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Abstract: The covariance matrix plays an important role in statistical inference,

yet modeling a covariance matrix is often a difficult task in practice due to its

dimensionality and the non-negative definite constraint. In order to model a co-

variance matrix effectively, it is typically broken down into components based on

modeling considerations or mathematical convenience. Decompositions that have

received recent research attention include variance components, spectral decompo-

sition, Cholesky decomposition, and matrix logarithm. In this paper we study a

statistically motivated decomposition which appears to be relatively unexplored for

the purpose of modeling. We model a covariance matrix in terms of its correspond-

ing standard deviations and correlation matrix. We discuss two general modeling

situations where this approach is useful: shrinkage estimation of regression co-

efficients, and a general location-scale model for both categorical and continuous

variables. We present some simple choices for priors in terms of standard deviations

and the correlation matrix, and describe a straightforward computational strategy

for obtaining the posterior of the covariance matrix. We apply our method to real

and simulated data sets in the context of shrinkage estimation.

Key words and phrases: General location model, general location-scale model,

Gibbs sampler, hierarchical models, Markov chain Monte Carlo, Wishart distri-

bution.

1. A Separation Strategy for Modeling Covariance Matrices

Modeling a variance-covariance structure is one of the most common and
important tasks in statistical analysis. It is also one of the most difficult. A
covariance matrix may have many parameters, and these parameters are con-
strained by the complex requirement that the matrix be non-negative definite.
In this paper we investigate a simple strategy that attempts to deal with these
problems in some applications. Although our focus is on Bayesian analysis, our
strategy is equally applicable for non-Bayesian modeling; in Section 4, we give one
such application, which involves extensions to the general location model. Our
strategy includes a simple method for computing the posterior of a covariance
matrix using the Gibbs sampler.
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Because a covariance matrix is complicated, it is helpful to start by breaking
it down into components. For example, a dependence structure may be repre-
sented in terms of variance components. There are also several methods based on
well-known matrix decompositions. For instance, Banfield and Raftery (1993),
Yang and Berger (1994), Celeux and Govaert (1995), and Bensmail, Celeux,
Raftery and Robert (1997) work with the spectral decomposition of the ma-
trix. In transforming to the matrix logarithm, Leonard and Hsu (1992) and
Chiu, Leonard and Tsui (1996) essentially start from the spectral decomposi-
tion. Another approach is to use the Cholesky decomposition of the inverse of
the covariance matrix (e.g., Pourahmadi (1999, 2000)), which has a nice regres-
sion interpretation. Liu (1993) uses the same type of Cholesky decomposition
to obtain a Bartlett-type decomposition of the posterior distribution of a covari-
ance matrix with monotone missing data. There is also a literature on using
the Cholesky decomposition directly for the covariance matrix (e.g., Pinheiro
and Bates (1996)), though the resulting parameterizations do not have simple
statistical interpretation.

For some applications we have encountered (e.g., shrinkage modeling), we
found it is desirable to directly work with standard deviations and correlation
matrix, which do not correspond to any parameterization from the aforemen-
tioned decompositions. The purpose of this paper is thus to study this direct
decomposition. Specifically, we write

Σ = diag(S)R diag(S), (1)

where S is the k×1 vector of standard deviations, diag(S) is the diagonal matrix
with diagonal elements S, and R is the k×k correlation matrix. We refer to this
decomposition as a separation strategy, as we separate out the standard deviations
and correlations. Clearly, this separation has a strong practical motivation – most
practitioners are trained to think in terms of standard deviations and correlations;
the standard deviations are on the original scale, and the correlations are scale
free.

Consider the problem of prior specification. Directly specifying a reasonable
prior for a covariance matrix is a difficult task. The usual inverse-Wishart prior is
often inadequate because of its restrictive form (e.g., common degrees of freedom
for all components of S). It is sometimes the case that we are willing to express
prior beliefs about S, the vector of standard deviations, but less willing about R,
the correlation matrix. We argue in Section 3.1 that this is often the case in the
important application of shrinkage estimation of regression coefficients. In such
cases we can write our prior on Σ in terms of (S,R) in the form

p(S,R) = p(S)p(R | S). (2)
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We want to incorporate our prior information in p(S) but wish to choose p(R | S)
in a manner that is convenient and “diffuse”. This is in the same spirit as in
Sun and Berger (1998), who consider the more general situation where one writes
p(θ1, θ2) = p(θ1)p(θ2 | θ1). Prior information is then used to specify p(θ1) and
a reference prior is chosen for θ2 conditional on θ1. In Section 2, we discuss
some simple choices for p(S) and for p(R | S), which have nice properties from
both a practical and theoretical point of view; empirical evidence is provided in
Section 3 in the context of shrinkage estimation. Obviously, decomposition (2)
also allows the use of “non-informative” priors for S, if such a choice is desired
(e.g., a constant prior for log S).

In some cases, we may have a set of covariance matrices to deal with rather
than just one, such as with the general location model (e.g., Olkin and Tate
(1961)). Rather than just letting the matrices vary freely, we may want to model
them somehow (e.g., in order to reduce the number of parameters). The sepa-
ration strategy suggests a modeling approach. For Σi = diag(Si)Ridiag(Si), we
assume that Ri’s do not vary with i, and model the vector Si’s as depending
on explanatory variables. In Section 4 we use this approach to propose a gen-
eralization of the general location model (GLOM), which relaxes the restrictive
common-covariance assumption of GLOM without bringing an unmanageable
number of parameters into the model.

In Section 5 we show that the separation strategy also leads to a simple
computational strategy for obtaining the posterior distribution of S and R. We
simply draw each component of both S and R one at time in a Gibbs sampler. The
key here is that it is straightforward to find the set of values for one correlation
given the others that preserves the positive-definiteness of the correlation matrix.
Because we know the Jacobian of the transformation from Σ to (S,R), this
strategy can also (though not always) be useful for computing the posterior of Σ
when the prior is specified directly on Σ, albeit it may not be the most efficient
method for particular problems. Our limited experience suggests that this simple
strategy is promising, even in high dimensional situations, for problems likely to
occur in practice (e.g., when the posterior for Σ is reasonably smooth).

2. Some Prior Models for Covariance Matrices

2.1. Basic assumptions

Following the separation strategy, we specify a prior on Σ by choosing p(S)
and p(R | S). Since S is simply a k-dimensional vector with component-wise
non-negativity as the only constraint, there are many multivariate distributions
that can be potentially used for p(S). In the applications in this paper we use

log(S) ∼ N(ξ,Λ), (3)
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where log(S) ≡ (log(s1), . . . , log(sk))�. Typically, the matrix Λ will be chosen
to be diagonal, that is, we are choosing independent log normal distributions
for each of the standard deviations. An obvious alternative would be to choose
independent scaled inverted chi-squared distributions for each of the variances, as
this is the commonly used conjugate prior for a variance. In the real application
discussed in Section 3.3 we found the log normal prior more appealing, as it was
more difficult to deal with the tail behavior of the inverted chi-squared with low
degrees of freedom. Note that if we use the usual prior for covariance matrices,
the inverse-Wishart, all the diagonal elements share the same degrees of freedom
parameter, making it impossible to separately assess marginals for the diagonal
elements. The flexibility in dealing with tails of individual components is a key
practical advantage of the separation strategy.

The choice of prior for R given S is more complicated, due to the complexity
of the space of correlation matrices. We also know that, particularly in high
dimensional problems, priors are never really “non-informative”, so some care is
needed. Before we discuss the specific priors used in this paper, we want to lay
out some basic assumptions that underline our choices.

First, we are willing to assume that S and R are independent. In our shrink-
age application, it is difficult, if not impossible, to solicit reliable prior informa-
tion on how correlations depend on the variances. Our experience and beliefs are
that, in the absence of reliable knowledge of the dependence structure, it is less
harmful to adopt the assumption of independence, and, thus, gain flexibility in
dealing with S and R separately, than to blindly use common models such as the
inverse-Wishart distribution. Of course, if an application calls for dependence of
R on S, then it should be modeled – the separation strategy allows for explicit
modeling of such dependence through the specification of p(R | S).

Second, we assume we are in a situation where we do not have much a
priori information to distinguish among {rij , i �= j}, thus a priori the prior
distribution for {rij , i �= j} is invariant to permutations of indexes, that is,
{rij , i �= j} are a priori exchangeable. Note that inherent in this assumption
is that k is not too large with respect to the amount of information we have; if
k is (relatively) large, then it is often the case that a priori we can group the
underlying variables into several groups and then assume exchangeability within
each group and independence between groups. What we discuss in this paper
can be straightforwardly extended to handle multiple groups, but for simplicity
of presentation we will focus on the single group case.

Finally, we also intend to choose priors that are “diffuse” in some sense to
reflect our weak knowledge about R. We do not attempt to specify a realistic
prior distribution for the the correlation matrix, but rather, give a few default
choices for R. In the shrinkage application of Section 3, a diffuse prior for R also
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seems desirable because it reduces possible conflicts between a priori restrictions
on R (e.g., high correlations) and our informative prior for S, since the amount of
shrinkage is not determined by S alone. The next two subsections investigate two
choices for p(R), which possibly represent two extreme modeling strategies that
a “diffuse modeler” is likely to adopt, and thus they are also useful, as a pair, for
sensitivity studies to the specification of “default” priors for R. An alternative to
our two strategies is to use uniform prior distributions on the partial correlations,
which has been shown to be useful for informative modeling, e.g., see Ramsey
(1974) and Le, Martin and Raftery (1996). We have not explored this option,
but suspect that it falls between our two modeling extremes.

2.2. A marginally uniform prior

Given each rij is between [−1, 1] and our desire to use “diffuse” priors, it is
natural to seek a joint distribution on the correlation matrix space Rk, which
consists of all k × k correlation matrices, such that all the implied marginal
densities for rij(i �= j) are uniform. Such a distribution can be obtained from the
commonly used inverse-Wishart distribution for Σ. To see this, we first derive the
marginal distribution of R when Σ has a standard inverse-Wishart distribution,
W−1

k (I, ν), ν ≥ k, that is, when Σ has a density function

fk(Σ | ν) ∝ |Σ|− 1
2
(ν+k+1) exp(−1

2
tr{Σ−1}). (4)

Under the transformation Σ → (S,R), the Jacobian is given by 2k(
∏

si)k, thus,

fk(R | ν) ∝ |R|− 1
2
(ν+k+1)

∏
i

∫ ∞

0
s
−(ν+1)
i exp(− rii

2s2
i

)dsi, (5)

where rii is the ith diagonal element of R−1. Now let ξi = rii/(2s2
i ), then

fk(R | ν) ∝ |R|− 1
2
(ν+k+1)(

∏
i

rii)−
ν
2

∏
i

∫ ∞

0
ξ(ν−2)/2 exp(−ξ)dξ.

Thus,

fk(R | ν) ∝ |R|− 1
2
(ν+k+1)(

∏
i

rii)−
ν
2 = |R| 12 (ν−1)(k−1)−1(

∏
i

|Rii|)−
ν
2 , (6)

where the equality is due to the fact rii = |Rii|/|R|, with Rii being the ith
principal sub-matrix of R.

Thanks to the marginalization property of the inverse-Wishart (i.e., a prin-
cipal sub-matrix of an inverse-Wishart is still an inverse-Wishart), we can easily
derive the marginal distributions of (6). For any k1 × k1 sub-covariance matrix
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Σ1 of Σ, its distribution is W−1
k1

(I1, ν − (k− k1)), where I1 is the k1 × k1 identity
matrix. Thus, the marginal density of the corresponding sub-correlation ma-
trix R1 is obtained when we replace k in (6) by k1 and at the same time ν by
ν1 = ν − (k − k1). In particular, taking k1 = 2, we obtain that the marginal
distribution of rij(i �= j) as

f2(rij |ν) ∝ (1 − r2
ij)

ν−k−1
2 , |rij | ≤ 1, (7)

which is the same result as given in Box and Tiao (1973, Section 8.5.4) but with
different notation because their ν is our ν − k + 1; also see Jeffreys (1983) and
Tan (1969). Density (7) can be viewed as a Beta(ν−k+1

2 , ν−k+1
2 ) on [-1, 1], and

is uniform when ν = k + 1. In other words, if we take

fk(R | ν = k + 1) ∝ |R|k(k−1)
2

−1(
∏
i

Rii)−
(k+1)

2 , (8)

then the marginal distributions for all the individual correlations are uniform. In
addition, by choosing k ≤ ν < k+1 or ν > k+1, we can control the tail behavior
of f2(rij | ν), that is, whether we want it be heavier or lighter than the uniform.
Thus, we have a family of priors for R indexed by a single “tuning” parameter ν.
Since we will use an independent prior for S, as detailed in Section 2.1, ν only
controls the tails of the distributions of the r′ijs, in contrast to the use of the
inverse-Wishart for Σ, where it controls the tails of all components of S as well.
It is also possible, as with hierarchical modeling, to estimate ν from the data,
or to use posterior predictive checks (Rubin (1984), Gelman and Meng (1996),
Gelman, Meng and Stern (1996)) to see if the model resulting from a specific ν

contradicts the data in important ways.
By taking k1 > 2, we can also study the properties of the higher dimensional

marginal distributions, though we typically have much less, if any, prior knowl-
edge to tell whether such model specification is reasonable. For example, with
k1 = 3, (6) implies

f3(r12, r13, r23 | ν) ∝ (1 − r2
12 − r2

13 − r2
23 + 2r12r13r23)ν−k+1

[(1 − r2
12)(1 − r2

13)(1 − r2
23)]

ν−k+3
2

,

where 1 − r2
12 − r2

13 − r2
23 + 2r12r13r23 ≥ 0.

2.3. The jointly uniform prior

Given that the correlation matrix space Rk is a compact subspace of the
k(k − 1)/2 dimensional cubic [−1, 1]k(k−1)/2, one may also consider the (proper)
uniform prior on Rk:

p(R) ∝ 1, R ∈ Rk. (9)
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However, due to the shape of Rk, one must be aware of the fact that the joint
uniformity on Rk results in marginal priors for individual correlations, rij , which
are not uniform. Figure 1 shows the marginal distribution of one of the (k−1)k/2
individual correlations when k = 3 and when k = 10. Clearly, these priors are not
uniform. They favor values close to zero over values close to ±1. Intuitively, this
is because the positive definite constraint is more restrictive as the correlations
move away from zero in Rk. This can be visualized in Figure 2, which compares
the jointly uniform prior (9) with the marginally uniform prior (8) when k = 3.
It is seen that in order to maintain the marginal uniformity, density (8) has
to place more mass at the corners of R3, as made clear by the first two sets
of panels on the left in Figure 2 (i.e., when r23 is close to -1). For readers
who are interested in more discussion of the shape of correlation matrices, see
Rousseeuw and Molenberghs (1994) for an intriguing exploration. Note that in
some applications, it is desirable to have a prior that favors value of rij close to
zero.

−1.0 −0.5

0
.0

0.0 0.5

1
.0

1.0

0
.2

0
.4

0
.6

0
.8

r12

k = 3

k = 10

Figure 1. Marginal prior density for r12 when k = 3 and k = 10 under the
prior p(R) ∝ 1. Estimated densities based on 2000 draws.

We saw in Figure 1 that as k increases the marginal prior on individual
correlations under the jointly uniform prior (9) tightens up around zero. (Notice
the estimated densities are slightly asymmetric when the real ones should be
symmetric about zero – we purposely did not use any estimate throughout the
simulation that is numerically constrained to be symmetric in order to use the
symmetry as a diagnostic tool for the performance of the simulation). This
suggests the possibility that this prior is highly informative in that data cannot
drive the marginal posterior of a correlation toward ±1. To investigate this
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possibility we simulated i.i.d. data from the multivariate normal distribution
with known zero mean and

Σ =
1
11

(I + aιι′), (10)

where ι is a column vector of k ones, I is the identity matrix, and a is either
1 or 10. These two choices of Σ result in common correlation rij ≡ r = 0.50
and 0.91, respectively. The large common correlation (i.e., 0.91) is chosen simply
as an extreme illustrative example, because in real applications we rarely have
correlations that are all very large – if that happens then we would use a model
with a random common mean (e.g., a random-effect model) to deal with the high
correlations. Also see Gelman, Bois and Jiang (1996) for the use of reparame-
terization to reduce substantial population correlation. The method we discuss
in this paper is most beneficial when some correlations are large and some are
small (but we do not know which is which a priori and would like the data to
“speak”).
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Figure 2. Multi-panel scatter plots comparing draws from the marginally
uniform prior distribution (8) (in row 1 of the figure) for R and the jointly
uniform prior distribution (9) (in row 2 of the figure) for R when k = 3.
Each panel gives a scatter plot of draws of r12 versus r13 when the value of
r23 is in the range given above the respective plot. Only negative values of
r23 are given because the plots for the corresponding positive values of r23

are essentially mirror images. Each row in the multi-panel figure is based on
1000 random draws from the respective prior distribution.
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We considered k = 3 with 20 observations and k = 10 with 50 observations;
the sample sizes were chosen to be relatively small (as otherwise the impact
of prior is not too much of a concern) and to roughly equate the sample sizes
per dimension (this choice is by no means “fair”, which is difficult to achieve
when comparisons are made across different dimensions). In both cases, we used
independent log normal priors with normal mean 0 and standard deviation .1
for the elements of S. For r = 0.5, Figure 3(a) displays the marginal prior and
posterior densities for k = 3, and Figure 3(b) displays the densities for k = 10.
For r = 0.91, Figure 4(a) displays the marginal prior and posterior densities for
k = 3, and Figure (4b) displays the densities for k = 10.
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(a) k = 3 with 20 observations. Posterior mode is (b) k = 10 with 50 observations. Posterior mode is

0.36, posterior median is 0.32, and MLE is 0.37. 0.35, posterior median is 0.35, and MLE 0.49.

Figure 3. Marginal prior and posterior densities for r12 with k = 3 and k = 10
when the true Σ is given by (10) with a = 1, thus, the true value of r12 is
0.50. Estimated densities based on 2000 draws.

In assessing the figures we looked at two criteria: (1) the position of the MLE
of r12 (i.e., the sample correlation with divisor n) with respect to its marginal
posterior; (2) the position of the true value of r12 with respect to its marginal
posterior. Regarding the first criterion, the figures show that the posterior mode
and median are slightly closer to the MLE when k is 3, indicating that when
k is 10, the more informative marginal prior on r12 pulls the posterior slightly
towards zero. In other words, when k is 10 compared to k being 3, the uniform
prior on R has more of an impact on the posterior estimates, as expected from
Figure 1. Regarding the second criterion, the figures show that the true value of
r12 is well within the posterior mass for both cases. Therefore, the posterior has
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not been misled by the somewhat informative priors on r12; this is partially due
to the fact that the marginal posterior depends on the joint prior for (S,R), not
just on the marginal prior for r12.
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(a) k = 3 with 20 observations. Posterior mode is (b) k = 10 with 50 observations. Posterior mode is

0.92, posterior median is 0.90, and MLE is 0.94. 0.89, posterior median is 0.88, and MLE is 0.95.

Figure 4. Marginal prior and posterior densities for r12 with k = 3 and k = 10
when the true Σ is given by (10) with a = 10, and thus the true value of r12

is 0.91. Estimated densities based on 2000 draws.

For either value of r and for both cases of k the posterior tightens up around
large correlation values relative to the priors. The posteriors when r = 0.91 are
much tighter about their true values than the posteriors when r = 0.5, since the
likelihood is much sharper for large correlations. Although our marginal priors
are tight, particularly when k is 10, because of the shape of the space of correla-
tion matrices, this marginal tightness does not stop the likelihood from pushing
the posterior toward one of the corners of the space. Thus, while examination
of the marginal prior distributions of the correlations might suggest that the
jointly uniform prior is highly informative when k is large, our limited empirical
investigations suggest that such informativeness may have tolerable impact on
the marginal posteriors, as long as k is not too large relative to the amount of
data. (As we mentioned in Section 2.1, if k is too large, there are often other
considerations that take place, such as grouping the underlying variables.) Note
also that centering the marginal priors of correlations around zero is much less
extreme than setting R = I, which has been a common strategy when flexibility
in dealing with individual components is desired. In the absence of any realistic
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prior knowledge of rij, it is difficult to argue a prior distribution centered at a
point other than zero.

2.4. Invariance and coherence considerations

The primary motivation for the separation strategy is its flexibility and di-
rectness in soliciting modeling information, as most practitioners are more com-
fortable thinking in terms of standard deviations and correlations rather than
in terms of the spectral decomposition or matrix logarithm of Σ. Neverthe-
less, caution is needed when adopting this strategy. For example, the standard
inverse-Wishart model is invariant, in terms of the distributional form, under ro-
tation of variables underlying a covariance matrix, but priors resulting from the
separation strategy are generally not. Whether one should dismiss such priors on
this ground depends on the application. If rotation invariance is important, such
as in some shape analyses (e.g., Dryden and Mardia (1997)), then any distribu-
tional family that lacks rotation invariance is clearly inadequate as a candidate
for modeling; a model can be thrown out just for not having desirable invariance
or other theoretical properties (e.g., Gelman (1996)).

For the shrinkage application discussed in Section 3.1, the underlying vari-
ables are regression coefficients, and their rotations are of interest only if we are
(simultaneously) also interested in regressing the same dependent variable on
rotations of the regressors, a situation that we have not encountered. For the
general location model application in Section 4, it is often the case that a lin-
ear combination of the components of the dependent variable has no substantive
meaning (e.g., a linear combination of log body weight and log blood pressure,
as in the imputation application described in Barnard (1995)), though it makes
perfect sense to model the correlations between the components (e.g., between
log body weight and log blood pressure). In such cases, it is not fruitful to insist
on rotation invariance, especially if such an invariance is achieved at the expense
of model restrictions that have adverse effects (e.g., as with the standard inverse-
Wishart). We do, however, want scale invariance for obvious reasons – the priors
from the separation strategy are scale invariant, with respect to a distribution
family, as long as p(S) is chosen to be so (e.g., with the log-normal prior, log S

and log(cS) belong to the same normal distribution family). In general, while a
joint distributional specification of a set of variables determines the joint distribu-
tion of any transformation of the variables, whether these two joint distributions
should be required to belong to the same distributional family should depend on
whether the two sets of variables have the same substantive meaning. See Zellner
(1991) for more discussions about the dependence of invariance requirements on
the underlying problems.
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Coherence is another theoretical consideration for (Bayesian) modeling. The
lower-dimensional joint distributions of the correlation coefficients from both the
jointly uniform distribution on Rk and the marginal inverse-Wishart distribu-
tions depend on the total number of underlying variables (i.e., k). While it may
be useful to have equally flexible distributions without such dependence, we point
out that the commonly employed inverse-Wishart distribution has the same de-
pendence (e.g., as can be seen from (7)). In other words, the models (priors)
we use for Σ in this paper are no worse than what is being commonly used with
respect to the issue of coherence. In fact, it is not always insensible to allow
such dependence, especially in the context of (imperfect) prior elicitation. As
an extreme example, knowing r12 is a common correlation among X1, X2, and
X3 (i.e., r12 = r13 = r23) changes the support of r12 from [−1, 1] to [−0.5, 1]
regardless of whether we actually have data for X3.

3. Applications to Shrinkage Estimation

3.1. A shrinkage model for normal regressions

As in Lindley and Smith (1972), we have m normal regressions:

Yj | Xj, βj , τj ∼ N(Xjβj , τ
2
j Inj), j = 1, . . . ,m. (11)

As usual, Yj is a vector in Rnj and Xj is an nj×k matrix of explanatory variables,
and given Xj and the parameters βj and τj, j = 1, . . . ,m, the observations Yj are
independent. Our basic modeling intuition is that each regression is a particular
instance of the same type of relationship. Consequently, while the parameters
may vary from regression to regression, we may have prior beliefs that they are
similar. For instance, in Section 3.3 we present an example where each regression
corresponds to a different firm. From each firm, the same type of Y and X are
measured. We have beliefs that firms in the same industry will have similar
parameter values.

To model our prior beliefs about the degree of similarity, we start by letting
βj ∼ i.i.d. N(β̄,Σ). The i.i.d. assumption represents the fact that the β’s are
a priori exchangeable because we do not have prior information to distinguish
them. The assumed normality is a part of the prior belief about the the degree
of similarity. With β̄ and Σ considered fixed and known, the inferences in the
m regressions are still independent, but the posterior of each βj will be shrunk
towards the common mean β̄. Typically, however, we are uncertain about β̄
and Σ. We must specify (hyper-)prior distributions for β̄ and Σ to capture this
uncertainty.

The model discussed above describes what the different regressions have in
common. The model has a hierarchical form as follows:

Yj | Xj, βj , τ
2
j ∼ N(Xjβj , τ

2
j Inj), j = 1, . . . ,m,

βj | β̄,Σi.i.d.∼ N(β̄,Σ), j = 1, . . . ,m,
(12)
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where priors must be chosen for the τ2
j ’s, β̄, and Σ. Convenient and usually ade-

quate choices are available for β̄ and the τ2
j ’s, e.g., the (conditionally) conjugate

normal prior for β̄ and inverse-gamma priors for the τ2
j ’s. In many cases the

assumption that β̄, τ2
j ’s, and Σ are a priori independent is also reasonable.

Our focus is on the choice of prior for Σ. The choice is crucial, because
it determines the nature of the shrinkage of the posterior of the individual βj

towards a common target. Prior beliefs that Σ is small result in more shrinkage,
and prior beliefs that Σ is large result in less shrinkage. The tightness of the
prior on Σ determines the degree to which the shrinkage adapts to the data. As
an example, consider a situation where our prior on Σ is quite vague. Suppose
all but one of the βj ’s are clearly shown by the data to be very similar, and
there is weak evidence that the remaining β vector is far from the rest. The
well estimated βj ’s will convince us that Σ is small, resulting in shrinkage of the
remaining β vector towards the rest.

In the shrinkage context our prior information is primarily about the level
of variation of the individual coefficients across the m regressions. Let βj =
(β1j , β2j , . . . , βkj)�. We are interested in the variation in the set of values
{βi1, βi2, . . . , βim}. Marginally, we have

βij
i.i.d.∼ N(β̄i, σ

2
i ), j = 1, . . . ,m, (13)

where σ2
i = Σii is the ith diagonal element of Σ. Let si =

√
σ2

i . The prior belief
that si is small says that the coefficient for the ith explanatory variable is similar
in the different regressions. We want our prior to be able to express beliefs about
each si in a simple way. Since the explanatory variables have different units in
general, so do the βij and si for different i. Thus, we also need to be able to
assign a simple prior to each si which may support quite different values.

Thus, a key prior belief in our shrinkage model is about the standard devi-
ations corresponding to Σ. If we make the further (often realistic) assumption
that there is little prior information about the correlations, and, thus, we do not
want to use a strong prior such as R = I, then we are exactly in the situation dis-
cussed in Sections 1 and 2. We choose an independent log normal prior for each
of the standard deviations. For R we can use a variety of prior distributions, for
example the joint uniform prior and the marginal prior from the inverse-Wishart
with various choices of the degrees of freedom, including the marginal uniform
prior, as discussed in Section 2.

It is worthwhile to contrast the separation approach with other approaches
in the literature in the context of constructing prior distributions for Σ. Be-
sides not shrinking or complete shrinking (i.e., Σ = ∞ or Σ = 0), using an
inverse-Wishart prior for Σ is by far the most common approach in practice,
mainly because it is the (conditionally) conjugate prior and, thus, renders some
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mathematical simplicity. The restriction of common degrees of freedom for all
components of S, however, makes it virtually useless when we have different a
priori assessments for different components of S, as we discussed earlier. The
matrix logarithm approach of Leonard and Hsu (1992) is much more flexible but
suffers from a different kind problem. The matrix logarithm of Σ has no di-
rect statistical meaning, and S is not a simple function of the matrix-logarithm
parameters. Consequently, we found it difficult to use the matrix logarithm ap-
proach to produce a prior that captures our prior knowledge about S. The same
thing can be said about the spectral decomposition approach, another common
method in practice. For example, Banfield and Raftery (1993) and Bensmail and
Celeux (1996) have successfully utilized the spectral decomposition of a covari-
ance matrix in clustering and discrimination modeling problems by viewing the
decomposition in terms of the shape, volume, and orientation of a covariance
matrix. We have found it difficult, however, to use these ideas to capture our
prior beliefs in the shrinkage context.

The method of Pourahmadi (1999, 2000) is useful for modeling the covariance
matrix for a response variable whose components have a natural ordering (e.g.,
from a longitudinal study), but it loses its appealing properties when the goal is
to model the prior of the covariance matrix of regression coefficients (e.g., it is
necessary to specify priors on the parameters of the conditional regressions of ele-
ments of regression coefficient β on the other elements of β assuming an ordering
of the elements of β). Similarly, the reference prior approach of Yang and Berger
(1994) is very useful for constructing posterior estimators with good frequentist
properties, considerably better than estimators derived using the Jeffreys prior.
But reference priors are designed for cases where one is seeking a non-informative
prior, and thus they are not suitable when the goal is to provide a simple means
of capturing informative prior beliefs in Σ, especially in S. However, the refer-
ence prior approach might be useful for constructing a noninformative prior for
R when our modeling focus is on S.

In the next two sections we provide two examples to show the flexibility
and simplicity of the separation strategy for modeling a covariance matrix in
the shrinkage context. The first example is simulated with three regression co-
efficients and ten regressions, and is designed to illustrate some of the shrinkage
properties associated with the priors in Section 2. The second example uses a real
data set involving six regressions with two regression coefficients. The number
of regression coefficients (i.e., k) is kept low for ease of illustration.

3.2. A simulation study

In this simulation study, the true values of the first coefficient in the ten
regressions were evenly spaced from 1 to 2.8. (We have not let our prior normal
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assumption on the β’s influence our simulation configuration in order to reflect
a realistic situation.) The sample standard deviation of the ten values is 0.6.
To illustrate how our choice of prior affects the posterior through shrinkage,
we choose a prior for s1, the standard deviation of the first coefficient, that
concentrates on small values. We choose our prior for log(s1) to be N(−4, .62).
Figure 5(a) shows the corresponding prior density for s1. The 10%, 50%, and
90% quantiles are 0.01, 0.02, and 0.04, respectively. Thus, we are inputing the
prior belief that values of the first coefficient in the ten regressions are much
closer together than they actually are. The long right tail of the prior is intended
to reflect our prior believe that, although s1 is likely to be small, there is a chance
that it could be much bigger.
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5 15
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(a) Prior density for s1. (b) Prior density for s2. Prior density for

s3 is the same as that for s2.

Figure 5. Prior density for s1, s2, and s3. A priori, log s1 ∼ N(−4, 0.62) and
log s2 ∼ N(0, 1).

The true values for the second coefficient are the same as those of the first. In
contrast to the prior chosen for s1, our prior for s2 is spread out. We choose our
prior for log(s2) to be N(0, 1). Figure 5(b) shows the corresponding prior density
for s2. The 10%, 50%, and 90% quantiles are 0.3, 1.0, and 3.7, respectively.

The true values for the first two coefficients are chosen to illustrate the effect
of our priors on the degree of shrinkage. The prior for s1, the standard deviation
of the first coefficient, is chosen so that the posteriors of the first coefficient will
be shrunken together across the ten regressions. The prior for s2, in contrast, is
chosen to express the possibility of substantial variation in the coefficients, that
is, we expect little shrinkage for the posteriors of the second coefficient. The
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values of the third coefficient and the prior for s3 are chosen to illustrate the
situation where the goal is to learn about the variation of the coefficient and
there is little prior information. In each regression, the true values of the third
coefficient are set to one. Our prior for s3 is the same as that for s2, i.e., the prior
for s3 is spread out. In this case we hope to learn something about the degree of
similarity of the third coefficient across regressions from the posterior of s3.

This example illustrates the flexibility of our prior modeling approach. By
allowing separate priors on each of the standard deviations, it is easy to express
our prior beliefs for each variable about the similarity of the individual regression
coefficients, and at the same time we can use almost any prior for R. In our
example we believe a priori that the regression coefficients for the first variable
are quite similar, while our prior beliefs about the degree of similarity of the
regression coefficients for each of the other two variables are much less certain.
In contrast, it is essentially impossible to express these beliefs for the standard
deviations using the commonly used inverse-Wishart prior for Σ.

In each regression, all the values for the explanatory variables are drawn
from the standard normal distribution, there are 20 observations, and τi = 1.
The prior for each τi is log(τi) ∼ N(0, 1). For β̄ we have p(β̄) ∼ N(0, 1000I),
which will be extremely flat relative to the likelihood. As discussed, our prior
for Σ has log(S) ∼ N((−4, 0, 0)�,diag(.36, 1, 1)) and p(R) ∝ 1. Note that we
also performed the simulations using the marginally uniform prior (8) instead of
the jointly uniform prior p(R) ∝ 1. The results were very similar under the two
priors, which is not unexpected given k = 3.

Figure 6(a) displays an estimate of the posterior density of β2,10, the second
coefficient in the tenth regression, and an estimate of the posterior density of β1,10,
the first coefficient in the tenth regression. The true value of both coefficients is
2.8. We see that the posterior of β2,10 is centered close to 2.8, while the posterior
of β1,10 is strikingly different from that of β2,10. The mode of the posterior of
β1,10 is close to 2, which is the average value of the first coefficient across the ten
regressions. This reflects the extreme shrinkage caused by the prior of s1. The
posterior has a long right tail. This tail is trying to stretch out to cover the true
value suggested by the data. We find this posterior very appealing in the manner
in which it reflects prior and sample information. The shrinkage demanded by
the prior is reflected in the mass around 2. The right tail correctly indicates
that there is substantial uncertainty about the value, and that it may actually
be much larger than 2. Figure 6(b) shows a similar story for the first and second
coefficients from the first regression, β1,1 and β2,1. For the first regression, the
true value of both coefficients is 1.0.
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Figure 6. Comparisons of estimated posterior densities of β1 and β2. All
estimates based on 5000 posterior draws, which were obtained by subsampling
every 100th draw after a burn-in period of 100 iterations.
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draw after a burn-in period of 100 iterations.

Figures 7(a), 7(b), and 7(c) display estimates of the posterior distributions
of s1, s2, and s3, respectively. Notice the long right tail of the posterior of s1 (in
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comparison with its prior in Figure 1(a)) trying to stretch out to cover the kind
of values suggested by the data in defiance of the strong prior on smaller values.
The tail corresponds to the tail on the posterior of β1,10 and on the posterior of
β1,1. All three of these long tails are made possible by the long right tail in the
prior for s1. We consider the ability to conveniently capture such a tail a strong
point in favor of the choice of the log-normal prior for the elements of S. The
posterior of s2 correctly indicates a value a bit bigger than 0.5. The posterior
of s3 is concentrated on small values relative to the prior, reflecting the sample
information that there is little variation in the third coefficient.

3.3. A simple real-data example

This example is a simplified version of an approach which has been used
recently in the finance literature (e.g., Stevens (1996)). Much empirical work
in finance relates the returns of small assets (e.g., individual firms) to returns
on portfolios, which are made up of many assets. These portfolio returns are
designed to capture broad market factors.

In our simple example we will consider only one factor which we call “the
market”. It is meant to capture overall market activity. The market is repre-
sented by returns on the value weighted market portfolio, which is a portfolio of
many stocks, where the weight of each stock in the portfolio is proportional to
value of the firm (stock price multiplied by number of outstanding shares).

We regress returns of an individual stock on market returns. Our data consist
of monthly returns on each stock of interest and monthly returns on the mar-
ket portfolio. The regression slope is of particular interest in certain financial
calculations (Fama (1976), Brealy and Myers (1984)). In practice there may be
difficulty estimating this coefficient. While a great deal of data is available, firms
change considerably over time so that only fairly recent data may be deemed
relevant.

Our use of the hierarchical model is motivated by the need to improve esti-
mates of these regression coefficients and the belief that regression coefficients for
firms in the same industry may be similar. The estimates are improved because
if the coefficients are similar, then the si’s from Σ will be small and, thus, the
shrinkage will give more precise estimates of the individual coefficients. We con-
sider six airlines: American, Continental, Delta, KLM, Southwest, and United.
Our data consists of the returns for the six airlines and the value weighted market
in each of the 36 months from 92/01/31 to 94/12/30. Our prior is used to specify
how similar we think the regression slope is in the six regressions of airline returns
on the market returns. Since none of us is an expert on the airline industry, nor
do we have reliable information for realistic prior specification, we will use three
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prior specifications to conduct a sensitivity study to illustrate the impact of the
choice of the prior on the posterior.

Figure 8 shows the scatter plots of each airline’s returns versus the market
returns (returns have been multiplied by 100). To give the reader unfamiliar
with this data some idea of the magnitudes we are dealing with, the least squares
estimates (standard errors) of the six regression slopes are 0.57 (.53) [United], 1.21
(.63) [Continental], 1.27 (.50) [Delta], 1.47 (.70) [KLM], 1.53 (.49) [American],
and 1.55 (.65) [Southwest]. Note that the first slope (United) is substantially less
than the rest, but all of the SEs are quite large. It is of interest to see the effect
of our shrinkage model with its associated prior specifications on the estimation
of the United slope. To what extent will it be shrunk towards the others? In
practice there is a big difference between a slope of 1.0 and a slope of 0.5.
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Figure 8. Monthly airline return times 100 versus monthly market return
times 100 for each of the six airlines for the period 92/01/31 to 94/12/30.
The dashed line in each panel is the least-squares regression line from the
regression of the corresponding airline returns on the market returns. The
panels are ordered by the slope of the least-squares line in each panel.

Although several choices must be made in the prior specification, we con-
centrate on our choice of prior for s2, which denotes the standard deviation of
the regression slopes across the regressions (we let s1 be the standard deviation
of the intercept). This is the prior choice that is closely related to the shrinkage
of the posteriors of the regression slopes corresponding to the six airlines. Be-
cause k = 2 for this problem, the jointly uniform prior of R is the same as the
marginally uniform prior. All other priors were carefully chosen to be plausible
but not too informative. We attempted to make them spread out without giv-
ing support to values which are clearly a priori improbable. In particular, the
prior for s1, the standard deviation of the regression intercepts (i.e., the standard
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deviation of β1j), is log-normal with normal mean 1 and standard deviation 1.
This prior is quite disperse, indicating an uncertain prior belief about the degree
of similarity of the regression intercepts. A key feature of our prior specification
strategy is the ability to allow strong prior shrinkage for some variables, and weak
or no prior shrinkage for other variables. In this example, we are uncertain about
shrinking the intercepts, but will (and easily can with the separation strategy)
entertain a variety of prior shrinkage beliefs about the regression slopes.

Figure 9(a) shows our first choice of prior for s2. It is log-normal with normal
mean ξ = 2.3 and standard deviation λ = 0.05. Most of the mass is concentrated
on values between 9 and 11. This highly informative and clearly ridiculous prior
(as can be seen from a posterior predictive check) keeps the amount of shrinkage
small; this extreme prior is used purely for illustration because in practice such
an extreme prior is unlikely to be used even as part of a sensitivity study. Figure
10(a) displays boxplots of draws from the corresponding posteriors of each of
the six regression slopes. The medians are 0.58, 1.32, 1.23, 1.50, 1.47, and 1.63
(corresponding to the order of the airlines in Figure 10). Thus, the medians are
quite close to the least squares estimates, reflecting the absence of shrinkage.
Figure 11 shows an estimate under this prior of the posterior density of the slope
for United. We see that much of the mass is on values less than one.
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Figure 9. Prior densities of s2, the standard deviation of the regression slope,
for three choices. For all priors, log(s2) ∼ N(ξ, λ2).

Figure 9(b) shows our second and third choices of prior for s2. The second
choice is log-normal with normal mean ξ = −1.0 and standard deviation λ = 0.5,
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which is chosen to represent a plausible ball-park prior (i.e., it is reasonable but
not too informative). For example, the right tail extends well past values of 0.5.
A standard deviation of 0.5 (i.e., s2 = 0.5) suggests that most slopes are within
1 of the mean, which a priori seems like a large interval based on the authors’
experience with similar studies. (Note that the sample standard deviation of
the six least-squares estimates is 0.37.) Figure 10(b) displays boxplots of draws
from the posteriors of each of the six regression slopes. Although the prior is not
meant to be informative, the results are quite different than those obtained from
the first prior. The posteriors have been noticeably shrunk together. Figure 11
shows that the marginal posterior of the slope for United has shifted to the right
compared to the corresponding posterior for the first prior on s2.
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Figure 10. Boxplots of 3000 posterior draws of the regression slopes of the 6
airlines: United (U), Continental (C), Delta (D), KLM (K), American (A),
and Southwest (S). Draws were obtained by subsampling every 20th draw
after a burn-in period of 100 iterations. The 
 for each airline is the least-
square estimate based on the data from the corresponding airline. Figures
(a) (ξ = 2.3, λ = 0.05), (b) (ξ = −1.0, λ = 0.5), and (c) (ξ = −1.5, λ = 0.5)
are the posterior draws under the three priors for s2 given in Figure (a)
(corresponding prior parameters for s2 are given in parentheses).

The third prior is log-normal with normal mean ξ = −1.5 and standard devi-
ation λ = 0.5, which is intended to represent a plausible actual prior. This prior
was the result of one of the authors honest attempt at eliciting a prior specifi-
cation. Figures 10 and 11 show that this prior results in substantial shrinkage
relative to the first prior. The posterior medians are 1.12, 1.20, 1.21, 1.22, 1.25,
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and 1.24. Even relative to the second prior, we see that in Figure 11, the posterior
of the United slope is shifted a little to the right and is tighter.

Both the second and the third prior result in substantial shrinkage. The
median of the United slope moves from 0.58 to a value larger than one. However,
the basic conclusion has to be that even with the shrinkage model, the posteriors
are quite spread out, so that with 36 months of data we have not obtained
very precise inferences about the quantities of interest. Should we really shrink
United’s slope? Our hierarchical setup is a model, and, like any model, it should
be evaluated in the light of the data and substantive knowledge. For example,
we could conduct a posterior predictive check (Rubin (1984), Gelman and Meng
(1996), Gelman, Meng and Stern (1996)) of our hierarchical model to access its
goodness-of-fit (e.g., the normality assumption on the β’s) with the observed
data. The fact that the United slope is so unlike the rest may suggest that we
learn more about the company, for example, by analyzing its historical data or
by trying to find out any unusual event during that 36 months that seriously
invalidates the normality assumption underlying our hierarchical model.
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Figure 11. Estimated posterior densities of the regression slope for United
Airlines. The three densities correspond to the three priors on s2 shown in
Figure 9. The corresponding prior parameters for each estimated posterior
density are given in the key. All estimates are based on 3000 posterior draws.

4. General Location-Scale Model

4.1. General location model

Many applications, particularly in social science, require models that can
simultaneously deal with categorical and continuous variables. The general loca-
tion model (GLOM) (Olkin and Tate (1961), Krzanowski (1980, 1982), Little and
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Schluchter (1985), Little and Rubin (1987), Schafer (1997)) has been one of the
most frequently used models of this kind. One important application of GLOM
is for producing multiply-imputed public-use data files (e.g., Schafer (1997), Ru-
bin (1987, 1996), Meng (1994)). Here we first review the GLOM and its recent
extensions and then we propose a generalization of the GLOM, based on our
strategy of decomposing a covariance matrix into its correlations and standard
deviation. Our generalization allows for much greater flexibility in specifying
the conditional covariance structure of the continuous variables, and allows for
shrinkage estimation of covariances under a Bayesian hierarchical model.

Suppose we have a k-dimensional continuous variable Y = (Y1, . . . , Yk)� and
a q-dimensional categorical variable Z = (Z1, . . . , Zq)�. Each element of Z, Zj,
has cj levels for j = 1, . . . , q. The categorical variables form a contingency table
with c =

∏
j cj cells, one cell for each possible value z of Z. It is convenient to

index the cells either according to the values of Z, or by assigning each cell a
number from 1 to c, where the number is a function of the cell value z. We will
use both notations interchangeably.

Under the GLOM, the marginal distribution of the categorical variable Z is
multinomial and the conditional distribution of Y given Z (i.e., given a particular
cell) is multivariate normal with different means across cells defined by the cat-
egorical variables, but a common covariance matrix across cells. More precisely,
under the GLOM the joint distribution of (Y,Z) is as follows:
1. Z | π = (π1, . . . , πc)� ∼ Multinomial(π),

∑c
i=1 πi = 1, where πi is the

probability that a realization falls in cell i, i = 1, . . . , c, where (as noted
above) i(z) is a function of z.

2. Y | Z = z, µz ,Σ ∼ N(µz,Σ), where µz is the mean of Y in the cell specified
by z, and Σ is the common (across cells of the contingency table) conditional
variance of Y .

Structure is often imposed on the cell probabilities π and the cell means µz,
for example, by specifying a log-linear model for π and a linear (hierarchical)
regression model for the µz (see Schafer (1991), Schafer, Khare and Ezzati-Rice
(1993), Raghunathan and Grizzle (1995), Schafer (1997)).

A key aspect of the GLOM is the assumption of a common covariance for Y

across cells defined by the categorical variable Z. While it is clearly inadequate
in many applications to assume common covariance across all cells, especially
when there are many cells, it is also clear that allowing each cell to have its
own covariance matrix is impractical. For one thing, such a model often has
many more parameters than data points. An example of the inadequacy of the
GLOM is mentioned in Barnard (1995), where restricting all of the Σi to be
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the same results in drastic over-estimation of the covariance matrices for cells
with much less variable Y ’s than average. This over-estimation can, for example,
lead to substantial over-coverage of multiple-imputation confidence intervals (see
Barnard (1995, Section 6.6.2)). We would like to have some flexibility in modeling
the relationship among the cell covariances Σi, while at the same time keeping
the number of unknowns reasonably small.

4.2. Extensions to GLOM

To relax the homogeneous covariance restriction of the GLOM model, Liu
and Rubin (1998) present extensions to the GLOM model that allow a different
but proportional covariance matrix across cells, i.e., Σi = λiΣ, where the geo-
metric mean of the λ’s is set to 1. This model assumes that the multivariate
normals within each cell have the same ellipsoidal shape, but possibly different
sizes. They also allow additional log-linear constraints on the proportionality
coefficients λi, making it possible to put further structure in terms of covariates
on the cell covariances. Liu and Rubin give details on how to get maximum likeli-
hood parameter estimates using the EM algorithm, and how to conduct Bayesian
inference using Markov chain Monte Carlo methods for their GLOM extensions.

Recently, Chiu, Leonard and Tsui (1996) presented a modeling approach for
covariance matrices based on the matrix-logarithm transformation. They put
linear models on the unique elements of the matrix-logarithm of a covariance
matrix. This approach, while quite flexible, suffers from the same complication
as the use of the matrix-logarithm transformation in prior specification (Leonard
and Hsu (1992)) – the interpretability of the parameters resulting from the trans-
formation. Placing sensible models on these parameters can be a demanding task
for general users, particularly because one has to examine the hidden implications
of the model choice on the parameters of interest.

Our extension to GLOM, which we call a general location-scale model, is
more in the spirit of Liu and Rubin (1998). We allow cell-dependent vec-
tors of standard deviations, but a common correlation matrix. Writing Σi =
diag(Si)Ri diag(Si), i = 1, . . . , c, where Ri is the correlation matrix of Y and Si

is the vector of standard deviations of Y in cell i, our model assumes Ri = R

for all i, but leaves the Si unrestricted. This extension of GLOM gives greater
flexibility than that of Liu and Rubin (1998), but keeps the number of unknown
parameters to a manageable size. If the assumption of a common correlation
structure is too restrictive, the cells could be partitioned into a small number
of groups (e.g., two or four based on some of the categorical variables), with a
separate correlation matrix allowed for each group.



MODELING COVARIANCE MATRICES VIA A SEPARATION STRATEGY 1305

Structure could be imposed on the Si’s by putting linear regression models
(with possibly common regression coefficients) on the log(Si):

log(S) = Xβ, (14)

where log(S) ≡ (log(S1), . . . , log(Sc))� is a (c × k) matrix, X is a c × p design
matrix, and β is the corresponding p×k coefficient matrix. Obtaining maximum
likelihood estimates under this model, with either complete or incomplete data,
will require iterative methods, such as the EM algorithm.

By combining equation (14) with distributional assumptions on the log(Si), it
is also possible to do (Bayesian) hierarchical modeling of the covariance structure
through the vector of standard deviations, in addition to hierarchical modeling of
the mean structures. In other words, we can improve not only the estimation of
the mean-regression parameters but also the estimation of the standard deviation
(or variance) parameters through shrinkage, an improvement that is particularly
important when the data are sparse relatively to the number of cells. For example,
with a common correlation matrix R across cells, we can use any prior discussed
in Section 2.2 as p(R) together with the following to specify a hierarchical model
for the Σi: log(Si) | X[i], β,Λ ∼ N([X[i]β]�,Λ), p(β) ∝ 1, and p(Λ) ∝ |Λ|−(k+1)/2,
where X[i] is the ith row of X. The computations for this model can be performed
using the approach in Section 5.

5. Computational Details

There are many potential ways to do the computation. What we describe
below is a relatively simple approach that has worked well for our examples.
Since all of the models discussed in Section 3 and Section 4 can be expressed
in a hierarchical structure, it is convenient to compute the posterior using the
Gibbs sampler. We assume this is the case, so that we wish to draw from the
distribution of (S,R) given the other model parameters and the data (i.e., what
we describe below is to be incorporated into a larger computer program, which
includes the simulation for, say, β.) In addition, we assume that we can compute
this conditional posterior up to a proportionality constant.

To draw (S,R) we use the Gibbs sampler and draw each of the components
of S and R one at a time. The drawing of a particular rij (i > j) given the other
correlations and S (as well as whatever other parameters are in the model) is
complicated by the requirement that R be positive definite. We need to know
what values of rij keep R positive definite given that the other correlations are
held fixed.

Two observations enable us to solve this problem easily. Let us start with a
correlation matrix R, which we know to be positive definite (as will be the case in
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a Gibbs iteration). Let R(r) be the matrix obtained from R by changing the i, j

correlation to r and let f(r) = |R(r)|. Our first observation is that f(r) > 0 is a
sufficient (and necessary) condition for R(r) to be positive definite. To see this
we first let i = k; recall R is k×k. Let Rm(r) be the submatrix of R(r) obtained
by selecting all correlations ruv with u ≤ m and v ≤ m, where m is an integer
between 1 and k. Then R(r) is positive definite if and only if |Rm(r)| > 0 for
all m. Since R is positive definite, this will be true for m = 1, . . . , k − 1. Hence,
we need only check that |Rk(r)| = f(r) > 0. By permuting rows and columns of
R(r) as necessary the result follows when 1 ≤ i ≤ k − 1.

Our second observation is that f(r) is a quadratic function in r. Hence,
the set of values r which correspond to a positive definite correlation matrix are
those in the interval determined by the roots of the quadratic f(r) = ar2 + br +
c. The coefficients in f(r) can be found using a = [f(1) + f(−1) − 2f(0)]/2,
b = [f(1) − f(−1)]/2, and c = f(0). Thus, for each draw of rij given the
other correlations and S, we can easily determine the largest possible support
of the distribution, which takes the form of an interval. The computational
resources involved in obtaining the required determinants of R are minor in
current computer environments, as long as k is not too large.

To actually make the draws we have used the griddy Gibbs sampler (Ritter
and Tanner (1992)). We adopted this strategy because it is easy to program,
not because it is efficient in terms of computing time. Each component of S has
only the constraint that it be positive given the other components and R, so that
implementation of the griddy Gibbs strategy is straightforward, although some
experimentation may be needed to choose a grid. Choosing a grid from which
to draw rij given the other parameters is relatively simple. We first determined
the interval of values which preserve the positive definiteness of R as discussed
above. We then put down a grid of equally spaced values. Usually in application
we are only interested in the first two digits of a correlation so that choosing a
grid with 100 points is more than adequate and results in fast computation.

In general, this griddy Gibbs strategy can be used to draw from the posterior
distribution of Σ given prior distributions other than those discussed in Section
2, by first transforming from Σ to (S,R) and then using the above griddy Gibbs
strategy, assuming, of course, the resulting Markov chain satisfies the standard
regularity conditions (see, e.g., Roberts (1996), Tierney (1996)). We only assume
that we can (conditionally) evaluate the posterior distribution up to a propor-
tionality constant. The use of the Gibbs sampler also allows easy adaptation of
our computational strategy for missing data problems simply by adding another
Gibbs step, which draws from the conditional density of the missing data given
the observed data and the model, including its parameters.
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Our one-at-a-time Gibbs strategy is also useful for drawing from the joint
uniform prior p(R) ∝ 1. We do this by drawing each correlation given the others
under the prior distribution. Each draw is uniform on the interval determined
by the roots of the quadratic as discussed above. Clearly, many other prior dis-
tributions on Σ could be drawn from using a similar strategy, assuming the prior
distributions can be evaluated up to a proportionality constant. For some prior
distributions, however, transformations of R may be needed before implementing
the Gibbs strategy. For example, we have found that directly implementing the
one-at-a-time Gibbs sampler for the marginally uniform prior is not effective, as
the chain can stay in the corners of the correlation space Rk space (see Figure
2) for a long time.

The use of the griddy Gibbs method makes implementation (coding) of our
approach relatively straightforward (our code was written in C++). There is
the danger, however, that drawing all of the elements of S and R one at a time
will make the resulting Markov chain slow to converge and highly dependent.
Our limited experience suggests that this may not be as serious as one might
expect. We have found that the resulting Markov chains are able to move rea-
sonably quickly and produce draws with low to moderate autocorrelations. For
example, to assess convergence for the simulated example in Section 3.2, we ran
five independent Markov chains, using “disperse” starting values, and calculated
Gelman and Rubin’s (1992) potential scale reduction,

√
R̂, for consecutive it-

erations beginning at iteration 10 and ending at iteration 200 for a variety of
parameters. Figure 12 gives plots of the reductions versus iteration number. For
all parameters (including those not graphed), by iteration 150 (which includes a
burn-in of 75 iterations)

√
R̂ is close to 1.0, i.e., below 1.1, producing evidence

of acceptable convergence behavior of these chains.
Although we found the one-at-a-time Gibbs strategy coupled with griddy

Gibbs to be a useful computational approach for obtaining posterior quantities,
we also explored a Metropolis-Hastings strategy with an independence jumping
distribution in which we used the posterior of Σ under the conjugate inverse-
Wishart prior as the jumping distribution for generating trial draws of Σ (giving
draws of S and R). This alternative strategy, which seems quite natural, turned
out to be not useful in our applications – the resulting Markov chain often got
stuck for lengthy periods, giving a strong indication of the large differences be-
tween our priors and the standard inverse-Wishart prior. More flexible choices of
jumping distribution, such as the posteriors of Σ under the priors of Leonard and
Hsu (1992), may provide attractive alternatives to our Gibbs strategy. However,
we have not explored such options.
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Figure 12. Gelman and Rubin’s (1992) potential scale reduction,
√

R̂, for
a variety of parameters ((a) standard deviations, (b) correlations, and (c)
selected regression coefficients) from the simulation example in Section 3.2
plotted against iteration number. Reductions are based on consecutive draws
from five independent chains (first reductions calculated at iteration 10) and
are calculated from the second half of the corresponding chains.

6. Summary

Modeling a covariance matrix in terms of the standard deviations and cor-
relation matrix is a common strategy when the positive definite constraint for
the correlation matrix is easy to deal with, such as with bivariate variables (e.g.,
Jeffreys (1983), Zellner (1979), Gelman, Carlin, Stern and Rubin (1995)). In this
paper we show that the strategy can be applied in a much more general setting.
We provide empirical evidences to demonstrate that this strategy has much to of-
fer in the context of prior elicitation. The strategy is applicable in general because
the positive definite constraint can be easily handled via a Gibbs-sampler formu-
lation, that is, one correlation at a time. We also give an important application
in a non-Bayesian setting, namely, we propose the general location-scale model
to relax the restrictive common-covariance assumption of the popular general lo-
cation model for simultaneously modeling continuous and categorical variables.
There are many other applications of this approach, such as prior specification
of a covariance matrix in multinomial probit model (e.g., McCulloch and Rossi
(1998)) and Bayesian analysis of seemingly unrelated regression (Zellner (1962)).

We do not claim that the computational method we used in this paper is
the best possible one, albeit we did find it easy to use and reliable compared to
other methods we have tried. We also do not claim that the separation strategy
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is universally applicable (e.g., when rotation invariance is desirable). We do feel,
however, that the separation strategy, given it is directly motivated by statistical
considerations, is likely to be a more effective tool in certain contexts for applied
statisticians than current common methods such as inverse-Wishart or those
based on various mathematical decompositions. In fact our approach has already
been applied by practioners in hierarchical Bayesian modeling (e.g. Brav (2000)).
We thus hope our work will stimulate more applications of and research on the
separation strategy, including findings on its limitations.
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