) design points for efficient numerical

integration; for example, see Niederreiter (1978, 1992), Caflisch
(1998), L’Ecuyer and Owen (2009), Dick and Pillichshammer
(2010), and particularly, Stein (1987) and Owen (1998) regard-
ing the use of Latin hypercube design—as used in the article for
the initial space-filling design—for QMC.

A well-known and critical challenge for QMC is the curse
of dimension. DoIt, when used directly for approximating an
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integration, faces the same challenge, as discussed in Section 5
of the article in the context of hierarchical models. A known
strategy for making a QMC method as generally useful as a
genuine Monte Carlo (MC) is to reintroduce randomization into
the QMC method (i.e., the so-called “randomized QMC”) and,
more promisingly, to combine it with an MC method, as dis-
cussed and explored in Owen (1998). However, despite the ex-
tensive literature on both QMC and MC and their shared overall
goal, the overlap of the two literatures is surprisingly small, as
noted in Meng (2005). We therefore thank Joseph for promot-
ing the use of experiment design principles and techniques in
Bayesian computation, with a method that has good potential
to form a basis for an effective hybrid MC because of its clear
statistical construction. In particular, the normal mixture nature
of DoIt makes it a rather convenient and potentially effective
proposal for a Metropolis–Hasting algorithm, especially if it
can be extended further to the t-mixture type of approximations
as investigated by West (1993). Even if there is no need to use
the DoIt approximation as a proposal, it can still provide an
independent (partial) validation of a Markov chain Monte Carlo
(MCMC) method.

With our goal of exploring the possibility of a happy marriage
between QMC and MCMC, we touch upon two main issues in
this discussion. First, as pointed out by Joseph in the last two
paragraphs of his section 1, a line of research in Bayesian com-
putation from computationally expensive black-box posterior
distributions is based on the idea of approximating the logarithm
of the posterior distribution by a Gaussian process (GP) model,
and using the GP-based surrogate model as an approximate tar-
get density for MCMC or hybrid-MCMC sampling (Rasmussen
2003; Fielding et al. 2011). A comparison of the proposed DoIt
algorithm with the GP-based approach, which will be referred
to as GP-MCMC henceforth, is presented in Section 2 of the ar-
ticle. We feel, however, that this comparison might have created
an unintended impression that the effectiveness of GP-MCMC,
as a general strategy, is rather limited. We therefore probe this
comparison a little further in Section 1 of our discussion. Next,
we address an important aspect of the sequential design dis-
cussed in section 3.2 of Joseph’s article: judging the accuracy
of approximation. We propose a Hellinger distance-based crite-
rion for judging the accuracy of approximation in GP-MCMC
and conduct a preliminary exploration with the example used to
compare GP-MCMC and DoIt.

2. CAN GP-MCMC DO WELL WITH FEWER
EVALUATIONS?

In section 2 of Joseph’s article, DoIt and a particular
GP-MCMC algorithm are used to study the following two-
dimensional posterior density with banana-shaped contours
(Haario, Saksman, and Taaminen 2001):

p(θ | y) = φ
( (

θ1, θ2 + 0.03θ2
1 − 3

)′
; (0, 0)′, diag{100, 1}).

As observed from Joseph’s figure 9(a), the DoIt approxima-
tion obtained from a 100-run maximin Latin hypercube design
(MmLHD) chosen from the region [−20, 20]× [−10, 5] does
not give a good fit to the exact distribution. However, after
adding 75 more points, the DoIt approximation captures the
support and the shape of the distribution quite well. For the

hybrid MCMC algorithm proposed by Fielding et al. (2011),
the same 100-run MmLHD is used as the initial design, and
500 and 1500 samples are generated from the exploratory phase
and the sampling phase, respectively. Although the sampling
is very good, as evident from Joseph’s figure 11(b), it is re-
ported to have taken almost 90 min as compared with 3 min
taken by DoIt. Consequently, it is concluded that although both
methods perform well, GP-MCMC is computationally much
more expensive than DoIt.

The comparison raises two important questions. First, is the
complex hybrid MCMC algorithm with parallel tempering pro-
posed by Fielding et al. (2011) really needed for this two-
dimensional example? A simpler MCMC algorithm that uses
the basic idea of sampling from a GP-based surrogate may be
appropriate. Second, assuming that by a “sample” in the ex-
ploratory phase, Joseph means one representative point (typ-
ically the last) point of an MCMC chain, is it necessary to
generate a total of 500 samples (which also means potentially
prohibitively large 500 evaluations of the expensive posterior) in
the exploratory phase to adequately capture the contours of the
distribution? This also raises a related question: what should be
a reasonable guideline to judge whether the surrogate GP model
approximates the posterior distribution well? We will discuss
the second point elaborately in the next section.

At this point, we briefly introduce a rudimentary random-walk
MCMC algorithm using the GP approximation. Let D denote
the exploration region (design space) and π (x) the unnormalized
posterior density of interest. Let π∗ denote the corresponding
normalized density, and assume that the design space is an ade-
quate approximation to its support, that is,

π∗(Dc) ≈ 0, (1)

where Dc denotes the complementary set of D. As in DoIt,
we choose an initial space-filling (e.g., MmLHD) design of N
points in D. Let ŷ(x) denote the ordinary Kriging predictor
(Santner, Williams, and Notz 2003) of log π (x), and s2(x) de-
note the mean squared error (MSE) of the predictor. During the
exploratory phase, we use a random-walk Metropolis algorithm
to sample from the following target distribution:

p(x) ∝
{

exp(ŷ(x)+ s(x)), x ∈ D
exp(ŷ(x)), x ∈ Dc (2)

In the sampling phase, we sample from the target distribution
proportional to exp(ŷ(x)), as proposed by Fielding et al. (2011).
We emphasize here that it is wise to allow our sampling algo-
rithm to go beyond the design space D no matter how carefully
it was chosen in the first place.

Thus, denoting the current state at the (t − 1)th iteration by
x(t−1), we generate the proposal state

x′ = x(t−1) + ε,

where ε ∼ N ((0, 0)′, σ 2diag(1, 1)) with σ 2 = 1. The new state
is obtained as

x(t) =
{

x′ if r (t) ≤ min{1, p(x′)/p(xt−1)}
x(t−1) otherwise

,

where r (t) is a random sample drawn from Uniform[0, 1].
To see how well this algorithm works, we choose an MmLHD

design with N = 30 points and then sequentially generate 20
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Figure 1. Contours approximated from the initial 30-run design (left panel) and after adding 20 points sequentially (right panel). The online
version of this figure is in color.

additional points from the exploratory phase of the aforemen-
tioned algorithm, where each point is the last point of an MCMC
chain of length 2000. The left panel in Figure 1 shows the con-
tour plot generated from the kriging predictor obtained from the
30 initial design points, and the right panel shows the contour
plot after sequentially adding 20 points from the exploratory
phase of the algorithm. In both the panels, the dots represent the
initial 30 points and the numbers in the right panel indicate the
order of points generated sequentially. The left panel in Figure 2
shows an MCMC chain of 10,000 points drawn from the sam-
pling phase using the surrogate density obtained from the 50
sampled points.

We observe that the initial 30-point design approximates the
contour pretty well—in fact, substantially better than the DoIt

approximation based on 100 design points. The approximation
appears to be very good after adding only 20 points using our
rudimentary Metropolis algorithm based on the GP approxima-
tion. The time taken for this entire task was about 7 min, most of
which (about 6 min) was spent on adding the 20 points during
the exploratory phase. Generating 10,000 points during the sam-
pling phase barely took 1 min. Thus, the total time taken by our
GP-MCMC to approximate the posterior as good as one obtained
by using DoIt was found to be more (7 min vs. 3 min, as reported
by Joesph). But our GP-MCMC required far less evaluations
(50 vs. 175), which can be a substantial advantage for compu-
tationally expensive functions. In fact, if one follows Joseph’s
guideline of selecting 50d initial points (where d denotes the di-
mension), then a 100-run initial design provides an excellent GP

Figure 2. A total of 10,000 points generated using 50 (= 30+ 20) design points (left panel) and 100 (= 100+ 0) design points (right panel).
The online version of this figure is in color.
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approximation of the density, and one can immediately proceed
to the sampling phase, completely bypassing the exploratory
phase. An MCMC chain of 10,000 points generated from the
sampling phase using the GP approximation based on 100 initial
points is shown in the right panel in Figure 2. This entire task,
starting from the generation of the 100 design points to the gener-
ation of 10,000 samples took about 1 min, about one-third of the
reported time taken by DoIt. It is worth noting that our MCMC
scheme here is most inefficient, being a simple random walk
without any tuning of, for example, the variance of a step size ε.

3. IS THE APPROXIMATION ADEQUATE?

The foregoing example reinforces the importance of the ques-
tion raised in Section 1: in GP-MCMC, when should we switch
to the sampling phase from the exploratory phase? In other
words, when do we have enough confidence in the surrogate
model as an emulator of the true posterior? To the best of our
knowledge, this particular aspect has not been adequately ad-
dressed in the literature. Clearly, to make a decision, we need a
criterion that is able to judge the “goodness of fit” of the surro-
gate density. Establishing such a criterion may also be helpful
to judge when a DoIt approximation of a computationally ex-
pensive posterior is good enough.

We now propose a criterion based on the Hellinger distance
between two densities f and g, which is defined as

H (f, g) =
[

1

2

∫ (√
f (x)−

√
g(x)

)2
dx
]1/2

. (3)

It is well known that H (f, g) defined by (3) is related to the Bhat-
tacharya coefficient BC(f, g) given by

∫ √
f (x)g(x)dx through

the following identity:

H (f, g) =
√

1− BC(f, g). (4)

In the current problem, the two densities that need to be com-
pared are the true density π∗ proportional to π , and our sampling
target density p∗ proportional to p, where p is defined by (2).
Let their supports be, respectively, Sπ and Sp. Then, the Bhat-
tacharya coefficient between π∗ and p∗ can be written as

BC(π∗, p∗) =
∫
Sπ∩Sp

√
π (x)p(x)dx√∫

Sπ
π (x)dx

√∫
Sp

p(x)dx

=
∫
Sp

√
[π (x)/p(x)]p∗(x)dx√∫

Sp
[π (x)/p(x)]p∗(x)dx +�

, (5)

where

� =
∫
Sπ∩Sc

p
π (x)dx∫

Sp
p(x)dx

.

Consequently, when Sπ ⊆ Sp, which implies � = 0, the
Bhattacharya coefficient can be easily estimated—as proposed
by Meng and Wong (1996)—by

ˆBC =
1
k

∑k
j=1

√
ζj√

1
k

∑k
j=1 ζj

, (6)

where

ζj = π (ωj )/p(ωj ), (7)

and ω1, . . . , ωk are k draws from p. A beauty of the estimator
in (6) is that it is numerically constrained to be inside the unit
interval, just as its estimand (5). Of course, we need to be mind-
ful that its computation involves k additional evaluations of the
posterior π , so we often will keep k relatively small (compared
with the overall number of draws) if evaluating π is expensive.
[Meng and Wong (1996) adopted the Hellinger distance because
the variance of their bridge sampling estimator is bounded both
above and below by simple functions of the Hellinger distance
between the two densities for which the ratio of their normaliz-
ing constants is the estimand.]

To apply this method, recall that, in the exploratory phase
of our algorithm applied to the banana-shaped function in Sec-
tion 1, we drew 2000 MCMC samples in each iteration and
chose the last sample as our next design point. Because these
2000 points were drawn from p, a subset of these points could
be used to compute ˆBC from (6). Figure 3 shows a plot of the
estimated Bhattacharya coefficients for 20 successive iterations
during the exploratory phase. The coefficients were estimated
using k = 20 points randomly chosen from 2000 MCMC draws
in each iteration. We observe that all the estimated coefficients
are greater than 0.9 (suggesting that the approximation from the
initial 30-run design is reasonable) and appear to converge to
1.0 after about 16 iterations (the solid horizontal line is 0.99).

At this point, it might be tempting to suggest a switching
rule such as: “switch to the sampling phase if m consecutive
estimated Bhattacharya coefficients are above a certain thresh-
old δ.” Cautions are needed, however, for implementing such a
rule. The obvious one is that we need to take into account the
variability in (6) when we compare it to a threshold. This can
be achieved by using a lower confidence bound, say ˆBC − 2τ̂k ,
instead of ˆBC, in making the comparison. Here, τ̂k is an
estimate of the standard error of ˆBC, which can be obtained in
various ways, including direct MC replications using existing
draws (e.g., a part of the 2000 draws in our example) and taking

Figure 3. Plot of the Bhattacharya coefficient. The online version
of this figure is in color.

TECHNOMETRICS, AUGUST 2012, VOL. 54, NO. 3

D
ow

nl
oa

de
d 

by
 [

H
ar

va
rd

 L
ib

ra
ry

] 
at

 0
6:

23
 0

5 
M

ay
 2

01
4 



COMMENT 231

advantage of theoretical formulas such as Equation (8.7) in
Meng and Wong (1996). Details will be reported in a future
work.

The more difficult one is to deal with the positive bias in (6)
when our sampling state space Sp fails to cover the actual state
space Sπ . Such a failure is likely in practice even when in the-
ory we design Sp = Sπ (e.g., as in our random-walk algorithm),
because it reflects the very problem we try to resolve, namely
our MCMC algorithm may fail to explore all the regions with
appreciable masses under the desired π ; see Meng and Schilling
(1996) for a numerical illustration of this aspect. Such an over-
estimation, if not taken into account appropriately, would then
lead us to prematurely make the switch with a higher probability
than we plan.

This bias issue is hard to deal with precisely because it is
not possible to use samples inside Sp to explore masses outside
Sp under π , unless we use the knowledge of how masses outside
Sp are related to those from inside of it. Such knowledge, for
example, may provide us with a convenient upper bound on the
relative overestimation, which then would allow us to adjust the
threshold δ to prevent (statistically) the premature switching.
Clearly, a thorough investigation of such issues is needed, and
so is an in-depth investigation of the effects of k, m, and δ (in the
switching rule) on the computation time and cost under different
situations. Furthermore, in our example, we required 20× 20 =
400 evaluations of the posterior π simply to judge the accuracy
of approximation. To circumvent this problem, one can, for
example, consider estimating the Bhattacharya coefficient at an
interval of several iterations during the exploratory phase.

There are, of course, multiple ways to improve both the com-
putational efficiency and the statistical efficiency of such al-
gorithms, leading to a good number of interesting and useful
research projects. We therefore want to thank Joseph again, not

only for proposing DoIt, but also for inspiring us to search for
those hybrid MCMC methods that will do well.
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1. OVERVIEW

The innovative article by Joseph (2012) incorporates some
elements from the computer modeling literature and further
develops them for the all-important question in Bayesian statis-
tics of approximating a complex posterior distribution. Markov
chain Monte Carlo (MCMC) has made all posterior distributions
accessible in theory, but the amount of computing time needed
to get a good estimate can easily exceed available resources. The

article provides a promising new approach when the posterior
is expensive to evaluate.
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