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1. PROLOGUE

The invitation for this discussion contribution came
at the busiest time in my (professional) life with four
courses and many more meetings attempting to com-
pensate, psychologically, for the lost endowment at
Harvard. I could not possibly, however, decline David
Madigan’s kind invitation. The topic is dear to my
heart, as it should be to any statistician’s, for without
“unobservables,” we would be unemployable. And I
always wanted to know what “h-likelihood” is! I first
heard the term from my academic twin brother, An-
drew Gelman, who sent me his discussion of Lee and
Nelder (1996). Gelman’s conclusion was that “To the
extent that the methods in this paper give different an-
swers from the full Bayesian treatment, I would trust
the latter.” This of course did not entice me to read the
paper. Indeed, I still did not know its definition when I
started to type this Prologue, nor have I had any profes-
sional or personal contact with either author. I surmise
this qualifies me as an objective discussant, though I
hope in this case the phrase objective is not exchange-
able with noninformative or ignorant!

But surely, one may quibble, Gelman’s comment
must have influenced me. True, but I’m not the kind
of Bayesian who is unwilling to change his/her prior.
My pure interest is to decode the h-likelihood. If my
brother is right, I’ll be more proud of him. If he is
wrong, I’ll be wiser by learning something new. (But
I do ask Professors Lee and Nelder for their tolerance
as I try to follow my brother’s critical style, in the name
of good discussion!) So here I am, setting aside the
72-hour Memorial Day weekend, after persuading my
teenagers that their father’s H-bomb mystery is more
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urgent to solve than his colleague Dr. Langdon’s pre-
vention of the antimatter explosion in 24 hours, which
actually repeats every weekend.

2. PREPARING FOR A BAYESIAN INFERENCE
OF H-LIKELIHOOD

2.1 Prior Formulation

Naturally I will adopt a Bayesian approach to in-
fer what is the real “H” in the h-likelihood. What
could it actually stand for? (I) Heuristic argument?
(II) Handy approximation? (III) Hybrid method? Or
even (IV) Hidden treasure? Of course, a priori I would
not be a good Bayesian if I exclude “(V) Hype?” no
matter how small my prior belief in it. Gelman’s com-
ment led me to assign the highest prior probability to
(III), 60%. Since the events here are clearly not mutu-
ally exclusive, (I) and (II) also deserve some nontrivial
prior probabilities which are 40% each for reasons I
can only explain to myself. But for reasons everyone
can explain, the prior probabilities for categories such
as (IV) or (V) are best kept confidential, other than that
they of course depend on one’s knowledge of the au-
thor(s) and the journal.

2.2 Data Collection

Immediately, I ran into the usual problem of any
real-life data collection—there are never enough time
or resources! It is already 2:31 pm Saturday as I am
typing this sentence, and I yet need to read the pa-
per plus four reference papers I was able to download
from JSTOR: two discussion papers by the same au-
thors (Lee and Nelder, 1996, 2005) and the two pa-
pers in Biometrika that illustrate the use of h-likelihood
(Ha, Lee and Song, 2001, Lee and Nelder, 2001). Lee,
Nelder and Pawitan’s (2006) book of course would be
invaluable which, unfortunately, turns out to be literally
true in this case because apparently no Harvard library
can afford it.
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So I settle with these four papers as background,
knowing well the potential bias due to my haphaz-
ard selection and all the “unobservables” to me at
this moment. Hence my apologies to the authors—and
readers—in advance. To compensate for my hastiness,
I’ll actually read all five papers, and the discussions,
before forming my likelihood, with or without “H”!

2.3 Data Processing

Another grand challenge in real-life statistical analy-
sis is data processing, something that unfortunately has
not received nearly enough systematic treatment in the
literature but which typically can have a substantial, if
not detrimental, impact on the final conclusions. One
key component in data processing is to sort out contra-
dictions in the data, some obvious and some subtle.

A priori I did not expect this to be a part of the
mystery that would await me. But that prior belief
quickly shrank to ε after reading the first paragraph.
The authors started by emphasizing Pearson’s (1920)
point that Fisher’s likelihood is not useful for predict-
ing future observations or unobservables. Regardless
of whether Fisher ever had such an intention, this is an
inference/prediction issue. The authors then immedi-
ately stated that existing efforts in generalizing Fisher’s
likelihood inferences with unobservables run into the
problem of not having “explicit forms” due to the dif-
ficult in integration. But that is squarely a computa-
tional/calculus issue. Putting aside the vast literature
on the EM algorithm and related computational meth-
ods that have successfully dealt with this very compu-
tational issue in many common applications (see the
overview by van Dyk and Meng (2010) and other pa-
pers in the coming theme issue on EM in this journal),
I am mystified by the logic and aims here—which issue
do the authors intend to address? Both?

Of course this could actually be a sign of a great
mystery novel, enticing the reader from the very be-
ginning, with multiple seemingly related or unrelated
lines to pursue, and a Holy Grail at the end—a gi-
gantic H! (Clearly I am still in my Dan Brown mood,
though hopefully this time the Holy Grail is more than
a legend.)

The data processing indeed took much longer than
I expected, mainly because the “unobservables” that I
need to infer, from a number of mystic symbols whose
meaning can only be surmised retrospectively to rea-
sons that can explain the authors’ conviction that their
h-likelihood methods have been misunderstood by al-
most all the discussants, since Lee and Nelder (1996).

It is already 6:39 pm, Sunday. So let me get to the
three main storylines as I comprehend. The first two

lines are generally well understood, so I shall reflect on
them briefly. The third line, which is the most contro-
versial, namely, h-likelihood inference for unobserv-
ables, touches upon some fundamental issues about
statistical inference and prediction, and turns out to
have at least one unexpected intriguing property, at
least to me. Therefore, the rest (three quarters of the)
discussion attempts to provide an explanation of this
controversy to a general audience, along with some
ramifications and thoughts it generates. Indeed, if a
reader is in a rush to catch Angles and Demons, as
my teenagers were, the reader should just skip the
following section, which contains no real enlighten-
ment or entertainment, other than some shameless self-
advertisements and academic quibbles.

3. TWO UNCONTROVERSIAL STORYLINES

3.1 Line One: Unobservables are Useful
for Modeling

Much of the authors’ Section 1 and Section 2 were
devoted to arguing and demonstrating the usefulness
of unobservables for statistical modeling. Other than
the authors’ preference for using unobservables as
the all-encompassing term instead of the more com-
mon term missing data (though I agree that “unob-
servables” is semantically more appropriate), the same
message has been repeatedly emphasized in the litera-
ture, and it is indeed worthy of repeating. As I wrote
in “Missing Data: Dial M for ???”, a JASA Y2K vi-
gnette (Meng, 2000), “The topic of missing data is
as old and as extensive as statistics itself—after all,
statistics is about knowing the unknowns.” Unable
to outshine the summary there, I ask readers’ indul-
gence for a more extensive self-quotation. Below is
the opening paragraph of the same vignette, echoing
well the authors’ key emphases, but with a more ex-
tended history (e.g., McKendrick’s missing-data mod-
eling/formulation went back 1926; see Meng, 1997):

The question mark is common notation for
the missing data that occur in most ap-
plied statistical analyses. Over the past cen-
tury, statisticians and other scientists not
only have invented numerous methods for
handling missing/incomplete data, but also
have invented many forms of missing data,
including data augmentation, hidden states,
latent variables, potential outcome, and aux-
iliary variables. Purposely constructing un-
observed/unobservable variables offers an
extraordinarily flexible and powerful frame-
work for both scientific modeling and com-
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putation and is one of the central statis-
tical contributions to natural, engineering,
and social sciences. In parallel, much re-
search has been devoted to better under-
standing and modeling of real-life missing-
data mechanisms; that is, the unintended
data selection process that prevents us from
observing our intended data. This article is
a very brief and personal tour of these de-
velopments, and thus necessarily has much
missing history and citations. The tour con-
sists of a number of Ms, starting with a
historic story of the mysterious method
of McKendrick for analyzing an epidemic
study and its link to the EM algorithm,
the most popular and powerful method
of the twentieth century for fitting mod-
els involving missing data and latent vari-
ables. The remaining Ms touch on theoret-
ical, methodological and practical aspects
of missing-data problems, highlighted with
some common applications in social, com-
putational, biological, medical and physical
sciences.

No further discussion seems necessary because this
is a point on which apparently most agree; indeed,
almost all the positive comments on Lee and Nelder
(1996) were on praising their promotion and formula-
tion of models via unobservables.

3.2 Line Two: H-likelihood for Fixed Parameter

The authors’ Section 3 is where I saw the definition
of h-likelihood for the first time. Using the authors’ ini-
tial notation, y denotes observed data, θ is the fixed pa-
rameter, and v I infer is what the authors regarded as a
random “unobservable.” The h-loglikelihood is simply
defined as h(θ, v) = logfθ (y, v) where fθ (y, v) is the
joint probability distribution/density of {y, v}.

In the rejoinder of Lee and Nelder (1996), the au-
thors argued that the definition of h-likelihood is as
logical as Fisher’s likelihood. I agree. In fact, this point
was well recognized in Berger and Wolpert’s (1988)
monograph on likelihood principle (LP) where they
wrote (page 21.2), “. . . the LP should be formulated
in such a way that θ consists of all unknown vari-
ables and parameters that are relevant to the statisti-
cal problem.” (Emphasis is original.) They proceeded
to devote an entire section to the successes and chal-
lenges in extending the LP to include what they call
“unobservable variables,” just as in the authors’ for-
mulation. In fact, in addition to the observable X, they
wrote (pages 36–37) θ = (z;ω) = (y,w; ξ, η), “where

z = (y,w) is the value of an unobservable variable Z

with y being of interest and w being a nuisance vari-
able, and where ω = (ξ, η) is the parameter that deter-
mines the distribution of both X and Z, with ξ being of
interest and η being a nuisance parameter.” This quote
shows that Berger and Wolpert’s (1988) definition is
the same as the authors’, other than it takes a more ex-
plicit form by recognizing two different kinds of un-
observables, y and w, just as we often distinguish be-
tween primary parameter ξ and nuisance parameter η.

The key question here, therefore, is what to do with it
once it is defined. I shall discuss this point in Section 5.
Here it suffices to note that the authors’ initial proposal
to maximize h(θ, v) jointly over {θ, v}, which they la-
bel MHLE (maximum h-likelihood estimation) as in
Section 2.2 of Lee and Nelder (1996), can clearly lead
to grossly inconstant or even meaningless estimators if
it is taken as a general procedure. This was pointed out
by the majority of the discussants of Lee and Nelder
(1996); as the authors stated later in the rejoinder of
Lee and Nelder (2005), “The discussion was a disas-
ter because everybody took the worst possible case of
binary data and described difficulties with it. Nobody
said it worked in other cases.” The example of Bayarri
et al. (1988), reviewed in authors’ Section 4.2, demon-
strated that the defect has little to do with binary data.

Indeed, earlier Little and Rubin (1983) provided four
examples, three using standard univariate or bivariate
(regression) normal models and one with a censored
exponential model, to show that MHLE (though of
course not in that term since Little and Rubin, 1983
predates Lee and Nelder, 1996) resulted in seriously
flawed/inconsistent estimators, unless the amount of
missing data is (asymptotically) negligible. The under-
lying issue is essentially the same as with the well-
known Neyman–Scott problem (Neyman and Scott,
1948). The message here is loud and clear: maximiz-
ing over unobservable/missing data, in general, is not
a valid method.

Evidently, the message has been appreciated by the
authors, as they now make it explicit that for the “fixed
parameters,” their method is the same as Fisher’s MLE,
that is, maximizing the marginal log likelihood �(θ) =
logfθ(y). This certainly should help to avoid the type
of mis-communications the authors described in the
paper (e.g., about Rubin and Little’s 2002 comments).
But this also means that no further discussion is needed
either because there is no new advance here.

However, for the sake of discussion, let me pick up
on the authors’ statement that “We view the marginal
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likelihood as an adjusted profile likelihood eliminat-
ing nuisance unobservables v from the h-likelihood.”
The issue is not much of the re-labeling itself, but
rather that by making such a statement, the authors
might be in danger of falling into the same trap that
they have correctly warned others to avoid. The au-
thors’ “adjusted profile h-likelihood (APHL),” as far
as I am able to understand, simply uses a Laplace
approximation to replace the integration called for
by Bayesian marginalization (for nuisance parame-
ter/unobservables). Whereas such an approximation in-
deed is very useful and appealing for practical pur-
poses when the approximation is reasonable, it does
not constitute a principled statistical method in its own
right unless a sound inferential principle is articulated
for the approximation itself. Without such a princi-
ple, its performance can only be judged by how close
the approximation is to the Bayesian target it approx-
imates. In this sense, comparisons such as those given
in the authors’ Figure 2 say little about the merit of
the h-likelihood methods, but only reconfirm the use-
fulness of the Laplace approximations, or demonstrate
the impact of the prior (which of course is not a part of
the h-likelihood formulation). In other words, mixing
a computation/approximation method with a statistical
method is as troublesome to me as mixing an estima-
tion method with a statistical model is to the authors
(and to me of course).

Enough painless/itchless quibbles; let us get to the
heart of the authors’ proposal, that is, making inference
about the unobservables via h-likelihood!

4. WHAT ARE THE PRINCIPLES BEHIND THE
H-LIKELIHOOD METHODS?

4.1 Distinguishing Likelihood Principle, Likelihood
Inference, and MLE

The authors invoked several times the likelihood
principle (LP) to justify their h-likelihood methods.
But all the LP says, broadly speaking, is that if two
data sets lead to the same likelihood, then they contain
the same information, assuming the underlying model
for each data set is correctly specified. The LP elimi-
nates any procedure that violates it, but it says nothing
about how to conduct a likelihood inference. As Berger
and Wolpert [(1988), Chapter 5] put it, “The LP strikes
us as correct, and behaving in violation of it would be
a source of considerable discomfort. Yet the LP does
not tell one what to do (although insisting on methods
based on the observed likelihood function certainly re-
duces the possibilities).”

Indeed, there is a long list of methods in the domain
of “utilization of the likelihood function,” too long even
for Berger and Wolpert’s (1988) monograph. I shall
avoid repeating Berger and Wolpert’s argument that the
full Bayesian inference is actually the most principled
likelihood inference, since clearly the authors’ inten-
tion here is to achieve what Bayesian methods achieve
but without adopting the Bayesian philosophy; or, to
self quote again (Meng, 2008), “enjoying the Bayesian
fruits without paying the B-club fee.” But it is worth-
while to re-emphasize that the notion of likelihood in-
ference is a very elusive one—any method that does
not violate LP can be legitimately included (see Berger
and Wolpert, 1988).

In contrast, maximal likelihood estimation (MLE) is
a well-defined method, telling us exactly what to do
with the likelihood function. It is this specific method
that the authors’ MHLE mimics. The aforementioned
counterexamples demonstrate clearly that in general
this imitation is only mathematical. The key question
then is whether it is possible to find a set of useful and
general conditions under which the imitation is more
fundamental, that is, under which MHLE preserves the
underlying properties of MLE that guarantee its valid-
ity and efficiency? The answer turns out to be an in-
triguing “yes and NO.” But before we get to that punch
line, we will need the wisdom of an old friend, Mr.
Bartlett.

4.2 Do Bartlett Identities Hold for H-likelihood?

Finding the most likely parameter value that could
have produced the observed data is intuitively very
appealing—what else could be better? But of course
as statisticians we know such reasoning by itself is
flawed, because it puts us squarely in the hands of the
Devil of Overfitting! There is clearly much more to
Fisher’s MLE than this flawed intuition.

Probabilistically, a backbone of Fisher’s ML method
is the Bartlett identities, especially the first two. That
is, for the (marginal) log-likelihood �(θ;y), under the
usual regularity condition that the support of fθ (y)

does not depend on θ ∈ �, we have

Eθ

[
∂�(θ;y)

∂θ

]
= 0 ∀θ ∈ �,(4.1)

Eθ

[
∂2�(θ;y)

∂θ2

]
+ Eθ

[(
∂�(θ;y)

∂θ

)(
∂�(θ;y)

∂θ

)�]
(4.2)

= 0 ∀θ ∈ �

where Eθ denotes the expectation under fθ (y). Here
identity (4.1) guarantees that the normal/score equation
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underlying the MLE method,

S(θ;y) ≡ ∂�(θ;y)

∂θ
= 0,(4.3)

is an unbiased estimating equation. Identity (4.2) is
the basis for the asymptotic efficiency of MLE (under
regularity conditions, of course) because it reduces the
general “sandwich” variance formula to the inverse of
Fisher information, the Cramér–Rao lower bound.

For these reasons, generalizations of (maximal) like-
lihood methods have largely tried to preserve these two
identities, such as with the quasi-likelihood method
(e.g., McCullagh and Nelder, 1989, Chapter 9); see
Mykland (1994, 1999) for other examples. It is there-
fore difficult to imagine that the issue of preserving
them has not been investigated in general in the con-
text of h-likelihood, given it is essentially a minimal re-
quirement; indeed, when Engle and Keen, the lead dis-
cussants of Lee and Nelder (1996), wrote, “. . . the usual
first- and second moment properties exactly hold for
h-scores, for example, for normal-normal and Poisson-
Gamma models. . . ” I believe they were referring to
the two identities above. I therefore surmise that it is
my haphazardly selective reading that makes the exist-
ing investigations unobservable to me. So I must offer
my apologies to anyone, especially the authors, if I am
reinventing the wheel below. But in any case I hope
the material presented in the rest of this discussion will
help to establish a firmer theoretical ground for inves-
tigating the virtues and limitations of MHLE and other
h-likelihood methods.

Specifically, as we all know, identities (4.1) and (4.2)
are consequences of∫


y

e�(θ;y)μ(dy) =
∫

y

fθ (y)μ(dy) = 1

(4.4)
∀θ ∈ �

by repeatedly differentiating under the integral sign
with respect to θ , which is legitimate when the sup-
port 
y is free of θ (and assuming the usual continu-
ous differentiability of �(θ;y) as a function of θ ; such
conditions will be assumed below whenever needed).
For log h-likelihood, h(θ, v;y) = logfθ (y, v), clearly
we still have∫


y,v

eh(θ,v;y)μ(dy, dv)

(4.5)
=

∫

y,v

fθ (y, v)μ(dy, dv) = 1 ∀θ ∈ �.

However, whereas we can still take (partial) deriva-
tives with respect to θ on both sides of (4.5) to ar-
rive at useful identities, obviously taking the derivative

of both sides with respect to v would produce 0 = 0.
This death of the old trick signifies a key difference be-
tween the h-likelihood and Fisher’s likelihood, even if
we put aside cases where v is discrete and hence taking
derivatives is not even an option. Here we remark that
unlike Fisher’s likelihood where discrete parameters
are rare (other than with model selection problems),
discrete unobservable/missing data are common which
poses an additional challenge to the MHLE method.
But clearly the authors’ current proposal focuses on
continuous v, so we will proceed in this setting.

5. ENCOURAGING NEWS: H-LIKELIHOOD
IS BARTLIZABLE

5.1 Necessary and Sufficient Conditions for
Bartlett Identities

Without the old trick, we have to directly investi-
gate if and when (4.1) and (4.2) can be extended to
h-likelihood. Specifically, when we let φ = {θ, v}, and
write

h(φ;y) = logfθ (y|v) + logfθ (v),(5.1)

we see the “troublemaker” is the second term because
for the first term, v plays the same role of a fixed pa-
rameter for the conditional distribution fθ (y|v), and
hence the old trick of differentiating under integration
is applicable. In particular, as an application of (4.1)
and (4.2) when conditioning on v and assuming the
support of fθ (y|v) does not depend on either θ or v,
we have, for any θ ∈ �,

Eθ

[
∂ logfθ (y|v)

∂φ

∣∣∣v]
= 0,(5.2)

Eθ

[
∂2 logfθ (y|v)

∂φ2

∣∣∣v]

+ Eθ

[(
∂ logfθ (y|v)

∂φ

)(
∂ logfθ (y|v)

∂φ

)�∣∣∣v]
(5.3)

= 0.

Consequently, under the additional assumption that the
support of fθ (v) does not depend on θ , (5.1) and (5.2)
imply that, for any θ ∈ �,

Eθ

[
∂h(φ;y)

∂φ

]
= Eθ

[
∂ logfθ(v)

∂φ

]

=
( 0

Eθ

[
∂ logfθ (v)

∂v

])
(5.4)

≡
⎛
⎝ 0∫


v

∂fθ (v)

∂v
μ(dv)

⎞
⎠ .
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Furthermore, noting that the cross terms in the quadra-
tic expansion below are zero by first conditioning on v,
we have from (5.1)–(5.3),

Eθ

[
∂2h(φ;y)

∂φ2

]
+ Eθ

[(
∂h(φ;y)

∂φ

)(
∂h(φ;y)

∂φ

)�]

= Eθ

[
∂2 logfθ (v)

∂φ2

]
(5.5)

+ Eθ

[(
∂ logfθ (v)

∂φ

)(
∂ logfθ (v)

∂φ

)�]

≡
(

A B

B� C

)
.

In the above expression,

A = Eθ

[
∂2 logfθ(v)

∂θ2

]
(5.6)

+ Eθ

[(
∂ logfθ (v)

∂θ

)(
∂ logfθ (v)

∂θ

)�]
= 0

by applying (4.2) to logfθ (v). For the term B , one can
easily verify that

B = Eθ

[
∂2 logfθ (v)

∂θ ∂v

]

+ Eθ

[(
∂ logfθ (v)

∂θ

)(
∂ logfθ (v)

∂v

)�]
(5.7)

= ∂

∂θ

{
Eθ

[(
∂ logfθ (v)

∂v

)�]}
∀θ ∈ �,

and hence it will also be zero if Eθ [ ∂ logfθ (v)
∂v

] = 0 for
all θ ∈ �. Finally, simple algebra shows

C = Eθ

[
∂2 logfθ (v)

∂v2

+
(

∂ logfθ (v)

∂v

)(
∂ logfθ (v)

∂v

)�]
(5.8)

≡
∫

v

∂2fθ (v)

∂v2 μ(dv).

Combining (5.4)–(5.8) yields the following straight-
forward but key result.

THEOREM 1. Let h(φ;y) = logfθ (y, v) be a log
h-likelihood where φ = {θ, v}, θ ∈ � is the model pa-
rameter, v is a continuous unobservable with density
fθ(v) with respect to a measure μ, and let Sθ (v) =
∂ logfθ (v)

∂v
. Furthermore, assume the support of fθ (y|v)

does not depend on either θ or v (almost surely with re-
spect to μ), the support of fθ (v), denoted by 
v , is free

of θ , and all continuity and differentiability conditions
hold whenever needed. Then the first Bartlett identity
holds for the h-likelihood, that is

Eθ

[
∂h(φ;y)

∂φ

]
= 0 ∀θ ∈ �(5.9)

if and only if

Eθ [Sθ (v)] ≡
∫

v

∂fθ (v)

∂v
μ(dv) = 0 ∀θ ∈ �.(5.10)

Assuming (5.10), then the second Bartlett identity
holds for the h-likelihood; that is,

Eθ

[
∂2h(φ;y)

∂φ2

]

+ Eθ

[(
∂h(φ;y)

∂φ

)(
∂h(φ;y)

∂φ

)�]
(5.11)

= 0 ∀θ ∈ �

if and only if

Eθ

[
∂Sθ (v)

∂v
+ Sθ (v)S �

θ (v)

]
(5.12)

≡
∫

v

∂2fθ (v)

∂v2 μ(dv) = 0 ∀θ ∈ �.

5.2 Yes: It is Easy for H-likelihood to Produce
“Un-sandwiched” Estimating Equation

Theorem 1 is somewhat remarkable because the nec-
essary and sufficient conditions (5.10) and (5.12) are
determined purely by the marginal distribution of the
unobservable v, and hence they are easy to check. For
example, in Bayarri’s example quoted by the authors,
the marginal density of the unobservable u is exponen-
tial with mean λ = θ−1. Consequently, Sθ (u) = −θ ,
and hence condition (5.10) is violated for all θ > 0, as
is condition (5.12). This means that whenever u is used
for the h-likelihood, the resulting h-score will never
form an unbiased estimating equation, regardless of the
model for fθ (y|u)! Indeed, we have seen from the au-
thors’ Section 4.2 that the corresponding MHLE leads
to meaningless estimates.

In contrast, when we use v = logu, fθ(v) = θev−θev
,

and hence Sθ (v) = 1 − θev = 1 − u/λ and S ′
θ (v) +

S 2
θ (v) = −θev + (1 − θu)2 = −u/λ + (u − λ)2/λ2.

Both conditions (5.10) and (5.12) then follow trivially
because Eθ(u) = λ and Vθ(u) = λ2. Consequently, the
authors’ h-score is not only an unbiased estimating
equation but also an “optimal” one in the sense that we
do not need the usual “sandwich” formula, but only the
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Hessian matrix, for “valid” variance estimation. Un-
fortunately, I have to put both “optimal” and “valid” in
quotes because of the bad news I will deliver in the next
section. But as far as for preserving Bartlett identities
goes, which by itself does not guarantee valid statis-
tical inferences, I can share the authors’ optimism for
the future of MHLE, especially because of the follow-
ing somewhat even more surprising result, which says
that conditions (5.10) and (5.12) hold quite easily for
many unobservables or their simple transformations.

THEOREM 2. Under the same setting as in Theo-
rem 1, suppose the support of fθ (v), 
v ⊂ Rd , takes a
rectangle form, 
v = ∏d

j=1[aj , bj ], where aj or bj is
permitted to take the value of +∞ or −∞. Let ∂
v be
the boundary set of 
v (i.e., the set of all points whose
coordinates contain at least one aj or bj ), and assume
the dominating measure μ is the Lebesgue measure
on Rd . We then have:

(I) If fθ(v) = 0 for all v ∈ ∂
v , then condition
(5.10) holds, and hence the first Bartlett identity (5.9)
holds.

(II) If in addition ∂fθ (v)
∂v

= 0 also holds for all
v ∈ ∂
v , then condition (5.12) holds, and hence the
second Bartlett identity (5.11) holds.

PROOF. For (I), because of (5.10), if v is univari-
ate, that is, if d = 1, then∫


v

∂fθ (v)

∂v
dv =

∫ b1

a1

dfθ (v)

= fθ (b1) − fθ (a1)(5.13)

= 0,

under our assumption that fθ (v) vanishes on the
boundary. For d > 1, we apply the same argument to
each of the d integrations that form the leftmost vector
in (5.13), that is,

∫

v

∂fθ (v)
∂vk

dv, k = 1, . . . , d , by inte-
grating with respect to vk first to conclude that it is
zero for all θ .

For (II), we first note that for any {k, s},

Ik,s ≡
∫

v

∂2fθ (v)

∂vk ∂vs

dv

(5.14)

=
∫

v

∂

∂vk

(
∂fθ (v)

∂vs

)
dv.

Hence, using the same argument as above but with
fθ (v) replaced by ∂fθ (v)

∂vs
, we can conclude Ik,s = 0

for all k, s = 1, . . . , d . Consequently, condition (5.12)
holds. �

What this result says is that as long as the marginal
density of the unobservable v vanishes on the bound-
ary of its support, the first Bartlett identity holds for h-
likelihood. In addition, if its derivative also vanishes on
the boundary, then the second Bartlett identity holds.
This provides an even easier way to verify Bayarri’s
example. For the original unobservable u, fθ (u) =
θe−θu, with boundary points u = 0 and u = ∞. But
since fθ (0) = θ , the vanishing condition is violated
as long as θ > 0. In contrast, for v = logu, fθ (v) =
θev−θev

, with boundary points v = −∞ and v = +∞.
It is easy to see that fθ (−∞) = fθ (+∞) = 0 for all θ .
Furthermore, since

∂fθ (v)

∂v
= θ(ev−θev − θe2v−θev

),

the derivative also vanishes at both v = −∞ and
v = ∞. Therefore, both Bartlett identities hold for
h-likelihood when v = logu is used as the unobserv-
able. For simplicity, we will label the process of find-
ing a transformation that makes Bartlett identities hold
Bartlization (“Bartlettlization” is too much of a tongue
twister!).

An astute reader may have noticed that I did not say
that failing the vanishing condition is the reason for the
failing of the Bartlett identities for the original scale u.
The vanishing condition is sufficient, but not neces-
sary. This can easily been seen in (5.13), which only
requires fθ (a1) = fθ (b1). Indeed, the Bartlett identity
fails for the original scale u precisely because fθ (u =
+∞) = 0 but fθ (u = 0) = θ , and hence Eθ [Sθ (u)] =
0 − θ = −θ , as verified directly previously. A neces-
sary and sufficient condition via integration on ∂
v is
not hard to obtain, but it requires a bit more mathe-
matical treatment than is needed for most practical ap-
plications, for which Theorem 2 is adequate. Here we
just mention that we can generalize Theorem 2 by al-
lowing 
v to be an arbitrary simply connected mani-
fold in Rd (i.e., a manifold with “no hole”), and then
invoke the generalized Stokes’ theorem (see Marsden
and Tromba, 2003) to equate the integration of dw on

v to that of w on the boundary ∂
v where w is a
so-called d − 1 differential form which can be taken in
terms of fθ (v) or its derivative as needed.

The authors stated in the rejoinder of Lee and Nelder
(2005) that “We do not say that the current h-likelihood
method will always perform the best, but we believe
that it can always be modified to give an improvement,
as has been done with Fisher’s likelihood method.”
I believe the alluded-to improvements lie in using
higher order Bartlett identities, such as the third iden-
tity for “Bartlett correction” for the likelihood ratio
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tests (e.g., McCullagh, 1987). Clearly Theorem 1 and
Theorem 2 have their higher order generalizations,
but it is already 9:14 pm of the second Sunday. My
teenagers’ visit to Dr. Langdon is already postponed
for another week, so I had better leave such general-
izations to a future paper. More importantly, as much
as I am enjoying discovering the “Bartlizability” of
h-likelihood, I do not see a way to correct the more fun-
damental problem described in the next section, which
potentially makes “Bartlett-corrected h-likelihood” an
exercise that is literally just a homework exercise.

6. BAD NEWS AND A PUZZLE:
FISHY OR FIDUCIAL?

6.1 NO: It is Hard for log H-likelihood to be
Summarizable Quadratically

Having the Bartlett identities is only a part of the
story. What it guarantees is that if the log h-likelihood
can be approximated quadratically, then the mode and
the Hessian matrix derived from it will provide an ap-
proximately correct estimator and its associated (in-
verse) variance. To examine this issue more clearly, let
us mimic the formal asymptotic argument behind the
estimating equation approach which relies on the ex-
pression

φ̂ − φ = I−1
h (θ)S(φ;y) + R,(6.1)

where φ̂ is the MHLE, S(φ;y) = ∂h(φ;y)
∂φ

is the h-score,
and Ih(θ) is the h-likelihood extension of the expected
Fisher information, the expected Hessian,

Ih(θ) ≡ Eθ

[
−∂2h(φ;y)

∂φ2

]
.(6.2)

We emphasize here that unlike the original Fisher in-
formation, Ih(θ) is not generally guaranteed to be posi-
tive definite (so I−1

h (θ) may not even exist) unless con-
dition (5.12) holds; see Section 7 for an example.

Expression (6.1) by itself is tautological, because
there is always an R to make it hold; in particular it
can be derived from a remainder term in the Taylor
expansion of S(φ̂;y) − S(φ;y). However, when R is
(asymptotically) negligible, (6.1) allows us to conclude
that the distribution of φ̂ − φ can be approximated
by that of T (θ;y) ≡ I−1

h (θ)S(φ;y) which has mean
zero when the first Bartlett identity holds and variance
I−1
h (θ) when the second Bartlett identity holds.
When h is a regular Fisher’s likelihood, under reg-

ularity conditions, the R term is asymptotically neg-
ligible compared with the first term on the right-hand

side of (6.1). A key reason for this is the accumula-
tion of information as we collect more data; eventu-
ally we will have zero uncertainty about the parameter,
at least in theory. Unfortunately, for h-likelihood, this
cannot be true in general even in theory because no
matter how much data we accumulate, it cannot possi-
bly eliminate the uncertainty, say, in predicting a future
outcome, such as in the authors’ Example 4. This lack
of accumulation of information for unobservables is es-
sentially the key problem pointed out by multiple dis-
cussants (e.g., both lead discussants) of Lee and Nelder
(1996), with both theoretical and empirical examples.

Without the accumulation of information to justify
the central limit theorem or the law of large num-
bers, we actually will run into two problems with the
standard asymptotic arguments for (6.1), even if the
first two Bartlett identities hold. The most obvious
and critical one is that since R is not negligible, we
cannot approximate the distribution of φ̂ − φ by that
of T (θ;y) = I−1

h (θ)S(φ;y); indeed, without R being
negligible, the MHLEs are not guaranteed to be con-
sistent, as in all examples of Little and Rubin (1983).
It is of critical importance to stress that the Bartlizable
property of h-likelihood itself has little bearing on the
issue of being quadratically summarizable, that is, the
R term being negligible. Indeed, in all normal exam-
ples of Little and Rubin (1983), the h-likelihood is nat-
urally Bartlized because clearly the normal density and
any of its derivatives vanish on the boundary of its sup-
port, yet the MHLE produces inconsistent estimators
because of the nonnegligibility of the R term. The more
subtle one is that regardless of whether R is negligi-
ble or not, we may not be able to justify the usual
normal approximation T (θ;y) ∼ N(0, I−1

h (θ)), even
if T (θ;y) has mean zero and variance matrix I−1

h (θ).
(Of course, when R is not negligible, the properties of
T are not really relevant.) Section 7 will illustrate all
these points via a simple but very informative exam-
ple.

6.2 And a Puzzle: The Meaning of the
H-distribution

Even if R is exactly zero and all Bartlett identities
hold, the h-likelihood method, as a method for predict-
ing the unobservables v, still faces a fundamental chal-
lenge. That is, what is the meaning of the resulting dis-
tribution f (v|y), which I shall term the h-distribution
for obvious reasons? If one is willing to assume a con-
stant prior on θ , then of course this has a Bayesian in-
terpretation as a posterior predictive distribution or an
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approximation to it. But the authors specifically em-
phasized that they did not want to specify a prior on θ ,
for their goal is to provide an alternative method to the
Bayesian approach.

Some Bayesians may be agitated by having a method
that is mathematically or numerically equivalent, in
general, to a Bayes method (perhaps under a particu-
lar prior), but is labeled as something else. I am much
less troubled, provided that (1) the connection is clearly
spelled out, and (2) there is a well-articulated non-
Bayesian principle justifying the method. The authors
clearly have done (1), but for (2) all I can find is au-
thors’ desire to conduct a probabilistic inference for v

without having to specify a prior for θ . At the concep-
tual level, I have the very same desire because of my
frustration, which I am sure some share, with the appar-
ent impossibility of constructing a truly “noninforma-
tive” prior (for continuous parameters, at least). I also
very much appreciate the authors’ emphasis that the
“plug-in” empirical Bayes is not a satisfying method,
precisely because “plug-in” is an ad hoc method. So in-
deed I was quite excited when I thought that the authors
had found a way to meaningfully specify a probabilis-
tic f (v|y), without considering θ as a random variable.

At a practical level, the authors did provide a number
of “well-specified” h-distributions, either via (the im-
plied) normal approximation with mean and variance
obtained from the MHLE/Hessian matrix for v or the
APHL approximation by profiling out θ . But without
spelling out the probabilistic meaning of such resulting
distributions, it is essentially impossible to answer the
criticism that the label of h-likelihood is a red herring
because they are just approximations to Bayesian so-
lutions instead of the products of a genuine competing
method as claimed. More importantly, without know-
ing what “gold standard” they aim to approximate, we
have no meaningful ways to evaluate how good the
approximations are, or even to specify a probabilistic
evaluation mechanism; in what real or thought experi-
ment can it be realized?

Indeed, the lack of a distinct and justifiable mean-
ing of the h-distribution apparently has put the authors
in an awkward position in terms of demonstrating the
merit of their methods. From the papers I read, it ap-
pears that the authors have two kinds of comparisons.
The first is to compare an h-distribution to a Bayesian
one, and to “validate” the h-distribution by showing
how close it is to the Bayesian counterpart. But this
only strengthens the aforementioned “red herring” crit-
icism, and provides evidence for—not against—the

kind of statements made by my twin brother quoted
previously. Clearly this is contrary to the authors’ in-
tention, and I believe is part of the reasons for the
continuing discrepancy between the authors’ enthusi-
asm for and others’ reluctance toward the h-likelihood
methods.

The second type is something that I have not seen
before, at least not in academic publications. The au-
thors seem to take their methods as the standard, and
compared everything else to it, as suggested by the
statement, “In the salamander data, among other meth-
ods considered, the MCEM of Vaida and Meng (2005)
gives the closest estimates to the h-likelihood estima-
tors.” Such comparisons would be meaningful if the su-
periority of the h-likelihood results had already been
demonstrated either by theoretical proof (e.g., optimal-
ity of some sort) or by a distinctive principle that is not
subsumed or invalidated by accepted ones. But even in
such cases, the value of this type of comparison is to
demonstrate the performance of other methods, not the
merit of the h-likelihood method itself.

6.3 Fiducial Argument via Predictive
Pivotal Quantity?

As I tried in vain to form a thought experiment that
would meaningfully define the h-distribution f (v|y)

without slipping into the Bayesian mode, I looked hard
into the authors’ writings for clues about what they
had in mind. The first clue came from Section 3.1 of
Lee and Nelder (1996), where they showed that, in the
context of the models they were investigating, a log
h-likelihood expression in their (3.2) can be expanded
into their expression (3.3) which is a quadratic term
−(ṽ − v)′D∗(ṽ − v)/2 plus a term that depends on
y only (their ṽ is the same as the v̂ notation here).
They then wrote, “Ignoring the constant term, which
depends only on y and not on v, expressions (3.2)
and (3.3) imply that

v|y ∼ N(ṽ,D∗−1)

would be a good approximation for the distribution
of v|y.” With apologies to the authors in case I misun-
derstand their notation or there was a misprinting, this
reasoning smells either fishy or fiducial, depending on
the meaning of “the distribution of v|y.”

First, if by “the distribution of v|y” is meant the sam-
pling distribution of v given both y and θ , then the rea-
soning underlying the above statement would contain
the elementary flaw of confusing a marginal distrib-
ution of X1 − X2 with the conditional distribution of
X1 − X2 given X1. This is because, even if the normal
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approximation is justified, the quadratic term above is
for the marginal distribution of ṽ − v, as v and ṽ,
which is a function of y only, vary jointly according
to f (y;v|θ). [I switch the notation from fθ (y;v) to
f (y;v|θ) to emphasize the conditioning on θ , even
though the latter notation may imply that θ is a vari-
able being conditioned upon, something the authors’
approach aims to avoid.] This marginal distribution
clearly is not the same, in general, as the conditional
distribution f (ṽ − v|ṽ, θ) or f (ṽ − v|y, θ) (note in
general that these two distributions are also different
unless y and v are independent given θ ). This can be
most clearly seen from (6.1) where all the distributional
calculations are with respect to the joint distribution
f (y;v|θ), not the conditional distribution f (v|y; θ).

Of course, this is unlikely to be what the authors in-
tended, since their goal is to capture v|y without con-
ditioning on θ . But the notation f (v|y) has no defi-
nition or meaning under the authors’ joint modeling
specification f (y, v|θ) because θ is treated as fixed.
This brings me to the second “smell,” that is, the au-
thors were invoking a fiducial-like argument, by im-
plicitly defining their conditional h-distribution v|y as
the sampling marginal distribution of v̂ − v under the
joint distribution f (y, v|θ), and getting rid of its de-
pendence on θ when v̂ − v is (asymptotically) a pre-
dictive pivotal quantity, meaning that its distribution is
free of any unknowns. We can also think of this way of
eliminating the nuisance parameter θ for the purpose
of prediction as seeking predictive ancillarity, that is,
a function of both y and v whose distribution is free
of θ . See the example in Section 7 for an illustration.

6.4 A Duality or Prestidigitation?

The second piece of evidence from the authors’ writ-
ing seems to confirm this interpretation. In the com-
parisons of their methods with the Empirical Bayesian
method, they compared the Bayesian posterior predic-
tive variance of v|y with the estimator obtained from
the Hessian matrix. To make this comparison more ex-
plicit, let us denote τ(θ;y) = V (v|θ;y) and e(θ;y) =
v̂(y) − E(v|θ;y). Then by the law of iterated expecta-
tions (or the so-called EVE formula) and noting that v̂

is determined by y, we have

V (v|y) = V (v̂ − v|y)
(6.3)

= E[τ(θ;y)|y] + V [e(θ;y)|y],
V (v̂ − v|θ) = E[τ(θ;y)|θ ] + V [e(θ;y)|θ ].(6.4)

The authors’ argument seems to implicitly rely on a
“duality,” that is, the two mean terms on the right-hand

sides of (6.3) and (6.4) are (asymptotically or approx-
imately) the same; so are the two variance terms. That
is, we can switch the required mean and variance cal-
culations under f (y|θ) in (6.3) to that under f (θ |y)

in (6.4). Fisher’s fiducial argument, as far as I can un-
derstand, aimed to establish the validity of this switch-
ing on its own without viewing it as an approxima-
tion to the Bayesian method (with a constant prior).
There is nothing wrong with invoking the fiducial ar-
gument (well, actually there is but it depends on who
one asks); indeed there has been a recent surge of inter-
est in it, especially in connection with the “generalized
confidence” approach [e.g., Hannig, Iyer and Patterson
(2006) and Hannig (2009)]. Perhaps the authors’ ap-
proach is the next step, that is, using the fiducial ap-
proach for prediction, not just for estimation. But with-
out being told explicitly about this switching, a reader’s
reaction would be anybody’s guess. A suspicion of
prestidigitation? A deja vu feeling of reading Decep-
tion Point instead of De Vinci Code? Or even worse, an
accusation of the prosecutor’s fallacy?

Finally, even if we buy the fiducial argument, it
does not follow that the left-hand side of (6.4) can
be well approximated by (an appropriate element of)
the inverse of the Hessian matrix because of the non-
negligibility of the R term, as discussed before. The au-
thors, of course, well recognized this, and hence in-
voked the APHL method to approximate (define?) the
h-distribution f (v|y) instead of relying on the normal
approximation. While this approach indeed “works
well,” in the authors’ example and in the example I am
about to present, I have to put “works well” in quotes
when the success is judged by comparing how close the
h-distribution is to the posterior predictive distribution
under the constant prior. But I’d be happy to remove
the quotation marks if the evaluation is based on the
aforementioned pivotal predictive framework, because
that is a distinctive principle, regardless of whether one
subscribes to it or not.

7. SHOW AND TELL: ESTIMATION AND
PREDICTION WITH EXPONENTIAL DISTRIBUTION

To illustrate various general points made in Sec-
tions 4–6, let us consider a simple case where the data
are an i.i.d. sample y = {y1, . . . , yn} from an exponen-
tial distribution with mean λ with the unobservable be-
ing u = yn+1, a future observation. This example is
different from Bayarri’s two-level exponential model
because here we only have one level, as in the au-
thors’ Example 4. It is hard to have faith in a method
for multi-level hierarchical models if it cannot handle
single-level models.
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7.1 Why does the Original Scale Fail?

As we discussed in Section 5.2, when the exponen-
tial variable u = yn+1 is used as the unobservable, the
Bartlett identities fail. In the current setting, this can
be seen directly by noting that (where ȳn denotes the
sample mean of {y1, . . . , yn})

h(λ,u;y) = −(n + 1) logλ − nȳn + u

λ
,(7.1)

which clearly does not have an internal mode because
it is linear in u ≥ 0. Indeed, the h-score equation,

S(φ;y) ≡
⎛
⎜⎝

∂h

∂λ
∂h

∂u

⎞
⎟⎠

(7.2)

=
⎛
⎜⎝−n + 1

λ
+ nȳn + u

λ2

−1

λ

⎞
⎟⎠ =

(
0
0

)
,

leads to the meaningless estimator λ̂ = +∞. Inci-
dently, this is also an example that Ih(θ), as defined
in (6.2), is not nonnegative definite because the second
Bartlett identity fails. Specifically, by further differen-
tiating the expressions in (7.2), it is easy to verify that

Ih(θ) = E

⎡
⎢⎣−

⎛
⎜⎝

n + 1

λ2 − 2
nȳn + u

λ3

1

λ2

1

λ2 0

⎞
⎟⎠

⎤
⎥⎦

=
⎛
⎜⎝

n + 1

λ2 − 1

λ2

− 1

λ2 0

⎞
⎟⎠

which clearly fails to be nonnegative definite.

7.2 A Simple Transformation is All it Takes

However, when the h-likelihood uses v = log(u)

as unobservable, it satisfies both conditions of Theo-
rem 2 as verified in Section 5.2, so the corresponding
h-likelihood is Bartlized. To see this directly, because

h(λ, v;y) = −(n + 1) logλ − nȳn + ev

λ
+ v,(7.3)

the h-score equation becomes

∂h

∂λ
= −n + 1

λ
+ nȳn + ev

λ2 = 0,

(7.4)
∂h

∂v
= −ev

λ
+ 1 = 0.

This delivers the correct MLE for λ, λ̂ = ȳn, and a
very sensible point prediction for the future observa-
tion, û = ev̂ = λ̂ = ȳn.

Furthermore, the expected Hessian matrix is

Ih(λ) = Eλ

⎡
⎢⎣−

⎛
⎜⎝

n + 1

λ2 − 2
nȳn + ev

λ3

ev

λ2

ev

λ2 −ev

λ

⎞
⎟⎠

⎤
⎥⎦

(7.5)

=
⎛
⎜⎝

n + 1

λ2 −1

λ

−1

λ
1

⎞
⎟⎠ .

It is easy to see that when evaluated at MLE (=MHLE),
λ̂, Ih(λ̂) is identical to the observed Hessian matrix

I obs
h = − ∂2h(φ;y)

∂φ2 |
φ=φ̂

I obs
h ≡ −

⎛
⎜⎜⎝

n + 1

λ̂2
− 2

nȳn + ev̂

λ̂3

ev̂

λ̂2

ev̂

λ̂2
−ev̂

λ

⎞
⎟⎟⎠

(7.6)

=

⎛
⎜⎜⎝

n + 1

λ̂2
−1

λ̂

−1

λ̂
1

⎞
⎟⎟⎠ ,

where the equality holds because λ̂ = ȳn = ev̂ . The fact
that these two Hessian matrices coincide also gives us
another indication that the MHLE/Hessian matrix can
behave just like MLE/Fisher information for regular
exponential families.

7.3 So How Good is the Approximation?

Now let us examine the inverse of Ih(λ),

I−1
h (λ) =

⎛
⎜⎜⎝

λ2

n

λ

n
λ

n
1 + 1

n

⎞
⎟⎟⎠ ≡

(
τ 2
λ τλ,v

τλ,v τ 2
v

)
.(7.7)

If the R term in (6.1) is negligible, then the above ma-
trix should provide the (asymptotic) value of
Vλ(φ̂ − φ) where φ = {λ, v} and the variance opera-
tor Vλ is with respect to the joint sampling distribution
fλ(y, v). Clearly, τ 2

λ = λ2/n is exactly right because it
is Vλ(λ̂). To examine the other entries, we first recall
that for large n, Taylor’s expansion (i.e., the δ-method)
justifies the approximation

log(ȳn) − log(λ) ≈ ȳn − λ

λ
≡ zn.(7.8)

Adopting this approximation, and noting that v =
log(yn+1) is independent of ȳn given λ, we have

Covλ(λ̂, v̂ − v) = Covλ(ȳn, log(ȳn))
(7.9)

≈ Covλ(ȳn, zn) = λ

n
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which is the same as τλ,v .
Similarly, by (7.8), Vλ(log(ȳn)) ≈ V (zn) = 1/n, and

hence we have

Vλ(v̂ − v) = Vλ(log(ȳn)) + Vλ(log(yn+1))
(7.10)

≈ 1

n
+ Vλ(log(yn+1)).

This would be the same as τ 2
v if Vλ(log(yn+1)) = 1.

But unfortunately this is where the MHLE/Hessian ma-
trix approximation breaks down. One can directly ver-
ify or use the property of Gumbel distribution (recall
log of an exponential variable is a Gumbel variable) to
arrive at

Vλ(log(yn+1)) = π2

6
= 1.6449. . .(7.11)

which is considerably larger than 1. [Incidentally,
the integrating moment generating function approach
(Meng, 2005) can be used to calculate Vλ(log(ȳn)) ex-
actly for general n, if needed.]

7.4 So What Works and What Does Not?

To see more clearly what went wrong, let us write
out the R term in (6.1) explicitly for the current model.
Using (7.4) and (7.7), simple algebra reveals that (6.1)
becomes(

λ̂ − λ

v̂ − v

)
≡

(
ȳn − λ

log(ȳn) − log(yn+1)

)
(7.12)

=
⎛
⎝ ȳn − λ

ȳn − yn+1

λ

⎞
⎠ +

(
0

Rv,n

)
,

where Rv,n obviously makes up the difference between
v̂ − v and (ȳn − yn+1)/λ, but it would be more useful
to express it in the equivalent form

Rv,n =
[
log

(
ȳn

λ

)
− ȳn − λ

λ

]
(7.13)

−
[
log

(
yn+1

λ

)
− yn+1 − λ

λ

]
.

From these expressions, we see that the MHLE/Hes-
sian matrix approach works perfectly for the estimation
of λ—it is the same as MLE and with the correct vari-
ance estimator because its R term is exactly zero. How-
ever, for the prediction of v, two things went wrong,
and both are due to the failure of accumulation of infor-
mation. First, Rv,n is not negligible compared with the
leading term Zv,n = (ȳn−yn+1)/λ. Indeed, as n → ∞,
Rv,n → R∞ = ξ −1− log(ξ) and Zv,n → Z∞ = 1− ξ

where ξ is an exponential variable with mean one. In

fact, while E(Z∞) = 0, E(R∞) is far from zero, taking
the value of Euler’s constant, γ = 0.5772 . . . . This fail-
ure obviously is due to the nonapplicability of the Tay-
lor expansion (7.8) when n = 1; if this were applicable,
then V (log(yn+1)) = V (v) would be approximated by
V (zn) = 1, leading to τ 2

v = 1+ 1
n

for V (v̂ −v) in (7.7).
Second, although Z∞ has mean zero and vari-

ance one, its density function f (z) = ez−1, with sup-
port (−∞,1], is far from that of the normal. Indeed,
f (1)/φ(1) > 5, where φ(z) is the p.d.f. of N(0,1).
But of course the distribution of Z∞ or Zv,n is not
even relevant because we cannot use either of them to
approximate the sampling distribution of v̂ − v due to
the nonnegligibility of Rv,n.

7.5 3-in-1: Pivotal Predictive Distribution, Posterior
Predictive Distribution, and H-distribution

The exact distribution of v̂ − v, of course, can be
worked out easily in this case. But it is important to
emphasize that by moving from the original u = yn+1
scale to the v = log(yn+1) scale, we have obtained a
predictive pivotal quantity. That is, whereas the sam-
pling distribution of u− û = yn+1 − ȳn depends on the
unknown λ, the distribution of v − v̂ = log(yn+1/ȳn)

is free of λ because it is canceled in the ratio as the
scale parameter. Consequently, the v scale provides us
a way to construct exact prediction intervals without
having to worry about λ which is a nuisance parame-
ter for the purposes of prediction. This is simply the
predictive version of the usual inference of parameter
of interest based on a pivotal quantity. Although such
a construction is by nature a frequentist one, it should
help to understand the importance of the choice of scale
of the unobservables for the authors’ approach. Evi-
dently, this consideration of pivotal quantity greatly re-
stricts the family of scales for unobservables, beyond
the minimal requirement of preserving the (first two)
Bartlett identities, as discussed in Section 5.

Indeed, it is informative to compare the three distri-
butions here: (I) the sampling distribution fλ(v̂ − v),
(II) the posterior predictive distribution f B(v|y) un-
der constant prior and (III) the h-distribution f H (v|y)

derived from the authors’ APHL method. For (I),
because Un = ∑n

i=1 yi ∼ Gamma(n,λ) is indepen-
dent of u = yn+1 ∼ Gamma(1, λ), we know the ratio
Bn = Un/(Un + u) is distributed as Beta(n,1). Conse-
quently, r = yn+1/ȳn = n(B−1

n − 1) follows a Pareto
distribution of order n + 1, that is,

f (r) =
(

1 + r

n

)−(n+1)

, r ≥ 0(7.14)
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which converges to e−r as n → ∞, as it should.
[The distribution f (r) obviously determines the dis-
tribution of v − v̂ = log(r).]

In comparison, for (II), because f (y1, . . . , yn|λ) ∝
λ−ne−Un/λ, a posteriori we can write λ = Unγ

−1,
where γ ∼ Gamma(n − 1,1). Consequently, because
u = λξ where ξ ∼ Gamma(1,1) and is independent
of γ , a posteriori we have u = Un(ξ/γ ). This implies
r ≡ nu/Un = nξ/γ = n(B̃n−1 − 1) where B̃n−1 ∼
Beta(n − 1,1); here we assume n > 1 as the posterior
is improper when n = 1 under the constant prior on λ.
It follows that

f B(r|y) = n − 1

n

(
1 + r

n

)−n

, r ≥ 0.(7.15)

For (III), we note from the first equation of (7.4) that
for any given v, the h-likelihood is maximized at

λ(v) = nȳn + ev

n + 1
.(7.16)

From (7.3), the log profile h-likelihood then becomes,
ignoring irrelevant constants,

hλ(v;y) = −(n + 1) logλ(v) + v.(7.17)

Using the authors’ notation and (7.5), D(h,λ) =
− ∂2h(λ,v:y)

∂λ2 = (n+1)/λ2 when λ = λ(v), and hence the
authors’ (log) adjusted profile h-likelihood becomes,
again ignoring irrelevant constants,

h̃λ(v;y) = −(n + 1) logλ(v) + v

− 1
2 log(D(h,λ(v)))(7.18)

= −n logλ(v) + v.

The h-distribution for v then, as I understand from the
authors’ approach, is to set

f H (v|y) ∝ eh̃λ(v;y)

(7.19)
= evλ−n(v) ∝ ev(Un + ev)−n.

Converting this to the distribution of r = nu/Un =
nev/Un and re-normalizing it to be a proper distrib-
ution, we have, again assuming n > 1,

f H (r|y) = n − 1

n

(
1 + r

n

)−n

, r ≥ 0(7.20)

which is identical to the posterior predictive distribu-
tion (7.15). This is expected because of the accuracy of
the Laplace approximation (and by re-normalizing we
eliminate the remaining approximation inaccuracy).

7.6 The Need of Choosing the Right Scale for the
Fixed Parameter

A perceptive reader may realize that the small dif-
ference between (7.14) and (7.15) or (7.20), although
of little practical consequence, nevertheless points to
a deeper issue. Indeed, if we use the constant prior
on log(λ), the most common “noninformative” prior
for scale parameter, then f B(r|y) will be the same as
f (r) of (7.14). This suggests an intimate connection
between posterior prediction and the pivotal approach
on the joint space of {y, v}.

For h-likelihood, we have seen that choosing the
right scale for the unobservable is crucial. However,
the scale of the parameter also plays a role, espe-
cially for the adjusted profile h-likelihood because the
value of D(h,α) depends on the scale of α. For ex-
ample, in the current example, if we also choose the
log scale for λ, that is, use h(η, v;y) to carry out all
the h-likelihood calculations where η = log(λ), then
D(h,η) = n + 1. Consequently, the adjustment be-
comes immaterial, making the log APHL the same as
(7.17), the original profiled log h-likelihood. This is
easily seen to lead to

f H (r|y) =
(

1 + r

n

)−(n+1)

, r ≥ 0,(7.21)

which is now identical to the pivotal predictive distrib-
ution f (r) in (7.14), a truly 3-in-1!

This equivalence not only demonstrates the intimate
connection among the three methods, but also suggest
the possibility of providing a probabilistic meaning to
h-distributions, at least in some cases. For example, un-
der (7.14), a 1 − α highest density predictive (HDP)
interval is of the form

HDP = [0, c(α,n)ȳn],(7.22)

where c(α,n) = n(α−1/n − 1) → − log(α).

This interval has both Bayesian interpretation and fre-
quentist interpretation, the latter of which I believe is
closer to what the authors have been seeking. The fre-
quentist interpretation is simply that among repeated
samples of {y1, . . . , yn, yn+1}, the HDP in (7.22) cov-
ers yn+1 with frequency/probability 1 − α. Such inter-
pretation perhaps is more appealing to some than its
posterior predictive interpretation which in this case is
actually not directly realizable with random λ because
it is derived under the improper prior π(λ) ∝ λ−1. It
is somewhat intriguing that this un-realizable posterior
predictive distribution via random λ is easily realizable
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via the pivotal predictive distribution. A general inves-
tigation of this connection may offer new insights into
both the similarities and differences between Bayesian
and sampling inferences.

8. EPILOGUE

Dan Brown concluded Angels and Demons with
Dr. Langdon’s religious experience with Vittoria,
a yoga master. Although my pleasure is at an en-
tirely different level, I must confess that my study of
the h-likelihood framework is largely carried by both
the authors’ faith in their methods and my faith in the
authors—they must have seen signs that most discus-
sants did not. My Bayesian half urged me every week-
end to seek Dr. Langdon’s ambigram of “H,” yet my
other half kept seducing me with promises of hidden
treasures. Indeed, a posteriori I am willing to move
all probability from (V) to (IV), as well as to increase
the probability of (II) over 50%, provided that we
are always mindful of another “H” for h-likelihood—
its Achilles’ Heel—the potential (and often) non-
negligibility of the R term. The Bartlizability and piv-
otal predictive interpretation of the h-likelihood meth-
ods could seduce someone to speculate that the “H” is
The Lost Symbol, the eagerly awaited new thriller of
Dan Brown. As a matter of fact, since I have already
been seduced for the past five weekends, far exceeding
the originally planned 3-day excursion, I may as well
enjoy my earned fantasy, a spoonful of my colleague
Dr. Langdon’s new experience, divine or not. . . .
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