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Abstract: The celebrated simplicity of the EM algorithm is somewhat lost in its common use for
generalized linear mixed models (GLMMs) because of its analytically intractable E-step. A natural and
typical strategy in practice is to implement the E-step via Monte Carlo by drawing the unobserved random
effects from their conditional distribution as specified by the E-step. In this paper, we show that further
augmenting the missing data (e.g., the random effects) used by the M-step leads to a quite attractive and
general slice sampler for implementing the Monte Carlo E-step. The slice sampler scheme is straightforward
to implement, and it is neither restricted to the particular choice of the link function (e.g., probit) nor to the
distribution of the random effects (e.g., normal). We apply this scheme to the standard EM algorithm as
well as to an alternative EM algorithm which treats the variance-standardized random effects, rather than
the random effects themselves, as missing data. The alternative EM algorithm does not only have faster
convergence, but also leads to generalized linear model-like variance estimation, because it converts the
random-effect standard deviations into linear regression parameters. Using the well-known salamander
mating problem, we compare these two algorithms with each other, as well as with a variety of methods
given in the literature in terms of the resulting point and interval estimates.
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1 Introduction

The generalized linear mixed model (GLMM) is an extension of the generalized linear
model (GLM), which allows for correlated responses through the inclusion of a random-
effect term in the linear component. This model has received much attention (e.g.,
Breslow and Clayton, 1993; Diggle et al., 1994; Lee and Nelder, 1996, 2001;
McCulloch and Searle, 2001) due to its wide applicability and ease of interpretation.
The computation of the maximum likelihood estimate (MLE) of the parameter vector is
a complex task: the likelihood is, in general, an analytically intractable integral. This
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issue is magnified when the random effects have a crossed design and therefore the data
cannot be reduced to small independent clusters. This is the case of interest of this paper.

As with linear mixed effects models (Laird and Ware, 1982), we can treat the random
effects in a GLMM as ‘missing data’. However, the expectation at the E-step is also
analytically intractable in general. For the computation of the E-step, several methods
have been proposed: a Metropolis–Hastings algorithm (McCulloch, 1997); an inde-
pendent sampler based on either multivariate importance sampling or rejection
sampling (Booth and Hobert, 1999); Gibbs sampler (Chan and Kuk, 1997, for probit
link). Skrondal and Rabe-Hesketh (2004) implement adaptive Gaussian quadrature, for
a general class of models (see also Anderson and Hinde, 1988). Bayesian analyses for
GLMM include Karim and Zeger (1992), Clayton (1996) and Damien et al. (1999).

In this paper, by invoking a data-augmentation scheme larger than the one used by
the M-step of EM, we obtain a straightforward slice sampler (Neal, 2003) for the
E-step, which naturally accommodates any link function and distribution of random
effects. Then, we propose a new EM scheme for fitting GLMM, in which the missing
data are the variance-standardized random effects. Using the well-known salamander
mating data of McCullagh and Nelder (1989: 439), we compare the two slice-EM
algorithms with other methods in the literature.

2 Binary regression with random effects

Let y¼ (y1, . . . , yn) be the response vector of n observations, where each yi is binary,
with possible values conventionally denoted as 1 or 0. We assume that a binary
regression model applies with linear predictor vector

Z ¼ Xbþ Zu (2:1)

with components Zi and mean vector G with components Gi¼G(Zi). Here X and Z are
known n� p and n� q matrices of covariates, b and u are, respectively, fixed and
random effects and G is a known inverse link function. The q-dimensional random
effect u� p(u j d) follows a known distribution (e.g., multivariate normal or multi-
variate t) with mean zero and covariance modelled by the parameter vector d.

The general expression (2.1) covers many specific designs. For example, for clustered
data, the observations are divided into r independent clusters of sizes m1, . . . , mr. The
correlation of the observations within a cluster l is modelled by the sharing of a
common random-effect subvector ul in the linear predictor. A more complex situation
occurs in a crossed-design study, as in the salamander mating data. Briefly, 60 females
and 60 males of two species of salamander, the Rough Butt (R) and the White Side (W),
were paired following a crossed, blocked and incomplete design in an experiment
studying whether the two species have developed genetic mechanisms which would
prevent inter-breeding. The response is binary – successful (yij¼ 1) or unsuccessful
(yij¼ 0) mating between female i and male j (Table 1). We adopt the model

logit Pr(yij ¼ 1ju, b) ¼ bIJ þ uF
i þ uM

j (2:2)
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where bIJ is the fixed effect corresponding to the species combination of the {i,j}-pair of
salamanders with b¼ (bRR,bRW,bWR,bWW); u¼ (uF, uM) is the vector of female
and male random effects, respectively, for which it is assumed that, independently,
uF

i � N(0,s2
F), uM

j � N(0, s2
M), i, j ¼ 1, . . . ,60: Each animal participates in six matings.

Table 1 The salamander mating data: RB, Rough Butt; WS, White Side; M, males; F, females
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The experiments yielded the female–male mating proportions: R–R¼ 60=90,
R–W¼ 50=90, W–R¼ 19=90 and W–W¼ 60=90. This is undoubtedly a simplified
model in view of the incomplete, blocked, and ‘correlated’ nature of the design. There
were, in fact, three experiments corresponding to the three rows in Table 1, and the first
two experiments actually used the same group of salamanders. In each experiment,
there were two pairings of 10 males and 10 females, and each salamander was assigned to
six matings. In this paper, we only focus on computing MLEs of the parameters b and
d ¼ (sF, sM) under the simple model (2.2). The proposed methods are applicable to
more sophisticated models, such as those that allow correlated, species-specific and=or
experiment-specific random effects (e.g., McCullagh and Nelder, 1989; Karim and
Zeger, 1992; Chan and Kuk, 1997).

The main interest is on y¼ (b, d), which determines the probability of a successful
mating for each crossing, pIJ ¼ E½G(bIJ þ uF

i þ uM
j )�, where G is the inverse logit

function, G(Z)¼ (1 þ exp(�Z))�1 and the expectation is over u. The random effects
may be used to estimate the mating propensity of individual animals. Conditional on u,
the likelihood for b is

p(yjb, u) ¼
exp (

P
I, J yIJbIJ þ

P
i yi:u

F
i þ

P
j y:ju

M
j )

Q
i, j {1þ exp (bIJ þ uF

i þ uM
j )}

ð2:3Þ

where yIJ ¼
P

yij and the sum extends over all observations from the crossing (I,J);
yi. and y.j are the total number of successful matings for the ith female, and jth male,
respectively (between 0 and 6), and i, j extend over all females and males, respectively,
in the experiment. The marginal likelihood to maximize is p(yjy) ¼ E½p(yjb, u)jd�. This
120-dimensional integral can be decomposed into a product of six 20-dimensional
integrals, which cannot be reduced any further.

3 Slice-EM algorithms for fitting GLMM

The EM algorithm for GLMM solves iteratively Fisher’s equation s(y; y) ¼
E½s(y; y, u)jy, y� ¼ 0, where s(y; y) and s(y; y, u) are the observed-data and
augmented-data score functions, respectively. Operationally, the E-step computes
s(yjy(t)) � E½s(y; y, u))jy, y(t)

� and then the M-step solves s(yjy(t)) ¼ 0, for y to determine
y(tþ1). The algorithm is iterated to convergence, although the convergence properties are
somewhat tricky, as discussed in Wu (1983) and Vaida (2005).

For a general GLMM with binary response yi, linear predictor Zi ¼ x>i bþ z>i u and
mean response E(yi) ¼ G(Zi) ¼ Gi, s(yjy(t)) conveniently separates the fixed effect b
from the variance parameter d: s(yjy(t)) ¼ s(bjy(t))þ s(djy(t)),

s(bjy(t)) ¼
Xn

i¼1

xi;E
G0i(yi �Gi)

Gi(1�Gi)

�
�
�
�y, y(t)

� �

(3:1)

s(djy(t)) ¼ E
@

@d
log p(ujd)

�
�
�
�y, y(t)

� �

(3:2)
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where G0i ¼ dG=dZi. Using Monte Carlo simulation to compute (3.1) and (3.2) at the
M-step, we solve

ŝm(b) ¼
Xn

i¼1

xi

1

m

Xm

k¼1

G0ik(yi �Gik)

Gik(1�Gik)
¼ 0 (3:3)

and similarly for s(djy(t)), where u1, . . . ,um are draws from p(ujy(t), y) and Gik and G0ik
are obtained by substituting Zik ¼ x>i bþ z>i uk for Zi in Gi and G0i respectively. In
Equation (3.3), ŝm(b) is the score function of a GLM with m � n observations yi

(repeated m times) and linear predictor Zik, and the M-step for b is the estimation of
a GLM with offsets uk. The M-step for d is the same as finding MLE for d under p(ujd)
on the basis of perceived independent observations u1, . . . ,um. For the salamanders
mating data, the solutions were {s2

F}(tþ1)
¼ (Im)�1 PI

i¼1

Pm
k¼1 (uF

ik)2 and {s2
M}(tþ1)

¼

(Jm)�1 PJ
j¼1

Pm
k¼1 (uM

jk )2, where I¼ J¼ 60 and uF
ik’s and uF

jk’s are the output from the
E-step sampler.

We sample from p(u j y, y) via a slice sampler (Neal, 2003), which produces a data-
augmentation scheme for the E-step larger than the one for the M-step (Meng and van
Dyk, 1997). Specifically, we further augment {u, y} to {u, y, v}, where v¼ (v1, . . . , vn) are
an i.i.d. sample from the uniform distribution on [0,1]; v is independent of u and is
connected to y via the threshold representation

yi ¼ I[vi�G(Zi)], i ¼ 1, . . . , n (3:4)

where I[�] is an indicator function. We sample v from p(vju, y) and u from p(ujv, y). The
two distributions are proportional to the joint distribution restricted by a set of linear
inequalities (both also condition on y): p(vju,y) / IR(y)p(v) and p(ujv, y) / IR(y)p(u),
where R(y) is the set of all vectors (u, v) for which Equation (3.4) holds. The
distribution p(vju,y) is truncated uniform on the unit hypercube and p(ujv,y) is a
truncated p(u). Slice sampling is a general method for constructing useful Gibbs
samplers (Damien et al., 1999), and it has good convergence properties (Mira and
Tierney, 2002).

An alternative slice-EM algorithm is obtained by writing equation (2.2) as

logit Pr(yij ¼ 1jb, wF
i , wM

j ) ¼ bIJ þ sFwF
I þ sMwM

j (3:5)

with wF
i , wM

j �
i:d:

N(0,1) for all i, j, that is, sF,sM become the regression coefficients of the
standardized-random effects wF

i ,wM
j . The E-step remains essentially unchanged, but the

key difference is that the variance parameters are now part of the mean parameter to
be estimated at the M-step, y ¼ (b,sF, sM). This leads to faster convergence for sF, sM,
for reasons similar to those given in Meng and van Dyk (1997, 1998). Note that
estimation of sF, sM may in principle, result in either positive or negative values. This
will not affect the inference, because in the end only the squares s2

F, s2
M are reported.

(Meng and van Dyk, 1998; van Dyk and Meng, 2001).
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The standard errors (SEs) of the estimates are computed from the Fisher information
matrix, as a byproduct of the Monte Carlo EM (MCEM) using the formula (Orchard
and Woodbury, 1972; Louis, 1972)

Iy(ŷ) ¼ E[� s0(ŷ; y, u)jy, ŷ]� E[s(ŷ; y, u)s(ŷ; y, u)>jy, ŷ] (3:6)

where ŷ is the MLE of y and s0 ¼ ds=dy. The right-hand side is estimated via Monte
Carlo averages of �s0(ŷ; y, u) and s(ŷ; y, u)s(ŷ; y, u)>. The second slice-EM has the
added appeal that the augmented-data score and the Fisher information have standard
GLM forms, regardless of the distribution of the random effects.

An alternative to the slice-EM for this situation would be adaptive rejection sampling
(Gilks and Wild, 1992). Steele (1996) used a Laplace approximation for estimating the
expectations at the E-step.

4 Slice-EM implementation and data analysis

In contrast to the standard EM, in an MCEM algorithm such as the slice-EM, the E-step
computation is not exact. The EM sequence of likelihood values is no longer guaranteed
to be monotone and the convergence to the MLE is stochastic, rather than deterministic.
Chan and Ledolter (1995), Biscarat (1994) and Vaida (1998) gave theoretical results
concerning the convergence of MCEM under suitable conditions. A number of practical
methods for monitoring convergence of MCEM have been proposed: they include
graphical monitoring of some sequences of parameters (Chan and Ledolter, 1995),
monitoring the likelihood ratio via bridge sampling (Meng and Schilling, 1996) and
stopping when the Monte Carlo error is small relative to the statistical error (Booth and
Hobert, 1999). Our strategy here is to implement an MCEM in three stages: 1) the
burn-in stage, where the starting point is ‘forgotten’; we use a small sample size m and
our goal is just to approach the region of convergence; 2) the transition stage, m is
increased gradually (e.g., linearly); 3) the plateau, where the algorithm is run with large
m to achieve small Monte Carlo error. In our experience, these stages are necessary due
to the delicate interaction between the deterministic (EM) part and the stochastic (MC)
part of the algorithm. Whereas Booth and Hobert’s method is seeking a balance
between the statistical error of the estimator and the sampling (MCMC) error, our
method is balancing the sampling error and the EM convergence.

The starting point for the MCEM was b ¼ 0 and s2
F ¼ s2

M ¼ 1: The burn-in stage
had 50 steps at m ¼ 100. Figure 1 shows that this was enough to approach stationarity.
The second stage had 20 steps, with m increased linearly to 10 000, ensuring a smooth
transition to the plateau. The plateau stage, with m ¼ 10 000 for 50 steps, showed the
stationarity of the MCEM process and gave more precise MLE. The MLE was the
average of the MCEM iterates from the plateau stage. The total running time was
<30 min (slice-EM1 and slice-EM2 took about same time per iteration), with 20 s burn-
in and 25 min plateau. For practical scope, a satisfactory precision can be achieved with
a running time of 3–5 min. All programs were implemented in C and were run on a Sun
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Figure 1 Convergence and comparison of algorithms for the salamander data: slice-EM1, — and slice-
EM2, . . . . Two mean parameters, bRR (top panel), bRW (second panel), and the variance parameters s2

F, s2
M (third

panel) are shown. The bottom panel includes the MCMC sample size m as a function of the phase and step of
the algorithm and computation time
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Ultra 30 workstation. The observed Fisher information matrix was computed using an
additional sampling step at convergence.

Table 2 compares the point and interval estimates from the two algorithms and the
error due to the simulation. The latter was estimated on the basis of a AR(1)
approximation to y(t) during the plateau stage (Chan and Ledolter, 1995; Vaida,
1998). This approximation is supported by Figure 2, which shows the plateau stage and
the partial autocorrelation function (ACF) for four of the parameter components. Slice-
EM2 has uniformly lower MCEM error than Slice-EM1, with small improvements for
b, but 60% reduction for the variance estimates. Moreover, the convergence of the
variance components is faster for Slice-EM2 than that for Slice-EM1. This is an
important finding, because in MCEM, for mixed models, the variance components
are typically slower to converge and therefore dictate the overall convergence of the
algorithm. In addition, Slice-EM2 has better mixing than Slice-EM1, as shown by the
partial ACF in Figure 2. The MCEM standard error is thus also an indirect measure of
the efficiency of the algorithm: for equal MCMC sample size and computation time per
iteration, Slice-EM2 leads to more precise estimation. For both implementations, owing
to the extensive plateau stage, the MCEM error is negligible when compared with the
standard error of the MLE. A shorter plateau would suffice in practice.

The population-level probabilities of mating, pIJ, are given by

pIJ ¼ G
bIJ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2s2
p

� �

(4:1)

where c2 ¼ (16
ffiffiffi
3
p
=15p)2

� 0:346 and G is the inverse logit function (Zeger et al.,
1988). They are reported in Table 3. Interval estimates for these were obtained in two
ways. The ‘naive’ ones are computed from Equation (4.1) with bIJ inside the
approximate 95% confidence interval, bIJ 2 {b̂IJ 	 2SE(b̂IJ)} and s2 ¼ s2

F þ s2
M held

fixed at the MLE; these ignore the variability in s2. A better choice is the 95% highest
posterior density interval for pIJ from simulated samples for (b, log s2

F, logs2
M)

from their asymptotic normal posterior distribution with mean at the MLE and
variance given by the inverse Fisher information. For our data set, the two sets of

Table 2 MLEs for the salamander data from the two slice-EM algorithms, MCEM error, standard error of the
MLE and approximate 95% confidence intervals

Method Estimate MCEM SE MLE SE 95% confidence interval

bRR Slice-EM1 1.019 0.0016 0.415 (0.19 185)
Slice-EM2 1.018 0.0013 0.407 (0.20 1.83)

bRW Slice-EM1 0.321 0.0015 0.393 (70.47 1.11)
Slice-EM2 0.320 0.0013 0.389 (�0.46 1.10)

bWR Slice-EM1 �1.940 0.0019 0.475 (�2.89 70.99)
Slice EM2 �1.941 0.0013 0.473 (72.89 70.99)

bWW Slice EM1 0.997 0.0016 0.415 (0.17 1.83)
Slice EM2 0.994 0.0014 0.417 (0.16 1.83)

sF
2 Slice-EM1 1.384 0.0044 0.658 (0.54 3.58)

Slice-EM2 1.385 0.0016 0.626 (0.56 3.42)
sM

2 Slice-EM1 1.238 0.0039 0.583 (0.48 3.18)
Slice-EM2 1.234 0.0016 0.580 (0.48 3.16)
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Figure 2 The plateau stage and partial ACF of the MCEM estimates for the salamander data: slice-EM1, —;
slice-EM2, . . .
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approximations are practically identical (Table 3), indicating that ignoring the statis-
tical error of s2 in Equation (4.1) has little effect on the marginal inference for pIJ. This
is probably due to the complex correlations in the inverse Fisher information matrix; in
particular, logs2

F and log s2
M are negatively correlated, keeping the overall variation of

s2 in the posterior sample relatively low.
The mating probabilities are large and very similar for same-species matings,

pWW ¼ 0:676 and pRR ¼ 0:673, and high for RW, pRW ¼ 0:558, but very low for
WR, pWR ¼ 0:197. To test whether the mating between species is less probable than
within the same species, we calculated the marginal odds ratios (ORs) relative to RR for
the three other crossings. There is strong evidence of a smaller probability of mating for
WR: OR¼ 0.12, 95% CI¼ (0.05, 0.26). For the other three comparisons, the 95% CI
includes OR¼ 1. The White Side females and Rough Butt males clearly do not like each
other.

5 Comparison with other methods and discussion

Tables 4 and 5 compare our results with those from a variety of methods used in the
literature; the blank entries are for results that are not available from the literature.
Previous researchers also analysed the data from each of the three experiments
separately, so we included results of the first experiment only, conducted in the
Summer of 1986 (first two blocks of Table 1). Using an importance sampling-based
MCEM, Booth and Hobert (1999) arrived essentially at the same numeric results as

Table 3 Marginal probabilities and marginal OR for the salamander data

Estimate

‘Naive’
95% confidence

interval

MLE 95%
confidence

interval Odds ratio

OR 95%
confidence

interval

pRR 0.676 (0.537 0.790) (0.537 0.784) 1.00
pRW 0.558 (0.418 0.689) (0.421 0.683) 0.60 (0.31 1.18)
pWR 0.197 (0.110 0.327) (0.119 0.322) 0.12 (0.06 0.26)
pWW 0.673 (0.529 0.790) (0.532 0.784) 0.99 (0.44 2.19)

Note: the ‘naive’ confidence interval ignores the variability in the estimation of variance components. The
crossing RR is the reference. The results are based on slice-EM2.

Table 4 Comparison of methods: the variance components

All experiments Summer 1986

Methods sF
2 sM

2 sF
2 sM

2

Slice-EM2 1.39 1.23 1.74 0.23
IS-EM 1.40 1.25
Mod Laplace 1.80 0.25
Bayes 1.50 1.36 2.35 0.14
PQL 0.72 0.63 1.42 0.09
Moments 0.91 0.88 1.37 0.70
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ours, considering the Monte Carlo errors in both algorithms. A direct comparison of
computational efficiency and convergence of the two algorithms is beyond the purposes
of this paper; we note that their rejection sampling has the advantage of independent
samples, at the price of rejecting a large number of the simulations. Their elegant
method for choosing the simulation sample size m at each E-step, valid only for
independent E-step sampling, was extended to Markov chain E-step sampling by Levine
and Casella (2001).

The modified Laplace approximation of Shun and McCullagh (1995), applied by
Shun (1997) to the salamander data, gives results that are also very close to the MLE.
The comparisons with non-MLE-based methods are no longer purely computational,
and they involve comparisons among different estimation procedures. The Bayesian
analysis of Karim and Zeger (1992) yields similar results for the fixed effects. The
results for the effects variance parameters appear to be different, but this is probably a
reflection of the skewness of the posterior distributions of the random variances as
Karim and Zeger (1992) reported posterior medians (and 5th and 95th percentiles), not
posterior means. The PQL estimators (Breslow and Clayton, 1993) and the moment
estimators (McCullagh and Nelder, 1989, Table 14.10) are rather remote from
the MLE. It has been noted in the literature that PQL tends to give biased
estimators for binary data GLMM, but with a good mean square error (Neuhaus
and Segal, 1997).

In Table 6, we compare the mating probabilities pIJ and their 90% confidence
intervals estimates from four different models=methods: slice-EM, the Bayesian model,
PQL and fixed-effects GLM. The GLM amounts to a separate analysis of the four 2� 2
tables for the female–male crossings. The GLMM and the Bayesian method produce
numerically identical results, which are not unexpected because Karim and Zeger

Table 5 Comparison of methods: the fixed effects

All experiments Summer 1986

Methods bRR bRW bWR bWW bRR bRW bWR bWW

Slice-EM2 1.02 0.32 71.94 0.99 1.38 0.93 71.66 1.18
IS-EM 1.03 0.32 71.95 0.99
Mod Laplace 1.00 0.32 71.95 1.02 1.37 0.93 71.65 1.18
Bayes 1.03 0.34 71.98 1.07 1.48 0.98 71.77 1.35
PQL 0.79 0.25 71.50 0.78

Table 6 Marginal probabilities and 90% intervals from GLMM, GLM and Karim and Zeger’s Bayesian model,
and marginal probabilities from PQL

GLMM GLM Bayes PQL

pRR 0.68 (0.56 0.77) 0.67 (0.59 0.75) 0.67 (0.56 0.77) 0.66
pRW 0.56 (0.44 0.66) 0.56 (0.47 0.64) 0.56 (0.44 0.66) 0.55
pWR 0.20 (0.13 0.30) 0.21 (0.14 0.28) 0.20 (0.13 0.30) 0.22
pWW 0.67 (0.56 0.77) 0.67 (0.59 0.75) 0.68 (0.56 0.77) 0.66
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(1992) used a constant prior for both the fixed effects and the random-effect variances,
and our approach for approximating confidence intervals effectively computes the same
posterior intervals as theirs. The remarkable numerical agreement of the two sets of
results is a strong validation of the accuracy of both Karim and Zeger’s (1992) Gibbs
sampler algorithm and our Slice-EM2 algorithm, considering the implementations of
the two Monte Carlo algorithms were completely independent and in fact the two
algorithms involve different data-augmentation schemes. It is also a validation of the
normal approximation we have used for the posterior of (b, logs2

F, logs2
M), as Karim

and Zeger’s (1992) Gibbs sampler was designed to compute the exact posterior
distribution. GLM also provides nearly identical point estimates, but with narrower
confidence intervals, owing to the absence of the random effects.

It is also interesting to observe that although PQL gives biased parameter estimates
for GLMM, it provides reasonable estimates of the marginal probabilities. Although
this behaviour is not completely understood, we like to think of PQL heuristically as an
‘intermediate’ model between the fixed-effects GLM (or zero random effects) and the
GLMM, with the effect of doing a ‘partial shrinking’ of the random effect u towards 0.
In this context, the interpretation of the parameters of PQL is not the same as for
GLMM owing to the bias induced by the PQL approximation. In particular, the
variance components tend to underestimate the GLMM variances (Neuhaus and Segal,
1997), and are biased towards the ‘zero variances’ of the GLM. However, the model
predictions are similar (intermediate between GLM and GLMM), and the mean square
error for the fixed effects is also generally smaller than for GLMM, but larger than
the GLM.

We only focussed here on the MLE. In contrast, PQL computes the variance
components using REML, with the purpose of reducing the bias in the variance
components due to the estimation of b. REML estimation for GLMM is discussed by
McCulloch and Searle (2001).

The aforementioned methods also differ in their ability to estimate the various
relevant quantities. Not surprisingly, the most versatile ones are the MCMC-based
methods (e.g., Bayes–Gibbs sampler, importance sampling-EM and slice-EM). In
contrast with the PQL or corrected-Laplace methods, the slice-EM, along with
the MCMC-based methods allows straightforward estimation of confidence bands
for arbitrary functions of the parameters and for individual estimates (or predictors) for
the random effects.

We conclude by emphasizing that although we report confidence intervals for
the variance components, they cannot be readily used for testing the existence of
the random effects within the usual hypotheses testing framework. This is because the
null hypothesis lies on the boundary of the parameter space, and thus the standard
asymptotic results do not apply. For example, the null distribution of the likeli-
hood ratio statistic is no longer the standard chi-squared, but rather similar to the
cases considered by Self and Liang (1987) and exemplified by Stram and Lee (1994) in
the linear mixed-effects model. In these cases, the standard chi-square distribution is
typically a conservative approximation to the null distribution. Here, the issue of
testing goes beyond the usual testing of parameter values, as it covers the funda-
mental issue of model checking and model selection. More work is needed in this
area for GLMM, and effective mode-finding algorithms (together with information
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calculation), such as slice-EM algorithms we described, are an integral part of such
research.
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