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You want me to analyze data I don’t have?
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Eighteen years ago, Professor Xinming Tu (one of the 
journal’s biostatistical editors) and I were coauthors of 
a paper[1] that involved missing data in chemometrics. 
One of the reviewer’s comments included the following:

The statement, ‘The naive approach of ignoring 
the missing data and using only the observed 
portion could provide very misleading conclusions’ 
is nonsense to me (and I think the authors should 
also recognize it as nonsense in the real world). 
Similarly, what does it mean, ‘When analyzing 
such missing data, ...’; if the data are missing, you 
can't analyze them. 

If you find nothing nonsensical in this reviewer’s 
comments, then the current article is worth a few 
minutes of your time. Statistical analysis has the same 
inductive nature as detective work: inferring unknowns 
from whatever one knows and observes, including 
the evidence that something is missing.  Few qualified 
detectives would ignore suspicious absences in drawing 
their overall conclusions. Similarly, understanding the 
complications and consequences of having missing 
data is essential to reaching statistically meaningful and 
scientifically defensible conclusions.

1. Three complications when analyzing missing data

The first and most obvious complication with 
incomplete or missing data is the inapplicability of 
standard statistical methods and software, which are 
typically designed for ‘rectangular’ data. By ‘rectangular’, 
we mean an n by p data matrix where columns represent 
the p variables under study and rows the n individual 
subjects from whom we intended to collect data.  All 
of us who have ever needed to handle a data matrix 
with ‘holes’ in it (i.e., missing data) have experienced 
frustration to one degree or another.  

There is a crucial difference between a truly com-
plete data matrix and one with holes, even when the 
holes are filled in by some imputation method. The 
difference lies in the amounts of information available 

for the intended analysis.  With incomplete data there 
will be less information than when all intended data 
points are recorded as designed, even if the missing data 
is filled in by an imputation approach.  This obvious fact 
is worth emphasizing because it stresses the importance 
of avoiding missing data at the design stage, to the 
extent possible, a point that is emphasized in the two 
previous articles in this series.[2,3]

The second complication is that once missing data 
occurs, our estimators will typically be less precise and 
our tests less powerful, compared to what we originally 
intended assuming a complete data set. In this situation 
simply increasing sample size to deal with the missing 
data will not guarantee more precise estimates or 
increased power; a probabilistically principled method  
would be needed, as detailed in Meng and Xie.[4]

The third and most critical complication, one that 
is far less commonly appreciated, is the potential for 
bias due to missing data. Even if the selected sample is 
perfectly representative of a targeted population, the 
missing data mechanism (MDM), that is, the process 
that is responsible for the loss of intended data, can 
severely compromise the representativeness or, more 
generally, the quality of data. This is because the MDM 
is essentially a sub-sampling step that is typically not 
under the control of the data collector. Rather, it is a 
self-selection process for reasons that often thoroughly 
violate the representativeness principle. Thus we may 
obtain very misleading conclusions if we analyze what-
ever passes through the MDM (i.e., the observed values) 
without questioning the reasons why some data were 
eliminated.

Several examples of the biases introduced by 
missing data were provided in the first article in this 
series.[2] Surveys of depression in China provide another 
example. Many individuals in China consider depressive 
symptoms a sign of a weak personality, not an indicator 
of a medical disorder that can be treated, so there is a 
strong tendency to under-report depressive symptoms. 
However not reporting symptoms is not the same as 
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not having them. This discrepancy has led to the puzzle, 
reported by Science,[5] that China has much lower rates 
of depression compared to those seen in Western 
countries, yet with comparable rates of suicide. 

Not reporting a symptom or diagnosis can occur in 
two ways: a) the respondent skips the relevant question, 
or b) the respondent provides a false answer to the 
relevant question. Skipping the question – known as 
non-response – occurs in essentially 100% of real-life  
surveys. Survey data with no missing data is almost 
certainly pre-processed data, not the original raw data. 
Whether or not you can still obtain valid statistical 
inferences from such preprocessed data depends on why 
the data were missing from the original raw data set and 
how appropriately the preprocessing step accounted for 
such reasons (to be discussed below).

Dealing with false answers is even more difficult 
because it requires us to first recognize that, although we 
appear to have a response, the real response is actually 
missing. The observed ‘no’ could be a real ‘no’, but it 
could also be a fake ‘no’ with the real answer being ‘yes’.  
We can never know for certain the correct answer for 
a particular individual, but there are various statistical 
methods that can be applied to reduce the potential 
biases in estimators of aggregate quantities (e.g., overall 
prevalence of depression in a population) as long as 
we can postulate reasonable assumptions about why 
respondents provide false negative answers.[6]

Although false answers might not be commonly 
recognized as a form of missing data, we include it 
to demonstrate that missing data problems arise in 
practice in many guises, some in the usual sense (e.g., 
nonresponses, censoring,  truncation), and some in 
statistical modeling (e.g., latent variable model, hidden 
Markov models,  counterfactuals in causal inferences). 
The statistical principles for dealing with missing data 
are essentially the same. We aim to reasonably capture 
the actual MDM, and ideally, incorporate it in our 
overall model. Minimally, we use our (often partial) 
knowledge of MDM to make appropriate adjustments to 
our complete-data procedures. After briefly discussing 
three common mistakes we will highlight three classes 
of methods for analyzing missing data.

2.  Three common mistakes when handling missing 
data

Historically, the most common mistake when 
handling missing data is simply to drop any subject 
with any missing entry (e.g., individuals who did not 
answer all the questions will be removed from the 
database), adopting a so-called complete-case analysis 
(CCA).  The almost costless nature of this method – in 
terms of statistical modeling effort – has seduced many 
investigators, especially those with little statistical 
training.  Fittingly, like many things in life, the lowest cost 
often comes with the lowest quality. The CCA method 

is guaranteed to be valid only when the missing data 
are missing completely at random (MCAR[7]); that is, 
when the MDM is completely determined by random 
chance alone, as discussed by Lin and colleagues[2].   
This is a very restrictive assumption which can rarely 
be justified in practice, because missing data typically 
occur for particular reasons, not just by chance. For 
the aforementioned depression example, dropping 
all the cases with nonresponses, which are more 
likely, to occur among those who actually suffer from 
depression can only reinforce the misleading inference 
that the prevalence of depression is very low. Mounting 
literature demonstrating the serious biases from 
conducting CCA,[8,9] has led to the substantial decrease 
in inappropriate use of CCA though by no means has it 
ceased.  

The second common mistake is to simply fill in the 
missing entries by some convenient values (e.g., sample 
averages) or, perhaps more sophisticatedly, with a 
regression prediction based (solely) on the observed data 
(e.g., via fitting a regression model using the complete 
cases). Such mean or regression imputation methods 
aim to improve upon the CCA method by retaining 
more data and attempting to predict the missing data 
in some reasonable way.  Unfortunately, such methods 
still do not correct for missing-data bias in general, 
because these missing-data imputations themselves 
may be based on a biased sample. There are, however, 
special cases where such methods can lead to valid point 
estimators: when one can assume data are missing at 
random (MAR)[7] the mean or regression imputation 
process for linear estimators can use the MAR property 
(e.g., the mean imputation can be performed separately 
for the two gender groups or the regression imputation 
can use gender as a covariate).  

But as soon as we move beyond linear statistics, 
analyzing a single set of imputed data as if they were 
real cannot even lead to correct point estimators.  For 
example, when we fill in each missing entry by some 
kind of mean and then compute a sample variance based 
on such data, it will underestimate the actual variance. 
This occurs because we have artificially eliminated some 
natural variability by replacing a missing data point by an 
estimate of its mean, which has less variability.  Similarly, 
estimates of correlations are distorted because a 
correlation between variables can be very different from 
the correlation of their means – mistaking the two as the 
same is known as the ecological fallacy.[10] There have 
been many studies[11] that demonstrate the problems of 
mean and regression imputations in real-life problems.

Consequently, the third common mistake is to 
analyze imputed data as if they were real. We sometimes 
unknowingly commit this error because we do not know 
our data contain imputed values. A common adverse 
effect of such a mistake is that our inference provides 
a false sense of certainty. A nominal 95% confidence 
interval may actually only be a 70% confidence interval, 
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or a test with a declared 80% power may possess only 
50% power. To illustrate, suppose that in a simple random 
sample of N individuals, n individuals responded with 
values Yi (i=1, …, n), and we imputed the m=N-n missing 
values by the average of the n observed values, called 
Yobs. If we then mindlessly input the resulting N values 
(including the imputed mean value for the m individuals 
who had missing data) into a software package designed 
to compute a 95% confidence interval for the population 
mean of Y, we will find the resulting interval width is 
only (about) R=n/N percent of what it should be even 
if we assume the MDM is MCAR and hence the point 
estimator Yobs itself is consistent and unbiased. This 
occurs because s, the estimated standard deviation of 
the sample, will underestimate the population standard 
deviation by a factor of √n/N, and because s/√N, the 
estimated standard error for Yobs , will be underestimated 
by another factor of √n/N even if s is consistent. For 
example, if we have 50% missing data, an intended 
± two-standard deviation 95% confidence interval may 
actually be a ± one-standard deviation 68% confidence 
interval (assuming large-sample normal approximation). 

3.  Three classes of methods for analyzing missing data

The first class of methods for analyzing missing data 
– non-parametric methods – can be employed when a 
missing data problem can be treated as a problem of 
dealing with unequal probability sampling. For example, 
when the bias caused by MDM can be handled by 
adjusting for non-response rates, then reweighting (a 
non-parametric method) can be quite effective. A simple 
example illustrates this point. Suppose that on a question 
about the use of mental health services, men’s response 
rate was only half of women’s response rate, and that 
upon further investigation we convinced ourselves that 
we can treat the MDM as MAR[7] with gender as the only 
relevant predictor of missingness. Then, to estimate 
the rate of service use for the overall population, 
we can simply give each male respondent a weight 
proportional to 2 (i.e., the inverse of the probability 
of response, [1/0.5]), while each female respondent 
receives a weight proportional to 1, and then compute 
the weighted average. This will effectively restore the 
correct gender balance of the original complete sample 
(i.e., as if everyone had responded) and lead to an 
(approximately) unbiased estimator. This estimator’s 
variance can be calculated using the variance formula 
for a ratio estimator. 

The method of weighting by the inverse of the 
probability of response has been generalized to more 
complicated situations, especially with the use of 
estimating equations,[13] but the underlying principle 
remains the same. The major drawback of this class of 
methods is the large variances of the estimates that 
occur because of the small values of the probability 
of response appearing in the denominators of the 
weights, a well-known problem for the so-called Horvitz-

Thompson estimators.[12] The method’s main advantage 
is it avoids explicitly modeling how MDM depends on the 
observed quantities. Note that this class of reweighting 
methods can be justified only when the MDM is MAR. 
If the MDM depends on any unobserved quantity, then 
the response probability cannot be directly estimated 
or assessed from the observed data themselves. In such 
cases, further (unverifiable) modeling assumptions are 
needed in order to proceed. 

The second class of methods for analyzing missing 
data – parametric methods – makes parametric 
distributional assumptions about the complete data 
and the MDM. Note here that the observed data 
include both the observed sample values and a missing-
data indicator R that specifies whether the data point 
is missing or observed.  In the previously discussed 
simple random sampling setting if we let Ri=1 when Yi is 
observed and Ri=0 when Yi is missing, then the model for 
R conditional on Y allows us to capture the MDM. In the 
simple random sampling setting, if the MDM is MCAR 
then this conditional model is simply a Bernoulli model 
for Ri with the probability of response independent of 
the value of Yi .  In contrast, if the MDM is not MCAR, 
then the probability of response (p) can vary with Yi . 
For example, the logit of p could decrease linearly with 
Yi , in which case the response probability decreases 
with the value of Yi (e.g., a person with higher usage of 
mental health services tends to have a lower probability 
of reporting).  See Little and Rubin[14] for examples with 
various degrees of complexity. Once such a model is in 
place, we can proceed by using the maximum likelihood 
estimator (MLE) or by Bayesian analysis if we are also 
willing to specify a ‘prior’ for the model parameters. 
Such priors are vital when the parameters for MDM 
are not identifiable from the observed data alone. A 
key advantage of this parametric modeling approach is 
its efficiency, when the specified model (including for 
MDM) is acceptable. Otherwise the estimates are biased 
even asymptotically (that is, even when we have an 
infinite amount of data).  This is a case of the standard 
bias-variance trade-off.

The computation of the MLE from the observed-
data likelihood is typically difficult to carry out directly. 
A very popular iterative algorithm, the EM algorithm[15] 
(with many generalizations and variations[16]) handles 
such problems, especially when the MDM is MAR. For 
Bayesian computation, there is a whole class of Markov 
chain Monte Carlo (MCMC) methods,[17] including the 
stochastic counterpart of the EM algorithm and its 
generalizations, such as the Data Augmentation (DA) 
algorithm and more generally the Gibbs Sampler, as 
reviewed in van Dyk and Meng.[18]

The third class of methods for analyzing missing 
data – imputation methods – are popular because once 
the missing values are filled in, the standard complete-
data procedures and software can be applied (but this 
does not imply that the corresponding results are valid).  
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Typically a central goal of an imputation method is to 
eliminate the holes in a database so subsequent users 
can employ their favorite complete-data models. The 
quality of imputation is crucial: we all understand the 
common-sense axiom "garbage in, garbage out".  Even 
if we have an ideal imputation method, one that exactly 
captures the MDM, the imputed data are still not real, 
and therefore we need to adjust our analysis to reflect 
the uncertainty inherent in the imputation.  For single 
imputation, when each missing value is imputed only 
once, we need specially-designed procedures to handle 
different estimators.[19]

Multiple imputation[20] addresses this problem by 
providing several imputations for each missing value, 
creating replications that allow for variance estimation 
directly from the imputed values.  Specifically, Rubin’s[20] 

multiple imputation (MI) first builds a comprehensive 
imputation model for all the missing values as a set, a 
task usually too cumbersome for an individual analyst 
and hence usually completed by the data collection 
agency (e.g., a census bureau). The analyst then uses 
this model to draw m independent imputations, creating 
m completed-data sets which are then analyzed by 
repeating the intended complete-data analysis m times. 
The MI estimator is then simply the average of their m 
complete-data estimators (e.g., regression coeffecient), 
and its variance is obtained via the so-called Rubin’s 
variance combining rule, which adds up the within-
imputation variance and the between-imputation 
variance (both of which are trivial to compute from the 
m sets of analysis outputs).  Complications exist when 
the analysis procedure is not compatible with the model 
used to draw the imputations, but even in such cases, 
MI is still a viable and sometimes preferred strategy; 
see Meng[21] and Xie and Meng[22] for discussions and 
investigations.

4.  Three questions to ask whenever facing missing 
data

Whenever we face missing data, which is essentially 
all the time in practice, it is worthwhile to ask ourselves 
the following three questions:

1) Why are data missing?    

2)  Do the missing data really make any difference?   

3) Have I done the best that I could to handle the 
missing data?

The first question is the most fundamental for the 
reasons outlined above. Even if we cannot answer the 
question, and in most cases we cannot or do not have 
a complete answer, simply raising the question helps 
to remind ourselves that our final results, no matter 
how sophisticated they may appear, may suffer from a 
serious nonresponse bias.  Our conclusions may apply 
only to a subpopulation that is very different from our 
original intended population because our observed 
sample is self-selected.  Consequently, even if we do not 

know why the data are missing or do not know how to 
model the MDM, we should at the least acknowledge 
this potential bias when we present the results of our 
analysis.

The second question is a practical one. Yes, almost 
every real-life problem comes with some missing data. 
But if the amount of missing information is small, then 
perhaps our inferences would not be that different 
even if we had observed all the data. Note here we use 
the term information instead of data because the two 
quantities are not necessarily the same. A small amount 
of missing data almost always implies a small amount 
of missing information, but not vice versa. Consider a 
two-question survey in which the answer to the first 
question is highly correlated with the answer to the 
second question. Even if very few subjects answer the 
first question (perhaps due to its sensitive nature), as 
long as most people answer the second question (a good 
proxy to the first question that does not appear to be as 
sensitive), we may have a limited loss of information. In 
such cases, for practical purposes, it may be acceptable to 
adopt a simplistic method for handling the missing data 
(e.g., ignore the first question), especially when facing 
time constraints. However, even if we choose to ignore 
missing-data because we truly believe that it would not 
alter our practical conclusions, we should still explicitly 
acknowledge the choice we have made. This is not 
merely for scientific integrity, but also to acknowledge 
the possibility that we were overly confident because we 
overlooked certain issues that would be more apparent 
to others. 

The third question is to make ourselves consider if we 
could have extracted more information out of the data 
available. In mental health and other medical studies, 
collecting data can be expensive and there is great 
incentive to get as much information out of our data as 
possible. At the same time, we want to be sure that the 
conclusions we draw from the information we obtain are 
not misleading. The best way to simultaneously achieve 
these two goals, to the largest extent possible, is to 
carefully model the distribution of the observed values 
and the missing-data indicators, and to then follow a 
probabilistically principled method, be it parametric 
or non-parametric, to arrive at our inference.  We can 
never be certain that we have captured all the intricacies 
of the underlying MDM, but it is certain that by simply 
ignoring the missing data our final analysis will suffer 
from either nonresponse bias or inefficiency and, most 
likely, both. In this sense, analyzing the data we do not 
have reflects the soundness of our statistical mind, and 
the more we can put into this endeavor, the more we 
can advance science and civilization. 
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