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Abstract: Let pi(w), i = 1, 2, be two densities with common support where each

density is known up to a normalizing constant: pi(w) = qi(w)/ci. We have draws

from each density (e.g., via Markov chain Monte Carlo), and we want to use these

draws to simulate the ratio of the normalizing constants, c1/c2. Such a compu-

tational problem is often encountered in likelihood and Bayesian inference, and

arises in fields such as physics and genetics. Many methods proposed in statistical

and other literature (e.g., computational physics) for dealing with this problem are

based on various special cases of the following simple identity:

c1

c2
=

E2[q1(w)α(w)]

E1[q2(w)α(w)]
.

Here Ei denotes the expectation with respect to pi (i = 1, 2), and α is an arbitrary

function such that the denominator is non-zero. A main purpose of this paper

is to provide a theoretical study of the usefulness of this identity, with focus on

(asymptotically) optimal and practical choices of α. Using a simple but informa-

tive example, we demonstrate that with sensible (not necessarily optimal) choices

of α, we can reduce the simulation error by orders of magnitude when compared

to the conventional importance sampling method, which corresponds to α = 1/q2.

We also introduce several generalizations of this identity for handling more compli-

cated settings (e.g., estimating several ratios simultaneously) and pose several open

problems that appear to have practical as well as theoretical value. Furthermore,

we discuss related theoretical and empirical work.
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1. Motivation and Applications

A computational problem arising frequently in statistical and other analyses
is the computation of normalizing constants for probability densities from which
we have random draws. More generally, finding definite integrals of positive
functions can be formulated as a problem of computing normalizing constants.
Typically, we are interested in the ratios of such normalizing constants or gener-
ally the relative values of normalizing constants with respect to a reference value
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(which can be chosen to be known). Mathematically, this problem can be formu-
lated as follows. Let pi(w), i = 1, 2, be two densities (with respect to a common
measure, which will be implicit hereafter), from which we have (dependent or
independent) draws. We know each density up to a normalizing constant,

pi(w) =
qi(w)

ci
, w ∈ Ωi ⊂ Rd, (1.1)

where Ωi is the support of pi(w), and the unnormalized density qi(w) can be
evaluated at any w ∈ Ωi, i = 1, 2. We are interested in calculating the ratio of
the two normalizing constants: r = c1/c2.

As a direct application, consider the problem of computing likelihood ratios
for hypothesis testing. Let w be the data and i be the index of the likelihood at
parameter value θ = θi, that is, pi = p(w|θi), qi(w) = q(w|θi), ci = c(θi), i = 1, 2.
Then

L(θ2|w)
L(θ1|w)

=
p(w|θ2)
p(w|θ1)

=
q(w|θ2)
q(w|θ1)

× c(θ1)
c(θ2)

.

Often, for a given observation w and a parameter θ, the density p(w|θ) is easy to
evaluate up to a multiplicative constant, i.e., q(w|θ) is known. The calculation of
the likelihood ratio then reduces to the calculation of the ratio of the normalizing
constants.

Another use of this formulation in likelihood inference occurs in the compu-
tation of likelihood ratios in the presence of missing (or latent) data. Specifically,
let Y = (Yobs, Ymis) be the complete data consisting of the observed part, Yobs,
and the missing (latent) part, Ymis. Then

p(Ymis|Yobs, θ) =
p(Y |θ)

p(Yobs|θ)
=

L(θ|Y )
L(θ|Yobs)

. (1.2)

In other words, the observed-data likelihood can be viewed as a normalizing
constant of the conditional density: p(Ymis|Yobs, θ), with the complete-data like-
lihood, L(θ|Y ) being the unnormalized density. This formulation has important
applications, for instance, in genetic linkage analysis where direct calculation of
the likelihood of θ (e.g., locations of disease genes relative to a set of known
markers) based on the observed data (e.g., genotypes of each individual marker
for some members of a pedigree) is typically prohibitive for a large pedigree
with many loci. On the other hand, given the full information such as the allele
types each person in the pedigree inherited from his/her parents, the computa-
tion of the complete-data likelihood is straightforward, and simulating Ymis from
p(Ymis|Yobs, θ) is feasible (e.g., Irwin, Cox and Kong (1994)). Another applica-
tion of (1.2) is in the context of monitoring the convergence of the Monte Carlo
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EM algorithm (e.g., Wei and Tanner (1990)), as detailed in Meng and Schilling
(1996).

In Bayesian inference, a variety of evaluations of density ratios can be for-
mulated as computations of ratios of normalizing constants. For example, the
marginal density of the data, p(Y ), is a normalizing constant of the posterior
density:

p(θ|Y ) =
p(Y |θ)p(θ)

p(Y )
, (1.3)

where p(θ) is a prior density of θ. Calculating the ratio of p(Y (i1)) and p(Y (i2)),
for instance, arises in congenial Bayesian inference with multiply-imputed data
sets (Meng (1994)), where Y (i1) and Y (i2) represent two imputed data sets, and
random draws from p(θ|Y (i)) are available as a by-product of complete-data
Bayesian analysis performed on each completed-data set created by multiple im-
putation. The ratios are needed for calculating importance weights for applying
the extended multiple-imputation combining rules discussed in Meng (1994), Sec.
5.

A slightly more complicated application arises in computing the ratio of
marginal posterior densities of a parameter λ, which is a component of the model
parameter θ = (λ, φ). In other words, we want to compute the posterior odds

p(λ1|Y )
p(λ2|Y )

≡ p(Y |λ1)
p(Y |λ2)

× p(λ1)
p(λ2)

.

Assuming the prior odds p(λ1)/p(λ2) are known, the problem reduces to com-
puting the Bayes factor p(Y |λ1)/p(Y |λ2). The direct computation, however, is
often difficult because of the integration:

p(Y |λ) =
∫

p(Y |λ, φ)p(φ|λ)dφ.

We notice, however,

p(φ|Y, λ) =
p(φ, Y |λ)
p(Y |λ)

=
p(Y |λ, φ)p(φ|λ)

p(Y |λ)
,

and thus p(Y |λi) can be viewed as ci of (1.1), with pi = p(φ|Y, λi) and qi =
p(Y |λi, φ)p(φ|λi), i = 1, 2. Simulation from p(φ|Y, λ) can often be facilitated by
the Gibbs sampler (Geman and Geman (1984)), or more generally by iterative
simulations (e.g, Gelfand and Smith (1990); Gelman and Rubin (1992)). For
more details on Bayes factors, see the recent review article by Kass and Raftery
(1995).

Finally, the problem of estimating a ratio of normalizing constants has been
of great interest in computational physics, where the problem is known as esti-
mating free energy differences (e.g., Bennett (1976), Torrie and Valleau (1977),
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Voter (1985)). Since these papers are most related to our presentation, we will
discuss them in more detail in Section 9, together with discussion of other related
work. In other literature, importance sampling with simple identities, such as

c1

c2
= E2

[q1(w)
q2(w)

]
, (when Ω1 ⊆ Ω2), (1.4)

where Ei denotes the expectation with respect to pi (i = 1, 2), has played a key
role in simulating c1/c2 (e.g., Ott (1979), Geyer and Thompson (1992), Green
(1992)). In particular, in deriving the method of “reweighting mixture”, Geyer
(1994) proposed the method of “reverse logistic regression” for computing several
normalizing constants simultaneously, a method that can be derived by iteratively
choosing q2 in (1.4) as a mixture density, as we will detail in Section 7.

This paper provides a theoretical study of simulating c1/c2 via generaliza-
tions of (1.4) that permit efficient use of random draws from more than one den-
sity; drawing from several densities is a task that is typically only slightly more
complicated than simulating from one of them when these densities are from the
same parametric family. These generalizations (presented in Sections 2, 7, and
8) are most useful with the currently popular iterative simulation using Markov
chains (e.g., Tanner and Wong (1987), Gelfand and Smith (1990), Gelman and
Rubin (1992), Geyer and Thompson (1992), Smith and Roberts (1993), Besag
and Green (1993)), as evidenced in some of their very successful applications
in computational physics (e.g., Bennett (1976)). For theoretical tractability, we
will first (in Section 3) assume independence among draws when deriving results
regarding Monte Carlo errors. We then extend (in Section 6) our exploration,
via the notion of “effective sample sizes”, to more general settings involving de-
pendent draws. Empirical studies, as reported in DiCiccio, Kass, Raftery and
Wasserman (1996) and in Meng and Schilling (1996) (see Section 9), suggest that
the optimal or near optimal procedures constructed under the independence as-
sumption (see Sections 4 and 5) can work remarkably well in general, providing
orders of magnitude improvement over other methods with similar computational
efforts. Nevertheless, we hope our exploration under general settings will stim-
ulate further research, which may provide additional reduction of Monte Carlo
errors in situations where the dependence among draws is strong.

2. A Simple Identity

Following the notation of (1.1), let α(w) be an arbitrary function defined on
Ω1 ∩ Ω2, the common support of p1 and p2, such that

0 <
∣∣∣ ∫

Ω1∩Ω2

α(w)p1(w)p2(w)dw
∣∣∣ < ∞. (2.1)
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The existence of such an α (the values of α outside Ω1 ∩ Ω2 are irrelevant) is
guaranteed if and only if ∫

Ω1∩Ω2

p1(w)p2(w)dw > 0, (2.2)

implying that the common support of p1 and p2 is non-trivial. The quantity in
(2.2) is a measure of the “overlap” between p1 and p2, and in Section 9 we will
discuss a method that can handle the “no-overlap” cases (i.e., when (2.2) does
not hold).

Given any α satisfying (2.1), we have∫
Ω2

q1(w)α(w)p2(w)dw∫
Ω1

q2(w)α(w)p1(w)dw
=

c1

c2
×
∫
Ω1∩Ω2

α(w)p1(w)p2(w)dw∫
Ω1∩Ω2

α(w)p1(w)p2(w)dw
,

which yields the key identity

c1

c2
=

E2[q1(w)α(w)]
E1[q2(w)α(w)]

. (2.3)

This identity unifies many identities used in the literature for simulating nor-
malizing constants or other similar computation. The most general one of them,
to our best knowledge, was given by Bennett (1976), who proposed (2.3) in the
context of simulating free-energy differences with qi = exp(−Ui), where Ui is
the temperature-scaled potential energy and i = 1, 2 indexes two canonical en-
sembles on the same configuration space. Taking α(w) = q−1

2 (w) leads to (1.4),
assuming Ω1 ⊆ Ω2. When Ω1 = Ω2 and Ω1 has a finite Lebesgue measure, taking
α(w) = [q1(w)q2(w)]−1 leads to a generalization of the “harmonic rule” given in
Newton and Raftery (1994) (also see Gelfand and Dey (1994)),

c1

c2
=

E2[q−1
2 (w)]

E1[q−1
1 (w)]

. (2.4)

Before discussing in detail the choices of α, we first define the Monte Carlo es-
timator of c1/c2 based on (2.3). Given random draws wi1, . . . , wini from pi(w), i =
1, 2, and a choice of α, the corresponding estimator for r = c1/c2 is

r̂α =
n−1

2

n2∑
j=1

q1(w2j)α(w2j)

n−1
1

n1∑
j=1

q2(w1j)α(w1j)
. (2.5)

For any α satisfying (2.1), r̂α consistently estimates r as long as the sample aver-
ages in (2.5) converge to their corresponding population averages, a requirement
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that is met by both independent Monte Carlo and Markov chain Monte Carlo
simulations under standard regularity conditions (e.g., ergodicity).

3. Asymptotically Optimal Choice of α

Since the estimator r̂α depends on α, a natural question of interest is the
optimal choice of α. A standard measure of accuracy in such a setting is the
relative mean-square error:

RE2(r̂α) ≡ E(r̂α − r)2

r2
, (3.1)

where the expectation is taken over all random draws. The exact calculation of
(3.1) depends on how the simulation is conducted, and typically is intractable
because r̂α is a ratio estimator. With large numbers of draws from each density,
however, we can approximate (3.1) by its first-order term, which essentially ig-
nores the (negligible) bias term; we will use “ .= ” to denote a first-order equality.
Under the assumption that {wi1, . . . , wini} are identical and independent draws
from pi(w), i = 1, 2, and that the two sets of draws are independent, we have (see
Appendix for proof)

RE2(r̂α) .=
1

ns1s2

{∫
Ω1∩Ω2

p1p2(s1p1 + s2p2)α2dw

(
∫
Ω1∩Ω2

p1p2αdw)2
− 1

}

=
1
n

∫
Ω1∩Ω2

p̃1p̃2(p̃1 + p̃2)α2dw

(
∫
Ω1∩Ω2

p̃1p̃2αdw)2 − 1
n1

− 1
n2

, (3.2)

where n = n1 + n2, si = ni/n, p̃i = sipi, and si(i = 1, 2) are assumed to be
asymptotically between 0 and 1. Bennett (1976) gave the same expression as
the asymptotic mean-squared error of log(r̂α), which is asymptotically the same
as the relative error in (3.1); he also correspondingly gave the following result
without proof.

Theorem 1. The right side of (3.2), as a functional of α, is minimized at

αO(w) ∝ 1
s1p1(w) + s2p2(w)

≡ 1
p̃1(w) + p̃2(w)

, w ∈ Ω1 ∩ Ω2, (3.3)

with the minimum value
1
n

[∫
Ω1∩Ω2

(p̃−1
1 + p̃−1

2 )−1dw
]−1 − 1

n1
− 1

n2
. (3.4)

Proof. By the Cauchy-Schwartz inequality

(∫
Ω1∩Ω2

p̃1p̃2αdw
)2 ≤

{∫
Ω1∩Ω2

[√ p̃1p̃2

p̃1 + p̃2

][√
p̃1p̃2(p̃1 + p̃2) |α|

]
dw
}2
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≤
{∫

Ω1∩Ω2

p̃1p̃2

p̃1 + p̃2
dw
}{∫

Ω1∩Ω2

p̃1p̃2(p̃1 + p̃2)α2dw
}
.

Thus, ∫
Ω1∩Ω2

p̃1p̃2(p̃1 + p̃2)α2dw

(
∫
Ω1∩Ω2

p̃1p̃2αdw)2
≥
[∫

Ω1∩Ω2

p̃1p̃2

p̃1 + p̃2
dw
]−1

,

where equality holds if and only if (up to a zero-measure set)
√

p̃1p̃2(p̃1 + p̃2)α ∝
√

p̃1p̃2/(p̃1 + p̃2) ,

which yields (3.3).

This (asymptotically) optimal choice is intuitively appealing. It represents
(the inverse of) the mixture of p1 and p2 with mixture proportions determined
by the sampling rates of the two distributions. It is, however, not of direct use
because αO depends on the unknown ratio r = c1/c2, since

αO ∝ 1
s1q1 + s2rq2

. (3.5)

Furthermore, it depends on the ratio of the two sample sizes, because αO ∝
1/(q1 +(n2/n1)rq2). When the draws are independent, we know the exact sample
sizes, n1 and n2. With dependent draws, n1 and n2 are no longer the true sample
sizes, since the dependence among draws typically reduces the “effective sample
sizes” and thus using n1/n2 may lead to large simulation errors. We will discuss
this issue in Section 5 and Section 6 after we deal with the issue of unknown r

in (3.5).

4. Iterative Choice of α

The expression (3.5) immediately suggests an iterative method of choosing
α. Starting with an initial guess of r, r̂

(0)
O > 0, we calculate our estimate of r iter-

atively by using the optimal α based on the previous estimate of r. Specifically,
at the (t + 1)st iteration, we compute

r̂
(t+1)
O =

1
n2

n2∑
j=1

[
q1(w2j)

s1q1(w2j)+s2r̂
(t)
O

q2(w2j)

]
1
n1

n1∑
j=1

[
q2(w1j)

s1q1(w1j)+s2r̂
(t)
O q2(w1j)

] ≡
1
n2

n2∑
j=1

[
l2j

s1l2j+s2r̂
(t)
O

]
1
n1

n1∑
j=1

[
1

s1l1j+s2r̂
(t)
O

] , (4.1)

where lij = q1(wij)/q2(wij) (j = 1, . . . , ni, i = 1, 2) need only be computed once
at the beginning of the algorithm. (For simplicity, we assume qi(wij) > 0 for all
i and j.)
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Since for any r̂
(0)
O > 0, r̂(1)

O is a consistent estimator of r, by induction it is
easy to show that every iterate r̂

(t)
O is a consistent estimator of r as n → ∞.

Furthermore, we have the following result, the proof of which is given in the
Appendix.

Theorem 2. For any given set {lij > 0 : 1 ≤ j ≤ ni, i = 1, 2}, the iterative
sequence {r̂(t)

O , t ≥ 0} defined by (4.1) converges to a unique limit, r̂O, with the
property

|r̂(t+1)
O − r̂O| < |r̂(t)

O − r̂O|, if r̂(t) �= r̂O (t ≥ 0).

Furthermore, when all draws are independent,

RE2(r̂O) .=
1
n

[∫
Ω1∩Ω2

(p̃−1
1 + p̃−1

2 )−1dw
]−1 − 1

n1
− 1

n2
.

In other words, r̂O achieves the same asymptotic minimum relative mean-
square error (hereafter, minimum error) as does r̂αO

, the estimator based on the
(infeasible) optimal choice αO of (3.5). Bennett (1976) suggested adjusting a pair
of equations until a “self-consistent” solution is reached to deal with the problem
that the optimal α depends on r, a method that can be viewed as an implicit
construction of the iterative scheme of (4.1), although Bennett (1976) did not
discuss the issue of convergence. We note that the first-order approximation in
Theorem 2 for RE2(r̂O) becomes exact in the trivial case p1 = p2, for which
case r

(t)
O ≡ r, and thus RE2(r̂O) = 0. We also note that, upon convergence,

the numerator of (4.1) provides a consistent estimator of
∫
Ω1∩Ω2

(p1p2)/(p̃1 +
p̃2) dw, and thus a consistent estimator of RE2(r̂O) is obtained without additional
computation. When the draws are not independent, the estimation of RE2(r̂O)
is generally quite complicated (see Geyer (1994)). But if one is implementing
multiple sequences, as Gelman and Rubin (1992) advocate, then constructing
variance estimates is an easy task with the replications.

It is informative to compare (4.1) with a similar iterative scheme based on the
well-known scheme of importance sampling using a mixture (e.g., Geyer (1994)).
If we treat the pooled sample {w1, . . . , wn} = {wij , j = 1, . . . , ni, i = 1, 2} as a
sample of independent and identical draws from the mixture s1p1 + s2p2, we can
construct, by analogy to (4.1), the following iterative scheme

r̂
(t+1)
M =

1
n

n∑
j=1

[
q1(wj)

s1q1(wj)+s2r̂
(t)
M

q2(wj)

]
1
n

n∑
j=1

[
q2(wj)

s1q1(wj)+s2r̂
(t)
M

q2(wj)

] , t = 0, 1, . . . (4.2)

The rationale behind (4.2) is clear: if r̂
(t)
M = r, then the numerator and the

denominator would be consistent estimates of 1 and c2/c1 respectively, and thus
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the ratio would estimate c1/c2. Iteration is needed to update the approximation
to the mixture density and thus to ensure consistency in the limit. Since the
numerator of (4.2) converges to 1, a third iterative scheme is to replace the
numerator of (4.2) by 1, which yields a sequence that converges to the “reverse
logistic regression” estimator described in Geyer (1994) for the two-density cases
(for more general cases, see Section 7).

When si > 0, i = 1, 2, the first part of Theorem 2 also applies to {r̂(t)
M , t ≥ 0},

that is, it converges to a unique limit, r̂M , and |r̂(t+1)
M − r̂M | < |r̂(t)

M − r̂M | if
r̂
(t)
M �= r̂M (t ≥ 0). Furthermore, it is easy to show (see Appendix) that r̂M = r̂O,

that is, the two iterative schemes yield the same limit. The same conclusions also
apply to the third iterative scheme discussed earlier. The fundamental difference
between scheme (4.1) and scheme (4.2) (or its modification, the third scheme),
however, is that the former provides a consistent estimator at each iteration,
whereas the latter does so only in the limit. It is thus reasonable to expect that
(4.1) converges more rapidly than the other iterations. This has been confirmed
in an empirical study by Meng and Schilling (1996) (see Section 9 for more detail).

When s1 = 0, that is, when all samples are drawn from p2, (4.1) reduces to
the non-iterative importance-sampling estimator based on (1.4), that is,

r̂S =
1
n

n∑
j=1

q1(wj)/q2(wj), (4.3)

which has an exact relative mean-square error given by (under the assumption
of independent draws)

RE2(r̂S) =
1
n

∫
Ω2

(p1 − p2)2

p2
dw. (4.4)

Similarly, when s2 = 0, the inverse of the right hand side of (4.1) provides an
unbiased estimate of c2/c1, with (4.3) and (4.4) adjusted accordingly by switching
the subscripts 1 and 2. It is well-known that the right hand side of (4.4) can
be infinite because p1/p2 may not be square integrable with respect to p2. In
contrast, the right hand side of (3.2) is finite with many choices of α, as we will
illustrate in the next section. However, mathematically, it is possible for (4.4) to
be less than (3.4), because the sample size in (4.4) is n, not n1 or n2.

5. Non-iterative Choice of α

Although the iterative choice of α given in (4.1) leads to an estimator that
achieves the minimum error, it is also desirable in practice to have simple non-
iterative procedures that have good, not necessarily optimal, properties. Such
a non-iterative estimator, for example, can be used as a starting value of the
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iteration defined in (4.1). Also, such estimators can be better than r̂O when the
draws are not independent. In this section, we discuss several simple choices of α

that seem appealing and to have good potential. For simplicity of presentation,
for each chosen α, we only list the corresponding identity as a special case of
(2.3), with r being subscribed to identify its estimator.

(I) The Geometric, α = (q1q2 )−1/2:

rG =
E2[(q1/q2)1/2 ]
E1[(q2/q1)1/2 ]

. (5.1)

Compared to the original importance ratio, q1/q2 of (1.4), the square root in (5.1)
not only stabilizes the magnitudes of the importance ratios, but also guarantees
that both (q1/q2)1/2 and (q2/q1)1/2 are square integrable with respect to p2 and
p1, respectively. Furthermore, the (asymptotic) relative error of r̂G has a simple
and appealing form (derived from (3.2) with α = (q1q1)−1/2)

RE2(r̂G) .=
1

ns1s2

{ b

[
∫
Ω1∩Ω2

(p1p2)1/2 dw]2
− 1

}
, (5.2)

where b = s1p1(Ω1∩Ω2)+s2p2(Ω1∩Ω2), with pi(Ω1∩Ω2) =
∫
Ω1∩Ω2

pi(w)dw, i =
1, 2. Note that b ≤ 1, with equality when Ω1 = Ω2, a condition that typically
holds in practice. Rewriting (5.2), we obtain

RE2(r̂G) .=
1

ns1s2

{
b
[
1 − 1

2
H2(p1, p2)

]−2 − 1
}
, (5.3)

where

H(p1, p2) =
[ ∫

Ω1∪Ω2

(
√

p1 −√
p2)2 dw

] 1
2 (5.4)

is the Hellinger distance between p1 and p2. This connection with the Hellinger
distance will be further discussed in Section 8.

When Ω1 = Ω2 (and thus b = 1), we note from (5.2) that if r̂G is used,
then the optimal allocation of sample sizes, given n1 + n2 = n, is n1 = n2 =
n/2. Equal-sample-size allocation, or more generally, equal-time allocation if
sampling from the two densities requires different amount of time per draw, was
also recommended by Bennett (1976) based on a more general study.

(II) The Power Family, α(k,A) = [q1/k
1 + (Aq2)1/k]−k, for pre-selected constants

A > 0 and k > 0:

rP (k,A) =
E2

[
1 + (Aq2/q1)1/k

]−k

E1

[
(q1/q2)1/k + A1/k

]−k
. (5.5)
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This class of α’s is motivated by both r̂O and r̂G. When the draws are indepen-
dent, the optimal α given by (3.5) corresponds to α(1, AO) with AO = rn2/n1;
and thus a sensible choice of A can make r̂P (1, A) close to the optimal estimator
r̂O. On the other hand, bad choices of A can result in large errors for r̂P (1, A), as
we will illustrate in the next section. When draws are not independent, however,
the matter is more complicated, because n2/n1 does not necessarily correspond
to the ratio of the effective sample sizes; here we conjecture that the optimal
choice of α when draws are dependent is still of the form α(1, A) but with A

determined by r and the ratio of the effective sample sizes. Since it is gener-
ally difficult to decide upon the effective sample sizes with Markov chain Monte
Carlo, it seems to be more relevant in practice to search for good choices of α’s
that are not too sensitive to the effective sample sizes.

This motivates us to consider α(k,A) for k other than 1. We note that
limk→∞ 2kα(k,A) = (Aq1q2)−1/2, which implies that when k approaches +∞,
r̂P (k,A) approaches r̂G based on (5.1) for any A > 0, because multiplying α

by any constant factor dose not change the ratio estimator. This suggests that
r̂P (k,A) may become less sensitive to A, and thus to the effective sample sizes, for
large k. However, an undesirable feature of r̂G (corresponding to k = +∞) is that
the resulting integrands, (q1/q2)1/2 and (q2/q1)1/2, are not necessarily bounded,
in contrast to the integrands in (5.5), which are bounded by max{1, A−1}. The
unboundness is a main source of large variations of the resulting estimators. This
suggests a compromise when choosing k in order to achieve small Monte Carlo
error when the effective sample sizes are hard to determine: we want bounded in-
tegrands as well as robustness against the misspecification of the effective sample
sizes and thus of A. We also note that when k → 0, α(k,A) → 1/max(q1, Aq2),
another interesting choice of α. We will investigate the choice of k in the next
section with a specific example; how to choose k in general is an interesting open
problem.

(III) Constant, α = 1 :
rC = E2(q1)/E1(q2). (5.6)

This choice of α was suggested by Andrew Gelman, and works remarkably
well in the simple example of the next section. Its full potential remains to be
explored. One disadvantage of (5.6) is that, unlike (5.1) or (5.5), the integrands
in (5.6) are not constrained to be a constant when q1 = q2. As a consequence,
RE (r̂C) > 0 even when q1 = q2 and thus r is known to be 1.

6. A Theoretical Illustration

To examine to what extent the choice of α can affect the error of r̂α, we
provide theoretical calculations of RE2 (r̂α) for α’s discussed in previous sections
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with a simple and informative example. Let p1 = N(0, 1), p2 = N(µ, 1), where
µ is an arbitrary constant. In this case, both normalizing constants are known
and can be chosen arbitrarily. We choose c1 = c2 for simplicity.

We start with r̂S of (4.3), which is the conventional importance sampling
estimator using all n = n1 + n2 draws from one density, say p2. Straightforward
calculation of (4.4) yields

RE2
µ(r̂S) =

1
n

[exp(µ2) − 1]. (6.1)

In comparison,

RE2
µ(r̂G) .=

4
n

[
exp(

µ2

4
) − 1

]
(6.2)

and

RE2
µ(r̂C) .=

4
n

[ 2√
3

exp(
µ2

6
) − 1

]
, (6.3)

where r̂G and r̂C correspond respectively to α = (q1q2)−1/2 and α = 1, with
n1 = n2 = n/2 (assuming n is even). The optimal error, (3.4), is not in closed
form, but we have

RE2
µ(r̂O) .=

4
n

[ 1
β(µ)

√
2π

|µ| exp(
µ2

8
) − 1

]
, (6.4)

where

β(µ) =
1
π

∫ ∞

0

exp(−y2/(2µ2))
cosh(y/2)

dy (6.5)

with the property that β(µ) ≤ 1 = lim|µ|→+∞ β(µ). Thus,

RE2
µ(r̂O) ≥ 4

n

[ 1√
2π

|µ| exp(
µ2

8
) − 1

]
, (6.6)

and the right-hand side of (6.6) approximates RE2
µ(r̂O) for large |µ|.

It is striking to see that a good choice of α can reduce the coefficient of
the n−1 term by orders of magnitude, especially for large |µ|, that is, when the
two densities are far apart. Table 1 gives REµ(r̂α) (relative standard error) for
n1 = n2 = 50, where REµ(r̂O) is obtained by numerical integration. It is seen
that the improvement of using two densities over one density is dramatic, which
is expected since sampling from the overlap of two densities is much more stable
than sampling from one extreme tail.

To compare the REµ(r̂α)’s on a finer scale, we graph, in Figure 1, REµ(r̂α)
/REµ(r̂O) for µ ∈ [0, 5]; we will use the optimal standard error as the baseline
in all the figures. It is seen that r̂G outperforms r̂S for all values of µ (it is easy
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to show that exp(µ2)− 1 ≥ 4[exp(µ2/4)− 1] for all µ); r̂C performs a little worse
at the beginning due to the problem mentioned in Section 5, but soon catches
up with an error that is almost identical to the optimal one (i.e., r̂O) before it
eventually takes off.

Table 1. Comparison of four relative standard errors

µ REµ(r̂S) REµ(r̂G) REµ(r̂C) REµ(r̂O)
0 0 0 0.079 0
1 0.131 0.107 0.121 0.101
2 0.732 0.262 0.224 0.221
3 9.001 0.583 0.409 0.403
4 298.1 1.464 0.790 0.737
5 26834 4.548 1.714 1.439

To show how the choices of k and of A can affect the performance of the
power family defined by (5.5), Figure 2 displays REµ(r̂P (1, A))/REµ(r̂O) as
a function of µ with several choices of A (note r̂O = r̂P (1, 1) in this exam-
ple). This is to check the sensitivity of the optimal estimator r̂P (1, A) to the
misspecification of A. (Since the issue of unknown r can be handled by itera-
tion, as detailed in Section 4, misspecification of A is equivalent to misspecifi-
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cation of the ratio of the effective sample sizes.) For comparisons, we also plot
REµ(r̂G)/REµ(r̂O) ≡ REµ(r̂P (+∞, A))/REµ(r̂O); we will include this compari-
son in all figures. From Figure 2, we see that the further the A departs from its
optimal value A = AO (=1 in this example), the larger the Monte Carlo error for
r̂P (1, A), which thus becomes worse than r̂G for µ ∈ [0, µA], where µA increases
with A > 1 (we focus on A > 1 because REµ(r̂P (1, A)) = REµ(r̂P (1, A−1)) when
s1 = s2). This confirms our intuition that if the correct A cannot be assessed
within a reasonable range (e.g., | log(A/A0)| ≤ log(5)), it may be better to use
a non-optimal estimator that is less sensitive to the choice of A, at least when
the two densities are not too far apart. When the two densities are far apart
(e.g., when µ is large in our example), the increase in REµ(r̂P (k,A)), and thus
REµ(r̂P (1, A)), due to the misspecification of A becomes less and eventually neg-
ligible when compared to a REµ(r̂α) that is a function of the distance between
the two densities with a higher order (e.g., RE(r̂G)), because A can only affect
REµ((r̂P (k,A)) by a multiplicative factor when the distance become infinite.

More specifically, for the current problem, we have (see the Appendix)

lim
|µ|→∞

REµ(r̂P (k,A))
REµ(r̂P (1, AO))

=
τ(k)
τ(1)

[
(A/AO)1/2 + (AO/A)1/2

2

]1/2

≥ 1, (6.7)

where

τ(k) =

√
B(3k

2 , k
2 )√

kB(k
2 , k

2 )
, k > 0, (6.8)

with B(a, b) the standard Beta function. Thus the asymptotes in Figure 2 for
large µ correspond to the multiplicative factor [(

√
A + 1/

√
A)/2]1/2 since k =

1 and AO = 1 in the plots. We observe that the theoretical limits are well
approximated even when µ is as small as 3.

We also observe that there are asymptotes when µ → 0 in Figure 2. The the-
oretical expression underlying these asymptotes is (see the Appendix for proof)

lim
µ→0

REµ(r̂P (k,A))
REµ(r̂P (1, AO))

=

{
1 +

1
s1s2

[ (s1/s2)
1
k

(s1/s2)
1
k + (A/AO)

1
k

− s1

]2}1/2

≥ 1, (6.9)

where s1 and s2 are the proportions of the effective sample size for the two
samples, respectively. It follows then that, when µ → 0, the optimal choice of k

for given A is

kO = 1 +
log(A/AO)
log(s2/s1)

. (6.10)

When A = AO, kO = 1 is optimal unless s1 = s2, in which case any k is
optimal when µ → 0; this can be seen in Figure 3, which exhibits plots of
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REµ(r̂P (k,AO))/REµ(r̂O) with several k. When A is misspecified, however,
k = 1 is no longer optimal when µ → 0. In fact, when s1 = s2, k = +∞ (corre-
sponding to r̂G) is optimal when µ → 0. This is in contrast to the optimal choice
of k when |µ| → +∞, in which case k = 1 is optimal regardless of the value of A,
as implied by (6.7). Figure 4, which exhibits plots of REµ(r̂P (k, 10))/REµ(r̂O)
with several choices of k, provides an numerical illustration of this conflict. How-
ever, despite the sharp conflict in choosing k (i.e., k = 1 for µ → +∞ and
k = +∞ for µ → 0), it is possible to find a compromise (e.g., k = 5 in Figure 4)
that works remarkably well when compared to the optimal estimator, as long as
µ is not too large (when µ is large, even the optimal estimator is not usable). Of
course, in real application, we will not know by how much we have misspecified
the ratio of the effective sample sizes, but the misspecification of this ratio cannot
be too extreme in reality (e.g., A/AO = 10 which we used in this example should
be quite extreme in practice). We believe it is possible in real applications to find
such “compromise” estimators that will work well as long as the misspecification
is not too extreme, and we hope our example here will serve as a stimulus for
general search of such estimators.
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7. Extensions – When Draws From All Densities Are Available

The utility of the identity (2.3) can be enhanced by considering its exten-
sions to cases involving more than two densities. The theory underlying these
extensions is more complex, and here we confine ourselves to the most basic for-
mulation of these extensions. There are two types of multi-density extensions,
one type regarding cases where draws from all densities are available, and the
other one regarding cases where only draws from some densities are available.
The latter extension will be discussed in the next section.

Consider a setting where we have draws W = {wij , j = 1, . . . , ni, i = 1, . . . ,m}
from pi(w) = qi(w)/ci, i = 1, . . . ,m and we are interested, say, in calculating
ri = c1/ci, i = 2, . . . ,m. An application of this, as in the genetic problem dis-
cussed in Section 1, is when we need to compute a likelihood at a variety of
locations (relative to a reference value). Another application, which is the fo-
cus of Geyer (1994), is for creating a sensible importance-sampling density using
a mixture of m densities, from which we have draws (e.g., via Gibbs sampler)
and the unnormalized densities. The methods described before can obviously be
applied to each ratio, c1/ci, by using draws from each pair of densities, p1 and
pi. Such methods, however, can be made more efficient by using draws from all
densities. There are at least two approaches for constructing a multi-density ex-
tension of the identity (2.3). The following approach is more intuitive, and thus
we describe it first. For simplicity, consider a case with m = 3, as represented by
the graph in Figure 5.

........................................................................................................................................................
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........................................................................................................................................................• •

•

q3 α23 q2

α12

q1

α13

Figure 5. A complete graph for three densities

In Figure 5, each vertex represents a (unnormalized) density, and each edge
represents a “bridge” from one density to another, with αij being a weighting
function. As illustrated in the previous sections, the accuracy of the simulation
based on (2.3) is determined by the “overlap” of the two densities, where the
“overlap” is defined by a measure (based on the choice of αij) on the common
support. When we have three densities, there are two paths from, say, q1 to
q2. The direct path from q1 to q2 represents a direct estimation of c1/c2. The
path from q1 to q3 and then to q2 represents estimating c1/c2 via the product:
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(c1/c3)(c3/c2) = c1/c2. Combining these two paths yields an extension of (2.3)
with three densities:

c1

c2
=

E2(q1α12) + E2(q3α23) · E3(q1α13)
E1(q2α12) + E3(q2α23) · E1(q3α13)

≡ A1 + A2

B1 + B2
, (7.1)

which is easy to verify directly.
The advantage of (7.1) is that it uses the two paths in an efficient way. For

instance, if there is no direct overlap between q1 and q2, implying E2(q1α12) =
E1(q2α12) = 0, then (7.1) uses the indirect path automatically. We can also
set some α’s to zero to “cut off ” some paths. For example, choosing α23 = 0
or α13 = 0 disconnects the indirect path, and reduces (7.1) to (2.3). Another
advantage of (7.1) is that it suggests more general identities that may be useful
for simulating c1/c2. For example, for any ξ �= 0, using Ai and Bi (i = 1, 2)
defined in (7.1), we have

c1

c2
=

{
Aξ

1 + Aξ
2

Bξ
1 + Bξ

2

} 1
ξ

. (7.2)

For m = 2, this extension is the same as (2.3) because of the cancellation of the
powers. We note that when ξ → 0, +∞, −∞, the right side of (7.2) converges
to

√
A1A2/

√
B1B2, max{A1, A2}/max{B1, B2}, min{A1, A2}/min{B1, B2}, re-

spectively. Thus, (7.2) can be defined for all ξ ∈ [−∞,+∞]. Besides the choices
of αij, the choice of ξ seems to be a problem worthy of investigation with finite
samples.

The extensions of (7.2) to m ≥ 4 are straightforward by considering a com-
plete graph connecting all m densities, with αij being a weighting function on
the edge with qi and qj (i �= j) as its end points. There are (m− 2)![

∑m−2
l=0 (l!)−1]

possible paths from q1 to q2, and the corresponding extension of (7.2) is

c1

c2
=




m−2∑
l=0

∑
(2,i1,...,il,1)

[ l∏
k=0

Eik(qik+1
αikik+1

)
]ξ

m−2∑
l=0

∑
(2,i1,...,il,1)

[ l∏
k=0

Eik+1
(qikαikik+1

)
]ξ




1
ξ

, ξ ∈ [−∞,+∞], (7.3)

where (2, i1, . . . , il, 1) represents a path from q2 to q1 crossing l distinct vertices
(excluding q1 and q2), i0 = 2, and il+1 = 1 for all l as the largest index of k.
Taking ξ = 1 in (7.3) provides an extension of (7.1) to m densities. The identity
(7.3) provides a large class of estimators, and the search for (asymptotically)
optimal αikik+1

(and ξ) is a challenging task, but the results can be quite useful
for implementations in practice.

A second approach of construction, which is theoretically as well as com-
putationally more attractive, proceeds by setting up a linear system for 	r =
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(r2, . . . , rm)�. Let {αij(w) : 2 ≤ i ≤ m; 1 ≤ j ≤ m; i �= j} be (m − 1)2 known
functions, then the key identity (2.3) implies B	r = 	b where

B=




b22 −b23 . . . −b2m

−b32 b33 . . . −b3m
...

...
. . .

...
−bm2 −bm3 . . . bmm


 , 	b=




b21

b31
...

bm1


 ,

with




bii =
∑

j �=i Ej[αij(w)qi(w)], 2 ≤ i ≤ m,

bij =Ei[αij(w)qj(w)], i �= j.

If all αij are chosen such that B is well-defined and non-singular, then we have

	r = B−1	b, (7.4)

which is a matrix extension of (2.3). An estimator for 	r is then obtained by
replacing B and 	b in (7.4) by their sample counterparts, Bn and 	bn, the sample
averages constructed using the draws in W.

Just as (2.3) leads to an iterative sequence converging to the “reverse logistic
regression” estimator of Geyer (1994) when m = 2, (7.4) also yields an analogous
sequence for m > 2. Specifically, Geyer’s (1994) approach is to first construct a
“profile-loglikelihood” that can be expressed in our notation as

L(	r |W) =
m∑

i=1

ni∑
j=1

log
[ risiqi(wij)∑m

k=1 rkskqk(wij)

]
, (7.5)

where si = ni/n > 0, n =
∑m

i=1 ni, and r1 ≡ 1, and then to compute the
corresponding maximizer as an estimator for 	r. An easier way of understanding
this approach is to view it as an application of (1.4) using qmix =

∑
k rkskqk(w) ≡

c1pmix as the denominator (i.e., q2(w) ) of the right side of (1.4). More specifically,
if we apply (1.4) with q2 = qmix and q1 = qi (here q1 and q2 are viewed as generic
notation), we obtain

ri = (ci/c1)−1 = [Emix (qi(w)/qmix(w))]−1 , i = 2, . . . ,m, (7.6)

where the expectation is taken with respect to the mixture density pmix ≡
qmix/c1. Since qmix depends on 	r, (7.6) cannot be used directly to construct
an estimator but it immediately suggests an iterative sequence if we view W as
a set of draws from pmix; for m = 2, this sequence was constructed and referred
to as the “third iterative scheme” in Section 4. It is easy to verify that the
fixed-point (or “self-consistent”) equation defined by this iteration is identical to
the “score” equation corresponding to (7.5), and thus Geyer’s (1994) approach
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is effectively an “iterative” application of Torrie and Valleau’s (1977) “umbrella
sampling” with pmix as the umbrella density (see Section 9), though Geyer’s
(1994) derivation is more statistical.

For m = 2, we mentioned in Section 4 that Geyer’s (1994) estimator is the
same as our optimal estimator r̂O, and our iteration (4.1) provides a fast and
stable algorithm for computing it. For m > 2, it is an open problem whether the
maximizer of (7.5) is also optimal among the class of estimators constructed from
(7.4) or more generally from (7.3). It is, however, easy to construct an iterative
sequence from (7.4) that converges to the maximizer of (7.5). This is achieved
by setting αij(w) = sisj/qmix(w) for all i, j, and then iterate via (7.4), that is,

	r
(t+1)
O = [Bn(	r (t)

O )]−1	bn(	r (t)
O ), t = 0, 1, . . . , (7.7)

where we use the subscript “O” to indicate that (7.7) is a direct extension of
the r̂

(t)
O sequence of (4.1), and use the argument in Bn and 	bn to mark their

dependence on the previous iterate 	r (t) through the dependence of qmix on r.
Because the 	r

(t)
O of (7.7) provides a consistent estimator for 	r for any t ≥ 1, just

as (4.1) does when m = 2, we expect that (7.7) will provide a fast and stable
algorithm for computing 	rO, an algorithm that might be more appreciated in
practice than the Newton-Raphson or a slow successive algorithm discussed in
Geyer (1994) for maximizing (7.5) (the matrix inversion in (7.7) can be avoided
by directly solving the linear equation Bn(	r (t)

O )	r (t+1)
O = 	bn(	r (t)

O ) for 	r
(t+1)
O ).

8. Extensions – When Only Draws From Some Densities Are Available

In what has been described so far, we have assumed that random draws from
all densities involved are available. Practically, this requirement may be unde-
sirable as making draws from every density can be expensive; it is perhaps also
unnecessary in some cases as explained below. Often in applications, the densi-
ties pi(w)’s are related to each other as they all arise from a common parametric
family:

pi(w) = p(w|θi) = q(w|θi)/c(θi), i = 1, 2, . . . (8.1)

We have seen in previous sections that the simulation error of using (2.3) is
determined by a distance between two densities, the forms of which depend on
the choice of α. When densities arise from (8.1), the distance between p(w|θ1)
and p(w|θ2) is often a smooth function of a distance between θ1 and θ2. In such
cases, the closeness of p(w|θ1) and p(w|θ2) tends to ensure the closeness of p(w|θ)
to both p(w|θ1) and p(w|θ2) for any θ “between” θ1 and θ2. For such a θ, we
can expect good accuracy of simulating c(θ)/c(θi), i = 1, 2, using only draws from
p(w|θ1) and p(w|θ2). The following identity provides a basis for such simulations.
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Let pi(w) = qi(w)/ci, w ∈ Ωi ⊂ Rd, i = 1, 2, 3, be three densities such that
Ω3 ⊆ Ω1 ∪ Ω2. Also let αi(w), i = 1, 2, 3, be three arbitrary functions defined on
Ω1 ∪ Ω2 subject to the constraint

α1(w)q1(w) + α2(w)q2(w) = 1, w ∈ Ω1 ∪ Ω2, (8.2)

and 0 < | ∫Ω1∩Ω2
α3(w)p1(w)p2(w)dw| < ∞. Then

c3

c1
=

E1(q3α1)E2(q1α3) + E2(q3α2)E1(q2α3)
E2(q1α3)

. (8.3)

The right side of (8.3) only involves expectations with respect to the first two
densities, where random draws are available. A class of choices of α1 and α2

that satisfies (8.2) is given by α1 = 1/(q1 + Aq2) and α2 = A/(q1 + Aq2) for any
A > 0. Good properties of this class are expected because it is closely related to
the optimal procedures discussed in Sections 4 and 5.

Practically, in the case of (8.1), if we need to compute c(θ)/c(θ1) for many
values of θ and at the same time want to make draws from p(w|θ) at as few values
of θ as possible, we can start with θ1 and use draws from p(w|θ1) to estimate a
distance between p(w|θ1) and p(w|θ2) to determine the next density, p(w|θ2), from
which draws will be made. Once the draws from p(w|θ2) are made, simulation
of c(θ)/c(θ1) for any θ “between” θ1 and θ2 can be performed using (8.3) with
c3 = c(θ). We can then proceed from p(w|θ2) as the new starting density. The
key step in such a procedure is the search of the next density (when θ is multi-
dimensional, one may need to search for several densities to construct a “convex
region” in order to achieve better simulation efficiency), which is determined by
the distance (from the previous density) that is acceptable given the required
accuracy of simulation. A reasonable choice of distance is the Hellinger distance,
H(p1, p2) of (5.4), as explained below (where, again, we assume all draws are
independent).

Consider a case where all densities have the same support (this is typically
true under (8.1)), and equal number of draws will be made from all selected den-
sities. In such a case, the (asymptotic) optimal relative error of simulating c1/c2

using (2.3), as given in Theorem 2, is determined by the “harmonic” distance
between p1 and p2:

RE2(r̂O)=̇
4
n

{[ ∫
2[p−1

1 + p−1
2 ]−1dw

]−1 − 1
}
.

It follows then, to the first order, that

4
n

{[ ∫ √
p1p2 dw

]−1 − 1
}
≤ RE2(r̂O) ≤ 4

n

{[ ∫ √
p1p2 dw

]−2 − 1
}
. (8.4)
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The left inequality follows from the fact that a harmonic mean cannot exceed
the corresponding geometric mean, and the right inequality holds because the
right-most side of (8.4) is the relative error of a non-optimal estimator r̂G, as in
(5.2) with b = 1. Thus, the optimal relative error is bounded both below and
above by a simple function of

∫ √
p1p2 dw = 1 − 1

2H2(p1, p2).
Estimating

∫ √
p1p2 dw using draws from only one density is easy because of

the following identity:

h ≡
∫ √

p1p2 dw = E2

[√
q1/q2

]/√
E2(q1/q2). (8.5)

Given draws from p2, we can estimate h by

ĥ =

1
n2

n2∑
j=1

√
ξj√

1
n2

n2∑
j=1

ξj

, (8.6)

where ξi = q1(w2i)/q2(w2i), with w21, . . . , w2n2 being n2 draws from p2. The
asymptotic error of ĥ under independent sampling is

E1(ĥ − h)2 .=
1
n2

{
1 − h

∫
p
3/2
1

p
1/2
2

dw +
h2

4

∫ (p1 − p2)2

p2
dw
}
. (8.7)

Due to the square roots, estimating h is more stable than estimating c1/c2 directly
using draws from p2, as can be seen from the cancellation of the negative and
positive parts in (8.7) when p1 and p2 are not too far apart. We also expected that
when two densities are far apart, ĥ would underestimate h due to large values
of q1/q2 in the denominator. This would imply overestimation of the Hellinger
distance when the distance is large, which is acceptable because it provides a
conservative procedure. Of course, empirical studies are needed to investigate
the practical performance of ĥ, as well as any procedure presented in this paper.

9. Epilogue – Related and Subsequent Work

The work presented in this paper was initially motivated by our observation
that methods for simulating normalizing constants in statistical literature had
mainly focused on the importance sampling scheme (1.4) using draws from one
density, and we felt that it would be more efficient to use draws from both
densities when simulating the corresponding ratio. To do that, we needed an
identity that generalizes (1.4), and the key identity (2.3) was the result of our
search. Because (2.3) is so simple and obviously powerful, we doubted that we
were the first one who discovered it (at least in some forms), but it appeared to
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be new to statisticians. Indeed, the comments from audiences during our several
presentations of this work were quite enthusiastic, as many of them immediately
saw the potential of (2.3), and so did the reviewers of Statistica Sinica. On
the other hand, some anonymous comments we received earlier indicated that
using draws from a single density had been a standard approach in statistical
literature for so long that it might take sometime before the utility of (2.3) or its
generalizations (e.g., Sections 7 and 8) can be fully appreciated.

The work presented here has stimulated much subsequent work and has
helped to bring to our attention more related work, especially in computational
physics (e.g., Bennett (1976)). Using the full-information item factor (FIIF)
model (Bock and Aitken (1981)) as a working model, Meng and Schilling (1996)
provide a detailed empirical investigation of most theoretical constructions pre-
sented in this paper (e.g., Sections 4 and 5). In particular, they illustrate how to
use r̂O or r̂G to simulate ratios of likelihoods needed for monitoring the conver-
gence of Monte Carlo EM. Their empirical evidence strongly supports the theo-
retical predictions here. For example, they find that compared to the importance-
sampling estimator r̂S of (4.3), r̂O and r̂G exhibit anywhere from 5 to 30 times
lower mean-squared error in their FIIF applications. As another example, the
sequence (4.1) converges much faster, as predicted, to r̂O than (4.2) does, es-
pecially when p1 and p2 are far apart (e.g., (4.1) was about 7 times faster on
average with a Hellinger distance H(p1, p2) = 1.11 between p1 and p2). A dis-
crepancy with the prediction here is with respect to the underestimation of (8.6)
for (8.5). In Meng and Schilling (1996), it was found that (8.6) can substantially
overestimate (8.5) when H(p1, p2) is large (e.g., > 1), an issue that needs further
investigation.

DiCiccio, Kass, Raftery and Wasserman (1996) provide more empirical evi-
dence of the superiority of the optimal estimator discussed in Section 4. They use
r̂O to compute a single normalizing constant (i.e., the p(Y ) of (1.3)) by coupling
the unnormalized density (i.e., p(Y |θ)p(θ)) with its normal approximation, which
is trivial to draw from. The empirical results they provide show that r̂O domi-
nates all other methods they have considered, including analytic approximations
(i.e., Laplace approximation with or without Bartlett corrections) and simulation
methods (e.g., the importance sampling method and the “reciprocal” method;
both are special cases of (2.3)). Furthermore, r̂O is often an order of magnitude
better than other methods in terms of mean absolute deviation of log(r̂) (which
is different from the error we considered in Section 3). They also report that
using r̂P (1, A) (see (5.5)) with A determined by their modified Laplace method
works almost as well as r̂O. This is expected because, as suggested by Figure 2,
r̂P (1, A) is quite close to r̂P (1, AO) when A is reasonably close to AO (e.g., within
a factor of 2 to 5, which is expected because their modified Laplace method is
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itself a reasonably accurate method). In fact, similar results will hold if we use
other methods to determine A, or better, we can use the iterative approach given
in (4.1), and thus avoid using any other methods. The simulation study from
Meng and Schilling (1996) suggest that two to three iterations are often enough
to produce an estimator that is very close to r̂O; they purposely choose an ex-
tremely variable estimator based on (2.4) to illustrate the remakable robustness
of (4.1) to the starting value.

On the methodological side, Gelman and Meng (1994) studied a continuous
extension of the key identity (2.3). They started with a re-expression of (2.3)
that is operationally less convenient but intuitively more appealing. They first
re-express α = q0/(q1q2) in terms of a new function q0. Now, if we assume q0 to
be a non-negative function that can be normalized into a density p0 = q0/c0, we
can rewrite (2.3) as

c1

c2
=

c0/c2

c0/c1
=

E2 [q0(w)/q2(w)]
E1 [q0(w)/q1(w)]

. (9.1)

Comparing (9.1) to (1.4) we see that with (1.4) we have to use draws from p2

to go all the way to “reach” p1, whereas with (9.1) we can use draws from both
p1 and p2 with q0 as a connecting “bridge”, and thus effectively shorten the
distances between the densities, distances that are responsible for the magnitude
of the errors of the estimators. This intuition obviously leads to extensions
using multiple bridges, that is, by applying (9.1) in a “chain” fashion, which is a
special case of (7.3) and was also briefly discussed in Bennett (1976). Gelman and
Meng (1994) showed that the limit from using an infinitely many bridges leads
to another identity that allows one to estimate the log of the ratio unbiasedly,
an identity that underlies the method of Ogata (1989, 1990) for simulating high
dimensional integration via Monte Carlo. Gelman and Meng (1994) thus showed
that the method studied in this paper, which can be termed “bridge sampling”,
is a natural extension of importance sampling via (9.1), and that its further
extension by using infinitely many bridges leads to the construction of “path
sampling”.

Another useful method of shortening the distance between p1 and p2 is to
apply random-variable transformations and thus “physically” move the two den-
sities closer before using the bridge sampling. The general idea is described in
Meng and Schilling (1996a) and was inspired by Voter (1985), who suggested ap-
plying a location shift before applying the method of Bennett (1976), although
Voter’s choice of the “bridge” was more restrictive than Bennett’s (1976). Ap-
plying a location shift does not change the normalizing constant or increase the
computational effort for making the required draws, but can substantially re-
duce the distance between p1 and p2 with an appropriate choice of the amount
of shift. Voter (1985) proposed to shift by an amount such that the two densities
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will have the same mode if both densities have only one mode, and also proposed
a random-shift scheme if there is more than one mode. Clearly, the idea of lo-
cation shift can be generalized to other types of transformations, for example,
rotation and scaling, that can further reduce the (Hellinger) distance between
the targeted densities. We note that the method of transformation can handle
cases where the original densities have no or little common support(s), a problem
that motivated Voter (1985). The potential of handling multiple modes is also of
importance in practice, as discussed in DiCiccio, Kass, Raftery and Wasserman
(1996). Details of these developments are given in Meng and Schilling (1996a).

In the same spirit as reducing the distance between two densities, Torrie and
Valleau (1977) proposed a related but different method. Briefly, their method is
based on an “opposite” identity to (9.1), namely

c1

c2
=

c1/c0

c2/c0
=

E0 [q1(w)/q0(w)]
E0 [q2(w)/q0(w)]

,

where E0 denotes the expectation of the “middle” density p0. In other words, we
now sample from the middle density, which is constructed to have, hopefully, large
overlaps with both pi, i = 1, 2. They termed this method “umbrella sampling”,
conveying the intention of constructing a middle density that “covers” both ends.
Notice that with this method the draws from p1 or p2 are not used, at least not
directly (these draws can be used to form a set of draws from p0, if p0 is taken
as a mixture of p1 and p2; the iteration (4.2) is such an example although, as we
have discussed there, this iteration converges much more slowly than the iteration
(4.1)). Chen and Shao (1994) also consider this method, which they call the ratio
importance sampling method. They also consider simple extensions of (2.3) to
allow p1 and p2 to have different dimensions.

Researchers in computational physics have been pioneers in many advanced
computational methods, especially in the field of Monte Carlo simulation. How-
ever, they typically pay more attention to their complicated problems, and their
published work involves heavy specialized details so that sometimes it is difficult
for researchers from other fields to see the generality of their methods. Once
in the hands of statisticians, the applicability of their methods can often be
enhanced, especially with generalizations and modifications guided by more sta-
tistical considerations. The current use of the Metropolis algorithm (Metropolis
et al. (1953)), or more generally Markov chain Monte Carlo in statistics is a good
example. We hope our work not only provides a general theoretical framework
for bridge sampling but also brings to the attention of statisticians the success
of such a method in computational physics. We conclude with a quote from the
abstract of Bennett (1976), who, as we mentioned in Section 2, applied (2.3) for
computing free-energy differences between two ensembles (i.e., distributions), to
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emphasize that using (2.3) can be orders of magnitude more efficient than using
(1.4) with little increase in computational effort:

“The best estimate of the free energy difference is usually
obtained by dividing the available computer time approximately
equally between the two ensembles; its efficiency (variance ×
computer time)−1 is never less, and may be several orders of
magnitude greater, than that obtained by sampling only one
ensemble ......”
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Appendix

Proof of (3.2). Let η̄1 and η̄2 be respectively the numerator and denominator
of r̂α of (2.5). Then under our assumptions, η̄1 and η̄2 are independent and

ηi ≡ E(η̄i) = ci

∫
Ω1∩Ω2

αp1p2 dw, i = 1, 2, (A.1)

V (η̄1) =
c2
1

n2

{∫
Ω1∩Ω2

p2
1p2α

2 dw −
[ ∫

Ω1∩Ω2

αp1p2 dw
]2}

, (A.2)

and

V (η̄2) =
c2
2

n1

{∫
Ω1∩Ω2

p2
2p1α

2 dw −
[ ∫

Ω1∩Ω2

αp1p2 dw
]2}

. (A.3)

By the δ-method, we have

RE2(r̂α) =
E
(

η̄1

η̄2
− η1

η2

)2

(
η1

η2

)2 =
V (η̄1)

η2
1

+
V (η̄2)

η2
2

+ O

(
1
n2

)
. (A.4)
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Substituting (A.1) – (A.3) into (A.4) yields (3.2).

Proof of Theorem 2. By the construction of r̂
(t+1)
O of (4.1), its limit, if exists,

must be a root of the following “score” function

S(r|w) = −
n1∑
j=1

s2rq2(w1j)
s1q1(w1j) + s2rq2(w1j)

+
n2∑

j=1

s1q1(w2j)
s1q1(w2j) + s2rq2(w2j)

. (A.5)

Since S(0|w) = n2 > 0, S(+∞|w) = −n1 < 0, and

S′(r|w) ≡ dS(r|w)
dr

= −
n1∑
j=1

s1s2q1(w1j)q2(w1j)
[s1q1(w1j) + s2rq2(w1j)]2

−
n2∑

j=1

s1s2q1(w2j)q2(w2j)
[s1q1(w2j) + s2rq2(w2j)]2

< 0

for all r, S(r|w) = 0 has a unique root. To check that this unique root, denoted
by r∗, is the limit r̂O of Theorem 2, we let M(r) be the mapping defined by the
iteration (4.1): r̂

(t+1)
O = M(r̂(t)

O ), and thus r∗ = M(r∗). It is easy to verify that
rM(r) is a strictly increasing function of r, and M(r)/r is a strictly decreasing
function of r. It follows that, if r̂

(t)
O > r∗, then

r̂
(t+1)
O

r̂
(t)
O

=
M(r̂(t)

O )

r̂
(t)
O

<
M(r∗)

r∗
= 1,

which implies
r̂
(t+1)
O − r∗ < r̂

(t)
O − r∗. (A.6)

On the other hand,

r̂
(t+1)
O r̂

(t)
O = M(r̂(t)

O )r̂(t)
O > M(r∗)r∗ = (r∗)2,

implying that

r̂
(t+1)
O − r∗ >

r∗

r̂
(t)
O

(r∗ − r̂
(t)
O ) > r∗ − r̂

(t)
O . (A.7)

Combining (A.6) and (A.7) leads to

|r̂(t+1)
O − r∗| < |r̂(t)

O − r∗|. (A.8)

Analogous arguments apply when r̂
(t)
O < r∗. The convergence of {r̂(t)

O , t ≥ 0} to
the unique limit r∗ then follows from (A.8) and the Global Convergence Theo-
rem (e.g., Wu (1983)) by choosing |r − r∗| as the objective function. The same
arguments apply to the sequence {r̂(t)

M , t ≥ 0} defined by (4.2).
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To prove the second part of Theorem 2, we adopt the standard argument for
establishing asymptotic variance of a root of the score function, which yields

E(r̂O − r)2 =
V [S(r|w)]

E2[S′(r|w)]
+ O

(
1
n2

)
. (A.9)

Direct calculations yield

V [S(r|w)] = ns1s2D(1 − D), and E[S′(r|w)] = −ns1s2

r
D, (A.10)

where
D ≡ D(p1, p2) =

∫
Ω1∩Ω2

p1p2

s1p1 + s2p2
dw. (A.11)

Substituting (A.10) – (A.11) into (A.9) completes our proof.

Proof of r̂M = r̂O when si > 0, i = 1, 2. By analogy to r̂O, r̂M , the limit of
r̂
(t+1)
M of (4.2), is a root of the following function

SM (r|w) =
n1∑
j=1

q1(w1j) − rq2(w1j)
s1q1(w1j) + s2rq2(w1j)

+
n2∑
j=1

q1(w2j) − rq2(w2j)
s1q1(w2j) + s2rq2(w2j)

. (A.12)

When si > 0, i = 1, 2, it is easy to see that
n1∑
j=1

q1(w1j)
s1q1(w1j) + s2rq2(w1j)

= n − 1
s1

n1∑
j=1

s2rq2(w1j)
s1q1(w1j) + s2rq2(w1j)

(A.13)

and
n2∑
j=1

rq2(w2j)
s1q1(w2j) + s2rq2(w2j)

= n − 1
s2

n2∑
j=1

s1q1(w2j)
s1q1(w2j) + s2rq2(w2j)

. (A.14)

Combining (A.12) – (A.14) with (A.5) gives SM(r|w) = S(r|w)/(s1s2), which
implies r̂M = r̂O because r̂O is the unique root of S(r|w).

Proof (6.7) - (6.8). Given p1 = N(0, 1), p2 = N(µ, 1) (µ �= 0) and s1, with the
variable transformation y = µ(w − µ/2) we have from (3.2)

RE2
µ(r̂P (k,A)) =

1
s1s2

{
|µ| exp(

µ2

8
)
√

2π

∫+∞
−∞ f(y|k,A) exp(−y2

2µ2 )dy[∫+∞
−∞ g(y|k,A) exp(−y2

2µ2 )dy
]2 − 1

}
,

(A.15)
where

f(y|k,A) =
exp(y

2 )[s1 + s2 exp(y)][
1 + ρ

1
k (A) exp( y

k )
]2k

and g(y|k,A) =
exp(y

2 )[
1 + ρ

1
k (A) exp( y

k )
]k

(A.16)



858 XIAO-LI MENG AND WING HUNG WONG

with ρ(A) = (As2)/(AOs1). Letting x = ρ
1
k (A) exp( y

k ), we have

lim
|µ|→+∞

∫ +∞

−∞
f(y|k,A) exp(

−y2

2µ2
)dy =

∫ +∞

−∞
f(y|k,A)dy

=
s1k

ρ1/2(A)

∫ +∞

0

x
k
2
−1

(1 + x)2k
dx +

s2k

ρ3/2(A)

∫ +∞

0

x
3k
2
−1

(1 + x)2k
dx

=
k

ρ1/2(A)
(s1 +

s2

ρ(A)
)B(

3k
2

,
k

2
), (A.17)

and similarly

lim
|µ|→+∞

∫ +∞

−∞
g(y|k,A) exp(

−y2

2µ2
)dy =

∫ +∞

−∞
g(y|k,A)dy =

k

ρ1/2(A)
B(

k

2
,
k

2
).

(A.18)
Substituting (A.17) and (A.18) into

lim
|µ|→+∞

REµ(r̂P (k,A))
REµ(r̂P (1, AO))

=
[ ∫+∞

−∞ f(y|k,A)dy∫ +∞
−∞ f(y|1, AO)dy

] 1
2

∫+∞
−∞ g(y|1, AO)dy∫+∞
−∞ g(y|k,A)dy

yields (6.7) - (6.8).

Proof of (6.9). Letting z = y/µ, we can rewrite (A.15) as

RE2
µ(r̂P (k,A)) =

1
s1s2

{
exp(

µ2

8
)

E[f(µz|k,A)]
E2[g(µz|k,A)]

− 1
}
, (A.19)

where all the expectations are with respect to z ∼ N(0, 1). It then follows that

lim
µ→0

REµ(r̂P (k,A))
REµ(r̂P (1, AO))

=
{

lim
µ→0

exp(µ2

8 )E[f(µz|k,A)] − E2[g(µz|k,A)]

exp(µ2

8 )E[f(µz|1, AO)] − E2[g(µz|1, AO)]

} 1
2

× lim
µ→0

E[g(µz|1, AO)]
E[g(µz|k,A)]

. (A.20)

It is easy to check that

lim
µ→0

E[g(µz|1, AO)
E[g(µz|k,A)]

=
g(0|1, AO)
g(0|k,A)

=
1
s1

(1 + ρ
1
k (A))k ≡ 1

s1
p−k

k,A. (A.21)

Using L’Hôpital’s rule twice, we obtain

lim
µ→0

exp(µ2

8 )E[f(µz|k,A)] − E2[g(µz|k,A)]

exp(µ2

8 )E[f(µz|1, AO)] − E2[g(µz|1, AO)]

=
f(0|k,A) + 4f ′′(0|k,A) − 8g(0|k,A)g′′(0|k,A)

f(0|1, AO) + 4f ′′(0|1, AO) − 8g(0|1, AO)g′′(0|1, AO)
. (A.22)
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By taking derivatives of log[f(y|k,A)] and log[g(y|k,A)] with respect to y and
then evaluating them at y = 0, we obtain easily

f(0|k,A) = p2k
k,A, f ′′(0|k,A) = p2k

k,A[(2pk,A−1.5+s2)2+s1s2−2pk,A(1−pk,A)/k],
(A.23)

and

g(0|k,A) = pk
k,A, g′′(0|k,A) = pk

k,A[(pk,A − 0.5)2 − pk,A(1 − pk,A)/k], (A.24)

where pk,A is defined in (A.21). Now substituting (A.23)-(A.24) into (A.22) and
then substituting (A.22) together with (A.21) into (A.20) yields (6.9).
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