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Anderson Gray McKendrick's 1926 paper, `Applications of mathematics to medical problems', was the
earliest reference cited in Dempster et al.'s 1977 paper that de®ned and popularized the EM algorithm.
McKendrick's paper was prominently featured by Joseph Oscar Irwin in his 1962 inaugural address as the
President of the Royal Statistical Society (in the UK), entitled `The place of mathematics in medical and
biological statistics'. The link of McKendrick's work to the EM algorithm is due to an improvement made
by Irwin on a novel method McKendrick used for estimating an infection rate when the observed data do
not distinguish between those individuals who are not susceptible to the infection and those who are
susceptible, but do not develop symptoms. This article examines this link, along the way illustrating the
central ideas underlying the EM algorithm as well as its properties; the examination also suggests a
pro®ling strategy for speeding up EM, which may be worthy of general investigation. McKendrick's data
on an epidemic of cholera are used for illustration and to compare EM with Irwin's method as well as the
Newton±Raphson algorithm. Issues beyond computation are also discussed whenever appropriate.

1 McKendrick's and Irwin's approaches to an epidemic study

On 15 January 1926, AG McKendrick of the Royal College of Physicians at Edinburgh
presented a paper1 to the Edinburgh Mathematical Society which began:

In the majority of the processes with which one is concerned in the study of the medical sciences, one
has to deal with assemblages of individuals, be they living or be they dead, which become affected
according to some characteristic. They may meet and exchange ideas, the meeting may result in the
transference of some infectious disease, and so forth. The life of each individual consists of a train of
such incidents, one following the other. From another point of view each member of the human
community consists of an assemblage of cells. These cells react and interact amongst each other, and
each individual lives a life which may be again considered as a succession of events, one following the
other. If one thinks these individuals, be they human beings or be they cells, as moving in all sorts of
dimensions, reversibly or irreversibly, continuously or discontinuously, by unit stages or per saltum,
then the method of their movement becomes a study in kinetics, and can be approached by the
methods ordinarily adopted of such systems.

It is the objective of this communication to approach this ®eld in a systematic manner, to ®nd
solutions for some of the variations which may arise, and to illustrate certain of these by examples.

McKendrick ®rst considered the simplest movement of an infection process (i.e.
one-dimensional and irreversible), for which he derived (by solving a differential
equation) the negative binomial as a distribution of the number of individuals (e.g.
human beings or `cells') who have experienced x attacks, with the Poisson distribution
as a limiting case. He then applied the Poisson model to several data sets, including
one on an epidemic of cholera in an Indian village. The data are given in the ®rst two
rows of Table 1, where x represents the number of cases an individual house has
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experienced (McKendrick did not de®ne what he meant by `cases', which can affect the
analysis), and nx is the corresponding observed number of such houses (i.e. houses
serve as `cells' for this data set).

To some, ®tting a Poisson model to this data set means to estimate the Poisson
mean, �, by the sample average

�̂ �
X

x

xnx=
X

x

nx � 0:386

The ®tted counts are then calculated as�X
x

nx

�
�̂x exp �ÿ�̂�=x!; x � 0; 1; . . .

which are given in the third row of Table 1. The lack of ®t is so clearly evident that we
can reject the Poisson model without a formal model checking procedure. Indeed,
anyone who has some familiarity with the shape of the Poisson distribution would
reject the model before carrying out the arithmetic: there are relatively too many
houses with 0 cases (i.e. uninfected) for the Poisson model to be appropriate.

McKendrick, of course, knew this. He used a different ®tting procedure which at
®rst might seem to be mysterious. He ®rst calculated s1 �

P
x xnx � 86 and

s2 �
P

x x2nx � 166, and

n̂ � s2
1

s2 ÿ s1
� 92:45 � 93 �1:1�

He then calculated the expected counts as n̂ ~�x exp �ÿ~��=x!, where ~� � s1=n̂ � 0:930.
The results are given in the fourth row of Table 1, and provide a good ®t to the
observed counts for x � 1. Regarding the large discrepancy between the observed and
®tted count for x � 0, McKendrick1 (p. 101) wrote

This suggests that the disease was probably water borne, that there were a number of wells, and that
the inhabitants of 93 out of 223 houses drank from one well which was infected. On further local
investigation it was found that there was one particular infected well from which a certain section of
the community drank.

This quotation makes it clear that McKendrick attributed the excessive number of
uninfected houses to the existence of an unsusceptible (or nonexposed) population of
houses that were `immune' to the infection, possibly because the wells from which they
drank did not carry the disease. Consequently, McKendrick's Poisson model for the
susceptible population was subject to the problem of the so-called `zero-class missing':
without further information, it is not possible to tell whether an uninfected individual

Table 1 Data and ®tted values for McKendrick's problem

x 0 1 2 3 4 �5 Total

nx 168 32 16 6 1 0 223
Simple Poisson ®t 151.64 58.48 11.28 1.45 0.00 0.01 223
McKendrick's ®t 36.47 33.92 15.78 4.89 1.14 0.25 92.45
MLE ®t 33.46 32.53 15.81 5.12 1.25 0.29 88.46
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(i.e. x � 0) was immune to the infection or was susceptible but did not develop
symptoms. This distinction is of crucial importance for inference. For instance, for
McKendrick's data the simple Poisson analysis would suggest that a house which uses
polluted water has about a 68% (� eÿ�̂� chance of not being infected (e.g. no
individual in the house is affected), while McKendrick's analysis indicates that there is
only about a 40% �� eÿ~�� chance of not being infected if exposed. Although
McKendrick's analysis is not without problems, it is certainly much more sensible
than the simple Poisson analysis, and the difference is substantial in real terms (e.g. as
measured by medical resources needed for dealing with an outbreak).

Technically speaking, McKendrick's model is a zero-truncated Poisson model, i.e.
with n0 missing. For the cholera data set, the observed zero-class count 168 is not n0,
but rather n0 � ~n0, where ~n0 is the number of unsusceptible houses. (McKendrick did
not distinguish between sample and population quantities, an issue that will be
discussed in Section 4.) The key idea of McKendrick's approach is to ignore the
observed 168, since it tells us little about n0, and to use the posited Poisson model to
infer (i.e. impute) n0. (Of course if the model is far from adequate, so will be the
resulting inference, as with the simple Poisson analysis.) Since nobs �

P
x�1 nx is

known, imputing n0 is equivalent to imputing n � n0 � nobs. McKendrick's imputation
of n, given by (1.1), is a moment estimator, because under the Poisson model, if one
has n draws from the Poisson distribution, then, conditional on n, E�s1� � n� and
E�s2 ÿ s1� � n�2. As Irwin2;3 pointed out, what makes McKendrick's method work is
the fact that both s1 and s2 are unaffected by the missing n0. As Irwin3 noted, the
method, with appropriate modi®cation of the moment-equation underlying (1.1), can
be applied for ®tting other discrete distributions with zero-class missing.

Irwin also made a key improvement on McKendrick's method with the help of
iteration. The central feature of McKendrick's approach is to ®rst impute the un-
known n and then estimate �, treating the imputed n as if it were the true sample size.
Irwin observed, however, that once an estimate of � is obtained, it can be used to
update the imputation for n0 (and thus for n) since the expected number of zeros in a
sample of size n is neÿ�. On the other hand, once an updated imputation for n is
obtained, it can be used to further update the estimate of �. This process can be
continued until the improvement (i.e. the change) in the estimates become negligible.
Letting n�t� be the imputation of n and ��t� be the estimate of � at the tth iteration
�t � 0; 1; . . .�, Irwin suggested updating n�t� via

n�t�1� � n�t�eÿ�
�t� � nobs �1:2�

and then updating ��t� by

��t�1� �
P

x xnx

n�t�1� �
nobs

n�t�1� �xobs �1:3�

where �xobs �
P

x xnx=nobs (=1.56 for McKendrick's data). One then repeats these two
steps until convergence.

As we shall see in the next section, Irwin's iteration in fact converges to the
maximum likelihood estimate (MLE) of � under the zero-truncated Poisson model.
The MLE is �

MLE
� 0:97218, and the corresponding ®tted counts are given in the ®fth
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row of Table 1; the ®t is a slight improvement over McKendrick's ®t. Furthermore, as
Irwin2 remarked, his iterative ®tting scheme is similar to Hartley's4 general approach
for computing MLEs with incomplete data. Hartley's approach is a version of what is
now widely known as the EM algorithm, the key structure of which is to iterate
between imputing the `missing data' (e.g. (1.2); the necessity of the quotation marks
around `missing data' will be explained later) and ®tting the model parameters (e.g.
(1.3)). The next section reviews the general framework for EM and how to derive an
EM iterative scheme to compute MLEs with truncated data. In Section 3, we compare
four iterative schemes for ®tting McKendrick's truncated model to illustrate the
advantages and disadvantages of the EM approach. In particular, we note that the
cholera data set can be modelled by the so-called binomial/Poisson mixture model,
which yields the same analysis as the zero-truncated Poisson model but leads to a
different EM implementation.

2 Maximum likelihood estimation via the EM algorithm

To describe the EM algorithm in its general form, let Yobs be the data we observe (e.g.
fnx; x � 1g), Ymis be the missing data (e.g. n0), and Y � �Yobs;Ymis� be the completed
data or augmented data. (The notation Y � �Yobs;Ymis� is convenient but not adequate
for some problems since the observed data may be a general function of Y, not
necessarily a subset of Y; see the binomial/Poisson mixture example in Section 3.)
Suppose we have a model for Yobs (e.g. a zero-truncated Poisson model), denoted by
f �Yobsj��. Our goal is to compute the MLE of � by maximizing the log-likelihood
function `��jYobs� � log f �Yobsj��. This maximization, however, may not have a closed-
form solution. For example, for the zero-truncated Poisson model discussed in Section
1, � � � and

`��jYobs� � nobs��xobs log�ÿ �ÿ log �1ÿ eÿ��� �2:1�
where the maximizer is the unique (nonzero) solution of the following equation for �

� � �xobs�1ÿ eÿ�� �2:2�
However, had n0 been observed, the MLE of � would be trivial because the complete-
data log-likelihood

`��jY� �
�X

x

xnx

�
log�ÿ n� � nobs�xobslog�ÿ �n0 � nobs�� �2:3�

is maximized by the sample average

�̂ �
P

x xnx

n
� nobs

n0 � nobs

�xobs �2:4�

where n0 denotes the number of zeros from the Poisson distribution. Of course, we
cannot directly use (2.4) to estimate � since n0 is unknown. As with Irwin's procedure,
the idea is to somehow impute n0 based on the model and then iterate until (2.4)
reaches equilibrium (i.e. the `®xed-point' solution when we view n0 as a function of �

6 X-L Meng



through imputation). The EM algorithm speci®es a particular approach for this
imputation which leads to a sequence of iterates that converge to the desired solution
(under some regularity conditions) in such a manner that each iterate has higher
likelihood value than any of its predecessors has.

Speci®cally, starting from an initial value ��0� inside the parameter space �, we
carry out an expectation (E) step and a maximization (M) step within each iteration of
EM. At the �t� 1�st E-step, we ®nd the conditional expectation of the complete-data
log-likelihood function (e.g. (2.3)) given the observed data and the estimate of � from
the tth iteration

Q��j��t�� � E�`��jY�j��t�;Yobs�
We then carry out the �t� 1�st M-step which maximizes Q��j��t�� as a function of � to
determine ��t�1�; that is, we ®nd ��t�1� such that

Q���t�1�j��t�� � Q��j��t��; for all � 2 �

As a consequence of an information inequality, it can be shown (see Dempster et
al.5) that `���t�1�jYobs� � `���t�jYobs� for all t � 0; that is, EM iterates always improve
the estimate in the sense that each iterate is more `likely' than all its predecessors. It is
possible for the iterates to converge to a local mode (in theory, EM-type algorithms can
also converge to a so called `saddle' point, an issue that is typically not of concern in
practice; see Dempster et al.5 and the discussion by Murray6), and it is always wise to
start the algorithm with several very different initial values especially if one does not
have a clear idea about the behaviour (e.g. the number of modes) of the likelihood
being maximized. The issue here is not much about ®nding a global mode of the
likelihood (the real MLE in its mathematical sense), but rather to learn how many
modes the likelihood has and their corresponding likelihood values (as well as the
curvature at each mode). In the presence of several nontrivial modes (measured by
their likelihood values), it is not adequate and often misleading to conduct our
inference based solely on a point estimator, be it a local MLE or a global MLE. This is
a key difference between statistical computation and pure numerical optimization; the
latter typically concentrates on ®nding the globally optimal solution.

The EM algorithm is particularly useful when the complete-data model f �Yj�� is
from an exponential family, in which case `��jY� is a linear function of some complete-
data suf®cient statistic S�Y� (which may be a vector), and thus the E-step reduces to
the calculation of the conditional expectation of S�Y�. The M-step then is the same as
that for calculating the complete-data MLE except with S�Y�, which depends on the
unobserved Ymis, replaced by its conditional expectation found in the E-step. For the
zero-truncated Poisson model, (2.4) yields the �t� 1�st M-step if we rewrite it as

��t�1� � nobs

n
�t�1�
0 � nobs

�xobs; t � 0; 1; . . . �2:5�

where n
�t�1�
0 is the output of the �t� 1�st E-step. It is worthwhile emphasizing that in

this problem we can directly impute the missing data, n0, because the complete-data
log-likelihood function is linear in Ymis � fn0g, as can be seen from (2.3). In general,
one must impute the complete-data suf®cient statistics S�Y� (or even the complete-
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data log-likelihood function itself, in which case EM is generally complicated and thus
loses some of its advantages), which can be a nonlinear function of Ymis. Imputing the
missing data directly will generally not lead to MLEs and in fact often produces
inconsistent estimates. This is a key difference between EM and its various ad hoc
predecessors and one of the two reasons that the phrase `missing data' is in quotation
marks in the last paragraph of Section 1.

Before we discuss the calculation of n
�t�1�
0 , let us ®rst review a general strategy for

constructing an EM algorithm for truncated-data problems. This strategy was
proposed in Dempster et al.,5 the seminal paper on EM methodology and applications.
A truncated-data problem is typically described by a region A such that values outside
A will be truncated (e.g. A consists of all positive integers for the zero-truncated
Poisson model), and a model f �xj�� for the original untruncated random variable (e.g.
a Poisson variable). The likelihood of � given an independent and identically
distributed (i.i.d.) truncated sample x1; . . . ; xn is then given by

L��jx1; . . . ; xn� �
Qn

i�1 f �xij��
�Pr�Aj���n

which can be dif®cult to maximize due to the presence of Pr�Aj��, the probability of A
under f �xj��. The EM algorithm deals with this problem by augmenting the observed
data Yobs � fx1; . . . ; xng to include the sample values that were truncated out (i.e. the
values that are outside A) and the number of such values: Ymis � fxn�1; . . . ; xn�m; mg;
here m is a random variable, just like the zero-class number n0 in the zero-truncated
Poisson model. Given Y � �Yobs;Ymis�, the likelihood of � is

L��jx1; . . . ; xn�m; m� �
Qn�m

i�1 f �xij��
�Pr�Aj���n�1ÿ Pr�Aj���m P�mj�; Yobs�; �2:6�

where P�mj�;Yobs� is a (conditional) probability function to be determined. In order to
make our resulting algorithm simple, which is a main feature of EM, we would like to
specify P�mj�;Yobs� in such a way that the augmented likelihood L��jx1; . . . ; xn�m; m�
in (2.6) is easy to maximize. An obvious choice is to have P�mj�; Yobs� proportional to
�Pr�Aj���n�1ÿ Pr�A��m, which will make L��jx1; . . . ; xn�m; m� have the same form as the
likelihood from the original untruncated sample x1; . . . ; xn�m,

Qn�m
i�1 f �xij��. This is

typically easier to maximize than the direct maximization of the likelihood based on
the truncated sample. This can be accomplished if we choose P�mj�; Yobs� to be a
negative binomial distribution:

P�mj�; Yobs� �
 

m� nÿ 1

m

!
�Pr�Aj���n�1ÿ Pr�Aj���m

Under this distribution

E�mj�; Yobs� � 1ÿ Pr�Aj��
Pr�Aj�� n �2:7�
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which is quite intuitive since it says that the ratio of the expected size of the sample
outside A to the size of the sample inside A is given by the ratio of the corresponding
probabilities of these two regions.

With � replaced by ��t�, (2.7) yields a part of the E-step when `��jY� � log L��jY� is
linear in the random size m (which is typically the case in practice). In fact, for the
zero-truncated Poisson model, this is the E-step since m � n0 is the only missing value
in `��jY� (see (2.3)). For the zero-truncated Poisson model, Pr�Aj�� � 1ÿ eÿ�, so that
we have

n
�t�1�
0 � E�n0j��t�; Yobs� � eÿ�

�t�

1ÿ eÿ��t�
nobs �2:8�

Combining (2.8) with (2.5) de®nes the EM iteration for the zero-truncated Poisson
model

��t�1� � �xobs�1ÿ eÿ�
�t� �; t � 0; 1; . . . �2:9�

It is easy to show that the iteration de®ned by (2.9) will converge to the unique
(nonzero) solution of (2.2) from any starting value ��0� > 0. Indeed, we could have
directly de®ned (2.9) according to (2.2), but knowing this iteration is in fact an EM
sequence ensures us that it will always increase the log-likelihood function given in
(2.1). The monotonicity contributes to the superior stability of EM (e.g. less sensitive
to starting values) over other algorithms such as the well-known Newton±Raphson
algorithm. (It also allows us to recognize programming errors by checking the log-
likelihood values for the sequence of the iterates.) This and other issues will be
discussed in the next section.

3 Comparing various iterative schemes

3.1 Irwin's method and two EM implementations
To compare the EM iteration (2.9) with Irwin's iteration given in (1.2)±(1.3) for

their performance with McKendrick's problem, both algorithms were implemented.
An iteration was stopped whenever the absolute difference in iterates, j��t�1� ÿ ��t�j,
was less than 0.0001. Such a criterion is suitable for the current problem given the
magnitude of �

MLE
, and provides essentially fair comparisons of the methods. (Whether

one uses absolute difference or relative difference in general depends on the nature
and interpretation of the parameter. A potential problem with a criterion like
j��t�1� ÿ ��t�j � 0:0001 is that it could stop an iteration prematurely for a very slow
algorithm, a problem that did not happen with our example.) Two initial values were
used: McKendrick's estimate ~� � 0:93, which should be a good starting value, and
another arbitrarily chosen more distant value, 0.4. With ��0� � 0:93, EM took 12
iterations to converge and Irwin's iteration took 24, and with ��0� � 0:4, EM took 19
and Irwin's took 25.

To visualize how each iterative scheme approaches its limit, Figure 1 plots the ®rst
nine (or fewer) iterates along the log-likelihood curve given by (2.1), where the
numbers on the curve correspond to the iteration index, with 0 indexes the initial
value. The left column corresponds to ��0� � 0:93 and the right column corresponds to
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Figure 1 How iterates move along the log-likelihood surface

10 X-L Meng



��0� � 0:4. Each row corresponds to an iterative scheme; the last two will be discussed
shortly. For EM (labelled First EM), the iterates climbed the log-likelihood surface
monotonically from one side of �

MLE
� 0:97218, ticked at the top. For Irwin's iteration,

the behavior of the iterates are rather different. In both cases, Irwin's method
`overshot', that is, it jumped to the other side of �

MLE
before coming back. In the ®rst

case (i.e. when ��0� � 0:93), it even substantially decreased the log-likelihood before
coming back. This cannot happen with any EM iteration because EM cannot decrease
the log-likelihood value along its iterates. It is interesting to observe that Irwin's
method does not have the monotonicity property, even though it is intrinsically related
to EM. In fact, if we change n�t� in the right-hand side of (1.2) to n�t�1�, then (1.2)
becomes n�t�1� � nobs=�1ÿ eÿ�

�t� � and thus Irwin's iteration will be the same as the EM
iteration (2.9). In other words, Irwin's iteration is what Green7 called a `one-step-late'
variation of EM. This illustrates that an EM `lookalike' can easily be nonmonotone.

When an iterative algorithm is not monotone we know it cannot be an EM
algorithm. On other hand, for a particular problem there can be in®nitely many EM
iterative schemes, most of which are essentially useless as they are dif®cult or even
impossible to implement. The key to obtaining a useful EM implementation is to seek
an ef®cient data augmentation scheme, that is, the construction of Ymis, such that both
the E-step and M-step are easy to implement and at the same time the amount of
augmentation (measured by relative Fisher information) is kept as small as possible.
The reason we want to keep the augmentation small is because the speed of con-
vergence of EM is directly governed by the relative Fisher information, or the so-called
`fraction of missing information', one of the key results in Dempster et al.5 To illus-
trate the impact of different augmentation schemes, let us consider a different EM
implementation (in fact, a different model) for McKendrick's problem.

As we discussed in Section 1, McKendrick dealt with the problem of excessive zeros
in the cholera data set with the zero-truncated Poisson model. An alternative model,
perhaps more direct for many modern statisticians, is the binomial/Poisson mixture
model. This model says that a random variable X has probability p of being from a
Poisson distribution with parameter � > 0, and has probability 1ÿ p of being zero,
where 0 � p � 1 is a parameter. Mathematically, this means

Pr�X � k� �
1ÿ p� p eÿ� if k � 0

p �k eÿ�

k!
if k � 1; 2; . . .

8><>: �3:1�

It is not dif®cult to speculate that this is what McKendrick had in mind, if we view p as
the percentage of houses that used the polluted well or in general, as the probability of
being susceptible. With this model, we do not ignore the observed zero-class count; in
fact, it is this count that allows us to estimate p.

To ®t the binomial/Poisson mixture model, we ®rst write down the log-likelihood
for � � �p; �� given the data Yobs � fn0; nx; x � 1g, where n0 is now a part of the
observed data. This differs from the notation in Section 2 where n0 was used to denote
zero-class count from the susceptible population only; we will retain the notation
nobs �

P
x�1 nx and n � n0 � nobs

`�p; �jYobs� � n0 log �1ÿ p� peÿ�� � nobs��xobs log�ÿ �� log p� �3:2�
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Differentiating this function, we ®nd that for any given � � log �n=n0�, `�p; �jYobs� is
maximized by

p � p̂��� � nobs

n�1ÿ eÿ�� �3:3�

and for given p, `�p; �jYobs� is maximized by the � that satis®es the following equation

� � �xobs
1ÿ p� p eÿ�

1ÿ p� �n=nobs�p eÿ�
�3:4�

Substituting (3.3) into (3.4) leads to (2.2), that is, �
MLE

under the binomial/Poisson
mixture model is the same as that from the zero-truncated Poisson as long as
�

MLE
� log �n=n0� (which is true for McKendrick's data set). This is intuitive and is not

a coincidence. In fact the pro®le log-likelihood for �, `�p̂���; �jYobs�, is identical to the
log-likelihood under the zero-truncated Poisson model (2.1), when � � log �n=n0�. The
restriction � � log �n=n0�, or equivalently n eÿ� � n0, is also intuitive because when n0

is too small compared to what is expected from a Poisson model (i.e. when p � 1), the
binomial/Poisson mixture model can be rejected formally. The zero-truncated Poisson
model, however, cannot be rejected formally on that ground because n0 does not enter
the model. (Of course, in most applications of the zero-truncated Poisson model, n0 is
not over-reported, but rather unobserved or under-reported, e.g. when susceptible but
symptom-free individuals are more likely to refuse to be tested and such untested
individuals are excluded from the study, in which case the binomial/Poisson mixture
model is not appropriate or relevant.)

Although the binomial/Poisson mixture model provides the same estimate for � as
the zero-truncated Poisson model for McKendrick's data set, it leads to a different EM
implementation for computing this estimate. At ®rst glance, one may wonder how one
can implement EM for the model in (3.1), because there are no missing data in the
usual sense. This highlights a key message conveyed in Dempster et al.5: EM
methodology is much more generally applicable than meets the eye since we can
deliberately create `missing' data (i.e. data augmentation). By doing so, we turn a
dif®cult maximization problem into a sequence of easier maximizations. This is the
second reason that the phrase `missing data' is in quotation marks because the
`missing data' used in an EM construction can be a purely computational device which
is not even hypothetically observable.

For mixture models in general, we can treat the subpopulation memberships (i.e.
the mixture indicator) as the missing data.5 For the binomial/Poisson mixture model,
this means that we can treat the information for distinguishing between the two types
of zeros (e.g. which type of well a house used) as the missing data. In particular, we can
construct Y � f�yj; zj�; j � 1; . . . ; ng as the augmented data, where fyj; j � 1; . . . ; ng
are i.i.d. samples from the Poisson model with parameter �, and fzj; j � 1; . . . ; ng are
i.i.d. Bernoulli trials with success probability p. Here zj is a subpopulation indicator,
that is, the jth individual is from the susceptible population (e.g. the Poisson
distribution) if zj � 1, and from the unsusceptible population if zj � 0. We do not fully
observe Y. What we observe is Yobs � fxi � yizi; i � 1; . . . ; ng ± we have xi � 0 (e.g. no
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symptoms) either when zi � 0 (e.g. unsusceptible) or when zi � 1 but yi � 0 (e.g.
susceptible but did not develop symptoms). When y and z are independent, it is easy to
see that x � yz follows the binomial/Poisson mixture distribution given in (3.1).

Note that when zj � 0 (and thus xj � 0) we can de®ne yj arbitrarily. We choose to
de®ne yj the same way regardless of the value of zj because it results in a very simple
augmented-data log-likelihood of � � �p; ��

`�p; �jY� �
Xn

i�1

yi

!
log �ÿ n��

Xn

i�1

zi

!
log p� nÿ

Xn

i�1

zi

!
log �1ÿ p�

   
�3:5�

which is maximized when

� �
Pn

j�1 yj

n
and p �

Pn
j�1 zj

n
�3:6�

This de®nes the M-step of EM. To perform the E-step, we need to compute the con-
ditional expectations of the suf®cient statistics from Y,

Pn
j�1 yj and

Pn
j�1 zj, given Yobs

and �. This calculation is straightforward once we observe that if xj > 0 then yj � xj

and zi � 1, and conditional on xj � 0, zj is a Bernoulli trial with success probability
p eÿ�=�1ÿ p� p eÿ�� and yj has conditional mean �1ÿ p��=�1ÿ p� p eÿ��. Replacing
the numerators in (3.6) by their corresponding conditional expectations yields our
second EM for calculating �

MLE
(which also calculates pMLE)

��t�1� � nobs

n
�xobs � n0

n

�1ÿ p�t����t�
1ÿ p�t� � p�t� eÿ��t�

�3:7�

p�t�1� � nobs

n
� n0

n

p�t� eÿ�
�t�

1ÿ p�t� � p�t�eÿ��t�
�3:8�

This second EM took 32 iterations to converge with ��0� � 0:93 and 63 iterations with
��0� � 0:4, essentially tripling the number of iterations needed by the ®rst EM given in
(2.9). The slower convergences can be visualized from the third row of Figure 1, in
comparison with the ®rst EM implementation plotted in the ®rst row. (Since
the second EM also requires p�0�, p�0� was calculated according to p�0� �
minfnobs=�n�1ÿ eÿ�

�0� ��; 0:9g, which prevents p�0� � 1 and makes the comparison ap-
proximately fair.) A key reason for this slower convergence is that there is more
augmentation for the second EM than for the ®rst EM. (The analytic calculation of the
amount of augmentation is omitted since it is a bit too technical; examples of such
calculations can be found in Meng and van Dyk.8)

3.2 The Newton±Raphson algorithm
For a simple log-likelihood like (2.1), the well-known Newton±Raphson algorithm

can be very effective for obtaining the maximizer once we have a good idea of the
region where the solution lies. (This is not a strong requirement for one- or two-
dimensional problems, since we can almost always plot the log-likelihood to be
maximized.) The general formula for Newton±Raphson iteration for solving g��� � 0
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is given by

��t�1� � ��t� ÿ g���t��
g0���t�� ; t � 0; 1; . . . �3:9�

where g0��� is the derivative of g. In contrast, EM does not require derivative calcul-
ations unless such calculations are needed for implementing its M-step. There are
many variations of (3.9); see Thisted,9 chapter 4, in particular, section 4.3.5.1, which
discusses the binomial/Poisson mixture. Note that Thisted's � is our 1ÿ p and his N is
our n, and thus his (4.3.14) and (4.3.15) can be simpli®ed to (3.3) and (3.4) after
correcting a typographical error in (4.3.15) (the n0 in (4.3.15) should be N ÿ n0). Note
also that the restriction �

MLE
� log �N=n0� is needed for (4.3.14) ± when it is not

satis®ed, pMLE � 1 or �MLE � 0.
For the current problem, g��� � �ÿ �xobs�1ÿ eÿ��, as in (2.2), g0��� � 1ÿ �xobs eÿ�,

and the Newton±Raphson iteration is thus given by

��t�1� � �1ÿ eÿ�
�t� ÿ ��t�eÿ��t� ��xobs

1ÿ eÿ��t��xobs

�3:10�

This iterative scheme converged in four iterations with ��0� � 0:93 and in six iterations
with ��0� � 0:4, much faster than any of the previous iterative schemes. However, when
��0� � 0:4, it converged to � � 0, which is a solution of (2.2) but corresponds to the
minimizer of (2.1). This phenomenon cannot happen with any EM iterations as long as
the initial value is inside the parameter space (e.g. ��0� > 0 with (2.1)), since it cannot
decrease the likelihood.

The right plot in the fourth row of Figure 1 illustrates how the Newton±Raphson
iterates converged to the wrong limit. Because all the iterates are outside the
parameter space (i.e. ��t� < 0 for t � 1), a mirror image (with respect to � � 0) of the
log-likelihood surface was created to plot the iterates. In contrast, EM iterates can
never escape from the parameter space as long as the initial value is inside the space. It
is worthwhile to point out that the (original) log-likelihood surface here is as simple
and smooth as it can be, and ��0� � 0:4 is not an impossible choice of starting value in
practice for such problems. For more complicated problems, especially multi-
dimensional ones, the Newton±Raphson algorithm can be very sensitive to the starting
value, and sometimes fail to converge (which is less harmful then converging to a
wrong limit). Of course, when using (3.10), a careful user will not choose
��0� � log ��xobs� � 0:447, which makes its denominator negative (or even zero), the
reason for negative iterates and convergence to the wrong limit. (For a careful user,
(3.10) is not even a Newton±Raphson iteration once iterates move outside the space
where the original log-likelihood was de®ned. In that sense, the Newton±Raphson
iteration failed at the ®rst iteration when ��0� � 0:4.) In general, however, it may not
be a trivial task to detect such a problem before running the Newton±Raphson al-
gorithm. The general point is that the fast convergence of the Newton±Raphson
algorithm often comes at the expense of more human investment in terms of delicate
choice of the starting value and careful monitoring of convergence.

To summarize, Table 2 gives the number of iterations needed for all four iterative
schemes with different choices of ��0�, some of which are quite extreme for the purpose
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of illustration. (Comparing the number of iterations is informative for such simple
iterations; in general, comparisons of the actual computation time are more
informative and appropriate.) An asterisk indicates cases where the iterations
converged to the wrong limit, � � 0, which occurs for Newton±Raphson whenever
��0� < log ��xobs� � 0:447. Both EM iterations are somewhat sensitive to ��0� in terms of
the speed, but not in terms of where they converge to ± for a unimodal likelihood EM
is guaranteed to converge to the unique mode under quite weak regularity conditions ±
see Wu.10 (This type of sensitivity cannot be studied using the standard theoretical
rate of convergence, e.g. see Dempster et al.5 and Meng11, which does not depend on
the starting value.) It is interesting to see that Irwin's method is not sensitive to ��0�.
This is an advantage because it prevents the iteration from being affected by a bad
choice of ��0� (e.g. a ��0� that is close to zero). Indeed, when ��0� � 0, the EM given by
(2.9) will stay on the boundary (i.e. ��t� � 0 for all t), a typical consequence of starting
an EM iteration from a boundary point (which should be avoided), while Irwin's
method will converge properly to �

MLE
. But it is also a disadvantage, as revealed clearly

in the left plot in the second row of Figure 1, for the iterates there were forced to move
to the far right even if the initial value was already quite close to �

MLE
. This is a

computational example of the common tradeoff between `ef®ciency' and `robustness', a
central issue in statistical inference.

4 Discussion and bibliographical notes regarding McKendrick and
Irwin

The beauty of McKendrick's ®tting method is its simplicity. There is no iteration
involved, which perhaps was especially important in 1920s. It also worked very well for
the cholera data. In fact, McKendrick's estimate of � has the log-likelihood value
ÿ29.7923, very close to the log-likelihood value of the MLE, ÿ29.7587. It does not,
however, always work this well. Irwin2 gave an example where McKendrick's method
yielded a negative estimate of n0, a common problem with moment estimators. Also, it
appears that McKendrick did not appreciate the distinction between sample and
population quantities and consequently the uncertainty in his estimates. This is
evident from his conclusion, based on his ®tting given in Table 1, `... that the
inhabitants of 93 out of 223 houses drank from one well which was infected'. Even if
there was no sampling variability because the whole village was included in the study,
which perhaps was true, and the posited model was indeed correct (the mean number
of infected cases per house is de®ned irrespective of the model assumption), there are

Table 2 Number of iterations needed by the four algorithms

��0� First EM Irwin's method Second EM Newton±Raphson

100 17 26 70 6
1.56 16 25 49 5
0.93 12 24 32 4
0.4 19 25 63 6*
0.1 23 25 76 5*
0.01 29 26 77 4*
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still uncertainties in the estimates of � and n0. From the calculations in Section 3.1,
the MLE of the percentage of susceptible houses is pMLE � 40%, which yields 88 as the
MLE of the number susceptible houses with an approximately 95% con®dence
interval (63, 117), which is fairly wide. (Formulae for all the con®dence limits are
given in the Appendix.)

The uncertainty in estimating � is particularly important when we want to use the
results from this study to estimate, say, the medical resources needed for a future
outbreak in a similar susceptible community. Our MLE for the percentage of houses that
will be infected is 62% �� 1ÿ eÿ�MLE �, but because an (approximate) 95% interval for
� is �0:69; 1:36�, the corresponding 95% con®dence interval for this percentage is
(47%, 73%). Failing to appreciate such a large uncertainty could conceivably lead to
serious mis-estimation of the needed medical resources. There are two reasons for this
large uncertainty despite the fact that there were 223 houses in the study, which seems
to be quite large. First, only the 55 infected houses carried information about �; this is
why the inference for � from the binomial/Poisson mixture model is the same as that
from the truncated Poison model, once p � 1 is ruled out. Second, the 55 observations
are not from the Poisson distribution, but rather from the zero-truncated Poisson
distribution. As the calculation given in the Appendix shows, for McKendrick's
problem, a sample of 55 zero-truncated observations (assuming i.i.d) carries
approximately the same amount of information about � as a sample of 36 (i.i.d)
observations from the untruncated Poisson model. In other words, if we treat the
information about � in a single observation from the untruncated Poisson distribution
as the baseline, then the effective sample size from McKendrick's data set for estimating
� is only about 16% of what it appeared to be. Practitioners should be aware of such
deceptively large samples and assess the uncertainties in their estimates using
appropriate methods.

There are other issues that could be raised with McKendrick's analysis. For
example, the number of cases a house can have is limited by the number of its
residents, unless one counts repeated infections to the same individual, which is
unlikely for a potentially fatal disease like cholera. I surmise that for the village where
McKendrick's data were collected, the sizes of the households were relatively
homogeneous and large, in which cases the household size may not be an issue. Being
aware of such issues, even if we do not act upon them with the data set in hand, helps
to prevent us from making misleading general inferences. For example, if the sizes of
households are relevant, then an apparent good ®t under the posited Poisson model
alone may or may not provide convincing evidence of the correctness of the Poisson
model, which itself was taken by McKendrick as an indication for no evidence of
infection by contagion or by insect. (Cholera is spread by pollution of water supplies,
so the statistical evidence in this example was validated by scienti®c knowledge.)

Despite these potential issues with McKendrick's analysis, the sophistication dis-
played in McKendrick's paper is rather remarkable considering the paper was written
in the 1920s and that he was not a statistician or mathematician by training (the zero-
truncated Poisson model is only a small part, and in fact the simplest case considered,
in his paper). This was made clear by Irwin, who reproduced essentially all the major
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results of McKendrick's 1926 paper as an appendix to his 1962 inaugural address as
the President of the Royal Statistical Society (UK). In the introductory part of the
appendix, Irwin3 (p. 18) wrote:

AG McKendrick was in earlier life a lieutenant-colonel in the Indian Medical Service, and later
became Curator of the College of Physicians at Edinburgh. Though an amateur, he was a brilliant
mathematician, with a far greater insight than many professionals. The joint work of Kermack and
McKendrick on epidemiological theory is well known; it was done after the publication of the paper I
am about to discuss and the approach was entirely deterministic.

Why this paper and an earlier one (1914) in the Proceedings of the London Mathematical Society,
which gave the ®rst solution of the general homogeneous birth process, attracted so little notice at
that time is something of mystery. It was known to Karl Pearson in late twenties for he once
mentioned it to me; it was also known to Greenwood and Yule, but none of them, I think, realized its
importance. I gave a reference to its place of publication, which unfortunately was not quite correct,
in a discussion on a paper on accidents by Chambers and Yule, published in our Journal in 1941.
About seven years ago I had some copies of it made and circulated these to a number of interested
people, among them Professor Feller. He wrote back to say that he was amazed at how much
McKendrick had done in those early days.

A more detailed account of McKendrick's life (1874±1943) can be found in the
obituary by Harvey.12

Irwin's effort certainly helped in attracting more attention to McKendrick's work,
but perhaps not as much as he had hoped. In 1982, Gani13 made another attempt.
After summarizing McKendrick's 191414 and 19261 papers, Gani wrote (p. 267)

McKendrick's work still bears reading: it is rich in ideas, contains many unexpected results, and is
full of practical good sense. He remains an inspiring model on which modern mathematical epi-
demiologists could well pattern themselves.

McKendrick's work was also brie¯y discussed in Lancaster's15 recent book on his-
torical development of quantitative methods in biological and medical studies.

As for Irwin himself, he was also a man with many accomplishments especially in
the ®eld of mathematical and medical statistics, as MG Kendall, in his move of the
vote of thanks to Irwin's address, put it: `Dr Irwin's outstanding work in the ®eld of
mathematical and medical statistics confers distinction on any of®ce he assumes'.
Indeed, it is not by accident that Irwin chose `The Place of Mathematics in Medical
and Biological Statistics' as the topic for his inaugural address. The bibliographical
footnote of his address stated that

JOSEPH OSCAR IRWIN (b. 1898) was educated at the City of London School and Christ's College,
Cambridge, where he completed his Mathematics Tripos in 1921. He then went to the Galton
Laboratory, at University College, London, where he remained as a member of Karl Pearson's staff
until 1926. Two years later he went to Rothamsted Experimental Station and worked there, in
RA Fisher's Department, until 1931. Since 1931 he has been a member of the Medical Research
Council's scienti®c staff at the London School of Hygiene and Tropical Medicine.

A more detailed account of Irwin's life (1898±1982) can be found in an obituary by
Armitage.16

The following quotation from Irwin's speech (p. 2) provides a good indication of his
long interest in and deep concerns about medical and biological statistics:

For more than 30 years I have been in the service of the Medical Research Council; I have seen the
continual growth of the importance attached to statistical ideas in medical and biological research. I
have seen a great increase in the understanding of these ideas among research workers in all applied
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sciences. Thirty years ago one had continually to emphasize the mere fact that biological variation
was universal and demanded an understanding of statistical ideas and techniques to deal with it; that
these ideas and techniques involved probability considerations and that probability considerations
involved mathematics. Today this seems much more widely understood; on the other hand, it seems
to me that it is necessary as ever to urge caution against too hasty acceptance of the adequacy of
statistical models for speci®c purposes and to urge care in the conclusions drawn from analyses based
on them.

Although another 35 years have passed, Irwin's urge of caution is still very much
needed today, especially with the ever growing usage of statistical arguments in
substantiating ®ndings in medical, biological, and especially epidemiological studies,
as well as in general scienti®c studies. While algorithms like EM are very useful for
computing MLEs, they cannot correct ¯aws in the posited model or add information to
the study. This seems to be an obvious point, yet from time to time I ®nd myself
having to disappoint someone by telling them that the fancy computational methods I
could provide could not make their studies scienti®cally more meaningful. It is indeed
very admirable to also note McKendrick's emphasis on exercising such caution in
those early days. After noting that a model he developed failed to ®t the data collected
by the Australian government on epidemics which had occurred in incoming ships
during the great epidemic of in¯uenza in 1918, McKendrick1 (p. 116) wrote

Now in¯uenza is a peculiarly dif®cult disease to diagnose in the individual case; consequently
epidemics of less than 10 cases are in ordinary circumstances seldom recognised and reported. The
conclusion is suggested that as our limited experience of epidemic in¯uenza is based upon statistics
which may relate only to small selected minority of the total number of epidemics, it may be in no
sense representative, and may even be misleading.

Gani13 attributed the great insights McKendrick displayed to his familiarity with
the medical science and his facility in passing from mathematical theory to practical
applications. Indeed, understanding the substantive aspects of a problem and being
able to apply relevant theory or methodology are the two keys in ensuring valid
statistical inferences.

5 A suggestion and very incomplete bibliographical notes on EM

In Section 3, we observed that the second EM, which operates on the joint likelihood of
�p; ��, converged much slower than the ®rst EM, which operates on the pro®led like-
lihood of �. This suggests that sometimes it is worthwhile to consider pro®ling a
likelihood before implementing the EM algorithm. To be speci®c, suppose we need to
maximize a log-likelihood `��1; �2jYobs� and suppose given �1 it is easy to ®nd the
conditional maximizer of `��1; �2jYobs� in the form of �2 � ���1�. Then, just as with
McKendrick's problem, we may have a choice between constructing an EM directly for
`��1; �2jYobs� or constructing an EM for the pro®le log-likelihood `��1; ���1�jYobs�. The
latter has the advantage of working with a lower dimensional parameter, which can
provide substantial reduction in computational complexity and time, especially for
supplemented EM-type algorithms for computing information matrices; see Meng and
Rubin17 and van Dyk et al.18

This pro®ling strategy is in the same spirit as the expectation/conditional maximize
either (ECME) algorithm of Liu and Rubin,19 where it is used with a conditional
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maximization (CM) step inside the ECME iteration. A CM-step is the same as an M-
step except that the maximization is with respect to part of the parameter (e.g. �2) with
the rest part of the parameter (e.g. �1) held as constant (i.e. being conditioned upon).
This conditional maximization idea is the base for the expectation/conditional
maximization (ECM) algorithm of Meng and Rubin,20 which was designed to reduce
the complexity of the original M-step in some problems because it is often easier to
seek maximizers in lower dimensional problems. The key observation made by Liu
and Rubin19 is that, with the ¯exibility provided by the conditional maximization
scheme, one sometimes has the choice of maximizing either the augmented log-
likelihood (e.g. (3.5)) or the actual log-likelihood (e.g. (3.2)) in the CM-steps. The
pro®ling strategy suggests that sometimes it can be bene®cial to perform the
conditional maximization for the actual log-likelihood before implementing any EM-
type algorithm. The usefulness of this strategy, of course, depends on whether one can
®nd an ef®cient EM-type algorithm (or any other algorithms), in terms of both human
and computer time, for the resulting pro®le log-likelihood (e.g. `��1; ���1�jYobs�). An
investigation of this strategy in the context of general EM-type algorithms may be
worthwhile.

Since one of the main purposes of this article is to provide a general-level tutorial,
I'd like to conclude it with a highly biased selection of recommended readings. For
those interested in a systematic treatment of the EM methodology, the recently
published book by McLachlan and Krishnan21 should be an ideal textbook. The book
by Little and Rubin22 on statistical analysis of missing data also contains a substantial
amount of material on EM and many examples. Tanner's23 book is another choice,
especially if one is also interested in various stochastic counterparts of the EM-type
algorithms (e.g. Gibbs sampler). The recent book by Gelman et al.24 contains
applications of EM and its extensions (e.g. ECM) in the context of Bayesian data
analysis, where these algorithms are used to ®nd modes of posterior densities.

For those whose main interest is to acquire some general knowledge of EM and
learn about its historical development, two recent encyclopedia entries are good places
to start. Laird's25 entry should be of particular interest to those whose main interest is
in medical or biological applications. It contains an easily readable summary and
several illustrations, with discussions on applications in medical image, molecular
biology, and genetics, among others. My own entry26 was written at a more general
level with emphasis on the recent methodological development of EM-type algorithms.
Both entries also contain a fairly long list of references. There are also two
bibliographies available. Meng and Pedlow27 was an earlier attempt, but soon we
realized that it was essentially a hopeless task because there were simply too many
EM-related papers to work with (we found over 1000 papers throughout 1991 in nearly
300 journals and volumes, only about 15% of which are statistical), not to mention the
dif®culties in tracking down papers that used EM but without citation of any kind.
Krishnan and McLachlan have compiled a more recent (unpublished) bibliography.

For those who want to see how EM-type algorithms are actually applied in real-life
medical or biological studies, the following three papers may be of interest. Wanek
et al.28 applied the ECM algorithm for computing MLEs to ®t a multistage Markov
model for progressive diseases such as melanoma. Broman et al.29 applied the EM
algorithm with a normal/Poisson mixture model to estimate antigen-responsive T-cell

The EM algorithm and medical studies 19



frequencies among peripheral blood mononuclear cells from human subjects. They
also applied the supplemented EM (SEM) algorithm (see Meng and Rubin17) to
compute the large-sample standard errors of their parameter estimates. In Tu et
al.,30;31 we applied the EM algorithm for computing the MLEs under a discrete
proportional hazards model in a survival analysis of AIDS patients using the
surveillance data from the Centers of Diseases Control.

Finally, for those interested in methodological and theoretical research on EM-type
algorithms, the special theme issue `EM and related algorithms' in Statistica Sinica
(No. 1, 1995) is a good place to sample the current state-of-the-art. Besides the papers
in that issue and the papers that have been cited in the previous sections, other recent
methodological papers, in general or with particular models, include Wei and
Tanner,32 Baker,33 Vardi and Lee,34 Jamshidian and Jennrich,35 Fesslor and Hero,36

Lange,37 Heyde and Morton38 and Meng and Schilling.39 An exciting current ®nding
is that EM-type algorithms can be made considerably faster than previously thought
possible while maintaining their stability and simplicity. The advance was made
through new methods of constructing ef®cient data augmentation schemes. A detailed
description of these methods, including the alternating expectation/conditional
maximization (AECM) algorithm, is provided in Meng and van Dyk.8
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Appendix: variances and con®dence intervals

Under the binomial/Poisson model and the assumption that 0 < p < 1 (i.e. the
mixture is not degenerated), one can show that to the ®rst order of approximation
(with respect to n)

Var�p
MLE
� � p�1ÿ p�

n
� p

n�e� ÿ �ÿ 1� �
p�1ÿ p�

n
1� 1

�1ÿ p��e� ÿ �ÿ 1�
� �

�A:1�

and

Var��
MLE
� � �

np
� �2

np�e� ÿ �ÿ 1� �
�

np
1� �

�e� ÿ �ÿ 1�
� �

�A:2�

Plugging in n � 223 and the MLEs for p and �, we estimate the variance of p
MLE

by
var�p

MLE
� � 0:0037, and the variance of �

MLE
by var��

MLE
� � 0:0269.

In the absence of mixing with a Poisson variable, Var�p
MLE
� would be p�1ÿ p�=n, and

thus (A.1) tells us the absolute increase (i.e. the second term in the middle expression)
and the relative increase (i.e. the second term inside the brackets) in variance due to
mixing. For McKendrick's data set, the MLE of the relative increase is 247%, which
implies that the MLE for the effective sample size for estimating p is only about
1=�1� 2:47� � 29% of n � 223, that is, about 65. This substantial reduction in sample
size is responsible for the large standard error in p

MLE
(about 6%), and hence the wide

con®dence interval for the expected number of susceptible houses, pn.
Similarly, without the zero class being truncated out, Var��� would be �=�np� ± note

that we already have a large reduction in sample size from n � 223 to np (whose MLE
is np

MLE
� 88) due to mixing. Thus, (A.2) tells us the absolute and relative increases in

variance due to truncation. For McKendrick's data set, the MLE of the relative
increase is 145%, implying an effective sample size about 1=�1� 1:45� � 41% of
np

MLE
� 88, that is, about 36, which is only 16% of the original size n � 223.

To obtain a 95% con®dence interval for p or for �, one can use the standard
procedure

p
MLE
� 2

�������������������
var�p

MLE
�

q
or

�
MLE
� 2

�������������������
var��

MLE
�

q
A better procedure is obtained by ®rst applying an appropriate transformation to p or
�, constructing corresponding con®dence intervals, and then transforming back to the
original scale. With appropriate choices of transformation, it is well known that such a
procedure can yield considerably better ®nite-sample coverage properties. For the
current problem, a good choice of transformation for � is the log transformation,
log ���, and for p is the logit transformation, logit�p� � log �p=1ÿ p�. The MLE for
logit�p� is logit�p

MLE
�, whose standard error can be estimated using the delta method by
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sp �
��������������������������������
var�logit�p

MLE
��

q
�

�������������������
var�p

MLE
�p

p
MLE
�1ÿ p

MLE
� � 0:2549

The MLE for log ��� is log ��
MLE
�, whose standard error can be estimated by

s� �
������������������������������
var�log ��

MLE
��

q
�

�������������
var���p
�

MLE

� 0:1687

The resulting interval for p is

p
MLE

eÿ2sp

1ÿ p
MLE
� p

MLE
eÿ2sp

;
p

MLE
e2sp

1ÿ p
MLE
� p

MLE
e2sp

� �
� �0:2831; 0:5226� �A:3�

and for �

�
MLE

eÿ2s� ; �
MLE

e2s�
ÿ � � �0:6938; 1:3623� �A:4�

We see that because of the transformations, the con®dence intervals are always within
the parameter space. The 95% intervals for the percentage of susceptible houses, np,
and for the probability of being infected conditional on being susceptible, 1ÿ eÿ�,
follow respectively from (A.3) and (A.4).
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