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Abstract: Multiple imputation is becoming a standard tool for handling nonresponse
in sample surveys. A difficult problem in the analysis of a multiply-imputed data set
concerns how to combine repeated p-values efficiently to create a valid significance
level. Here we propose, justify, and evaluate the validity of a new procedure, which
is superior to the current standard. This problem is inherently difficult when the
number of multiple imputations is small, as it must be in common practice, as made
clear by its close relationship to a multivariate version of the classic Behrens-Fisher
problem with small degrees of freedom.
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1. Introduction and Background

Multiple imputation, first proposed in Rubin (1978), is a general statistical
technique for handling missing data. It is particularly suited to handling non-
response in large sample surveys, especially those surveys that are designed to
produce public-use data bases to be shared by many users. In such surveys, it
is tempting to impute (or fill in) the missing values due to nonresponse so that
all users can work with a complete data base. The key idea of multiple imputa-
tion, in contrast to single imputation, is to replace the set of missing values with
m(> 2) sets of plausible values. Each of these m resulting completed data sets is
then analyzed using standard complete-data methods. These analyses are com-
bined to create one repeated-imputation inference, which takes proper account of
the uncertainty due to missing data. In this and other ways multiple imputation
retains the major advantages and rectifies the major disadvantages inherent in
single imputation. For a comprehensive treatment of multiple imputation and
comparisons with single imputation, readers are referred to Rubin (1987), and
specifically for comparisons of p-values using single and multiple imputation, to
Li, Raghunathan and Rubin (1990).
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All of the multiple imputation procedures described there perform much bet-
ter than single imputation procedures. Of these procedures, the least successful,
although adequate in most situations, is the one for combining m p-values (or
x? test statistics) to obtain one valid significance level. To illustrate, suppose we
wish to test a ten-component regression coefficient when there is 30% missing
information (defined precisely in Section 1.4). Using single imputation, the rejec-
tion rate of a nominal 5% test is approximately 45% whereas the rejection rate of
the current standard procedure is 10%-—not perfect but clearly an improvement
over single imputation.

Here we derive and describe a new way to combine p-values that is as simple
yet better than the previous standard. In particular, in the illustrative exam-
ple just discussed, the rejection rate is 6%. Related improvements for obtain-
ing p-values from repeated estimates and variance-covariance matrices are more
straightforward and are reported in Li, Raghunathan and Rubin (1990). In
the remainder of Section 1, we provide the necessary background material and
notation, including discussion of the inherent difficulty of this problem and its
relationship with the well-known Behrens-Fisher problem. Section 2 presents our
procedure, and gives its theoretical justification. Section 3 evaluates its validity.
Finally, in Section 4 we discuss other approaches to this problem, and summarize
our conclusion that the new procedure has the simplest form among all previous
procedures that give accurate levels. We also provide practical advice on its use,
and discuss related research.

1.1. The complete-data case "

Let X = [z3,... ,Z,]! be the n X p complete-data matrix, with the associated
density f(z|6), where the parameter 4 is a k-dimensional vector. Assume that
with the complete data the asymptotically valid and efficient inference for 6
would be based on the statement

U~ - 0)~ N(0,I), (1.1)

where § = 6(X) is an efficient estimate of § and U = U (X) is the associated
variance-covariance matrix. For example, in a frequentist analysis, one may
take 0 to be the maximum likelihood estimate of 8 and U to be the inverse of the
observed information matrix. Then (1.1) can be interpreted as asserting that the
sampling distribution of 6 is approximately normal with mean # and variance-
covariance U. In contrast, in Bayesian analysis, § and U are the posterior mean
and variance-covariance of , respectively, where (1.1) is the large sample normal
approximation to the posterior distribution of §. Thus, approximation (1.1) is
commonly acceptable to both frequentists and Bayesians.




SIGNIFICANCE LEVELS FROM REPEATED p-VALUES 67

In practice, especially in multiparameter cases, the evidence about the likely
values of 0 is often summarized by a p-value for a specified “null” value of 8, say
6o. As a direct consequence of approximation (1.1), this p-value can be calculated
as

P, = Pr[x% > kD,], (1.2)

where xi is a chi-square random variable with k degrees of freedom, and D, is
the observed value of the quadratic form

D(X) = (8 — )0 (60 - B/, (13)

which is proportional to the Wald test statistic. Again, this p-value has both
frequentist and Bayesian interpretations. A frequentist would interpret it as the
probability of observing D, or more extreme values of D(X) when 6 = 6, in
an imagined long sequence of identical experiments that produce new values of
6 and U. Tt is also a Bayesian p-value in the sense that the (1 — p)100% HPD
(highest posterior density) region will just include 6.

The use of p-values rather than interval estimates is especially useful and
common in highly multiparameter models, such as large log-linear models for
contingency tables, where the parameter 6 consists of all high-dimensional in-
teractions, and the p-value summarizes evidence about the acceptability of a
parsimonious model that includes, for example, only main effects and two-way
interactions. In such cases, the dimensionality of ,%, can be in the hundreds.

An important point is that whenever the complete-data likelihood ratio test
has the form of (1.2), our approach can be used. Therefore, even if the test is
not against a single null value of 6, but rather against a collection of null values,
as with a composite hypothesis, our method of combining significance levels still
can be applied. The reason is that the only distributional results explicitly used
are the x2 reference distributions.

1.2. The incomplete-data case

In common survey practice, it is very likely that we can only observe part of
the complete data X for various reasons (see, for example, Rubin (1987), Chapter
1). Denote this observed part by Xobs = {Xi;|Rij = 1}, where R;; = 1 if the
(i,7)th element of X is observed, and zero otherwise. We also assume that the
missing data mechanism is ignorable:

PI(RlX) = Pr(RlXobs),

where we suppress possible dependence of this distribution on unknown param-
eters distinct from 4.
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This ignorability assumption is not strictly necessary (Rubin (1987), Chap-
ter 4), but for simplicity of presentation, we will assume it. Thus, the relevant
likelihood function for drawing inferences about 6 is

L(6] Xops) / F(X10)dX i,

where Xpis = {Xi;|Rij = 0} is the collection of missing values.
In analogy with the complete-data inference (1.1), we assume the following
large-sample approximation holds

T 1%(f,1s — ) ~ N(0,1), (1.4)

where f,,, = é(Xobs) is an efficient estimate of @ based on the observed data
(e.g., observed-data MLE or posterior mean), and T = T(Xps) is the associated
variance-covariance matrix (e.g., inverse of the observed-data information ma-
trix or the posterior variance of #). Consequently, the p-value for summarizing
evidence about a null value 6; can be calculated as

Pobs = Pr[x% > kDgps), (1.5)

where
Dops = (éobs - oo)tT-l(éobs - 00)/"7 (1'6)
is proportional to the observed value of the Wald test statistic based on the
observed data.
With the complete data X, the computation of §(X ) and U(X) usually is
straightforward, either analytically or numerically. But with the incomplete data,

it can become troublesome and even intractable, which is especially burdensome
in contexts of public-use files.

1.3. Basic distributional results for multiple imputation

Multiple imputation is an efficient and valid way of handling incomplete
data problems using only standard complete-data techniques once data are im-
puted. More specifically, m imputations for the missing values Xp,;s are created,
Xﬁfl)ﬁs, £=1,...,m, and these are used by the data analyst to create m corre-
sponding completed data sets

{Xf,‘);(f =1,... ,m} = {(XObS’XS-QIiS);Z =1,... ’m}'

The data analyst then conduct§ m standard complete-data analyses to compute
the corresponding values for 6 = 6(X) and U = U(X) : 6. = O(Xﬁe) ) and
Uwu=U (X.Sl)) (£=1,...,m). Letting the set of completed-data moments be

Sm = {(0ae,Une); £ =1,... ,m},
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the data analyst can combine the statistics in the set S,, to obtain one inference
for 6.

When using “proper” imputation methods (for the definition of “proper”,
see Rubin (1987), Chapter 4), the following approximations concerning the dis-
tribution of (0.¢,U.e) (I = 1,...,m) are justifiable (Rubin (1987, Chapter 4),
Raghunathan (1987), and Schenker and Welsh (1988)): '

8.2| Xobs, 0 ~ i.i.d. N(6gps, B) (1.7)
and B
U,.,lXobs,Hz U, (1.8)
where .
B = B(Xobs) = V[0(X)| Xobs, 0], (1.9)
U = U(Xobs) = E[U(X)| Xobs, 8], (1.10)

and % in (1.8) means equal in the sense of lower order variability. Thus, in view
of (1.4), (1.7), and (1.8), the sufficient statistics for inference about 6§ are

_ 1 & .
b = — > bue, (1.11)
=1

1 s . _
m = " *f — Um 0: - 'mt 1.
Bn = g 2= 0n)(0ue = ) (112)

and
_ 1 &
O = — ;U.,. (1.13)

Here B, measures “between imputation” variability and U,, measures “within
imputation” variability. Bayesian justification for these statistics can be found
in Rubin (1987, Chapter 3).

1.4. Fractions of missing information

The crucial measure of the extent to which inference is hindered by the
occurrence of missing data is the fraction of missing information, which is the
proportionate increase in variance due to missing values. It is especially easy
to make this idea clear from a Bayesian perspective. Specifically, the posterior
variance of 4 based on the observed data, X}, can be written as

V(01 Xobs) = E[V(61X)| Xobs] + VIE(6]X )| Xobs), (1.14)




70 K.-H. LI, X.-L. MENG, T. E. RAGHUNATHAN, D. B. RUBIN

where the first term on the right hand side is the expected posterior variance
of & when there are no missing data, equal asymptotically to E(U|Xyps), and
the second term on the right hand side is the expected increase in posterior
variance due to missingness. Hence, the eigenvalues of V[E(8|X)| X,ps] relative
to V(0] X,ps) can be interpreted as measuring the increases in posterior variance
due to missing data — the fractions of missing information. Small values of
these eigenvalues imply less loss of precision. In particular, in the scalar case,
the fraction of missing information is simply the ratio of V[E(8]X)|Xopsl to
V(OIXobs)°

In large samples, the posterior variance V(6| X,ps) will equal the inverse
of the negative second derivative of the observed-data log-likelihood, defined in
(1.4) tobe T = T(X,pg)- Similarly, the complete-data posterior variance V(8| X)
will equal the inverse of the negative second derivative of the complete-data log-
likelihood, defined in (1.1) to be U = U(X). Thus, the first term on the right
hand side of (1.14) is asymptotically equal to U defined in (1.10).

From the frequentist perspective with ; equal to the true value of 6, asymp-
totically we have
where

U=V (0)6 = 6,).

Finally, the second term on the right hand side of (1.14) is approximately B
defined in (1.9); in large samples

(B|0 = 0t) ~ By,

where
Bt = Tt - Ut

with )
T: = V(0obs|0 = 6:).

The eigenvalues of B; relative to T; give the population fractions of missing
information, which we denote by v = (71,...,7%) € [0,1)*. Thus, 7 gives the
increases in variance of parameter estimates due to missing data when 6 = #6,.
Because of the lower order variability of B and U, v may also be taken to be
the eigenvalues of B with respect to T = (U + B), with average fraction of
missing information ¥ = }°.v;/k. Notationally, we also let A; = v;/(1 — 7v;),
j =1,...,k, be the eigenvalues of B; (or B) relative to U; (or U), where A =
(A1,--+ s Ak) and A = 30 Aj/k. A final set of measures are the ratios of complete
to observed information, that is, & = 14+ X; = (1 — )71, with € = (&,...,&)
and £ = Zj gj/k-
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1.5. p-values based on §,,

¢

Having obtained the collection of completed-data moments Sy, = {(0az, Use),
£=1,...,m}, we can obtain a p-value for 6 = 6,

P = Pr(Fx > Dm), (1.16)

where the test statistic D,, is a scaled distance between the estimate 8,, of the
parameter # and the hypothesized value, 6, based on the sufficient statistics
(1.11-1.13), and Fi,, is an F reference distribution with k¥ and w degrees of
freedom, with w — oo as m — oo. An excellent choice for D,,, which works well
for all values of m, is

D = (Bm — 00)'Up (9 — 60)/[k(1 + 7)), (1.17)

where
Tm =1+ m™ ) tr (BnUY)/k. (1.18)

The F reference distribution can be justified from both the frequentist and Baye-
sian perspectives, and various specific choices of denominator degrees of freedom,
w, have been proposed (Li (1985), Rubin (1987) and Raghunathan (1987)).
Among them, the best one so far is proposed in Li, Raghunathan and Rubin
(1990):

w=d4 v -4)[1+(1- %)/'rm]z, (1.19)

where v = k(m — 1).

Notice that this procedure requires ¥ > 4. When v < 4, an alternative
denominator degrees of freedom (m — 1)(k + 1)(1 + r;;1)?/2, proposed by Rubin
(1987), can be used. The major conclusion of Li, Raghunathan and Rubin (1990)
is that this procedure is very well calibrated for all m > 3 in cases of practical
interest, and the loss of power due to finite m is quite modest in cases likely to
occur in practice.

When m — oo, D,, given by (1.17) tends to

D = (Bobs — 80)'T " (Bobs — b0)/ (). (1.20)

When all §; = £ = 1+ ], it is easy to show that DX = Dy, the ideal test
statistic. When the §; vary, Li, Raghunathan and Rubin (1990) show that D3
is very close to Dgps under most practical circumstances, the difference being
governed essentially by the coefficient of variation of the &;, that is, the coefficient
of variation of the ratios of the complete to observed information.
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1.8. p-values based on §;

©

Clearly, the procedures given in Section 1.5 require access to the collec-
tion of completed-data moments S,, = {(é,.,l, Uu), £ = 1,... ,m}. In practice,
the dimension k is often large, as when social scientists attempt to find par-
simonious models from public-use data bases with hundreds of variables and
thousands of sampling units. In such cases, the standard complete-data analysis
may only provide the collection of completed-data x? statistics (or distances)
Sa = {du1,... ,dum}, where, asymptotically,

dug = (60 - é-z)tU.}l(% — O4p); (1.21)

the corresponding p-value in the fth complete-data set is Pr(x} > du) (£ =
1,...,m). Consequently, finding the p-value for the null value 6o given Sy rather
than §,, is an important practical problem.

The problem of directly combining {d.¢, £ = 1,... ,m} is tricky since each
du¢ typically leads to a too significant p-value because the U, tends to underes-
timate the total variability T in equation (1.4). The representation of D,, that
makes progress possible (Rubin (1987)) is to note that (1.8) implies

dmk=1 — (—:‘ﬁ%)rm

szbm: 1+r ’

(1.22)

where d,, is the sample mean of {due,£=1,... ,m} and r,, is given by (1.18).

Two penalties for the overestimation inherent in the d,, exist in (1.22).
First, a positive quantity is subtracted from d, k1 (the extra factor k~! is due
to our using a mean square, rather than a chi-square as reference distribution),
and then the result is divided by a quantity that is larger than 1; both penalties
are monotone increasing functions of r,,.

Replacing 7., in D,, with estimates obtained from the set 54 yields proce-
dures for calculating p-values when only S is available. For example, the existing
standard procedure, as described in Rubin (1987), is to replace r,, by a method
of moments estimate

= (14 )53 {2 + 4T, — 2631Y7), (1.23)

where s2 is the sample variance of the d,, and [a]+ = max{a,0}. The resulting
procedure for calculating the p-value is

P =Pr{F,, ;> Dn}, (1.24)
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where B - 1)
D, = i , (1.25)
{=(m-1)(1+#1 (1.26)
and
ar = (1+k71)/2. (1.27)

Evaluations of this procedure are summarized in Rubin (1987) as well as
in Li (1985); Raghunathan (1987); Weld (1987); Treiman, Bielby and Cheng
(1988); and Schenker, Treiman and Weidman (1988). These results suggest that
whenever the fractions of missing information are small, or modest but m > k,
it provides reasonably accurate levels. In other cases, an improved procedure
is needed, especially when both the fractions of missing information and k are
large.

1.7. Relationship with classic Behrens-Fisher problem

Our problem is closely related to the multivariate version (k > 1) of the
Behrens-Fisher problem. In particular, when all A; equal A, the numerator of
D, on the right hand side of (1.17) is distributed proportional to a x% random
variable, and the denominator as a positive affine transformation of an indepen-
dent xi(m -1 random variable. In this case, D,, is distributed as the square of a
k-variate Behrens-Fisher random variable with oo and k(m — 1) degrees of free-
dom, where r,, can be used to estimate the nuisance parameter A with k(m — 1)
degrees of freedom.

In traditional applications of the Behrens-Fisher problem, the two degrees
of freedom are typically modest and relatively similar (e.g., 8 and 12), rather
than oo and k(m — 1) where m is small (e.g., 3). In traditional cases, simple
approximations often work well because the nuisance parameter, A, although
not known precisely, is well-enough known. References include: Aspin (1948),
Cochran (1964), Jeffreys (1940), Johnson and Neyman (1936), Robinson (1976),
Smith (1936), Wallace (1978), and Welch (1937, 1947). Although the distribution
of D,, becomes more complicated when the A; vary, ry, is still unbiased for A
It is thus not too surprising that for modest k(m — 1), a satisfactory reference
distribution can be found for D,,, as in Li, Raghunathan and Rubin (1990).

The situation changes rather dramatically, however, when r,, is not available
and must be estimated — the case that occurs when inference must be based on the
set S rather than the set S,,. Although D, given by (1.22) is asymptotically
equivalent to D,,, when r,, is replaced by an estimate from S;, three things
happen. First, the numerator and denominator of the resulting estimate of D
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are no longer independent; second, the degrees of freedom available to estimate
X are reduced from k(m — 1) to at most (m — 1), at most because the d,, only
provide an absolute magnitude of the difference between 8, and 0.¢ and not the
direction of that difference as with 6,, — 6p; and third, it is not obvious how to
combine the (m — 1) apparent degrees of freedom in Sy to estimate X.

Clearly with small m (e.g., 3), inferences will be sensitive to values of the
nuisance parameter A. Because in practice m is modest, we are dealing with a
situation where theoretical small samples issues in the Behrens-Fisher problem
are practically important.

2. The Proposed Procedure

2.1. The test statistic D,

The proposed test statistic is of the form D,, with r,, replaced by an estimate

#q, as with Dy,. Specifically, we propose

. dnk~1 — (2t1)7,
Dy = Ty (2.1)
where m
fa= (14 )| =2 > (v~ V) (2:2)

is the sample variance of v/d,q, ... ,/der, times (14 m™1). This estimate of r,,
makes intuitive sense because the smaller the fraction of missing information v,
the closer each of the d., (£ = 1,... ,m) should be to the ideal test statistic and
thus to each other. For example, in the extreme case when there is no missing
information, all d.¢’s must be equal to the ideal test statistic, and hence 74 = 0;
then the corresponding Dy is also equal to the ideal test statistic.

2.2. The derivation of D, assuming equal eigenvalues

The main difficulty in deriving a replacement for r,, based on the set Sy
is that the joint distribution of (d.1,... ,dum) is very complicated — a product
of m Bessel functions (Raghunathan (1987), Meng (1988)). Various estimates
have been proposed in the literature. Under the equal eigenvalue assumption,
Li (1985) and Rubin (1987) derived the method of moments estimates given
in (1.23); Raghunathan (1987) gave an approximate MLE using a simple ap-
proximation to the Bessel function; and Meng (1988) showed how to obtain the
exact MLE by applying the EM algorithm. But none of these estimates are in
simple form, and the corresponding distributions of the approximations are not
tractable.
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Here, we adopt a different approach. We first simplify the distribution of d.,
using a normal approximation to v/d,; (£ = 1,... ,m), and then obtain a simple
estimate of A by a further approximation. Although we derive Dy under the
equal eigenvalue assumption, we show in Section 2.5 that Dy can be motivated
without this restriction.

From (1.7) - (1.8), one can show, for all § and 6, that
d-le-obs,O ~ 1i.d. :\xi’“;‘, (2.3)
where the noncentrality parameter of the x? random variable is 6§/ with
6 = (Bobs — 80)'T " (Bons — 00). (2.4)

Using a normal approximation to the non-central chi random variable (Patnaik
(1949)), we obtain

Vdue| Xops, 8 ~ii.d. N(u,o?), (2.5)
where
w={(k = DX+ 6+ )2, (2.6)
ol =X-r, (2.7)
and
22 A2

TTA0+6/k) 200+ (14 N)DE)’ (2:8)
where the last step follows because DX = §/[k(1 + A)), as given in (1.20). Thus
for large k and small A, the sample mean and sample variance of the v/d.; are
sufficient statistics for u and o?.

From (2.8), T is relatively small compared to A in most the cases of im-
portance because (i) in common practice, A is less than 1 (corresponding to a
maximum of 50% missing information), and (ii) DS is large when the ideal test
statistic is close to traditional values for significance. In fact one can easily show
that 7/A < A/(2(1+2X)) < 1/6 when X < 1 and D > 1. If we set T to zero, as
we shall further justify in the next section, then by (2.5) — (2.7), we obtain

Vdet| Xops,0 ~ i.id. N([(k - 1)) + 6]1/2, %), (2.9)

which provides the very simple estimate of (1 + m~1)\ given by #; in (2.2).
Replacing r,, in (1.22) by 74 gives Dy in (2.1).
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2.3. Behavior of D; when m — oo — Theory with equal eigenvalues

Although the case of m = oo is of no practical interest, it can be used to
ascertain the degradation in performance of a procedure with finite m. Also,
theoretically, the consistency of a general test procedure is desirable, in the sense
that Dy should ideally be close to Dyps When m = co. We will show that DY is

very close to DJ° and hence, as discussed in Section 1.5, very close to Dgps.
From (1.7), (1.8) and (1.21), one can show that

E(dve)Xobs,8) = Ak + 6/X) = k(X + (1 + X)) D). (2.10)

Thus, when m — oo, from the strong law of large numbers, D, converges almost
surely to (conditional on X s and )

peo — 2E(dat Xobs,8) — Var(v/dsr| Xobs, 6)
d 1 4 Var(v/due| Xobs, 8)
_ D™ 4R, (2.11)

where i ‘
R = (A — Var(vdue| Xobs, 6))(1 + DY)
1+ Var(vd.e| Xobs, 0)

From equations (2.11) and (2.12) it is clear that if R is small, then DY will be
close to DY and hence close to Dgp,s. We now show that R is indeed negligible
in most cases of practical importance.

Approximation (2.7) gives Var(v/d.¢|Xobs,8) = XA — 7, where 7 is given in
(2.8). Thus, from (2.12), straightforward algebra shows

(2.12)

~ 7*(1 + DY)
2D +1—-(1-7)%’

(2.13)

where ¥ = A/(1+ A) is the average fraction of missing information. When D is
equal to or larger than its expectation under the null hypothesis (i.e., 1), which
is certainly true when the ideal test provides any evidence that 8 # 6y, it follows
that

B<—2 = B@) (say)

S3-(1-qp 0 N B
Notice that B(¥) is a monotone increasing function with maximal value B(1) =
2/3. In common practice, B(¥) usually is very small because 7 is typically less
than 30%. In fact, B(0.3) = 0.07, which is clearly negligible compared to D.
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2.4. Checking the theoretical approximation with m = co using Monte
Carlo

The actual level of a nominal a test based on DY with the x2/k reference
distribution is

Pr{kDY > x;(1 - )|8 = 6o} (2.14)

where x%(1 — @) is the 100(1 — a) percentage point of the chi-square distribution
with k degrees of freedom. Now, under the null hypothesis 8 = 6, and assuming
A = 3,

(816 = 60,3 = %) ~ (1+ 1)t

Hence, the probability (2.14) can be evaluated numerically for any fixed A or
equivalently fixed v; = 7.

Table 1 provides the actual level when A; = X for nominal 1%, 5% and 10%
tests for various combinations of ¥ and k obtained by numerically evaluating
(2.14) using Monte Carlo techniques. To accomplish this, we generated § from
(14 X)x3 and computed DY and Dgp,e (which equals to D under the equal
eigenvalue assumption) for 10,000 draws of § for each choice of ¥ = 0.1, 0.2, 0.3
and 0.5 and k¥ = 2,3,5,7,10,15,20 and 25. Overall, the levels seem to be
well calibrated, although slightly on the conservative side for small ¥ and anti-
conservative for large k and large 4. Table 2 provides correlation coefficients
between Dg,s and D3 for various choices of 4 and k. Overall, it seems that the
correlations are high for small k¥ and decrease as k increases.

2.5. Extensions to unequal eigenvalue cases

Equations (2.10) — (2.12) are valid even when the fractions of missing in-
formation are not equal, since they are derived directly from the general dis-
tributional assumptions (1.7) and (1.8) of Section 1.3. An analogue of (2.13)
can be obtained by the delta method (or by applying Patnaik’s (1949) tech-
nique) as follows. Using the notation of Section 1.3, let T' be an orthogo-
nal transformation matrix such that TU-Y/2BU /21" = diag(),,... ,Ax), and
A = TU2(f4ps — ), a function of Xops. Let B, be the slope of the re-
gression of A on A and CV; be the coefficient of variation of the £&. Then we
have

Var(v/due| Xobs, 8) & A — 7%,
where

*

A= (1422 (14 284,))CVE
B 2(A + (1 + X)) D) ’
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which reduces to 7 of (2.8) when all A; = A. Substituting these two expressions
into (2.12), we obtain

[% = (1 4+ 28a,0)CVZ(1 + DY)
2D +1-(1-3)2+(1+ 28a2)CVE’

(2.15)

This expression indicates that R is still negligible under the null hypothesis,
because E(fa 1|0 = 6p) = 0, and C'V2 typically is small. In fact one can show
that CVE < ¥—2%% when all ); are less than 1. Assuming 85 ) = 0 and D > 1,
we obtain from (2.15) that

7> - CV¢|
3-(1-%)+CV{

IR| < ;= B(3,0V2) (say)-

It is interesting to notice that B('y,C’Ve ) is usually smaller than B(%) (=
B('y,O)), since CV€2 is positive and small. When ¥ < 30%, using the facts
B(7) < 0.07 and CV < 7 — 27, one can show that B(¥,CV?) < 0.07, that is
the same bound holds for B as for B. This result suggests that the approximation
in (2.15) is often more accurate than the approximation in (2.13).

Monte Carlo simulations are difficult to perform with unequal eigenvalues
because E(v/dy|X,ps,8) is hard to evaluate. It is not clear, however, whether
performing such computationally arduous comparisons of D and Dy,s when
the eigenvalues are unequal is worthwhile since DY is primarily of interest as a
theoretical procedure, and modest values of m must usually be used in practice.
Therefore, we move on to our comparison of Dy and D6 for the cases of practical
importance with modest m and both equal and unequal eigenvalues.

2.8. The reference distribution for D,; with small m

When m — oo, the obvious reference distribution is x2 /k since it is the
correct reference distribution for the ideal test statistic, Dypg. For small m, some
approximations are inevitable, since the exact distribution is intractable and even
if it were available, it would depend on nuisance parameters (A1,... ,Ax). The
reference distribution we use here is an F distribution on k and ak,m - W, degrees
of freedom, where

= (m - 1){1 4731} (2.16)
and
km = k™3™, (2.17)

This form for w, is obtained by replacing r,, in (m — 1){1 + r;1}?, which is the
denominator degrees of freedom of an F reference distribution for D,, (Rubin
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(1987)), with #4, in the same way as we did for obtaining D4; analogous substi-
tution for r,,, in w given by equation (1.19) leads to essentially the same Monte
Carlo results. The extra adjustment factor a ,, is obtained through simulation,
and essentially reflects the loss of degrees of freedom due to the fact that we are
using a scalar quantity instead of a k-dimensional quantity to estimate X; Qk.m
was chosen to be especially good when m = 3, since this appears to be the most
common value in current practice. Notice that, as m — o0, ax,» — 1, and for
m2>3

k' <apm <1, (2.18)

That is, the adjusted number of degrees of freedom is between the minimum and
maximum denominator degrees of freedom.

3. Evaluation of Our Procedure for Finite m
3.1. The level of D,

The actual level of a nominal a level test based on our procedure is
Pr{D4 > Fin(1 - a)|0 = 6o}, (3.1)

where 1 = ax,nw,, and F ,(1 — a) is the 100(1 — ) percentage point of the Fy ,
distribution. The procedure is said to have the correct level ¢ if the probability
in (3.1) is equal to a. Ideally one would hope this is true for every o between
0 and 1, or at least for common values of a such as 10%, 5% and 1%. From
the nature of our procedure, it should be apparent that it will be exceedingly
difficult to evaluate (3.1) analytically. Therefore, we use Monte Carlo simulation
to evaluate (3.1).

3.2. Monte Carlo conditions

Note that without loss of generality, we can let §p = 0, U = I and
B = diag()). As in Section 2.4, we consider average fractions of missing informa-
tion, ¥, equal to 0.1, 0.2, 0.3 and 0.5, where 50% missing information represents
an extreme case for multiple imputation. We also consider equal and unequal
eigenvalues, the latter chosen so that for each value of k considered (2, 3, 5, 7,
10, 15, 20, 25), the standard deviations of the v; nearly equal 0.12(min=0.099,
max=0.124). Specifically, in the unequal case,

Yi=F-01)+7', i=1,...,k,

O e
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where the 4} are given in sequence by

0.010 0.190 0.102 0.181 0.021 0.174 0.032 0.024
0.250 0.031 0.056 0.032 0.351 0.021 0.052 0.203
0.053 0.071 0.182 0.051 0.052 0.103 0.024 0.305
0.036.

Although the standard deviation of 0.12 may appear modest, especially for large
7, our selection of the 7;,...,7; represents extreme situations. For example,
when k = 15 and 4 = 0.5, the minimum and maximum fractions of missing in-
formation are 41% and 75% respectively. Some limited experience with real data
(e.g., Rubin and Schenker (1987), Treiman, Bielby and Cheng (1987), Heitjan
and Rubin (1990), Heitjan and Little (1991)) suggests that with real data, most
fractions of missing information are less than 30%. The values of m are 2,3,5
and 10, which cover all values likely to be used in practice, and let a = 10%, 5%

and 1%.

3.3. Steps of the simulation

The basic setup for the simulation is as follows:

Step 1.

Step 2.

Step 3.

Step 4.
Step 5.

Generate éobs from a normal distribution with mean zero and covari-
ance matrix I + B = T. Compute Pr(x2 > Dgs), the ideal p-value,
where Dy, = é;bsT‘laobs. This mimics the situation where our anal-
ysis based upon the observed data, X,pe, results in (éob,T) and the
subsequent computation of the ideal p-value; Pyys from Dgpe. This is
used as a simulation covariate.

Generate d,, from its repeated imputation distribution described in
Sections 1.3 and 1.6, where U, is fixed at I. This mimics the situation
where we have used the complete-data analysis on m completed data
sets resulting in chi-square or Wald statistics, d,¢, £ = 1,...,m.
Compute the p-value, Py, based upon Dy, Pr{Fk, > Dj}, where 7 is
given in Section 3.1.

Record the p-values, (P,ps, Py) obtained in Steps 1 and 3.

Repeat Steps 1 through 4 N times and estimate (3.1) for a=10%, 5%
and 1%.

The simulation was done for N=>5,000 repetitions with both equal and un-
equal fractions of missing information. The results of our simulation are described
in Tables 3 and 4, which provide the actual levels for various situations when the
fractions of missing information are equal and unequal respectively.
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3.4. Results of the simulation

In general, the exact levels in Tables 3 and 4 suggest that Dy tends to be
conservative for both equal and unequal fractions of missing information. This
is more pronounced for ¥ = 0.1 and large k (> 10). Furthermore, the extent of
conservativeness seems to be a function of the nominal level. For example, for
the nominal 5% tests, the exact levels for k = 10 range from 3.3% to 4.3% when
m changes from 2 to 10, whereas for the nominal 10% tests, the levels range from
6.9% to 9.1%. By the results in Section 2, the levels will approach the nominal
levels as m increases; however, our results seem to be best when m = 3, which
is as anticipated, since the adjustment factor ax,, was chosen with particular
attention to the case m = 3.

For ¥ = 0.2, the test seems to be somewhat anticonservative for the 1%
nominal level and conservative for the 10% nominal level with 5% in between.
For 4 = 0.3 and 0.5, the test is anticonservative, especially for large k. For
example when k = 25, m = 2 and 4 = 0.5, the nominal 1% test corresponds to
an exact 5.2% test, whereas the nominal 5% test corresponds to an exact 7.6%
test. There is some nonmonotonicity in the exact levels as m increases, especially
for 5% and 10% nominal levels. Nevertheless, the performance of Dy is distinctly
superior to the current standard.

To help assess the effect of the various factors on the difference between
the nominal and exact levels, we constructed an ANOVA in Table 5 for the
8 X 4 X 4 X 3 x 2 factorial design. To measure the difference between the exact
and nominal levels we consider

[z score for the exact level] — [z score for the nominal level]
z score for the nominal level

b

where the z score is the standard normal deviate corresponding to the p-value.
Since the total sum of squares is small (6.05) relative to the number of differences
(768), the variability in differences between the exact and nominal levels is rela-
tively small. The effect of various factors on the differences can be ascertained
by the sum of squares associated with various assignable sources.

The results in Table 5 suggest that the major source of differences between
the exact and nominal levels is 7, for it explains 58% of the total variability. The
next most important main effect is a, closely followed by m. Sums of squares
associated with various interactions involving Var(y) also suggest that the test
Dy is somewhat sensitive to the equal eigenvalue assumption, although these
interactions are dwarfed by the main effect due to 7.

Correlations between Dy and both D,, and D¢ were examined, and, not
surprisingly, are quite low, indicating a substantial loss of power when using
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Dy rather than D,,. This issue is explored next by examining the conditional
performance of Dy relative to D,,.

3.5. Some evaluations of conditional performance

Despite the approximate attainment of nominal level, our procedure leaves
much to be desired because the set S4 of p-values has so much less informa-
tion than the set of moments, S,,. From the frequentist perspective, there will
be a substantial loss of power when using §4 rather than S,,, and from the
Bayesian perspective, results will be quite sensitive to prior assumptions. The
consequences with our procedure, which are visible from our simulations, are
that it is poorly calibrated conditionally. In particular, consider any fixed A and
repeated samples with (a) estimated fractions of missing information indexed
by Var(v/d.;) and (b) p-values P,, and P;. Assuming P, attains nominal levels
(unconditionally), when Var(y/d..) is small, we expect to see too liberal p-values
from Py relative to P,,, whereas when Var(y/d.;) is large, we expect to see too
conservative p-values relative to P,,. When considering a variety of values of A,
we expect to see a similar trend.

Figures 1a and 1b display the difference between P; and P,, for all X values
from our simulation with m = 3 (which is approximately calibrated uncondi-
tionally), for £ = 5 and 20, respectively. Attempts can be made to adjust these
results to create a conditionally conservatively calibrated procedure, but such
attempts typically lead to worse calibration unconditionally, as with the fiducial
solution to the Behrens-Fisher problem.

The real culprit is the extreme loss of information when going from S, to
S4, and some remedies are suggested in the next and final section.

4. Discussion
4.1. Conclusions and practical guidance on the use of our procedure

We have described a procedure for computing the p-value when only comp-
leted-data test statistics, {d.¢,£ = 1,...,m}, are available. The procedure is
simple and performs reasonably well for a variety of situations described by the
values of m, the number of imputations, k, the dimensionality of the parame-
ter, and 9, the average fraction of missing information, and for both equal and
unequal fractions of missing information. The simulation study shows that the
fraction of missing information is the most important factor in the performance
of this procedure.

Our procedure is, nevertheless, far from what might be hoped for. Its cal-
ibration is only approximate, and moreover, not ideal conditionally given the
estimated fraction of missing information. Also, because of its noisy relation
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with Dy,, the moment-based procedure, we know there will be a substantial
power loss compared with D,,. As a result, we recommend that D, be used pri-
marily as a screening test statistic, thinking of it as providing a range of p-values
between one-half and twice the observed P;. If this range is not sharp enough,
then ideally the researcher should use a more accurate procedure, for example
D,, based on S,,, the set of moments. If S, is not available, but only S, other
work reported in Section 4.2 suggests that extensive efforts may be required to do
much better than our procedure — the loss of information going from S,, to S is
great. Of these, a fully Bayesian procedure is the most theoretically satisfactory
(e.g., Raghunathan (1987)).

Another class of methods is based on obtaining information in addition to
54 but short of S,,. These methods are briefly discussed in Section 4.3 and have
promise.

4.2. Other methods based on Sy

Li (1985) describes other procedures primarily motivated by the frequentist
perspective. Note that when the fractions of missing information are equal, the
ideal p-value is

Pobs = Pr(xk > 8(1- 7)) (4.1)
where 6 = (6obs — 00)tU " (dops — 00) and 7 is the common fraction of missing
information. Hence, a version of P, based only on {d.t,¢ = 1,...,m} can

be obtained by first obtaining estimates of § and 4 and then substituting these
estimates in (4.1). Li (1985) provides several estimates of § and ¥, none of which
are superior to the procedure described in Section 2; in some regions of the space
formed by values of (k,m,7¥), they are overly conservative or overly liberal. A
main reason for the poor performance of such methods is their failure to account
for the uncertainty introduced by the substitution of estimates for § and 4. The
procedure described in this paper corrects this by considering an F distribution
rather than a chi-square distribution.

Raghunathan (1987) provides procedures motivated by the Bayesian per-

spective. The posterior density of (6,%), for a uniform prior, can be shown to
be

1 -
P(8,7152) o (77 = 1™/ D exp{~ (77" ~ 1)(dm + )}

. III(k—2)/2[V dued(371 - 1)),
where (=] ;+ )
z[2)1+%

) = L {5+ DI+ 44D
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is the modified Bessel function of the first kind. The Bayesian p-value based on
Sq is obtained as

[ Peoc > 61 - 3)) - P8, 3150)d6 5. (4.2)

Numerical integration techniques can be used to evaluate the above integral.
Raghunathan (1987) develops various approximations to the above integral and
investigates their frequency properties. Overall, they tend to be conservative
for large k and liberal for small k. A serious disadvantage of this approach is
its sensitivity to the prior specifications for (§,7). Since usually the number of
imputations m is small, say less than 5, the prior distribution for (6,%) plays
a very prominent role and can drastically alter the performance in terms of
frequency properties for a slight change in the prior specifications.

An easily implemented Monte Carlo algorithm is described in Meng (1988)
for approximating the above integral. It is derived based upon the decomposition
of duyg, £ = 1,... ,m, with X = 7/(1 - 7),

dee = Ax3_, + [N(VE, N)]% (4.3)

It is also shown that its frequency properties are sensitive to the choice of prior
for . Meng (1988) also discusses several approximations based on the maximum
likelihood estimate of § and A (obtained using the EM algorithm) and the associ-
ated observed Fisher information matrix. Bayesian versions are also considered.
These procedures work well for not too small m.

Meng (1988) also proposes a translated F reference distribution for Dy,
derived using the same normal approximation for the distribution of v/d,;. This
reference distribution is more accurate than the F reference distribution given
here for large values of 4. Unfortunately, this reference distribution does not
converge to the ideal reference distribution when m — oo, although they are
quite close.

4.3. Methods based on more information than $; but less than S,

As we mentioned before, the loss of information from §,, to Sy is extreme,
especially when k is large and m is small. This should be clear since S,, contains
all k-dimensional vectors and their normalizing matrices, whereas S, consists of
only the normalized scalar distances of these vectors from 6,. This severe loss of
information is responsible for the poor performance of the existing procedures,
including f)d, and makes the problem a very difficult one.

Clearly, the only way to overcome this inherent difficulty is to obtain more
information. Ideally, of course, we would have the collection of the moments,
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Sm, but this is impossible in cases when the covariance matrices are not avail-
able. Fortunately, however, it is possible in some cases of practical importance
to obtain some extra information, which is less than S,,, but is enough to ap-
proximate D,, well. The key idea is that all we want is the scalar test statistic
D, of (1.22), and the only quantity there that is not directly obtainable form
Sq is T, of (1.18).

One such kind of procedure has been proposed recently in Meng and Rubin
(1990). The basic requirement of this new procedure is that besides Sy, one also
has (i) the collection of the m estimates ,, and (ii) computer code for evaluat-
ing the complete-data likelihood ratio test statistic as a function of parameter
estimates. This is often feasible in practice since all it requires is the complete-
data computations for scalar quantities. It is shown in Meng and Rubin (1990)
that in large samples, the ry, of (1.18) is proportional to the difference between
the average of m complete-data log-likelihood ratios, d.,, and the average of m
complete-data log-likelihood ratios, each evaluated at the average of m estimates,
where the proportionality constant is a simple function of k and m. Based on
this result, an approximate likelihood ratio test is constructed, and it is shown
to be asymptotically equivalent to D,, for any number of multiple imputations.

A common situation in practice is that the standard complete-data analyses
provide not only the significance levels, but also the estimates §,, and their
standard errors (the diagonal elements of U.¢), but neither the entire covariance
matrix Uy, nor the code for evaluating the complete-data likelihood ratio test
statistic as a function of parameter estimates. These estimates and standard
errors certainly provide more information than does S, alone, and one would
expect, therefore, to be able to obtain better test procedures using them. The
construction of such test procedures and their evaluation are still open questions,
although they are under current investigation.
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Table 1. Levels of Dd when m = o0 as a function of the nominal level, a; the dimension,
k; and the fraction of missing information ¥. (Based on 10,000 draws of 6.) Equal
fractions of missing information.

a | BN | 01 02 03 05
2 09 09 0.8 1.0
3 09 09 09 1.1
5 1.0 1.0 09 1.2
1% | 7 1.0 1.0 09 1.0
10 1.0 1.0 1.0 1.3
15 1.0 1.0 10 1.0
20 1.0 1.0 10 1.4
25 1.0 1.0 1.0 1.5
2 48 48 4.8 56
3 52 4.8 48 5.8
5 51 48 50 5.9
5% | 7 51 50 51 6.1
10 | 50 50 49 5.8
15 | 5.0 50 49 6.1
20 | 50 50 4.9 6.1
25 | 50 5.0 4.8 6.1
2 9.8 98 10.0 10.8
3 9.9 9.8 10.2 11.2
5 9.8 9.8 10.3 11.3
10% | 7 9.7 9.9 104 11.4
10 | 9.6 9.8 10.3 11.8
15 | 9.5 9.7 104 11.8
20 | 9.5 9.6 10.8 11.7
25 | 9.4 9.6 10.9 11.1

Table 2. Correlation coefficients between D} and Dy when m = 00 as a function of

the dimension k and the fraction of missing information, ¥. Equal fractions of missing
information.

N 0.1 0.2 0.3 0.5
2 0.998  0.998 0.998  0.997
3 0.971 0.981 0.998  0.921
5 0.962 0.988 0.996 0.905
7 0.892 0.976 0.988  0.896
10 0.891 0.892 0.921 0.821
15 0.876 0.872 0.904 0.831
20 0.772 0.802 0.872 0.781
25 0.792 0.821 0.872 0.761
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A

Table 3. Level (in %) of Dy with F reference distribution as a function of the nominal

3

level, o; the dimension, k; the number of imputations, m; and the fraction of missing

information, ¥. Equal fractions of missing information.
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Table 4. Level (in %) of Dy with F reference distribution as a function of the nominal
level, a; the dimension, k; the number of imputations, m; and the average fraction of
missing information, 5. Unequal fractions of missing information.

m=2 m=3
a | &N¥ | 0.102 03 05 a | BN | 0102 03 0.5
2| 1.0 1.1 1.3 2.6 2] 09 09 11 1.9
3| 0711 15 3.1 3| 08 12 1.2 24
5| 07 1.3 14 3.7 5| 07 11 1.0 26
1% 71 0812 21 42 1% 7| 08 13 1.6 3.1
10| 06 1.4 21 45 10| 07 1.0 1.8 3.5
15| 0.6 1.6 24 5.0 15| 08 1.2 18 3.5
20 07 1.4 28 5.1 20| 0.6 1.2 2.3 3.7
25 | 0.6 1.9 3.2 5.2 25| 05 16 27 3.9
2| 50 48 53 7.1 2| 51 49 50 6.3
3| 4750 55 7.7 3| 47 52 50 6.9
5| 3.7 47 56 8.1 5| 41 49 53 7.2
5% 7| 3950 62 93 5% 7| 45 54 54 81
10| 3.3 46 69 8.9 10| 3.6 49 56 8.0
15| 3.5 48 63 8.0 15| 3.6 42 58 7.0
20 | 2.8 48 6.7 74 20 | 35 47 64 6.6
25| 2.8 52 64 7.6 25 | 2.8 48 6.3 6.5
2103 9.4 99 123 2106 9.8 9.9 11.2
3| 93 96 99 12.5 3| 9.7 9.7 10.2 12.3
5| 81 95 10.1 13.3 5| 9.1 9.6 102 12.6
10% 71 7.7 8.9 10.1 13.3 10% 7| 85 9.6 10.2 12.9
10| 6.9 81 10.9 12.3 10| 7.9 8.9 10.0 12.0
15| 6.8 8.1 9.7 10.5 15| 7.6 8.2 9.2 10.0
20 | 5.8 82 9.6 9.5 20 | 6.9 8.3 10.2 9.5
25 | 5.3 82 93 92 25 | 6.3 8.6 10.0 8.6

3
[
3
o

.1 02 0.3 0.5 a | N[ 01 02 03 05

2] 09 10 1.0 1.6 2] 09 10 1.1 1.1

3| 08 1.0 1.0 2.0 3| 07 1.0 1.1 1.1

5| 08 1.1 1.2 2.2 5| 08 08 1.0 1.3

1% 7| 07 12 15 27 1% 7| 09 10 1.2 17
10| 07 10 1.7 3.1 10| 07 1.0 1.1 2.6

15| 0.8 0.9 14 29 15| 0.8 08 1.3 23

20| 06 09 22 3.2 20 07 09 16 3.0

25| 06 15 23 3.2 25| 07 11 1.8 3.0

2| 5.2 48 49 6.2 2| 52 49 52 55

3| 47 52 51 6.3 3| 51 53 56 6.0

5| 45 46 54 7.0 5| 45 54 5.7 6.7

5% 7| 45 52 57 7.9 5% 7| 47 56 59 8.1
10| 41 4.8 5.6 8.0 10| 43 54 5.7 89

15| 40 43 55 7.0 15| 45 53 55 84

20| 3.9 46 6.2 6.9 20| 44 56 6.3 9.1

25 | 34 48 6.1 6.5 25 { 44 53 67 8.7
2103 9.5 9.6 11.4 21107 9.8 99 11.0

3] 9.9 10.1 10.1 12.6 31102 10.6 11.1 11.7

5{ 9.0 9.7 10.8 12.5 51 9.7 10.6 10.9 13.5

10% 7] 9.0 9.6 11.1 13.2 10% 71 9.5 10.8 11.4 14.7
10 | 8.5 9.8 10.1 12.9 10 | 9.1 11.0 11.5 15.8

15| 85 9.1 9.8 10.7 15 | 8.8 10.0 11.1 15.2

20 [ 8.2 8.2 10.1 10.9 20 | 8.9 10.7 11.8 15.0

25 | 74 87 102 9.3 25 | 9.2 10.6 12.6 14.8
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Table 5. Analysis of variance table for the relative differences between the exact and
nominal levels on the z score.

Factor Degrees of % of total sum Ratio of mean square to
freedom of squares residual mean square

k 7 0.6 9
m 3 3.0 98
¥ 3 58.1 1880
Levels 2 4.7 228
Var(7y) 1 0.7 73
kxm 21 1.3 6
kx¥y 21 8.2 38
mX ¥ 9 0.6 7
k X Levels 14 3.6 25
m X Levels 6 1.8 29
¥ X Levels 6 14 23
k X Var(y) 7 1.5 21
m X Var(y) 3 0.9 28
¥ X Var(y) 3 1.1 36
Levels X Var(y) 2 4.6 226
kXmX¥y 63 1.2 2
m X ¥ X Levels 18 0.4 2
k X ¥ X Levels 42 0.6 1
k X m X Levels 42 0.4 1
Residual 494 5.3 1

Total 767
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Figure 1b. Plot of Py — P, vs Var(y/d,;) for k = 20.
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