
1 Introduction and overview

1.1 Dif®culties with incomplete-data problems
Missing data or more generally incomplete data (e.g. censored data which are not
completely missing because we know which intervals they fall into) occur frequently in
medical studies, in the forms of nonresponse in patient surveys, noncompliance in
clinical trials, nonreporting or delayed reporting to health surveillance systems, just to
list a few. Three major dif®culties with such incomplete-data problems are: (I) loss of
information, ef®ciency or power due to loss of data; (II) complication in data handling,
computation and analysis due to irregularities in the data patterns and non-
applicability of standard software; and most fundamentally; and (III) potentially very
serious bias due to systematic differences between the observed data and the
unobserved data.

The best way of dealing with these problems, of course, is to avoid them in the ®rst
place. Unfortunately, in most real-life studies, be they medical or otherwise, the
problem of incomplete data is unavoidable even if we have made the greatest possible
efforts. For example, it is a common knowledge that no real-life questionnaire survey
can achieve a response rate that is remotely close to 100%. In fact, the problem is so
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universal that an unusually high response rate (e.g. 95%) should make the investigator
worry about possible design ¯aws in the survey, such as selection bias in the sample or
a substantial amount of untrustworthy responses induced by too much monetary
incentive. As another example, even very carefully designed and implemented clinical
trials often face problems such as censored data, attrition, and noncompliance. These
are all examples of incomplete-data problems, a term we use in its broadest sense. That
is, it even includes problems of missing observations that are induced by a study
design or are inherently unobservable (e.g. the `would-be' response to a treatment for
those who are assigned to the control group; see Section 3).

Once the data collection process (including follow-up) is completed, there is little
one can do about problem (I) besides using the experience to create better designs for
future similar studies. Problem (II) is the most visible one in practice, and thus has
received the most complaints and most research attention. Problem (III) is most
fundamental because if the observed data represent a biased sample of what we intend
to study, then without efforts to reduce such bias, our inference would not be of much
scienti®c value regardless of the sophistication of our computational method or
analysis procedure. Unfortunately, it is also the most dif®cult one to handle because,
typically, the reasons for not observing the full data (i.e. the so-called missing-data
mechanism) are often at best partially understood (except for cases where missing data
are induced by the design or latent-variable modelling). It is also certainly one of the
most overlooked problems in practice. It is not uncommon for an investigator to
analyse whatever is available (as with the `complete-case' methods and the `available-
case' methods) and never even realize the potentially serious nonresponse bias.1

1.2 Rubin's multiple imputation method
Imputation, that is, ®lling in missing data by some plausible values, has been a

popular method for handling incomplete-data problems. This popularity largely stems
from the fact that once the missing values are ®lled in, standard complete-data
methods can be readily applied to produce `results', and thus problem (II) is avoided.
However, in order to have an inferentially useful analysis based on data sets that are
partially imputed, two requirements must be met. First, the imputation method/model
must reasonably capture the actual distributional relationships between the
unobserved and the observed. Secondly, the analysis must take into account the
uncertainty in the imputed values, because no matter how much effort one makes, the
imputed values are simply not the real observations.

Rubin's multiple imputation2,3 is a three-step method for meeting these two
requirements that maintains the principal attraction of an imputation method. The
®rst step is to build a sensible imputation model ± the meaning of `sensible' will be
discussed in Section 1.3 ± and then to impute the unobserved values by m�> 1�
independent draws from the model. We thus have m completed data sets,
Y�`� � fY�`�mis;Yobsg, ` � 1; . . . ;m, where Yobs is the observed data, and Y

�`�
mis is the `th

imputation of Ymis, the missing data.
At the second step, we simply conduct a complete-data analysis using each Y�`� in

the same way as we would use a real complete data set Y. Let � be a d-dimensional
unknown quantity of interest (e.g. a regression slope, �), �̂�Y� be an ef®cient estimate
of � based on Y (e.g. �̂), and U�Y� be the associated variance (e.g. an estimate of
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Var��̂��. Then our m completed-data analyses produce

�̂` � �̂�Y�`�� and U` � U�Y�`��; ` � 1; . . . ;m

At the third step we combine these quantities to obtain the so-called repeated-
imputation inference, as de®ned by Rubin.3 The combining rule is most straight-
forward for the point estimate of �, which is simply the average of f�̂`; ` � 1; . . . ;mg

��m � 1

m

Xm

`�1

�̂`

The combining rule is also straightforward for the variance estimate for ��m

Tm � �Um � 1� 1

m

� �
Bm

where �Um, the average of fU`; ` � 1; . . . ;mg, estimates the within-imputation variability

Bm � 1

m

Xm

`�1

��̂` ÿ ��m���̂` ÿ ��m�>

estimates the between-imputation variability, and the in¯ation factor �1� mÿ1� accounts
for the additional variability due to using a ®nite number of imputations (in contrast
to using an in®nite number of imputations).

Methods for constructing con®dence intervals and for computing p-values are
slightly more complicated because one cannot simply use a normal approximation
based on ��m and Tm, which would be appropriate if both n and m were large, where n is
a measure of the size of Yobs. In practice, m is often small to moderate (e.g. between ®ve
and ten), and thus we need to take into account the `degrees of freedom'. Several
simple rules/methods are available for dealing with different settings. They include
the large-n rule of Li et al.,4 the small-n rule of Barnard and Rubin,5 and the
likelihood-ratio method of Meng and Rubin.6 See Schafer's article in this issue and
Rubin and Schenker7 for a review of these methods. Rubin and Schenker7 also
contains an overview of some applications of the multiple imputation approach in
health care research up to 1991.

Thus, Rubin's multiple imputation method meets the requirement of properly
accounting for uncertainty in the imputed values through the use of the easily
computable between-imputation variability measure Bm, which is not available with
single imputation. It is also clear that the method maintains and in fact enhances the
simplicity of single-imputation methods because at the analysis stage (i.e. the second
and third steps), no special incomplete-data procedures are needed.

1.3 Building a sensible imputation model
The requirement for constructing a sensible imputation model that reasonably

depicts the underlying missing-data mechanism is a common requirement for any
useful imputation method. By `sensible' we mean a model that incorporates as much as
possible the available data and our knowledge about the missing-data mechanism, but
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at the same time keeps the model building and ®tting feasible. This balance is
important in practice because an overly simplistic model, such as imputing missing
values by some sort of average of observed data, is typically completely inadequate for
imputation. For one thing, these averages are subject to the same nonresponse bias we
intend to reduce. On the other hand, an overly complex model, such as a model
involving many high order interactions, will not only face the problem of
nonidenti®ability and other dif®culties in model building, but more importantly, an
overly complex model could have poor prediction power because it over-®ts the
existing data (these problems can be avoided when using a full Bayesian analysis and
various model diagnostics; see Section 5). Furthermore, over-complexity often makes a
method less acceptable in practice and more vulnerable to implementation errors.

While it is impossible to have a general recipe for achieving this balance, there are
some general guidelines that have been emphasized in the literature.3,8,9 In the context
of producing imputations for public-use data ®les (e.g. the application in Section 4),
the imputation model should satisfy what Meng9 called the practical objectivity and
generality requirement, meaning that the model should not be in serious con¯ict with
common analytic models used for analysing the data ®les. For example, the model
should not restrict a two-way interaction to be zero when that very interaction is of
common interest to analysts. In other words, the imputer should make efforts to
accommodate common models used in analyses, even if some of these are not sensible
for the purpose of imputation ± Meng9 gives a general discussion of these and related
issues.

On the other hand, if the imputer is the same party as the analyst with a speci®c
analysis goal (e.g. the application in Section 2), then the imputation model can be
more tailored. Whereas Rubin's multiple imputation method was originally motivated
by the need for handling nonresponse in public-use data ®les or shared databases,
there has been increasing use of the method for more small scale studies, including
traditional `one-analyst-one-goal' studies. In such studies, Rubin's method offers
attractive ¯exibility in both model building and computation via the separation of the
task of handling incomplete data from the task of answering the questions of
substantive interest. This is so called `in-house' use of multiple imputation, a term that
is used to distinguish it from the original applications for creating imputations for
general `outside' users.

With an `in-house' application, among the class of models that are reasonable for
imputation, the analyst should choose the one that is easiest to implement and is in as
little con¯ict as possible with his or her particular analysis model. Note that the two
models can be, and often are, incompatible with each other because a model useful for
imputation may not be a model of substantive interest and vice versa. This is the issue
of uncongeniality discussed in detail by Meng,9 whose theoretical results show that
uncongeniality typically leads to conservative inference, assuming, of course, both
models are reasonably constructed. Rubin8 gives related discussions, especially
regarding the issue of distinguishing between achievable objectives and ideal but
unrealistic objectives in the context of handling incomplete data.

These points will be illustrated in detail in the next three sections. In Section 2, we
demonstrate how the problem of reporting delay in estimating the survival time after
AIDS diagnosis can be handled by Rubin's method; this is an example of `in-house'
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use. In Section 3, we discuss the use of Rubin's method as an integrated part of a
general methodology for analysing randomized experiment data in the presence of
both noncompliance and missing observations. This is an example of `in-between' use,
for the method is neither used for a speci®c `in-house' application nor is it used for
generating imputations for `outside' users of a public-use database, but rather as a part
of a general methodology for a class of problems. In Section 4, we demonstrate a classic
`outside' application of Rubin's method for multiply imputing the nonresponse in the
US National Health and Nutrition Examination Surveys (NHANES).

2 Application I: handling reporting delay for AIDS survival estimation
with surveillance data

2.1 Dif®culties with surveillance data
Data collected and maintained by national and regional health surveillance systems
are the basis for estimating prevalence, mortality rate, survival times and other vital
features of various diseases occurring in general populations, which in turn are the
basis for assessing general health care needs, long-term health-policy planning,
general disease-prevention education, etc. For example, the data collected and
maintained by the AIDS surveillance system of the US Centers for Disease Control
(CDC) made it possible to obtain estimates of the mortality and survival times of the
general AIDS population residing in the United States, estimates that are of vital
importance for studying the AIDS epidemic in the United States. However, estimation
with such surveillance data is a very challenging task because of severe incompleteness
of the data in various aspects.

For example, because a non-negligible fraction of deaths among the reported AIDS
cases to CDC will never be reported to CDC, survival-time estimates based on all
reported AIDS cases without death certi®cates censored at the time of analysis are
biased upward. An example of this sort is given by Tu et al.,10 who show that such a
method would estimate the ®ve-year (after diagnosis) survival rate for Pneumocystis
carinii pneumonia (PCP), an AIDS-de®ning disease, to be over 15%, which was clearly
an overestimation when compared to the reality. Such an overestimation contributed
to some early unfounded optimism about the AIDS epidemic and treatments.11

To overcome this bias problem, Tu et al.10,12 adopted the strategy of using only the
reported deaths, and thus the never-reported death cases were excluded. While this
approach itself is subject to bias if those never-reported cases have systematically
different survival times from those that were reported, which is entirely possible, the
results obtained by Tu et al.10,12 were much closer to reality judging by their com-
parability with ®ndings in several clinical trials.11,13

However, the reported-death approach also faced several challenging incomplete-
data problems, most crucially the problem of delay in reporting death to CDC. The
completely observed cases were those who were diagnosed with AIDS, died, and were
reported to CDC by a chronological time t� de®ned by the analysis. If our analysis only
uses these cases, then our results will be contaminated with biases of various sorts,
such as likely underestimation from those who were diagnosed and died earlier in the

Applications of multiple imputation in medical studies 21



epidemic, and possible overestimation from those who resided at geographic locations
with better health surveillance systems; these biases are impossible to disentangle and
remove without additional information and analysis.

Ideally, the reporting delay can be handled by jointly modelling and estimating the
survival and reporting delay distributions given the time of an AIDS diagnosis, the
time of death, and the reporting time of death. Unfortunately, this joint estimation is
dif®cult to implement because the reporting time of death is not available for some of
the reported deaths. At the time of the analysis conducted by Tu et al.,10,12 the
reporting time was known only for deaths occurring after September 1987, while the
data set available for analysis consisted of 82 239 reported deaths for the male
population and of 6566 for the female population between the ®rst quarter of 1983 and
the ®rst quarter of 1991 (paediatric and transfusion-related AIDS cases were
excluded). A further complication is that any death occurring before 1984 has an
unknown time of death, though this is a relatively minor complication because those
cases, being relatively few, can be discarded without appreciable effect on the general
conclusions.

2.2 A multiple-imputation strategy and model assumptions
Rubin's multiple imputation method offers an attractive alternative for handling

such reporting delay problems. As detailed by Tu et al.,10,12 this approach allows us to
separately deal with the reporting delay and with the survival analysis, thus, avoiding
the dif®culties of joint estimation. We can ®rst concentrate on the modelling of the
survival time without worrying about the reporting delay, which obviously is a
nuisance to our main objective. We then estimate the reporting delay distribution
using available information, multiply impute the delayed cases, and proceed with the
second and third steps of Rubin's method to obtain our inference about the survival
time. Speci®cally, our strategy includes the following ®ve steps:

Step 1 construct a survival-time model pretending there were no reporting delays;
Step 2 construct and estimate the reporting-lag model using available information;
Step 3 multiply impute the delayed cases using the imputation model built upon

Step 2;
Step 4 compute the estimates of the parameters of the survival-time model as well as

their variance estimates using each of the completed-data sets;
Step 5 use the repeated-imputation inference rules to combine the estimates found

in step 4 to compute our ®nal estimates of the model parameters and their
variances, and then draw inferences from the ®tted survival-time model.

For both steps 1 and 2, because the times (e.g. death time; reporting time) were
recorded in quarters, Tu et al.10 adopted a discrete-time proportional hazards model of
the following form:

Prob�T � j j z; �� � �p0 � � � pjÿ1� exp fz>�g�1ÿ p exp fz>�g
j � if 0 � j � Jÿ 1

�p0 � � � pJÿ1� exp fz>�g if j � J

(
�2:1�

In equation (2.1), T is a time variable (e.g. the survival time after AIDS diagnosis S, or
the lag time of death reporting R), z is a vector of covariates, J is the maximum
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observed number of quarters for T , and pj � Prob�T > j� 1 j T > j� (0 � j � Jÿ 1)
are conditional baseline probabilities. The model parameter � is parameterized as
� � ��; �� with � � �a0; . . . ; aJÿ1� and aj � log �ÿ log �pj�� for 1 � j � Jÿ 1. This
reparametrization of p � �p1; . . . ; pJÿ1� not only facilitates computation by removing
the range restriction on p (i.e. 0 � pj � 1), but more importantly, allows for a better
normal approximation to the likelihood function, or more generally, the posterior
distribution of �. The normal approximation to the likelihood is a common approxi-
mation that justi®es the use of maximum likelihood estimates and simpli®es our
imputation procedure (see Section 2.3).

The proportional hazards model is a very common model for survival analysis,14,15

and the discrete analogue (2.1) was suitable for the current problem because of the
discrete nature of the data. The model is quite suitable for comparing survival times
among various subpopulations de®ned by factors such as risk groups and geographical
location via the use of covariate z, especially because it ®ts these subpopulation data
reasonably well, as discussed by Tu et al.12 The model is also used for modelling the
reporting-lag time mainly for two reasons. The obvious reason is that this greatly
simpli®es the computation because only one subroutine is needed for ®tting both
models. The more important reason is that the reporting-lag time is just a type of
survival time if we consider `not reporting' equivalent to `survive'. For example, it
makes good sense to consider the hazard function for not reporting, that is, the
probability that a death will be reported at quarter j� 1 given it has not been reported
up to quarter j. The ¯exibility in the choice of z also allows better estimation of the
reporting-lag distribution by accommodating important factors such as geographical
location and risk group.

For the male population, Tu et al.10 considered four major risk groups based on
sexual behaviour and injecting drug (ID) use status: heterosexual versus homosexual/
bisexual crossed with the ID users versus nonusers. For the female population, Tu et
al.12 considered two risk groups: the ID users and nonusers. Within each of these
groups, three diagnosis strata were considered: PCP, Kaposi's sarcoma, and others.
Geographical location was classi®ed into six regions: north-east, central, west, south,
mid-Atlantic, and a residual category that consists of areas with population less than
one million. Time was also an important covariate ± for the survival-time model, the
time of diagnosis, and for the reporting-lag model, the time of death. Also considered
was an indicator for the change in the de®nition of AIDS that took place in 1987.

2.3 Model ®tting and creating multiple imputations
Having chosen the model including covariates, the popular EM algorithm16 was

used to ®t both the survival-time model and the reporting-lag model. (Meng17 presents
a historical link between the EM algorithm and medical studies as well as an overview
of EM with various references.) The EM algorithm was chosen for its ability to deal
with the problems of right truncation and of left censoring in the data. The right
truncation occurred because we can only observe cases whose diagnosis time, death
time, and death reporting time were all before the analysis time, t� (the issue of
identifying underlying distributions beyond the truncation point is discussed in Tu et
al.10). The left censoring occurred because of the unknown death time for those who
died before 1984, and more importantly, for estimating the reporting-lag distribution,
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because of the inclusion of the deaths occurring after January 1986 but before October
1987. The reporting-lag times of these deaths were only known to be less than the time
difference between the time of death and the ®rst quarter of 1991 (thus they are left
censored), and these cases were included so that estimation of the reporting delay
distribution up to ®ve years was possible. The ®ve-year upper bound was used after
careful examination of the CDC data, which indicated that deaths not reported within
®ve years would very likely never be reported.

To create multiple imputations for the delayed cases, we ®rst note that if we know
the reporting-lag probability Prob�R � r j z; �� for any r, then a natural estimate of the
expected number of unreported cases with death time ti and covariate zi given ni

observed deaths with the same death time and covariate value is given by

E k j ni;P�ti; zi; ��� � � 1ÿ P�ti; zi; ��
P�ti; zi; �� ni �2:2�

where k denotes the number of unreported deaths and

P�t; z; �� � Prob�R � t� ÿ t j z; �� �
Xt�ÿt

r�0

Prob�R � r j z; ��

That is, the ratio of the expected number of unreported cases to the observed cases
should be equal to the odds of not reporting by time t�. A natural model for k that is
consistent with (2.2) and common for modelling data of this sort is the negative-
binomial distribution

NB�k j ni;P�ti; zi; ��� � k� ni ÿ 1
k

� �
�1ÿ P�ti; zi; ���kP�ti; zi; ��ni

Since we only have estimates of � and thus of Prob�R � r j z; ��, we need to take into
account the uncertainty in estimating � when we create imputations. This can be
achieved by the Bayesian method by drawing � from its posterior distribution given
the available information. This can be done in several ways, including the powerful
Markov chain Monte Carlo method.18 Tu et al.10,12 adopted the traditional large-
sample method by using a multivariate normal approximation to the desired posterior
of �, which was adequate given the large size of the data. Speci®cally, they
approximated the posterior distribution by N�b�; b
�, where b� and b
 are, respectively,
the maximum likelihood estimate of � and the inverse of the observed Fisher
information matrix obtained in step 2 of Section 2.2.

With these build-ups, we can obtain m completed-data sets by performing the
following three steps m times independently. Namely, for each ` (1 � ` � m):

Step 1 draw a random sample �` from N�b�; b
�;
Step 2 given �`, for each observed ni with death time ti and covariate zi, draw a

random sample k
�`�
i from the negative-binomial distribution

NB�k j ni;P�ti; zi; �`��;
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Step 3 for each observed ni with death time ti and covariate zi, impute the unreported
number of death by k

�`�
i to form the `th completed-data set

Y�`� � fni � k
�`�
i ; i � 1; :::g.

Since the maximal reporting lag is about ®ve years, only the unreported deaths with
an AIDS diagnosis after January 1986 need to be imputed, in which case exact death
times (in quarters) are available for the reported ones.

The number of multiple imputations, m, usually does not need to be large to obtain
stable answers, though, obviously, the larger the better as long as it is computationally
affordable. Tu et al.10 found that results with m � 10 and m � 50 were similar. It has
been a common experience that with many practical problems m � 5ÿ 10 is adequate.
The ®nal results of Tu et al.10,12 were based on m � 50 and were quite different from
using mean imputation, i.e. imputing k by the estimated expected value given by (2.2).
Tu et al.10,12 give detailed discussions of this comparison as well as many other results.

3 Application II: handling noncompliance and missing data in a
randomized experiment

3.1 Introduction
One of the most pervasive tasks in medical research is trying to draw causal inferences.
An ideal scenario for obtaining valid causal inferences for a binary treatment is the
following: (1) the data arise from a randomized experiment with two treatments; (2)
the outcome variables are fully observed; (3) there is full compliance with the assigned
treatment; (4) the design variables are fully observed; and (5) the background variables
are fully observed. Aspect (5) is useful for doing covariate adjustment and
subpopulation analyses. For this ideal scenario, there are standard and relatively
simple methods for obtaining valid causal inferences. In reality, however, particularly
with human subject trials, this scenario rarely occurs.

Deviations from the ideal scenario that occur frequently in medical experiments are
the following: (a) there exist missing values in the outcomes; (b) there exist missing
values in the background variables; and (c) there is noncompliance with assigned
treatment. Handling these complications in a valid and general manner is challenging.
Here we review a multiple-imputation based framework, proposed by Barnard et al.19

for analysing a randomized experiment suffering from (a), (b), and a special form of (c).
The motivating application in Barnard et al.19 is the Milwaukee Parental Choice

Program (MPCP), a randomized experiment in which one of the goals is to estimate
the causal effects of `school choice', e.g. the effects on achievement tests of attending a
private school versus attending a public school. The MPCP, while not a medical study,
has many of the same features and complications of clinical trials. We use the MPCP
to illustrate some of the modelling and computational issues surrounding the use of
multiple imputation for handling dif®culties (a), (b), and (c) in randomized
experiments.

3.2 The Milwaukee Parental Choice Program
The MPCP was launched in 1990 as the ®rst publicly funded school voucher

program in the United States. Eligible students from the Milwaukee public school
(MPS) system were given the opportunity to attend one of several participating private
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schools in the area, labelled `Choice' schools. Eligibility into the programme was
determined predominantly by income level; speci®cally, household income could not
exceed 1.75 times the poverty line. A lottery was held to determine admittance into
Choice schools because only a limited number of slots were available in each school
and grade per year. The programme was ®nanced by diverting government funding for
all accepted students from the public schools they would have attended to the private
schools to which they were admitted.

The lottery structure of the admittance procedure represents a naturally occurring
randomized block design (in contrast to a planned design). Two of the blocking
variables, grade and year of application, were recorded for all participants. Because the
school attended by each Choice student was not released by the principal investigator
of the study due to con®dentiality concerns, Barnard et al.19 and other analysts of the
MPCP used race as a proxy for the third blocking variable, school. The use of race as a
proxy for school is a reasonable approximation because the three Choice schools that
captured over 80% of the Choice students in 1990 were each predominantly either
black or Hispanic.20 Barnard et al.19 restricted their examination of the MPCP to a
subsample of experimental subjects, black and Hispanic students from kindergarten
through eighth grade. Their subsample consisted of 1151 subjects, with 238 in the
control group (MPS schools) and 913 in the treatment group (Choice schools).

The outcome variables of the experiment were normalized scores from standardized
math and reading tests, the Iowa Test of Basic Skills (ITBS), taken every spring
(beginning after entry into the study). Because funding for the evaluation was
provided only through 1994, the maximum number of years of outcome data was four,
which was only possible to observe for those who applied in the ®rst year of the
program, 1990. Covariate data were also collected on background characteristics of
participating students through surveys and administrative records.

Figure 1 describes the variables used by Barnard et al.19 along with their levels of
missingness. Many of the covariates and outcomes had rather high levels of
missingness, much higher than in a typical medical study, and there were over 100
missing data patterns. Unlike in many longitudinal studies, the missing data pattern
of the outcomes variables was far from monotone, which complicates the generation of
multiple imputations of the missing data.21

In summary, the MPCP can be viewed as a longitudinal study with multiple
outcomes, two treatments, and a randomized block design that suffers from incomplete
outcomes with a nonmonotone missing data pattern and noncompliance with assigned
treatment.

3.3 Noncompliance and potential outcomes
Handling noncompliance in randomized experiments has recently become a topic of

great interest.22±30 A major impetus for this interest is the desire to estimate average
causal effects for the complier subpopulation, which is often of greater scienti®c
interest than the usual intention-to-treat estimands.19 Here we examine the
implications of noncompliance for the MPCP.

In their analysis of the MPCP, Barnard et al.19 assumed that compliance, denoted by
C, can be viewed both as a characteristic of an individual and expressed as a single
binary variable, even though compliance behaviour can vary over time. In addition
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they assumed that no subjects would take the treatment if assigned to the control
group. Under these assumptions, it is possible to classify every individual in the
MPCP into one of two compliance categories: compliers (C � c) will take treatment if
assigned to it (in some average sense over time); never takers (C � n) will not take
treatment if assigned to it. Further, it is possible to observe the compliance status of
individuals assigned to the treatment group (i.e. for students who won the lottery), as
the behaviour when assigned to treatment is observed for those in the treatment group;
for MPCP, about 30% (284 subjects) of those who were assigned to the treatment
group were labeled never takers. The compliance values of individuals assigned to the
control group (i.e. for students who lost the lottery), however, are not observed, as it is
not known how they would behave when assigned to the treatment group. Hence,
questions concerning compliance can be viewed as missing data questions.

To clarify the issues surrounding noncompliance, it is helpful to adopt the potential
outcomes notation of `Rubin's Causal Model'.31±34 In the current setting of a binary
treatment variable, each subject's potential outcomes are given by �Y�0�;Y�1��, where

Figure 1 Variable missing rates and descriptions of the variables used by Barnard et al.19 in their analysis of
the MPCP. The underline indicates that the quantity is a vector. The variables listed in the rows belonging to a
group can be collectively denoted by the corresponding symbol in the group notation column. For example, the
three design variables are collectively denoted by W, which is a vector of length three. The vector Y �0� and the
vector Y �1� are both of length eight, because there are potentially two outcomes recorded at four time points.
The percentage of missing values for the control and treatment outcomes are ranges over the four years of
outcomes.
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Y�z� is the outcome if assigned to treatment Z � z, with

Z � 1 if assigned to treatment
0 if assigned to control

�
For every subject, only one of the two potential outcomes are observed. Hence, each
row of the matrix of outcomes Y, consists of observations either of Y�0� or of Y�1�,
where the potential outcome contributed by a subject depends on the subject's
treatment assignment. In causal studies (e.g. randomized experiments), a common
goal is to estimate the average of Y�1� ÿ Y�0� (regardless of compliance status),
usually called the intention-to-treat (ITT) estimand. In casual studies suffering from
noncompliance, an additional estimand of interest is the average of Y�1� ÿ Y�0� for
those who are compliers (i.e. the average effect of the treatment for those who take the
treatment if assigned to it), called the complier average causal effect (CACE).23 For
example, in the MPCP, an estimand of great interest is the causal effect of attending a
Choice school (the treatment) on performance outcomes for those children who would
attend a Choice school if asked to attend such a school (i.e. compliers). Note that
under the assumption of no de®ers (i.e. those who always take the opposite treatment
than the assigned) nor always takers, the ITT estimand can be written as a weighted
sum of the CACE and the never-taker average causal effect (which is assumed to be
zero in Section 3.4).

When some of the outcomes are missing, there is also a pair of corresponding
potential nonresponse patterns: Ry�0� is the nonresponse pattern for Y�0�, and Ry�1�
is the nonresponse pattern for Y�1�. Hence, each row of the matrix of nonresponse
indicators Ry, consists of observations either of Ry�0� or of Ry�1�, where the potential
nonresponse pattern contributed by a subject depends on the subject's treatment
assignment.

To clarify the interactions among noncompliance, missing values, and the experi-
mental design, Figure 2 indicates what is observed, what is missing but intended to be
observed, and what is missing but cannot be observed. Barnard et al.19 impute only the
missing intended data and the missing compliance values, i.e. they impute Y

f1cg
mis ,

Y
f1ng
mis , Y

f0�g
mis , X

f1cg
mis , X

f1ng
mis , X

f0�g
mis , and Cf0�gexc , but none of the potential outcomes under

alternate assignments (i.e. the excluded outcome data). The key point is that given
imputations of the intended data (including compliance status), it is then
straightforward to get estimates of the ITT estimand and of the CACE.

3.4 Assumptions underlying the multiple imputation approach
In many applications, the ®rst steps in the path to generating multiple imputations

are to specify a full model for the complete data and to specify the missing-data
mechanism, i.e. the process that generated the missing data. In this section, we review
and discuss the complete-data model and missing-data mechanism employed by
Barnard et al.19

In many applications that suffer from missing observations it is generally clear what
are the intended complete data. With randomized experiments suffering from
noncompliance, however, it is not as clear what is meant by intended complete data.
The major question is whether to include compliance status, C, in the list of complete-
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data variables. As noted earlier, if the complete-data estimand is an ITT estimand,
knowledge of the compliance values is not necessary, however, it is if the estimand is a
CACE estimand. Because of this point, the desired complete data should consist of
Yinc � �Yf1cg

inc ;Y
f1ng
inc ;Y

f0�g
inc �, the matrix of outcomes that were intended to be collected

(see Figure 2) for all subjects, W, the matrix of design variables, X, the matrix of
background variables, Z, the matrix of treatment indicators, and C, the matrix of
compliance statuses.19

The complete-data model used by Barnard et al.19 can be summarized as follows: for
each compliance status (C � c, complier, or C � n, never taker) f �X j W ;C� is a general
location model, and f �Y�1� j X;W ;C� and f �Y�0� j X;W ;C� are multivariate normal
distributions, where the parameters of the distributions are implicitly conditioned on
and the distributions are allowed to differ across compliance status. For the de®nition of
a general location model, see Section 4.3. They also assume that f �C j W� is a binomial
distribution. There is no speci®cation for the the joint distribution of Y�1� and Y�0�,
because it is not needed for imputing the missing values in Yinc. Finally, given all of the
parameters, each observation is assumed to be independent.

Barnard et al.19 make several critical assumptions about the missing data process.
The ®rst is the assumption of `latent ignorability' of the missing values of covariates
and outcomes given true compliance status.35 That means that if compliance status
were fully observed, the missing data mechanism (for Y and X) would be ignorable,
that is, the missing data would be missing at random and the parameters of the
missing data mechanism would be distinct from the parameters of the data.1,36

Speci®cally, they assumed

f (Ry(1), Rx jY(1), X, W , C) = f (Ry(1), Rx jW , C), and

f (Ry(0), Rx jY(0), X, W , C) = f (Ry(0), Rx jW , C)

Figure 2 Table of observed, potentially observed, and not possible to observe matrices of values. The rows of
the ®rst two columns give the treatment group status and compliance status of the subset of subjects in the
corresponding row. The columns headings indicate the type of variable. A bold symbol represents a matrix of
values. The subscript obs denotes a subset of data actually observed; subscript mis denotes a subset of data
that is not observed but is possible to observe; subscript inc denotes a subset of data that is possible to
observe; subscript exc denotes subset of data that is impossible to observe. Superscript fstg denotes the
subset of people with treatment assignment, s (0 = MPS, 1 = Choice), and true compliance type, t (c = complier,
n = never taker), with `�' indicating the union of subjects over all possible values of the index.
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This assumption implies that the missing-data mechanism is not ignorable because C
is not observed for the control group, i.e. there is information in the missing data
indicators about the missing compliance indicators. While this assumption
complicates the generation of multiple imputations of the missing data, it is much
more plausible than assuming that the data are missing at random, which is
commonly done in randomized experiments with noncompliance.

Their second critical assumption, which involves the missing data mechanism and
the complete-data model, is about the effect of treatment assignment on the never
takers: the `compound exclusion restriction',35 which is an extension of the standard
econometric exclusion restriction, as de®ned by Angrist et al.22 and invoked in several
Bayesian analyses.23,37 The compound exclusion restriction states that for never takers,
neither their outcome values nor their missing outcome patterns are affected by
treatment assignment. The rationale for this assumption is that because assignment
has no effect on treatment received it has no effect on either outcomes or missing data
patterns. Speci®cally, they assumed that

 �Y�1�;Ry�1� j X;Rx;W ;C � n� �  �Y�0�;Ry�0� j X;Rx;W ;C � n�
where  �A j B� denote the parameters of the distribution of A given B. The compound
exclusion restriction makes it possible to estimate the parameters of f �Y�0� j W ;C � c�
and of f �Ry�0� j W ;C � c� because among the known (observed) compliers there are
no observed values of Y�0� nor of Ry�0� (see Figure 3).

3.5 Generating multiple imputations
Generating multiple imputations under the model outlined in Section 3.4 is

challenging. The challenge mainly stems from the two critical assumptions: latent
ignorability and the compound exclusion restriction. Imbens and Rubin23 consider
generating imputations for the much simpler case in which the only variable with
missing values is compliance and there are no covariates. Barnard et al.19 outline an
approach for generating imputations of the missing values for the MPCP, however,
their approach turns out to be more complicated than necessary.

Generating imputations of the missing values for the MPCP under the model
discussed is most easily accomplished by using Markov chain Monte Carlo
methods,18,21 such as the Gibbs sampler, which can be computationally intensive
and often require expert guidance in order to achieve good performance. The
implementation details are too involved to describe here, but an outline of a single
iteration of a Gibbs sampler for generating imputations is the following:

Step 1 given the compliance indicators, within each compliance status impute the
missing values (of outcomes and covariates) and generate a draw of the
parameters governing the distributions of the outcomes, covariates, and
missing data patterns;

Step 2 given the outcomes, covariates and the distributional parameters from step 1,
generate a draw of the missing compliance indicators.

Iterating between these two steps is computationally intensive but relatively
straightforward to implement.
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Software for performing such simulations for the MPCP and experiments with
similar structure is currently under development. Once this software is commonly
available, the multiple imputation approach for handling noncompliance and missing
data in randomized experiments will provide a powerful and attractive tool for
obtaining causal estimates in this dif®cult but important scenario.

4 Application III: handling nonresponse in NHANES

4.1 Introduction
As we discussed in Section 1, Rubin's multiple imputation method was originally
designed to handle nonresponse in surveys that are conducted for constructing public-
use data ®les. Because imputation is generally a model-based procedure while the
standard analyses procedures for survey data are typically design-based, there have
been a variety of empirical investigations to validate the validity of the repeated-
imputation results from the design-based perspective. One such investigation is the
simulation study of Ezzati-Rice et al.,38 which used several National Health and
Nutrition Examination Surveys (NHANES). The NHANES are periodic surveys
conducted by the US National Center for Health Statistics (NCHS) for assessing the
health and nutritional status of the US population. Multiple imputation was used to
create a CD-ROM research database, to be released soon, for about 70 key survey
variables in NHANES-III. However, instead of describing this multiple imputation
project, we choose to discuss the simulation study of Ezzati-Rice et al.38 because it
illustrates most of the same issues that arose in the process of generating multiple
imputations for that database, and it is much easier to describe (e.g. it only involves 17
variables). Here we review some key aspects of this very realistic simulation study,
with a particular focus on the survey design and imputation model.

In order to see how repeated-imputation results infer the `true' values of the
estimands, Ezzati-Rice et al.38 constructed a hypothetical population using data from
several NHANES to resemble populations surveyed by NCHS. The hypothetical
population consisted of 31 847 cases, obtained from four NCHS surveys: HANES-I
(1971±74, N � 11 678), HANES-II (1976±80, N � 10 371), NHANES-III, Phase 1
(1988±91, N � 6874), and HHANES (Mexican-Americans only; 1982±84, N � 2944),
where the years give the period over which each survey was collected and N is the
number of cases included from that survey. Only adult cases (age greater than 19
years) and those that had no missing values on the ten examination variables (listed
below) were included in the population.

The population contained 17 variables in total. Of primary interest are the ten
examination variables: standing height, sitting height, weight, systolic blood pressure,
diastolic blood pressure, total serum cholesterol, haemoglobin, haematocrit, iron and
total iron-binding capacity. The ®ve auxiliary variables, which are fully observed, are
described in Figure 3. The two interview variables, self-reported height and self-
reported weight, were completely missing in HANES-I and had modest numbers of
missing values in the other surveys. These missing values were imputed using a hot-
deck procedure (which was used only for the purpose of creating the hypothetical
population).

Each simulation of Ezzati-Rice et al.38 consisted of the following four steps:
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Step 1 draw a strati®ed sample from the arti®cial population using a sample design
that mimics the actual designs of NHANES;

Step 2 impose a missing data pattern on the sample from step 1, thus, creating a
sample with missing values, using a missing-data mechanism that mimics the
missing data patterns observed in the NHANES-III survey;

Step 3 impute ®ve times the missing values in the incomplete sample from step 2,
using a general location model;

Step 4 conduct repeated-imputation inference with the ®ve completed data sets
created in step 3.

Steps 1±4 were then repeated 1000 times, and the 1000 results from step 4 were
compared to the true values from the population (e.g. checking the coverage of
repeated-imputation interval estimates). To illustrate how one constructs an
imputation model to capture the sample design, the details of steps 1 and 2 are
reviewed in Section 4.2, and the imputation model is outlined in Section 4.3.

4.2 Survey design and missing-data mechanism
The survey design of Ezzati-Rice et al.38 was as follows.

1) Classify the 31 847 cases into 48 strata de®ned by crossing two levels of age (20±59,
60�) with 24 chosen race-location cells.

2) Assign weight to the 31 847 cases in the following manner: unit i in stratum h
receives weight

w�i � Nh
1=�iP
j2h 1=�j

where Nh is the year 2000 estimated population total for stratum h, and 1=�i is the
original survey weight for unit i. The weights w�i were rounded off to the nearest
integer.

3) For i � 1; . . . ; 31 847, include case i in the simulated sample di times, where

di � Bin�w�i ; nh=Nh�
Bin�n; p� is a binomial random variable on n trials with success probability p, and
nh is the expected sample size in stratum h for NHANES-97+ (a future NCHS
survey at the time of Ezzati-Rice et al.38). Because the design for NHANES-97+
was not known, nh was originally approximated by the number of interviewed

Figure 3 Household screening variables used in the simulation
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persons in stratum h in NHANES-III, Phase 1. Under this plan, the total expected
sample size was

P
h nh � 9488. However, to avoid excessive resampling, the nh

were scaled so that the total expected sample size was 6000.

The missing-data mechanism was constructed in the following way. For each person
in the simulated sample, assign the missingness pattern of a randomly selected
interviewed person from NHANES-III, Phase 1, in the same response-pattern cell.
Response-pattern cells were de®ned by 576 cells, formed by crossing 24 race-location
cells with sex, age , and household size. Cells were then collapsed to yield at least ®ve
interviewed NHANES-III persons in each cell.

Note that in the sampling procedure w�i is the number of members in the hypo-
thetical population that unit i represents. Hence, we can view the generated samples as
coming from a population with N �Pi w�i � 196 478 806 members. Note also that the
missing data are missing at random but not missing completely at random36 because
the probability of being missing is unrelated to the missing value but depends on the
strati®cation variables.

4.3 Creating multiple imputations under the general location model
The imputation model used by Ezzati-Rice et al.38 was a general location model21 ±

the same class of models were used for the actual 1992±93 NHANES-III imputation
project.39 A main reason of using the general location model is that it allows
simultaneous modeling of categorical variables and continuous variables, and it is
¯exible enough for incorporating various constraints for both the categorical variables
and continuous variables. For the current application, Ezzati-Rice et al.38 used all 17
variables described in Section 4.1; this is the recommended strategy: use as many
variables as possible and feasible.

The ®ve fully observed variables ± age, sex, race, stdrc, and hhsize ± were treated as
categorical in the imputation model. The sample counts were assumed to have a
multinomial distribution over the ®ve-way cross-classi®cation of these variables, a
frequency table with 936 cells. There were no constraints placed on the cell
probabilities besides that they summed to one. Note that the model speci®cation for
the frequency table had no impact on the imputations since the ®ve variables involved
were fully observed.

The 12 continuous variables were assumed to be conditionally multivariate normal
given age, sex, race, stdrc, and hhsize. The conditional means varied across the cells of
the frequency table according to a model which included: (a) an intercept; (b) main
effects for age, sex, race, stdrc and hhsize; (c) all two-way interactions among age, sex,
and race; and (d) the three-way interaction among age, sex and race. The model was
the same for the means of all 12 continuous variables. Although the means were
allowed to change with the cells of the frequency table, the conditional within-cell
covariance matrix (12 � 12) was assumed to be the same across cells, which is a
somewhat undesirable feature of the general location model since it can lead to
appreciable under- or over-estimation of variability within individual cells; see
Barnard40 for examples and Liu and Rubin41 and Barnard et al.42 for relaxations of
this assumption. In total, there were 1469 parameters in the multivariate model: 935
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cell probabilities, 456 regression coef®cients and 78 variances and covariances from
the within-cell variance-covariance matrix. Jeffreys' prior distributions were assumed
for both the location parameters and the dispersion parameters.

The multiple imputations, ®ve for each simulated dataset, were generated for the
above model by drawing from the posterior predictive distribution (i.e. the posterior
distribution of the missing values given the observed values). The computations for
this drawing were accomplished using the data augmentation technique.21,38

The main goal of Ezzati-Rice et al.38 was to demonstrate that the repeated-
imputation con®dence interval estimates, based on multiple imputations generated
under a general location model, had the correct coverage. Their results shown that the
imputation model was successful in creating valid design-based repeated-sampling
inferences for a wide range of estimands (e.g. population and subdomain means).

5 A cautionary concluding remark

The use of Rubin's method as an `in-house' analysis tool is a relatively new application
of the method; its greatest advantage is its ¯exibility in separately handling the
incomplete-data problems and the substantive analysis. Cautions are needed, however,
just as with any statistical methodology. It is clear that if the imputation model is
seriously ¯awed in terms of capturing the missing-data mechanism, then so will be any
analysis based on such imputations. This problem can only be avoided by carefully
investigating each speci®c application, by making the best use of knowledge and data
about the missing-data mechanism, and by performing various model checking
procedures, in particular, posterior predictive checks.43,44 This is not an additional
burden for using Rubin's method, but rather a fundamental requirement for any
general method that attempts to produce statistically and scienti®cally meaningful
results in the presence of incomplete data.

Also like any statistical method, Rubin's multiple imputation approach is not a
universal recipe for every incomplete-data problem. For example, for the `in-house'
type of applications, if the joint modelling of the missing-data mechanism and the
substantive analysis is not dif®cult, both in terms of model building and
implementation, then one should at least consider such a joint-modelling approach,
which can be more ef®cient than the multiple imputation approach in terms of both
statistical ef®ciency (e.g. avoiding the reliance on a ®nite number of imputations) and
computational ef®ciency (e.g. avoiding simulation via the use of the EM algorithm).

In summary, Rubin's multiple imputation method is a powerful tool for a variety of
real-life incomplete-data problems, as the three reviewed applications demonstrate. In
the context of dealing with nonresponse in public-use data ®les (e.g. Section 4), it is a
method without serious competition in terms of both generality and validity because
of the unavoidable separation of the creators and the users of the database and because
of the information and resource constraints on the average users for sensibly handling
the nonresponse.3,8,9 When used for other purposes (e.g. Sections 2 and 3), it is an
effective addition to a statistician's toolkit because of the conceptual and imple-
mentation simplicity offered by the separation of the tasks of handling incomplete
data and analysing complete data.
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