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SUMMARY

Motivated by the need to meaningfully implement the Institute of Medicine’s (IOM’s) definition of
health care disparity, this paper proposes statistical frameworks that lay out explicitly the needed causal
assumptions for defining disparity measures. Our key emphasis is that a scientifically defensible disparity
measure must take into account the direction of the causal relationship between allowable covariates
that are not considered to be contributors to disparity and non-allowable covariates that are considered
to be contributors to disparity, to avoid flawed disparity measures based on implausible populations that
are not relevant for clinical or policy decisions. However, these causal relationships are usually unknown
and undetectable from observed data. Consequently, we must make strong causal assumptions in order to
proceed. Two frameworks are proposed in this paper, one is the conditional disparity framework under the
assumption that allowable covariates impact non-allowable covariates but not vice versa. The other is the
marginal disparity framework under the assumption that non-allowable covariates impact allowable ones
but not vice versa. We establish theoretical conditions under which the two disparity measures are the
same and present a theoretical example showing that the difference between the two disparity measures
can be arbitrarily large. Using data from the Collaborative Psychiatric Epidemiology Survey, we also
provide an example where the conditional disparity is misled by Simpson’s paradox, whereas the marginal
disparity approach handles it correctly. Copyright q 2008 John Wiley & Sons, Ltd.
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1. CAUSALITY AND DISPARITY MEASURES

1.1. The causal implication of the IOM definition

The Institute of Medicine (IOM) [1] defines health care disparities as ‘racial or ethnic differences
in the quality of health care that are not due to access-related factors or clinical needs, preference,
and appropriateness of intervention.’ This definition represents an important advance in disparity
research, because it explicitly recognizes the role of causality in the determination of disparities
through its reference to the causal expression ‘not due to’. However, it leaves open the interpretation
of the causal model underlying this causal statement. In this paper we identify several causal models
under which the IOM definition can be implemented meaningfully and propose the corresponding
frameworks for defining and comparing statistically justifiable disparity measures following these
models. Our work can be viewed as a statistically oriented conceptualization of research in this
area (e.g. [2–6]). Although our work was directly motivated by the IOM definition, the proposed
general frameworks are equally applicable to other areas, such as in legal settings (e.g. [7–9]).

The statistical frameworks proposed in this paper assume that the covariates of interest have
been classified into allowable and non-allowable categories. Allowable covariates are considered
to be justifiable to cause a difference and hence should be adjusted before measuring disparity.
The remaining covariates are classified as non-allowable.

It is important to note that the classification of allowable and non-allowable covariates can, and
should, vary from study to study, depending on the particular purpose of the study. For example,
IOM’s classification of access-related factors as allowable is appropriate for studying disparity at
the level of patient-clinician encounter, with the focus being the treatment delivered during the
encounter, controlled for all historical factors that occurred prior to the encounter. However, when
studying health care disparity at the level of service systems, it would be more appropriate to
classify access-related factors as non-allowable, thus holding the service systems accountable for
failure to engage disadvantaged patients into care. The statistical frameworks we establish in this
paper apply to any of such classifications.

As a specific example for illustration, suppose that covariates that might be predictive of health
care are classified as follows:

• Clinical needs and preference are considered allowable. Differences in health care due to
these covariates are not considered to be part of health care disparity.

• All other covariates, such as knowledge about health, state of residency, insurance coverage,
and education (to name a few), are considered non-allowable. Differences in health care due
to these covariates are considered to be health care disparity.

Given such a classification, our goal then is to measure the disparity that is ‘not due to’ the
allowable covariates.

A seemingly obvious, and hence very common, approach is to substitute the levels of allowable
covariates of, for example, Afro-Caribbean with those of their non-Latino white counterparts,
while leaving the levels of non-allowable covariates unchanged. This procedure is often used in
the analysis of covariance models that adjust for allowable covariates across racial/ethnic groups.
However, this approach is sensible in general terms only if the allowable covariates are statistically
independent of the non-allowable covariates, a condition that is unlikely to hold in practice. Without
this independence condition, this direct substitution may lead to an implausible population, such
as a hypothetical population with high level of income (as a non-allowable covariate that remains
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unchanged) and a high level of chronic diseases (as an allowable covariate that was substituted
with the levels from the reference population). As a result, the disparity estimates obtained from
this procedure may not be relevant for clinical, policy, or other purposes, because they are based
on a postulated population that cannot be realized by policy changes or disparities interventions.

Not accounting properly for the causal relationships between allowable and non-allowable
covariates is especially problematic when the two sets of covariates are highly correlated in the
observed data, and both sets of variables are included in our outcome model. In such cases, the
allowable covariates might appear to be very weak for predicting the outcome in the fitted model
due to the well-known ‘collinearity’ phenomenon. Consequently, replacing a minority group’s
allowable covariates by their counterparts in the non-Latino white group in the fitted model may
produce only trivial adjustment, even if in reality a substantial part of the observed racial/ethnic
difference is indeed due to the difference in the allowable covariates. This could be because of
their direct impact either on the outcome (which would not be detected by the fitted regression
model because of the strong collinearity) or on the non-allowable covariates or on both. The
frameworks proposed in this paper can help to substantially reduce such serious mis-estimation of
disparity because they explicitly take into account the causal relationship between the allowable
and the non-allowable covariates. For example, our approaches permit an adjustment in allowable
covariates to cause substantial adjustment in the non-allowable ones, which in turn may lead to
substantial adjustment in the predicted outcome, even if the allowable predictor appears to be very
weak in the fitted model for predicting the outcome.

1.2. Explicating the underlying causal assumptions

In order to measure disparity meaningfully, such as to implement the IOM definition for health care
disparity, one must be explicit about the underlying causal assumptions that are imbedded in any
disparity measure. The fact that the exact causal mechanisms may not be known or may not even
be knowable is not a reason to ‘sweep everything under the rug.’ On the contrary, this is precisely
the reason for us to be explicit about our assumptions, so that it is possible for policy makers and
subsequent researchers to correctly interpret the disparity measures/estimates we obtain as well
as to determine the directions for correction or improvement when newer information becomes
available for the underlying causal relationships.

The key reason why we need to make causal assumptions is that once an action is forced upon
a particular variable (e.g. by changing a minority group’s distribution of clinical needs to match
those of the non-Latino white population), it will have a ripple effect—in real life—on other
variables (e.g. income level) that are impacted by the one adjusted. However, this ripple effect is not
estimable without carrying out the actual (social) experiment, because the observed relationships in
a natural population may or may not be preserved after an intervention. As an illustrative example,
in a natural population, a person’s left-eye visual acuity (VA) may be highly correlated with the
person’s right-eye VA. However, this correlation will be destroyed or at least reduced if we perform
a vision correction laser surgery on the right eye only. The two VAs will become independent
shortly after the surgery but may become correlated again over time, though the cross-sectional
data from a natural population would tell us little about how large this correlation could be or
whether it would ever reach the same level as in the natural population.

Therefore, in order to measure the disparity ‘not due to’ the allowable covariates, we must
postulate causal directions as well as how relationships among relevant variables are preserved or
altered with the change from a natural population to a hypothetical one. There are two extreme types
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of unidirectional causal relationships: (A) allowable covariates impact non-allowable covariates
but not vice versa and (B) non-allowable covariates impact allowable covariates but not vice versa.
The more realistic relationships are likely to be either (C) allowable covariates and non-allowable
covariates are inter-related and reciprocally impact each other, or (D), which is (C) plus the
possibility that both allowable and non-allowable covariates are also impacted by the outcome
itself (over time).

Although (C) and (D) are most dynamic and realistic, they do not permit useful modeling without
further specifications on how the variables involved impact each other. As these specifications are
content dependent and can be extremely difficult to postulate, we will pursue them in future work.
In this paper, we lay out the statistical frameworks for the simpler causal relationships (A) and
(B). These two frameworks serve as building blocks for more complex causal specifications and at
the same time provide plausible specifications that might yield useful bounds on the true disparity
when more complicated causal relationships are present. In some applications, such as the one
presented in Section 3.2, such simplistic causal assumptions are actually reasonable, leading to
sensible practical solutions.

2. STATISTICAL FRAMEWORKS

2.1. Linking natural and hypothetical joint distributions

Let XN denote non-allowable covariates such as knowledge about health, and let XA denote
allowable covariates such as clinical needs. Let Y denote the outcome of interest, such as log of
the health care expenditure. To measure the disparity, we need to adjust the levels of allowable
covariates (XA) but not the levels of non-allowable covariates (XN). Note here that all variables
are measured for each individual i , but we suppress the subscript i throughout the text to simplify
the notation. To describe the distribution of these variables, we use the common generic notation
P( ), e.g. P(XN). Whenever needed, we will use subscript 1 to denote the reference group (e.g.
the non-Latino whites) and 2 the group of interest (e.g. a minority group), for example, P1(XN)

and P2(XN).
The goal of our modeling is to estimate the potential outcome that would be manifested if the

group of interest had the same levels of allowable covariates as the reference group. The first step
in setting up our proposed frameworks is to explicitly consider the joint distribution of (Y,XA,XN)

and recognize that there are two joint distributions of interest: one for the natural population and
the other for the adjusted hypothetical population. We use the superscript (H) to denote different
populations, e.g. P(H)

2 ( ), where (H) can refer to either an adjustment rule for a hypothetical

population (e.g. P(A)
2 ( ) for adjustment rule (A)) or a natural (or non-adjusted) population (e.g.

P(N )
2 ( )). For any (H), we always have the following decomposition:

P(H)
2 (Y,XN,XA)= P(H)

2 (Y |XN,XA)P(H)
2 (XN,XA) (1)

The importance of recognizing the dependence on H here is that only the natural population,
P(N )(Y,XN,XA), can be estimated from the data. Therefore, in order to calculate disparities under
a hypothetical population, we need to make strong assumptions to link the hypothetical population,
such as P(A)

2 (Y,XN,XA), to the natural population P(N )
2 (Y,XN,XA). Our first assumption, which

appears to be taken for granted in much of the existing literature, is that the ‘forced action’ of the

Copyright q 2008 John Wiley & Sons, Ltd. Statist. Med. 2008; 27:3941–3956
DOI: 10.1002/sim



DISPARITIES IN DEFINING DISPARITIES 3945

adjustment has no impact on the conditional distribution of Y given (XN,XA). That is, for any
adjustment rule (A), we assume

P(A)
2 (Y |XN,XA)= P(N )

2 (Y |XN,XA) (2)

We will refer to (2) as the ‘predictively nature preserving’ (PNP) assumption, meaning that the
predictive nature of {XN,XA} on Y is preserved despite the ‘forced action’ on XA.

One can easily consider a scenario under which the PNP assumption is false, but without
such an assumption, the estimation of the disparity is essentially impossible. For example, in our
hypothetical eye vision example, two people may have identical VAs for both eyes (e.g. both are
20/20 in the right eye but 20/40 in the left eye), but they can have quite different probabilities of
having automobile accidents if one of them was born with such vision, but the other achieved it
via laser surgery to his right eye. Clearly, if this occurs, then it is impossible to estimate—using
only the data collected from the natural population—the accident rate for the group of people with
vision corrections done to their right eyes only.

To carry the decomposition (1) further, we can decompose the component P(H)
2 (XN,XA) in (1)

into one conditional distribution and one marginal distribution. This time, there are two possibilities:

P(H)
2 (XN,XA)= P(H)

2 (XN|XA)P(H)
2 (XA) (3)

and

P(H)
2 (XN,XA)= P(H)

2 (XA|XN)P(H)
2 (XN) (4)

The first decomposition is the basis for our conditional framework, which assumes that non-
allowable covariates XN are causally dependent on allowable covariates XA but not vice versa.
The second decomposition is suitable for the marginal causal framework, which assumes that the
allowable covariates XA are causally dependent on the non-allowable covariates XN but not vice
versa. Below we show how we can create different counterfactual populations, a standard practice
in causal inferences (e.g. see [10]), using these decompositions.

2.2. Conditional disparity

Under the conditional framework, we adjust the marginal distribution of the allowable covariates
XA from the natural population (such as Latinos) to the corresponding marginal distribution of the
reference group (such as non-Latino whites), while preserving the conditional distribution for non-
allowable covariates XN given allowable covariates XA as in the natural population. Specifically,
the hypothetical joint distribution is obtained by replacing the marginal distribution of XA in the
natural population

P(N )
2 (Y,XN,XA)= P(N )

2 (Y |XN,XA)P(N )
2 (XN|XA)P(N )

2 (XA) (5)

by that of the reference population (e.g. non-Latino whites), thereby creating the following hypo-
thetical population distribution:

P(C)
2 (Y,XN,XA)= P(N )

2 (Y |XN,XA)P(N )
2 (XN|XA)P(N )

1 (XA) (6)

Although P(N )
1 (XA) is taken from the natural population of the reference group, its insertion into (5)

leads to a hypothetical population that retains the natural conditional distributions P(N )
2 (Y |XN,XA)
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and P(N )
2 (XN|XA), with the component P(N )

2 (XA) ‘mutated’ into P(N )
1 (XA). We denote this

adjustment rule under the conditional disparity framework as adjustment (C).
In order for (6) to be a meaningful hypothetical population, our assumptions are as follows:

(i) the PNP assumption holds and (ii) the adjustment action has no impact on the conditional
distribution of XN given XA either; that is,

P(C)
2 (XN|XA)= P(N )

2 (XN|XA) (7)

which is plausible when the causal direction is from XA to XN but not vice versa. We will refer to
(7) as the ‘conditionally nature preserving’ (CNP) assumption, meaning that the natural conditional
distribution P2(XN|XA) is preserved after the adjustment on XA.

The ratio between the adjusted joint density (6) and the natural joint density (5) is simply the
ratio of the marginal densities:

RC(XA)= P(N )
1 (XA)

P(N )
2 (XA)

(8)

Following the principle of importance weighting, the expected outcome under the hypothetical
population (6) can be expressed as the following weighted expectation of Y under the natural
population (5), with the importance weight RC(XA):

E (C)
2 [Y ]=E (N )

2 [Y RC(XA)] (9)

where E (C)
2 denotes the expectation with respect to the hypothetical population in (6) and E (N )

2
denotes the expectation with respect to the natural population in (5).

Expression (9) gives us a practical way to estimate E (C)
2 [Y ] because its right-hand side involves

only expectations with respect to the natural population (5), therefore it can be estimated from the
sample data. As this paper focuses on setting up conceptual frameworks, the detailed estimation
procedures, particularly for estimating RC(XA), will be presented in a subsequent paper.

Intuitively, the adjustment under our conditional framework amounts to weighting the level of
health care (Y ) among minorities by the density ratio RC(XA). Minorities with higher density ratio
RC get weighted up because a value of RC(XA)>1 tells us that there are more non-Latino whites
with the levels of XA than minorities with the same levels of XA. The corresponding disparity is
then measured as the difference between the expected value of Y for the adjusted (hypothetical)
population (6) and that of the reference population:

DC=E (C)
2 [Y ]−E (N )

1 [Y ] (10)

We term DC of (10) as conditional disparity because the main source of disparity is in the
difference in the conditional distributions P(N )

2 (XN|XA) and P(N )
1 (XN|XA). The difference in

P(N )
2 (Y |XN,XA) and P(N )

1 (Y |XN,XA) may also be of interest in its own right, an issue we shall
not pursue here due to the page limitation, but will briefly touch upon in Section 3.3.

Applying expression (9) to definition (10), we have the following expression for conditional
disparity that can be estimated using sample data:

DC=E (N )
2 [Y RC(XA)]−E (N )

1 [Y ] (11)
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Note that this expression for conditional disparity does not involve the non-allowable covariates,
XN. This is possible because of the assumption thatXN is caused byXA. Under such an assumption,
we can greatly simplify the estimation task because (11) bypasses the need to model XN. The
theoretical implication of this simplification will be discussed in Section 4.

2.3. Marginal disparity

In contrast to conditional disparity, which equates the two marginal distributions of XA, the
marginal disparity framework replaces the conditional distribution of XA, conditioning on XN, of
the population of interest (e.g. Latinos) by that of the reference population (e.g. non-Latino whites).
Specifically, we replace the conditional distribution P(N )

2 (XA|XN) in the natural population

P(N )
2 (Y,XN,XA)= P(N )

2 (Y |XN,XA)P(N )
2 (XA|XN)P(N )

2 (XN) (12)

by that of the reference population to create the following hypothetical population:

P(M)
2 (Y,XN,XA)= P(N )

2 (Y |XN,XA)P(N )
1 (XA|XN)P(N )

2 (XN) (13)

We denote this adjustment rule under the marginal disparity framework as adjustment (M).
Similar to the conditional disparity framework, in order for (13) to be a meaningful hypothetical

population, we have assumed that (i) the PNP assumption holds and (ii) the adjustment action has
no impact on the marginal distribution of XN either; that is,

P(M)
2 (XN)= P(N )

2 (XN) (14)

which is plausible when the causal direction is from XN to XA but not vice versa. We will
refer to (14) as the ‘marginally nature preserving’ (MNP) assumption, meaning that the marginal
distribution P2(XN) is preserved after the adjustment on XA.

Similar to (8), the ratio between the joint densities (13) and (12) is given by the ratio between
the two conditional densities:

RM(XA;XN)= P(N )
1 (XA|XN)

P(N )
2 (XA|XN)

(15)

Again, the ratio (15) can be used as the importance weight to express

E (M)
2 [Y ]=E (N )

2 [Y RM(XA;XN)] (16)

where E (M)
2 denotes expectation under the hypothetical population (13) and E (N )

2 denotes expec-
tation under the natural population (12). Note that the right-hand side of (16) can be estimated
from sample data obtained in the natural population (12).

It is useful to visualize the adjustment under our marginal framework as first stratifying the
minority population by the level of the non-allowable covariates (e.g. knowledge of health). We
then apply the same weighting scheme as with the conditional disparity approach but now within
each stratum; therefore the weights there, namely, the ratio of marginal densities RC(XA) is now
replaced by the ratio of the corresponding conditional densities RM(XA;XN). Minorities within a
particular stratum, as defined by their values of XN, with higher conditional density ratio RM get
weighted up when there are more non-Latino whites with the levels of XA than minorities in the
same stratum as defined by the value of XN.
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The marginal disparity measure then is defined as the difference between the expected value
of Y for the adjusted (hypothetical) population (13) and that of the reference population (12):

DM=E (M)
2 [Y ]−E (N )

1 [Y ] (17)

We term DM asmarginal disparity because the main source of the disparity is in the difference in the
marginal distributions P(N )

2 (XN) and P(N )
1 (XN), in addition to any difference in P(N )

2 (Y |XN,XA)

and P(N )
1 (Y |XN,XA). Again, applying expression (16) to the definition (17), we have the following

expression for marginal disparity that can be estimated using sample data:

DM=E (N )
2 [Y RM(XA;XN)]−E (N )

1 [Y ] (18)

The estimation of RM(XA;XN) is more complicated than estimating RC(XA) due to the higher
dimensionality. Again, these technical details will be addressed in a subsequent paper.

3. COMPARING CONDITIONAL AND MARGINAL DISPARITIES

With the two frameworks given above, a natural question is when do they give the same disparity
estimates, or more profoundly, do they give different values that would matter in practice? The
answer to the first part is a clean-cut theoretical result we present below. The answer to the second
part is obviously ‘it depends’ because it depends critically on the nature of the dependence structure
between XA and XN, as well as the dependence of Y on (XA,XN), in particular applications. We
will illustrate this with two examples, one of which shows the difference between getting it right
or wrong, and the other gives a class of cases where the difference can be made arbitrarily large.
For the remainder of this paper, we suppress the superscript (N ) as a notation for the natural
population, whenever the context is clear.

3.1. A theoretical result related to local dependence function

The difference between DC and DM can be expressed as

�D≡DC−DM=E2

[
Y ·
(
P1(XA)

P2(XA)
− P1(XA|XN)

P2(XA|XN)

)]
(19)

The two disparity measures will be identical, �D=0, if

P1(XA)

P2(XA)
= P1(XA|XN)

P2(XA|XN)
(20)

This condition is equivalent to the condition that

G1(XN,XA)≡ P1(XN,XA)

P1(XN)P1(XA)
= P2(XN,XA)

P2(XN)P2(XA)
≡G2(XN,XA) (21)

Here the G function can be viewed as a measure of the dependence structure between XN and
XA; therefore, condition (21) says that as long as the dependence structure is the same for the two
groups (e.g. it remains the same across the two racial/ethnic groups), the two disparity measures
would be identical. As a special case, if XN and XA are independent under both populations, then
the two measures are the same because both G1 and G2 are then identical to 1.
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For continuous variables, the notion that G is a measure of dependence structure can also be
examined through the local dependence function (LDF), as defined in [11] and studied in [12]
and [13],

�(XN,XA)= �2 log P(XN,XA)

�XN�XA
(22)

Because

�2 logG(XN,XA)

�XN�XA
= �2 log P(XN,XA)

�XN�XA
(23)

it is obvious that condition (21) implies that the LDF is independent of the group index, i.e.
the LDF does not change with the racial/ethnic group. Note, however, that the reverse is not
necessarily true; that is, we can have the LDF invariant to group index, but condition (21) does
not hold. In this sense, the measure of dependence defined by the G function is more stringent
than that defined by the LDF.

Finally we note that condition (21) is sufficient but not necessary for �D=0. A simple example
is that �D=0 when the regression of Y on XA and XN, that is, E2[Y |XN,XA] , is free of both XN
and XA (note that this is a weaker requirement than the independence between Y and (XN,XA)

as only the conditional mean of Y is involved). This, of course, does not happen when XN and/or
XA are useful predictors of Y . However, it reminds us that the difference between DC and DM
also depends on the relationship between Y and (XN,XA), and the difference will be small when
both XN and XA are weak predictors.

We emphasize here that the statement we just made is true only when both XN and XA are weak
predictors. If one is weak but the other is not, the difference between the two measures can still be
very large if there is high correlation between XN and XA. Indeed, the appearance of ‘one-weak and
one-strong’ scenarios is quite common in practice when the two predictors are highly correlated
because of the well-known ‘collinearity’ problem among the predictors. And it is precisely in such
cases that the recognition of the impact of the allowable covariates on the non-allowable ones, or
vice versa, is of critical importance. As mentioned in Section 1, the common approach of adjusting
only the allowable covariates without considering its impact on the non-allowable covariates can
lead to serious misestimation of the disparity when the allowable covariates appear to be a weak
predictor in the regression of Y on XN and XA.

3.2. A discrete-distribution example

We start with a simple 2×2×2 contingency table example to illustrate both the basic calcula-
tions for DC and DM, and their differences. We use data from the combined data set of three
large epidemiological studies, namely, the NIMH Collaborative Psychiatric Epidemiology Survey
(CPES): the National Latino and Asian American Study (NLAAS) [14], the National Comorbidity
Study Replication (NCS-R) [15], and the National Study of American Life (NSAL) [16]. These
studies focus on collecting epidemiological information on mental health and substance disorders
and services utilization among the general population with special emphasis on ethnic minority
groups in the NLAAS (Latinos and Asians) and NSAL (African Americans and Afro-Caribbean)
with non-Latino white comparisons from the NCS-R. The studies were designed to allow inte-
gration as though they were a single, nationally representative study [17]. The combined data
set is the largest epidemiological data set available for examining the patterns and correlates of
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the use of mental health services in minority populations in the United States. The sampling frames
and sample selection procedures are described in detail elsewhere [18]. For illustration purposes,
here we treat this combined data set as a population by itself; therefore, all the numbers below
are regarded as population quantities (e.g. probabilities) instead of sample estimates (e.g. sample
proportions).

For simplicity, we focus on a dichotomous outcome, namely, Y =1 means that the respondent
had at least one visit to any mental health service provider (either specialist or generalist) in the
past year, and Y =0 otherwise. The allowable covariate is also a binary variable indicating clinical
need: XA=1 if there was a need, and XA=0 if there was not. The non-allowable covariate is a
binary variable indicating nativity: XN=1 if the respondent is an immigrant, and XN=0 if the
respondent was born in the United States.

Table I provides the data for the non-Latino white population, from which we can easily calculate
the service use rate for this population. In Table I, there are two numbers in each of the cells in the
2×2 layout. The top number is the percentage of individuals who fall into the (i, j)-cell defined by
the values of (XN= i, XA= j), and the bottom bracketed number �i j is the percentage of people in
that cell who have used services, that is, �i j = P(Y =1|XN= i, XA= j). Consequently, the overall
service rate for the non-Latino white population, namely E1[Y ], is obtained by multiplying the two
numbers in each cell and adding them up across all cells. This leads to E1[Y ]=14.39 per cent.
Similarly, for the Afro-Caribbean population (Table II), E2[Y ]=6.75 per cent, so that the observed
racial/ethnic difference is

RD=E2[Y ]−E1[Y ]=6.75 per cent−14.39 per cent=−7.64 per cent (24)

This, however, is not necessarily the disparity in the sense of the IOM definition because it has
not adjusted for the difference in clinical needs.

Comparing Tables I and II, we observe an interesting phenomenon. The percentages of people
in need are greater in the Afro-Caribbean population than in the non-Latino white population when
conditional on the nativity—55.75 per cent versus 41.62 per cent for the U.S. born population and
33.90 per cent versus 30.91 per cent for the immigrant population. The pattern, however, is reversed
for the marginal rates, that is, when we combine the U.S. born and the immigrants together: 41.18
per cent for the Afro-Caribbean versus 41.28 per cent for the non-Latino whites. Although the
difference between these two marginal rates is minimal (but there is no estimation error here as
we are using the data as if they were the entire population), it is nevertheless an example of the

Table I. Non-Latino white population, where �i j = P1(Y =1|XN= i, XA= j).

XA=clincial need

No (0) Yes (1) P1(XA=1|XN)
(per cent) (per cent) (per cent)

XN=nativity U.S. born (0) 56.45 40.25 41.62
[�00=6.25] [�01=26.04]

Immigrant (1) 2.28 1.02 30.91
[�10=6.31] [�11=23.36]

P1(XA) 58.72 41.28
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Table II. Afro-Caribbean population, where �i j = P2(Y =1|XN= i, XA= j).

XA=clinical need

No (0) Yes (1) P2(XA=1|XN)
(per cent) (per cent) (per cent)

XN=nativity U.S. born (0) 14.75 18.58 55.75
[�00=1.19] [�01=25.61]

Immigrant (1) 44.07 22.60 33.90
[�10=1.88] [�11=4.39]

P2(XA) 58.82 41.18

well-known Simpson’s paradox [19]. The reason is the extreme imbalance of the nativity groups
in the two populations: more than 95 per cent of the non-Latino whites were U.S. born, but only
1
3 of the Afro-Caribbean were U.S. born.
The implication of this phenomenon for our disparity measure is clear. First, given that the

difference in the marginal rates is so small, 41.18 per cent versus 41.28 per cent, one would expect
that the conditional disparity that results from adjusting the Afro-Caribbean’s marginal rate from
41.18 per cent to the non-Latino whites marginal rate of 41.28 per cent will have a minimal impact
on the value of RD of (24). Indeed, as shown below, the conditional disparity in this case is
DC=−7.62 per cent, nearly identical to RD=−7.64 per cent.
Second, this adjustment in fact is in the wrong direction, because in this case the casual

assumption underlying the conditional disparity, that is, the allowable covariate (clinical need)
causes the non-allowable (nativity), is clearly a very implausible one. The marginal disparity
approach is a much more sensible one, because it makes adjustment of clinical needs within each
nativity category. Given the fact that the two nativity groups have very different levels of clinical
needs, with the U.S. born having more needs, it is intuitive that we should make the adjustment
after stratifying by nativity groups. Because the Afro-Caribbean population has more need in each
of the nativity groups, it is also intuitive that had their needs been the same as the non-Latino
whites, the observed racial/ethnic difference would be even larger. Indeed, as shown below, the
marginal disparity in this case is DM=−8.84 per cent. In contrast to DC, which points to the
wrong direction, DM shows that the disparity is actually more pronounced than the unadjusted
racial/ethnic difference by about (8.84−7.64)/7.64≈16 per cent.

3.3. Disparity calculations

The calculations of DC and DM can be best illustrated by creating two adjusted versions of Table II,
corresponding, respectively, to the two hypothetical populations as defined in (6) and (13). They
are given in Tables III and IV, respectively. To construct Table III, which is for the conditional
disparity, we need to compute the density ratio RC of (8). From the last row of Tables I and II,
respectively, we can obtain this easily as

RC(0)= P1(XA=0)

P2(XA=0)
= 0.5872

0.5882
=0.9983, RC(1)= P1(XA=1)

P2(XA=1)
= 0.4128

0.4118
=1.0024

We can then multiply each of the three unbracketed proportions in the ‘No (0)’ column of
Table II by RC(0), and multiply each of the three unbracketed proportions in the ‘Yes (1)’ column
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Table III. Adjusted Afro-Caribbean population for computing DC.

XA=clinical need

No (0) Yes (1) P(C)
2 (XA=1|XN)

(per cent) (per cent) (per cent)

XN=nativity U.S. born (0) 14.72 18.62 55.85
Immigrant (1) 44.00 22.65 33.98

P(C)
2 (XA) 58.72 41.27

Table IV. Adjusted Afro-Caribbean population for computing DM.

XA=clinical need

No (0) Yes (1) P(M)
2 (XA=1|XN)

(per cent) (per cent) (per cent)

XN=nativity U.S. born (0) 19.46 13.87 41.61
Immigrant (1) 46.06 20.61 30.91

P(M)
2 (XA) 65.52 34.48

of Table II by RC(1). This will yield the adjusted population corresponding to the conditional
disparity approach, as given in Table III, where the last column P(XA=1|XN) has also been
changed using the adjusted cell probabilities. We see that Tables III and I have the same marginal
distribution for XA (rounding errors notwithstanding), as intended. The expected value of Y under
this adjusted population can be easily obtained by multiplying each cell probability in Table III
with the corresponding �i j from Table II and then summing them up. This leads to E (C)

2 [Y ]=6.77
per cent; hence,

DC=E (C)
2 [Y ]−E1[Y ]=6.77 per cent−14.39 per cent=−7.62 per cent

To calculate the marginal disparity, we need first to compute the RM function of (15), which is
determined by the rightmost columns labeled ‘P(XA=1|XN)’ in Tables I and II. Specifically, we
have

RM(0;0) = P1(XA=0|XN=0)

P2(XA=0|XN=0)
= 1−0.4162

1−0.5575
=1.3193, RM(0;1)= 0.4162

0.5575
=0.7465

RM(1;0) = P1(XA=0|XN=1)

P2(XA=0|XN=1)
= 1−0.3091

1−0.3390
=1.0452, RM(1;1)= 0.3091

0.3390
=0.9118

Table IV then is obtained by multiplying the (i, j)-cell proportion (the top unbracketed percentage)
in Table II with RM(i; j) just obtained for i, j =0,1 and then compute the corresponding P(XA=
1|XN) and P(M)

2 (XA) accordingly. We note that the resulting conditional distribution P(M)
2 (XA|XN)

is the same as that from Table I (rounding errors notwithstanding), as it should be, but the marginal
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distribution P(M)
2 (XA) is now markedly different from the one from the non-Latino whites, P1(XA).

This difference reflects the difference between the two approaches, because with the conditional
disparity approach we have P(C)

2 (XA)= P1(XA). As we discussed previously, the seemingly natural
‘equating-the-need-level’ approach is actually misleading in this application because of Simpson’s
paradox. Equating the need level after stratifying on nativity is a much more sensible approach.

To find the expectation of Y under this adjusted Afro-Caribbean population, we multiply the
four cell percentages in Table IV, respectively, by the four �i j values in Table II and then sum

them up. This yields E (M)
2 [Y ]=5.55 per cent. Consequently, the marginal disparity, which in this

example can be regarded as a sensible measure of disparity, is given by

DM=E (M)
2 [Y ]−E1[Y ]=5.55 per cent−14.39 per cent=−8.84 per cent

3.4. A continuous-distribution example

This theoretical example establishes the mathematical fact that the difference in the conditional
disparity and marginal disparity can be arbitrarily large. It also illustrates another form of Simpson’s
paradox, that is, even when there is no disparity in any strata defined by the non-allowable variables
XN, in the aggregated population one can still observe a disparity due to the correlation between XN
and race/ethnicity in the aggregated population and the fact that XN is classified as non-allowable.

To see this, let us consider a simple linear regression case

Ek[Y |XN, XA]=�(k)+�(k)
N XN+�(k)

A XA (25)

where k=1 indexes the non-Latino white population and k=2 the minority population. To simplify
algebra, suppose that in the natural populations (XN, XA) is bivariate normal, with mean (�(k)

N ,�(k)
A ),

unit variances and correlation �(k). That is,(
XN

XA

)
k

∼N

[(
�(k)
N

�(k)
A

)
,

(
1 �(k)

�(k) 1

)]
, k=1,2 (26)

Under this setting, for the conditional disparity, the hypothetical joint distribution P(C)
2 (XN, XA)=

P2(XN|XA)P1(XA) is a bivariate normal with the following distribution:(
XN

XA

)(C)

2

∼N

[(
�(2)
N +�(2)(�(1)

A −�(2)
A )

�(1)
A

)
,

(
1 �(2)

�(2) 1

)]
(27)

In contrast, under the marginal disparity approach, the hypothetical joint distribution for
(XN, XA) is given by P1(XA|XN)P2(XN), which is also bivariate normal but with the following
means and covariance matrix:(

XN

XA

)(M)

2

∼N

[(
�(2)
N

�(1)
A +�(1)(�(2)

N −�(1)
N )

)
,

(
1 �(1)

�(1) 1

)]
(28)

Simple algebra then yields that the difference between the two measures is

�D=�(2)�(2)
N (�(1)

A −�(2)
A )+�(1)�(2)

A (�(1)
N −�(2)

N ) (29)
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From (29), we have the following observations, two of which are special cases of what we have
discussed in general in Section 3.1. Specifically, we see that �D=0 whenever one of the following
three condition holds:

(a) �(1) =�(2) =0, that is, when XN and XA are independent in both populations;
(b) �(2)

N =�(2)
A =0, that is, when regression (25) does not depend on either XN or XA in the

population of interest (not necessarily in the reference population);
(c) �(1)

N =�(2)
N and �(1)

A =�(2)
A , that is, when the two populations have the same marginal distri-

butions for both XN and XA.

Of course �D can be zero by many other (incidental) combinations of the parameter values, but
the above three are most useful for theoretical insights. Note in particular that conditions (a) and
(b) are applicable in general, but condition (c) works only when the regression of Y is linear in
both XN and XA. We emphasize that as the parameters in (29) have no restrictions other than
|�(k)|�1, �D can be arbitrarily large, including approaching infinity.

We also remark a special case of interest, that is, when Ek[Y |XN, XA] of (25) is free of both k
(e.g. race/ethnicity index) and XN (i.e. �(k)

N =0). In such cases, there is no racial/ethnic disparity
under the conditional disparity model, as XA is being adjusted to have the same distribution for
both racial/ethnic groups and (11) does not involve XN. Under the marginal disparity model,
however, the matter is more complicated. Although XN does not impact Y directly, it impacts
XA when it is correlated with XA. Consequently, the difference in the marginal distributions of
XN in the two racial/ethnic groups will result in differences in the marginal distribution of XA

even when, or rather especially when, the conditional distribution P(N )
k (XA|XN) is adjusted to be

invariant to the race/ethnicity index k. It then follows that there will be a racial/ethnic disparity
due to the indirect impact of XN on Y via XA. Indeed, it is easy to verify for the current example
that the marginal disparity is given by

DM=�(1)�(2)
A (�(2)

N −�(1)
N ) (30)

This is zero only when (i) �(1) =0 and hence XA and XN are independent in the reference
population; therefore, XN cannot impact XA in the hypothetical population, (ii) �(2)

A =0 and hence
the impact of XN on XA does not translate into any impact on Y in the hypothetical population,
or (iii) �(2)

N =�(1)
N and hence the distribution of XN is actually invariant to race/ethnicity.

Perhaps most important here is to note Simpson’s paradox again. Although in the aggregated
population there is a marginal disparity for the case above, clearly there is no disparity in any
subpopulation defined by a particular value of XN, that is, when we condition on XN, because
the conditional distribution P2(XA|XN) has been adjusted to be the same as P1(XA|XN). This of
course is not paradoxical, just as Simpson’s paradox is not a real paradox in the mathematical
sense. Once we classify XN as a non-allowable variable, then logically we have to accept any
difference caused by it as a part of the overall disparity, regardless of whether the difference comes
from its direct impact or indirect impact on the outcome Y . Of course, one may argue whether the
indirect part really should be viewed as disparity, which is not an easy issue to address as then
one is implying that XN is both a non-allowable variable (for the direct impact) and allowable
variable (for the indirect impact via XN). We shall pursue this complex issue in subsequent
work.
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4. FUTURE WORK

The IOM definition of disparities takes an indirect approach of elimination and defines health
care disparity as the difference in health care that is not due to allowable covariates. While this
approach is appropriate for capturing disparity in its entirety irrespective of source attribution, it
leaves open the question of plausible causes for the disparity, and what can be done to eliminate
or reduce the disparity.

An alternative direct constructive approach is to define health care disparity attributable to
specific non-allowable covariates as the difference in health care that is due to these covariates.
This approach is used widely in the literature on attributable risk, such as Rubin [20], which
also emphasized the importance of making explicit assumptions such as what we termed the
preservation assumptions. This alternative approach can be implemented using the similar statistical
frameworks proposed above, but with the role of allowable and non-allowable covariates switched.
This approach does not capture disparity in its entirety, because it captures only disparity attributable
to the specific non-allowable covariates and may miss the disparity attributable to other non-
allowable covariates, including those that may not have been observed. However, this approach
may have more direct policy implications, providing guidance on the potential to reduce or even
eliminate health care disparities through specific policy implementations regarding the specific
non-allowable covariates.

In practice, we believe that both versions of the disparity are important. The elimination approach
is useful for estimating the magnitude of the overall disparity, whereas the constructive approach is
a tool for estimating how much disparity can be eliminated through specific policy interventions.
A comparison between the two is also important in revealing how much of the overall disparity
the policy intervention can eliminate. If a large portion remains, a new policy intervention needs
to be identified. We plan to explore these issues in subsequent work, especially in the context of
longitudinal data.

Another issue that we plan to investigate is the issue of variables that are not included in the
model for predicting the outcome Y but may actually be important. Traditionally there is not much
one can do about those variables other than trying one’s best to include as many variables as one can
find and afford to measure. For the conditional disparity framework as we outlined, one may have
noted that the conditional disparity as defined by (11) does not involve the non-allowable variables.
This provides an opportunity to realize the implicit assumption carried in the IOM definition,
that is, the non-allowable category is the ‘catch all’ category that includes all covariates that
have not been named explicitly in the allowable category. Of course, without strong assumptions,
nothing can be done for variables that are not even identified. Recall the fundamental assumption
underlying our conditional disparity model, which is that the allowable variables, which clearly
need to be identified and measured, are causes for non-allowable variables. Therefore, if in specific
applications where such an assumption can be viewed as reasonable, even when the non-allowable
variables form the ‘catch all’ category, then the conditional disparity measure enjoys the property
of being more general than we discussed in this paper.

However, the ‘catch-all’ formulation of the non-allowable variables would not produce anything
meaningful under the marginal disparity model, because neither can we stratify on variables
that are not measured nor should it be as logically nothing can be done when the causes
are not even identified. All these issues remind us again of the fundamental importance of
explicitly formulating, identifying, and stating causal assumptions underlying any disparity
measure.
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