
Enhanced Security Checks at
Airports: Minimizing Time to

Detection or Probability of Escape?
The Harvard community has made this

article openly available.  Please share  how
this access benefits you. Your story matters

Citation Meng, Xiao-Li. 2012. Enhanced security checks at airports:
minimizing time to detection or probability of escape? Stat 1(1):
42-52.

Published Version doi:10.1002/sta4.6

Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:10886851

Terms of Use This article was downloaded from Harvard University’s DASH
repository, and is made available under the terms and conditions
applicable to Open Access Policy Articles, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#OAP

http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Enhanced%20Security%20Checks%20at%20Airports:%20Minimizing%20Time%20to%20Detection%20or%20Probability%20of%20Escape?&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=83947d9ce17dd8654a040de7fe71d2ea&departmentStatistics
http://nrs.harvard.edu/urn-3:HUL.InstRepos:10886851
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP


Enhanced Security Checks at Airports:
Minimizing Time to Detection or Probability of Escape?

Xiao-Li Meng∗

January 21, 2011

1 A Turbulent Reading

As a statistician frequently in the friendly skies, I was intrigued by the article “To catch a terrorist: can

ethnic profiling work?” in Significance (Press, 2010; hereafter “the article”, and all page numbers below

refer to this article). As a matter of fact, I read it during a flight, on my way to a conference honoring

Larry Brown’s 70th birthday. The statement that (p. 167) “Surprisingly, and bizarrely, this turns out

to be the most efficient way of catching the terrorist.” particularly caught my eye. I didn’t know it was

possible to formulate statistically or probabilistically “the most efficient way” to catch a terrorist. The

indication that something is rather unusual of course further enticed me to study it carefully.

The optimality formulation turned out to be possible because the article adopted a simple mathemat-

ical setting. Specifically, the article assumed a population of N individuals passing through a network

of airport checkpoints, and exactly one of them is a terrorist. It also assumed that “perfect actuarial

information” (p. 166) is available in the form of pi, that is, the prior probability that individual i is the

terrorist. The article then asked: at airport checkpoints, what is the optimal probability qi to pull out

the ith individual for an enhanced security screening (e.g., a pat-down or a full body scan), given the

(expected) resource constraint that
∑N

i=1 qi = M(≤ N)? The optimality criterion used was to minimize

the expected number of times that the terrorist goes through checkpoints “before he happens to be

selected for screening” (p. 166):

µ =
N∑

i=1

pi

qi
. (1)

The aforementioned “the most efficient way” then refers to the “optimal probabilities”:

qi =
M
√

pi∑N
k=1

√
pk

, i = 1, . . . , N. (2)

I felt a bit of turbulence. Earlier on page 166, it was stated that without resource constraint the

optimal strategy is to pull out “every single passenger” (emphasis is original), i.e., to set qi = 1 for all

i. However, (2) does not lead to this conclusion when M = N . Nor does it lead to the obvious strategy

at the other extreme, that is, when M = 1. If only one person can be selected, what else can be better

than pulling out the person with the highest prior probability, when the prior information is “perfect”?
∗Xiao-Li Meng is Whipple V. N. Jones Professor and Chair of Statistics, Harvard University.
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An astute reader may have also noticed that in general the q′is of (2) cannot possibly be the optimal

probabilities under any criterion, because they are not guaranteed to be between zero and one. The same

problem occurred when the article argued (p. 166) that “strong profiling”, by which it meant qi = Mpi,

has the same expected value µ as uniform sampling, because again qi = Mpi can exceed one unless

M ≤ 1. But here “M =
∑N

i=1 qi is the number of passengers out of total N that we can afford to select

for secondary screening” (p. 166) and hence M ≥ 1; it would make little practical sense to assume that

airport checkpoints can only afford pulling out one person for an enhanced check.

The source for the mathematical oversight seems to be an unfortunate mix of notation. Before

presenting its equation (4) (same as (2) above), the article stated that (p. 166) “subject to the constraint

that M , the proportion of people overall that we check, is held constant,” suggesting a redefinition of M

as M/N . However, if this redefinition was intended (for which I cannot think of a good reason), then

the constraint needs to be reset as
∑N

i=1 qi = MN . Otherwise the problem discussed in the article after

its equation (4) would assume 1/N times the resource as the one before its equation (4), making the

mathematical formulation irrelevant for the reason mentioned above. It would also make the subsequent

comparisons meaningless. For example, the assertion (p. 167) that its equation (5), the expected time

under its equation (4), is less than its equation (3), the expected time under uniform sampling—which

was expressed as N/M , not 1/M—is true mathematically only when the two M ’s are the same.

This mathematical oversight is easy to fix, and the correct solution will partially invalidate the

assertion that the optimal strategy under (1) would “underplay” prior information (p. 167); see Section 3

below. However, something more profound than this oversight is needed to explain why (2) does not

deliver the aforementioned obvious strategy even in the case of M = 1. Before I present the reason,

however, let me emphasize that no one likes to be pulled out simply because of his or her ethnicity or

anything of that sort. Therefore, the overall conclusion of the article that ethnic profiling is unacceptable

can be argued meaningfully in many other ways, as the article presented. What I am discussing here is

the article’s probabilistic and statistical arguments. In the current setting, once the prior probabilities

pi’s are given, then whatever criterion we adopt, the resulting optimal strategy will only depend on the

values of these pi’s, not on their meaning or how they are derived. This potential for more general

applicability makes it critical to ensure the correctness of theoretical results and to explicate when they

are applicable in scientific publications. Below I will discuss why minimizing (1) is not an appropriate

criterion in the context of airport enhanced security checks.

2 Catching a Terrorist or Stopping an Imminent Threat?

The article arrived at (1) by casting the “pulling out” problem in the classic framework of sampling with

replacement, which it argued (p. 167) is justifiable because any particular checkpoint is “only one of

many airport security checkpoints through which terrorists pass.” Whereas this statement is useful in
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reminding us to be prepared at each security checkpoint, we must also remind ourselves that the whole

purpose of airport security checks is to prevent terrorists from getting on any flight where they will carry

out an act of terrorism. Given that a terrorist will only have one chance to carry out his act on an

airplane, because he will be either dead or detained after acting out, we clearly need to maximize the

probability of pulling him out the first time he comes to an airport with a (detectable) device that he

intends to use. We would have a far more serious problem than worrying about airport checkpoints if

any terrorist is allowed to be “sampled with replacement,” that is, he carried out his plot on a plane,

but somehow escaped and shows up at another airport checkpoint!

To put it crisply, the ultimate goal of an enhanced screening is not to catch a terrorist—if a terrorist

comes to an airport without bringing anything or acting in any way that would increase his probability

of being identified as such, then placing the task of identifying him through airport checkpoints is not a

meaningful goal. The ultimate goal of an enhanced screening is to minimize imminent threat, i.e., to stop

any individuals who will carry out a harmful act once they get on a plane. We therefore do not have the

luxury to wait for another chance to catch them. A cartoon posted outside a colleague’s office illustrates

this point vividly. It shows an instructor at a terrorist training camp who is ready to demonstrate how

to detonate a suicide bomb, remarking “Look very carefully, because I can only do this once.”

A predecessor to Press (2010), Press (2009), provided me with a plausible explanation of why this

distinction was overlooked. There, the “profiling problem” was formulated as a governmental hunting

of a malfeasor among N individuals, where the government has a “meaningful prior probability” pi that

the ith individual is its target. Both “authoritarian strategy” and “democratic strategy” were discussed

there. The “authoritarian strategy” is that the government enumerates all its citizens, and screens them

one by one without replacement until the malfeasor is found. In the presence of moral or practical

constraints, a government may adopt a “democratic strategy” determined by some public policies, where

screening processes are memory-less, that is, if an individual passes them, s/he will still be liable to be

sampled again because negative screening results are not recorded. (If the screening result is positive,

then of course the game is over, unless the screening is not 100% accurate, a complication also discussed

in Press, 2009.) Airport security checkpoints were cited in Press (2009) as such a memory-less screening

process. Hence, in that context, the purpose of airport checkpoints becomes helping the government to

catch a malfeasor, deviating from its original goal of minimizing imminent threat to flight safety.

But even for this “malfeasor hunting” problem, there is a more subtle mathematical reason why

criterion (1) is inappropriate. Let us assume now that the sampling with replacement is appropriate,

and that the government has resources to conduct L national searches sequentially, and each time it can

afford pulling out (on average) M individuals to conduct a memory-less screening. Given the probability

qi of pulling out the ith individual during each search (the memory-less property implies that qi stays

the same for all searches), the probability that the ith person is never pulled out is ei = (1 − qi)L.

Consequently, unless we set qi = 1 for all i’s such that pi > 0, there is at least one positive probability
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eipi, however tiny, such that the malfeasor is the one who escapes every screening. The corresponding

expected time to screening therefore is not defined (other than treating it as infinity).

Press (2009, 2010) avoided this problem by (implicitly) using L = ∞, which led to (1). This,

however, does not avoid the inherent sensitivity of the expected time to extreme events, a well-known

non-robustness of expectation. One can see from (1) that it will go to infinity if any single qi goes to zero

unless the corresponding pi is zero. Therefore, the optimal strategy under (1) will necessarily allocate

resource to any individual with nonzero pi no matter how tiny it might be. The aggregated effect is that

such a “most efficient” strategy will necessarily reduce the maximal possible probability of pulling out

the actual terrorist at a given checkpoint, and the reduction can be substantial when M/N is not too

close to one and the prior probabilities are reasonably informative, as shall be demonstrated in Section 3.

The mathematical difficulty with a finite L itself is telling us that we are not looking at the right

criterion. When L is permitted to grow without limit, then the probability of eventually pulling out the

terrorist is one, and hence minimizing the time to pull him out is meaningful. But with any given finite

L, there is always a chance that the terrorist will never be pulled out, and hence we have to focus on

minimizing this probability of escape, which, under the setting of Press (2009), is

PL =
N∑

i=1

(1− qi)Lpi. (3)

We can then minimize (3) subject to the constraint
∑N

i=1 qi = M . For the “malfeasor hunting” problem

in Press (2009), which does not cap L, we will see in Section 4 that the optimal strategy for minimizing

(3) indeed will converge to uniform sampling qi = M/N as L → ∞, though this does not mean that

the impact of the prior will vanish completely at the limit. In terms of stopping an imminent threat,

however, we have to set L = 1, and hence the optimality criterion is to minimize P1, as shown below.

3 Correctly Minimizing, and Minimizing the Correct Criterion

To simplify the notation without loss of generality, we will assume the pi’s are sorted in descending

order, namely, 1 > p1 ≥ p2 ≥ · · · ≥ pN > 0; recall
∑N

i=1 pi = 1 under the article’s assumption of a single

terrorist. Furthermore, to avoid mathematical complications that are too involved to discuss in this

article, all the optimal solutions presented below should be understood as representing an equivalence

class of solutions, including randomized ones (e.g., if a solution calls for pulling out the first M individuals

for certain, but pM+1 = pM , then any randomized procedure that shares the pulling probability qM by

the Mth and the (M + 1)st individuals will obviously also be optimal).

To minimize (1) correctly, we let

q̃i =
[M − (i− 1)]

√
pi∑N

k=i

√
pk

, for i = 1, . . . ,M, (4)

and let I be the largest i such that q̃i ≥ 1; if no such i exists, we let I = 0. (A subtlety here: although q̃i

is not necessarily decreasing in i, simple algebra shows that q̃j ≥ 1 for all j ≤ I.) Here I is the number of
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individuals our resource can afford pulling out with certainty. When M = N , q̃N = 1 and hence I = N ,

that is, we will pull out everyone, confirming the obvious optimal strategy discussed in Section 1. When

M < N , q̃M =
√

pM/
∑N

k=M

√
pk < 1, and hence I ≤ M − 1, always leaving resources to be distributed

to the remaining N − I individuals.

Given I as defined above, the correct optimal qi for minimizing (1) is given by

qi =

{
1, i = 1, . . . , I;
(M−I)

√
pi∑N

k=I+1
√

pk
, i = I + 1, . . . , N.

(5)

This result can be obtained by adding the inequality constraint 0 ≤ qi ≤ 1 to the derivation that led to

(2). An elementary proof is given in the Appendix, using the Cauchy-Schwarz inequality.

This correct solution indicates that as long as I > 0, even under (1), the optimal strategy tend to

“overplay” prior information (p. 167), because it will pull out for certain the I individuals with the

highest prior probabilities. A simple example illustrates the interplay between the informativeness of

the prior probabilities and the resource constraint in determining the value of I. Suppose N individuals

consist of two groups, N0 of them with the same high value p1 and the remaining N −N0 with the same

lower value pN , and M > N0. Let r = pN/p1, and ρ = (M −N0)/(N −N0). Then (4) and (5) imply that

when the prior is discriminative enough relative to the resource constraint, in the sense that
√

r ≤ ρ, the

optimal strategy will pull out everyone in the high-value group for certain, and pull out everyone in the

other group uniformly with the sampling rate ρ. Indeed, in this case, this strategy also minimizes the

escaping probability P1, demonstrating the influence of strong prior information. However, when
√

r > ρ,

I = 0 and hence (2) provides the optimal strategy under (1), differing from the one that minimizes P1.

The optimal solution under P1 =
∑N

i=1(1− qi)pi is of course well known: set qi = 1 for i = 1, . . . ,M ,

and qi = 0 for the rest; we will label this strategy Q1. The minimal value of P1 therefore is P
(Q1)
1 =

∑N
i=M+1 pi, which can be considerably smaller than the probability of escape under uniform sampling

or under (5). As an illustrative example, suppose N = 880 and M = 220, and the prior is given by

pi =





1
100 , i = 1, . . . , 40;
1

400 , i = 41, . . . , 240;
1

6400 , i = 241, . . . , 880.

(6)

Although the individual prior probabilities might seem rather low with their maximum being 1%, under

the optimal strategy Q1, P
(Q1)
1 = 15%, compared with P1 = 75% under uniform sampling.

This finding is inconsistent with a main assertion on page 164, that even if one puts aside moral

and other practical issues and “even with unrealistically perfect data it is surprisingly difficult to gain

any benefit from such profiling.” The “surprising difficulty” apparently is induced by the inappropriate

criterion (1). Indeed, for the current example, it is easy to verify that (2) yields

qi =





1, i = 1, . . . , 40;
1
2 i = 41, . . . , 240;
1
8 , i = 241, . . . , 880.

(7)
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These values do provide the correct optimal strategy under (1), though if we set M any larger, we will

need to use (5). However, under this strategy, the probability of escape is

P1 = 40× 0× 1
100

+ 200× 1
2
× 1

400
+ 640× 7

8
× 1

6400
=

27
80

= 33.75%. (8)

Although this represents 55% reduction from uniform sampling, moving to Q1 will lead to another (about)

55% reduction in the P1 value, a reduction that is hard to argue as insubstantial on its own.

4 A Mathematical Justification for Uniform Sampling?

It is true, however, that the reduction in PL of (3) from either uniform sampling or from (5) to optimal

PL tend to (but not always) become less as L grows. When L > 1, we can define

q̆i = 1− (i−M)p−(L−1)−1

i∑i
k=1 p

−(L−1)−1

k

, for i = M, . . . , N. (9)

Let K be the largest i such that q̆i > 0; note such K must exist because q̆M = 1. (Again, q̆i is not

necessarily decreasing, but q̆i > 0 for all i ≤ K.) Here K is the number of non-zero qi’s in QL, the

optimal solution for minimizing PL of (3), which is given by

qi =





1− (K−M)p
−(L−1)−1

i∑K
k=1 p

−(L−1)−1
k

, i = 1, . . . ,K;

0, i = K + 1, . . . , N.
(10)

The optimality of (10) can be easily established using Hölder’s inequality; see the Appendix.

The solution (10) indicates that when the formulation in Press (2009) is relevant, the optimal strategy

for maximizing the probability of capturing the malfeasor is “complementary harmonic sampling” as long

as L > 1. Although I doubt its practical value, (10) provides an important theoretical insight into the

interplay between prior information and resource constraint, on purely mathematical grounds, as Press

(2009, 2010) intended. This is because QL of (10) turns out to connect the two cases of interests, namely

Q1 and uniform sampling. Perhaps expected, Q1 is the limit of QL when L ↓ 1. The more interesting case

is that when L → ∞, QL converges to uniform sampling {qi = M/N, for 1 ≤ i ≤ N}, which therefore

can be denoted as Q∞. These facts are not hard to see formally by inspecting (10), but a rigorous proof

takes a bit of algebra; see the Appendix. The left panel of Figure 1 demonstrates this convergence for

the numerical example in Section 2 (note that there are only three distinct q values for that example.)

Using the same example, the right panel of Figure 1 compares the log of the probability of escape

for the three strategies: dashed line for the optimal strategy (10), solid line for uniform sampling, and

dotted line for the “square-root sampling” (5). Intriguingly, we see that the difference between optimal

and uniform sampling remains a constant on the log scale as L grows, implying that the two probabilities

are never the same but are of the same magnitude. This is not a contradiction to the fact that QL → Q∞

because their corresponding PL values converge to zero. In contrast, the probability of escape under (5)

converges to zero exponentially slower compared with either optimal or uniform sampling.
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Figure 1: Left Panel : Demonstrating optimal sampling (10) converging to uniform sampling. Right
Panel: Comparing log of the escaping probabilities.

Both phenomena are general. Let RL = P
(QL)
L /P

(Q∞)
L , that is, the ratio of the probability of escape

under the optimal sampling to that of uniform sampling, and ∆L = − log RL. Then, as shown in

the Appendix, as soon as K = N , ∆L will decrease as L increases, indicating that the impact of the

prior information decreases as our resource becomes unlimited. However, the impact of the prior does not

vanish even at the limit, because the limit of ∆L, ∆∞, turns out to be exactly the Kullback–Leibler (KL)

divergence between the uniform distribution on {1, . . . , N} and the prior; see the Appendix. Therefore,

the more informative the prior distribution, as measured by a larger KL divergence from the uniform

distribution, the larger ∆∞ is. For the numerical example in Section 2, the KL divergence is 1.16, which

corresponds to the vertical distance between the solid and dashed lines (as L →∞). Consequently, the

minimal probability of escape is never more than 1/3 (since R∞ = e−∆∞ = e−1.16 = 0.312) of that under

uniform sampling for all L, with the minimal RL = 0.186 achieved at L = 2. Note that the minimal RL

does not occur at L = 1—recall here R1 = 1/5—because RL increases with L only after K becomes N ;

in this example, this occurred after L ≥ 3.

On the other hand, for large L, the probability of escape under the square-root sampling (5) is

dominated by the individual(s) with the largest probability of escape, which is eN = (1 − qN )L. Since

qN has to be smaller than the uniform sampling rate M/N unless the prior is uniform (because NqN <
∑

i qi = M), we see that if we replace the optimal escaping probability in RL by the escaping probability

under (5), RL will go to infinity at the rate [(1 − qN )/(1 −M/N)]L. For the numerical example here,

qN = 1/8, M/N = 1/4, and hence this rate is (7/6)L, explaining the growing distance between the dotted

line and the solid (and dashed) line in the right panel of Figure 1.

The same plot shows that the relationships among the (log) escaping probabilities are more complex

when L is small. That (5) did nearly as well as (10) when L = 5 indicates the possibility for different

criteria to lead to very similar strategies in special cases. However, the main message here is that (10),
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including its two limiting cases, confirms our intuition that the prior information generally has the most

impact when our resource is most limited, and the least impact when our resource becomes unlimited.

However, unlike in common cases of Bayesian inference where the impact of the prior vanishes as the

size of the data goes to infinity, the impact of the prior can persist in a design-based context even with

unlimited resource for collecting data, an insight that is less obvious. Therefore, theoretically, the results

above indicate that uniform sampling is never optimal for minimizing the probability of escape unless

the prior is already uniform or M = N . Practically, however, achieving this optimality requires precise

knowledge of pi. Yet remarkably, uniform sampling achieves the optimal magnitude without any prior

knowledge (excluding of course the trivial case where the prior distribution is a singleton, that is, the

government can correctly identify the malfeasor based on prior probability alone). In fact, as soon as

L is large enough to ensure K = N , the ratio RL will be bounded below by NHp and above by NGp,

where Hp and Gp are respectively the harmonic mean and geometric mean of the prior probabilities

{p1, . . . , pN}; see the Appendix. Consequently, one could argue that for the “malfeasor hunting” problem

as specified in Press (2009), this robust optimality of uniform sampling provides a mathematical reason

to justify its use. However, this mathematical reasoning is not applicable when our goal is to stop an

imminent threat, precisely because then L = 1, rendering the large-L argument above untrustworthy.

5 Minimizing Error-escaping Probability in Statistical Review

Incidentally, the theme of the Larry Brown conference was “Borrowing Strength: Theory Powering

Applications”. The current problem is a good demonstration of the potential impact of theoretical

thinking on real-life applications, and the impact can be both positive and negative. The real-life problem

of airport security enhanced checks is of course far more complex than any mathematical formulation

in Press (2010) or in this article. For example, if we take its probabilistic modeling seriously, we need

to consider specification of a loss function, how terrorists may game the system whatever non-uniform

strategy we adopt (an issue related to the “second-order” effect alluded to in Press, 2009), how multiple

terrorists may coordinate in their actions, etc. Whereas such issues may be extremely hard to model

theoretically, the associated thought process itself could help prevent us from using the mathematical

optimality of Q1 under the simple criterion (3) as the argument for strong profiling, or from using the

erroneous (2) or inferior criterion (1) as mathematical reasoning for the opposite. Incorrect mathematical

reasoning can only serve as distractions, much like a technical oversight in a court argument is often used

to distract the juries from otherwise irrefutable evidence.

These distractions could have been easily avoided if they had been identified during the review

process. If there is any profession that should be particularly alerted by a larger-than-one probability or

by mixing sampling with replacement with sampling without replacement, it must be ours. Ironically,

therefore, the “Surprisingly, and bizarrely” sentiment also describes my feeling towards the fact that
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these oversights passed through our editorial checkpoints. Sadly, this is not the first time that a larger-

than-one probability was permitted to pass a statistical editorial checkpoint (see Meng, 1995), and it

would be another glaring error if I were to predict that this is the last time. Whereas the consequences

of false negative errors at editorial checkpoints are of no comparison to those at airport checkpoints (at

least in the short run), I couldn’t help but wonder if the underlying probabilistic strategies are similar.

We all should exercise our due diligence to minimize the error-escaping probability for every paper we

review, not merely hope to minimize the expected time to detecting the next improbable probability.
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Appendix: Mathematical Proofs

I. The Optimality of (5). We first write

µ =
N∑

i=1

pi

qi
=

I∑

i=1

pi

qi
+

N∑

i=I+1

pi

qi
. (11)

By the Cauchy-Schwarz inequality, we have

CI ≡
(

N∑

i=I+1

√
pi

)2

=

(
N∑

i=I+1

√
pi

qi

√
qi

)2

≤
(

N∑

i=I+1

pi

qi

)(
N∑

i=I+1

qi

)
, (12)

where equality holds if and only if qi ∝ √
pi, i = I + 1, . . . , N. Therefore, when I = 0, (2) follows from

(12) immediately because the qi’s defined there make equality hold in (12) and none of them exceeds
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q1 = q̃1 < 1, which holds by the definition of q̃I . When I > 0, combining (11) and (12) together with
∑N

i=I+1 qi = M −∑I
i=1 qi, we see that for any 0 < qi ≤ 1, i = 1, . . . , N ,

µ =
N∑

i=1

pi

qi
≥

I∑

i=1

pi

qi
+

CL

M −∑I
i=1 qi

≡ f(q1, · · · , qI). (13)

For any i = 1, . . . , I, we have

∂f

∂qi
= − pi

q2
i

+
CI

(M −∑I
k=1 qk)2

≤ −pI +
CI

(M − I)2
, (14)

because pi ≥ pI and qi ≤ 1 for all i = 1, . . . , I, and I < M whenever M < N (the M = N case is trivial).

But the right-hand side of (14) is non-positive if and only if q̃I ≥ 1, which holds by the definition of I.

Hence f(q1, . . . , qI) ≥ f(1, . . . , 1) for all 0 ≤ qi ≤ 1. Consequently, (13) implies

µ =
N∑

i=1

pi

qi
≥

I∑

i=1

pi +
CI

M − I
, (15)

proving (5) because qi’s there satisfy 0 ≤ qi ≤ 1,
∑N

i=1 qi = M , and they achieve the bound in (15).

II. The Optimality of (10) and Its Limiting Cases. To prove the optimality of (10) for any L > 1,

we first write

PL ≡
N∑

i=1

(1− qi)Lpi =
K∑

i=1

(1− qi)Lpi +
N∑

i=K+1

(1− qi)Lpi. (16)

Because (1− qi) = [(1− qi)p
1/L
i ][p−1/L

i ], by Hölder’s inequality, we have

K∑

i=1

(1− qi) ≤
[

K∑

i=1

(1− qi)Lpi

] 1
L

[
K∑

i=1

p
−(L−1)−1

i

]1− 1
L

, (17)

where equality holds if and only if 1− qi ∝ p
−(L−1)−1

i , i = 1, . . . , K. Therefore, when K = N , (10) follows

from (17) immediately because the qi’s defined there make equality hold in (17) and none of them goes

below qN = q̆N > 0, which holds by the definition of q̆N . When K < N (recall K ≥ M), combining

(16)-(17) with
∑K

i=1 qi = M −∑N
i=K+1 qi, we see that for any 0 ≤ qi ≤ 1, i = 1, . . . , N ,

PL ≥
[
K −M +

N∑

i=K+1

qi

]L

D1−L
L +

N∑

i=K+1

(1− qi)Lpi ≡ g(qK+1, . . . , qN ), (18)

where DL =
∑K

i=1 p
−(L−1)−1

i . Differentiating g with respect to qi, i ≥ K + 1, we obtain

∂g

∂qi
= L(K −M +

N∑

i=K+1

qi)L−1D1−L
L − L(1− qi)L−1pi ≥ L

[
(K −M)L−1D1−L

L − pK+1

]
(19)

because qi ≥ 0 and pK+1 ≥ pi for i ≥ K + 1. But the right-hand side of (19) is non-negative if and

only if q̆K+1 ≤ 0, which holds by the definition of K. Hence g(qK+1, . . . , qN ) ≥ g(0, . . . , 0) for all

0 ≤ qi ≤ 1, i ≥ K + 1. Combining this fact with (18) yields

PL ≥ (K −M)L

DL−1
L

+
N∑

i=K+1

pi. (20)
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This completes the proof because the lower bound in (20) is achieved by the qi’s of (10), which also

satisfy the constraints that they are probabilities and that
∑N

i=1 qi = M .

To establish the limiting cases of (10), we first note that there is nothing in the proof above that

requires L to be an integer, but only that L > 1. Let M1 and M2 be the smallest and the largest i such

that pi = pM ; hence M1 ≤ M ≤ M2. Then it is easy to see that as L ↓ 1,

q̆M2 = 1− M2 −M

(M2 −M1 + 1) +
∑M1−1

k=1 (pM/pk)(L−1)−1 −→
M −M1 + 1
M2 −M1 + 1

> 0,

and

q̆M2+1 = 1− M2 + 1−M

1 +
∑M2

k=1 (pM2+1/pk)(L−1)−1 → M −M2 ≤ 0.

Consequently, as L →∞, K → M2 and hence (10) converges to

qi =





1 i = 1, . . . , M1 − 1;
M−M1+1
M2−M1+1 , i = M1, . . . , M2;
0, i = M2 + 1, . . . , N.

This limit is equivalent to Q1 when M2 > M1 because it also reaches the minimal value of P1, and it is

identical to Q1 when M2 = M1(= M), that is, where there is no tie for pM .

At the other extreme, as L → ∞, q̆N → M/N > 0 and hence K = N when L is large enough. It is

then easy to see that as L →∞, qi of (10) will converge to M/N for all i because p
−(L−1)−1

i → 1.

III. The Monotonicity and Limit of RL and of ∆L

By the definition of RL = P
(QL)
L /P

(Q∞)
L , we see from (10) and (3) that as soon as K = N ,

RL =

[
1
N

N∑

i=1

(
1

Npi

) 1
L−1

]−(L−1)

. (21)

Using the fact that for any positive ~a = (a1, . . . , aN ), h~a(x) = [ 1
N

∑N
i=1 ax

i ]1/x is a strictly increasing

function of x unless all ai’s are the same, we see that RL = [h~a((L − 1)−1)]−1 is a strictly increasing

function of L unless ai = (Npi)−1 are all equal. It follows then, as long as L ≥ 2, the right-hand side

of (21) is bounded below by [h~a(1)]−1 = NHp, where Hp = [
∑N

k=1 p−1
i /N ]−1 is the harmonic mean of

{p1, . . . , pN}. To get the upper bound, we let L →∞ and applying the L’Hospital’s rule, which yields

R∞ = lim
L→∞

RL = N

(
N∏

i=1

pi

)1/N

= NGp,

where Gp is the geometric mean of {p1, . . . , pN}. Hence, as long as the prior is not uniform, we have

0 < NHp < RL < NGP < 1,

∆L = − log(RL) is strictly decreasing, and

∆∞ = − log R∞ = N−1
N∑

i=1

log(N−1/pi),

which is the Kullback–Leibler divergency between the uniform distribution {N−1, . . . , N−1) and the prior

distribution {p1, . . . , pN}. [Note all results above assume L(≥ 2) is large enough to ensure K = N .]
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