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it. As a CV to be used jointly with the stratification,
one may considerH = A − E[A|B], with a coeffi-
cient β(B) that depends on the value ofB. The op-
timal coefficient isβ∗(B) = E[HL|B]/E[H 2|B] if
the goal is to estimateE[L]. To estimateβ∗(b) as a
function of b, one could estimate the two functions
q1(b) = E[HL|B = b] and q2(b) = E[H 2|B = b]
from the sample{(Bi,Hi,Li), i = 1, . . . , n} of n val-
ues of(B,H,L), for example, using least-squares ap-
proximation to fit a curvêq1 to the points(Bi,HiLi)

and another curvêq2 to the points(Bi,H
2
i ). The ra-

tio will estimate the functionβ∗(b). In the situations
where this function is far from being a constant, this
could make a significant difference compared with us-
ing the sameβ for all values ofB.

CVS FOR FUNCTIONS OF
SEVERAL EXPECTATIONS

The authors have considered a setting where lin-
ear CVs are used to correct the estimator of asin-
gle mathematical expectation estimated by a sample
average. This could be generalized to the estimation

of a function of several expectations, say,g(µ) =
g(µ1, . . . ,µd) by

g(X̂1, . . . , X̂d) − βT (Ĥ − θ),

whereg is continuously differentiable at(µ1, . . . ,µd)

and
√

n(X̂1 − µ1, . . . , X̂d − µd) converges to a multi-
normal with mean zero whenn → ∞ (as in Glynn,
1994, e.g.). The asymptotically optimalβ in this case
is βmc = (Cov[Ĥ ])−1 Cov[Ĥ , X̂]∇g(µ), and similarly
for RQMC, whereX̂ = (X̂1, . . . , X̂d). In other words,
in the generalization it suffices to replace Cov[Ĥ , Î ]
with Cov[Ĥ , X̂]∇g(µ) in (15). One simple useful ex-
ample of this is the estimation of a ratio of expecta-
tions, whereg(µ1,µ2) = µ1/µ2.
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Comment: Computation, Survey
and Inference
Xiao-Li Meng

1. THE SURVEY CONNECTION

1.1 Anticipating the “Surprises”

As someone who has benefited greatly from the sam-
ple survey literature, I am particularly pleased to see
Hickernell, Lemieux and Owen’s (HLO) emphasis on
the equivalence between the control variates in Monte
Carlo estimation and regression estimators in the sam-
ple survey literature. Indeed, the “surprises” described
in HLO can be anticipated from similar phenomena
in sample survey. For example, suppose that we, as a
marketing firm, want to estimate the average house-
hold consumption of a certain product for the first
six months of this year, based on a simple random
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sample (SRS) of a well-defined population of house-
holds (SRS is too simplistic for most practices, but
adequate for the current discussion). Suppose a pre-
vious year’s population counterpart is available (e.g.,
from a census source) for covariance adjustment (i.e.,
as a control variate). LetY be the variable for the
current semiannual consumption and letX represent
the same period of the previous year. Given an SRS
{(xi, yi), i = 1, . . . , n}, asymptotically our best esti-
mator is the well-known regression estimator

µ̂y = ȳn − β̂y,x(x̄n − µx),(1.1)

whereµx andµy are population averages, andβ̂y,x is
the usual least-squares estimator from regressingY

onX.
Suppose, however, that we discover that the popu-

lation average consumption for the first quarter, de-
noted byµy(F) , can be treated as known (e.g., there
was a much larger survey for the first quarter by a dif-
ferent marketing firm). Then we can estimateµy by
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µ̂∗
y = µy(F) + µ̂y(S) , whereµy(S) denotes the population

average for the second quarter, assuming{y(S)
i , i =

1, . . . , n} were available (e.g., we collected monthly
consumption for the first six months). This setting
mimics HLO’s setting withf (x) = fG(x) + fB(x),
where the integration offG is done with no error by
design, so all the estimation or integration errors come
from the second component. [The analogy, of course,
is not perfect because in HLO the choice offG depends
on the design andfG approachesf (in L2) as the data
size increases. In sample surveys, the estimand rarely
depends on the choice of designs, including the sam-
ple size. Fortunately, these differences are immaterial
for our current discussion because the use of control
variates is postdesign and with a given finite sample
size.]

This hypothetical survey example makes it clearer
that as far as the estimation ofµy(S) goes, neitherX
nor βy,x is necessarily the best choice, even if they are
for (1.1). It is likely that a better covariance adjustment
for Y (S) is X(S), the second quarter consumption for
the same previous year, perhaps due to the seasonal-
ity of the product. This is analogous to HLO’s discus-
sion in Section 4 withf = fG + fB andh = hG + hB;
sincefG andhG do not contribute to the variance cal-
culation, the goal is not to haveh correlated withf ,
but ratherhB correlated withfB. Furthermore, even
if the semiannual consumptionX is still a better co-
variance adjustment forY (S) because Corr2(X,Y (S)) >

Corr2(X(S), Y (S)), the regression slope in (1.1) will
need to be changed fromβy,x to βy(S),x . Therefore,

unless Corr2(X,Y (S)) > Corr2(X(S), Y (S)) andβy,x =
βy(S),x , usingβ̂y,x(x̄n −µy) to adjustȳ(S)

n will not pro-
duce an optimal estimator. This is in agreement with
HLO’s summary discussion at the beginning of Sec-
tion 4.

1.2 When Does the Wrong Optimality Hurt?

Indeed, it is also well known in the survey literature
that using a nonoptimal adjustment may actually do
some harm compared to no adjustment, for example,
in the context of comparing ratio estimators with SRS
estimators (e.g., Cochran, 1977, Chapter 6). The same
survey literature inspires the following general result
regarding when it becomes harmful to use a wrong op-
timal regression adjustment compared to making no
adjustment.

LEMMA 1. Let

θ̂
(i)
opt = θ̂ (i) − β

(i)
opt

(
ψ̂(i) − ψ(i)), i = 1,2,(1.2)

be two regression estimators for the same estimand θ ,
where β

(i)
opt = Cov(θ̂ (i), ψ̂(i))/Var(ψ̂(i)) > 0 is treated

as known. Let

θ̂ (1,2) = θ̂ (1) − β
(2)
opt

(
ψ̂(1) − ψ(1))(1.3)

be the “wrong” regression estimator, that is, it uses
ψ̂(1) −ψ(1) to adjust θ̂ (1), but with the regression slope
from the other estimator. Then Var(θ̂ (1,2)) > Var(θ̂ (1))

if and only if ∣∣∣∣β(2)
opt

β
(1)
opt

− 1
∣∣∣∣ > 1, that is,

(1.4)
β

(2)
opt

β
(1)
opt

> 2 or
β

(2)
opt

β
(1)
opt

< 0.

The proof of this lemma follows directly from the
fact that

Var
(
θ̂ (1,2)) = Var

(
θ̂ (1)) − [

β
(1)
opt

]2 Var
(
ψ̂(1))

+ [
β

(2)
opt − β

(1)
opt

]2 Var
(
ψ̂(1)).

This result provides theoretical support of HLO’s em-
pirical finding that the use ofβMC still often leads
to useful improvement with QMC, because it assures
us that unless the regression slope changes substan-
tially, that is, either it changes the sign or it is at least
twice as large in magnitude, the use of the wrong re-
gression slope is still beneficial compared to not mak-
ing any adjustment, regardless of whether or not we
use the same control covariate. For HLO’s “caution-
ary example” (Section 4.1),βMC = 1 − 2M−2 > 0,
but βRQMC = −1, so there is a switching of the sign
of the regression slope. Consequently, usingβMC in
place ofβRQMC will lead to an estimator with larger
variance than the RQMC estimator without adjusting
for the control variate. Note that in HLO’s example,
ψ̂(1) = ψ̂(2); indeed Lemma 1 can be recast with only
one regression class estimator,θ̂β = θ̂ −β(ψ̂ −ψ), and
then using a nonoptimalβ becomes harmful if and only
if |(β/βopt)−1| > 1. Also note that in real applications
the regression slope is seldom known and will be re-
placed by its least-squares estimator. This replacement,
however, does not affect the conclusion of Lemma 1
asymptotically because of the forgiving nature of the
regression estimators to the error in the slope, as dis-
cussed toward the end of Section 3 of HLO.

It is also known from the survey literature that the
use of regression estimators tends to have diminishing
gains for stratified sample designs relative to SRS, be-
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cause covariance/regression adjustment is essentially
a form of (deep) stratification. Consequently, unless
the two stratifying variables are uncorrelated with each
other, the stratified design has already “achieved” a
part of gain in efficiency intended by the regression ad-
justment. The degree of the “achievement” depends on
how deep the original stratification is in the sampling
design. Since QMC designs, especially the more ad-
vanced ones as reviewed in HLO, are often very deep
stratifications (compared to the types of stratifications
in sample surveys), it comes as no surprise that the
gains of using control variates tend to be noticeably
less pronounced for QMC than for MC, as summarized
in Section 10 of HLO.

1.3 Why Do We Need to Go beyond the
Design-Based Perspective?

The sampling survey, or more generally the design-
based perspective, however, does not explain every-
thing. Consider the following question/comparison. In
the semiannual consumption example in Section 1.1
we had

µ̂y = h(µ̂y(F), µ̂y(S)) ≡ µ̂y(F ) + µ̂y(S) .(1.5)

When the true value ofµy(F) is known, it is almost
impossible to resist the temptation to replaceµ̂y(F )

with its true value inh(µ̂y(F), µ̂y(S)) to form µ̂∗
y =

h(µy(F), µ̂y(S)) = µy(F) + µ̂y(S) to estimateµy . In-
deed, why not? How could we get hurt, as far as effi-
ciency/variance goes, by taking advantage of as much
truth as we know?

Now consider the regression estimator given in (1.1),
which can also be written as

µ̂y = g(ȳn, x̄n, β̂y,x) = ȳn − β̂y,x(x̄n − µx).(1.6)

It is legitimate to consider (1.1) as a function ofȳn, x̄n

andβ̂y,x only, because only these quantities depend on
the sample. Putting it differently, we can give a user a
“black-box” software routine that computes the value
of µ̂y , with ȳn, x̄n and β̂y,x as input, calculated from
the user’s particular sample. Suppose that the user ac-
cidentally discovered that the population true value of
µx was actually available from a census source, just
as we (hypothetically) discovered that the true value of
µy(F) was available. Now if the user adopts the same
reasoning/intuition as we did withh, then she or he
would surely inputµx in g in place of her or his sample
averagex̄n. However, this action will completely wipe
out the regression adjustment. See Liu, Rubin and Wu
(1998) for a similar discussion in the context of view-
ing the PX–EM algorithm as a covariance adjusted EM
algorithm.

One may argue that the problem occurred simply be-
cause the user did not understand the actual form of the
estimator, but this is exactly the issue: For a general es-
timation procedure, which can be of arbitrary complex-
ity, how can we tell when it is and when it is not benefi-
cial to substitute a part of our estimation procedure by a
more precise estimator (including its true value)? This
question is particularly relevant for Monte Carlo esti-
mators, be they quasi or not, because in a simulation
setting, nothing isunknown, in its original sense. Con-
sequently, the formulation of optimal estimators based
on simulated data will depend intricately on how we
model what weignore, not what we know—a question
that is beyond the realm of any design-based perspec-
tive. A different perspective is therefore needed, which
is the subject of the next section. In particular, we shall
see how the new perspective leads to a new interpreta-
tion of control variates and, more importantly, leads to
a new control-variate estimator that appears to be diffi-
cult to anticipate from the traditional design-based per-
spective of Monte Carlo integration or of sample sur-
vey.

2. THE INFERENCE CONNECTION

2.1 Why Does Likelihood Inference Appear to Be
Useless with Simulated Data?

To define optimality meaningfully, we first need to
quantify what data and model assumptions we permit
ourselves to use. In a real-data analysis, once the data
are collected or provided, the central challenge typi-
cally is to postulate a suitable set of reasonable as-
sumptions, parametric or nonparametric, to link our
data with our estimand of interest. Once the model is
posited and a measure of efficiency is chosen (e.g.,
variance), the corresponding optimality can then be
quantified theoretically, at least asymptotically (e.g.,
via Fisher information).

The above discussion might lead us to believe that
quantifying optimality with simulated data is an eas-
ier task, because there is no issue of model uncer-
tainty, for we are the one who generated all the data
(or design points). Ironically, the issue turns out to
be far more complicated, precisely because we know
too much. To illustrate, consider importance sampling,
as discussed in HLO. We are interested in the value
of c1 = ∫

� q1(x)µ(dx), where q1(x) is our known
integrand andµ is the baseline measure, typically
Lebesgue or counting. We have draws from a trial den-
sity p2 = q2/c2, denoted by{Xi2, i = 1, . . . , n2}. Then
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the well-known importance sampling identity

r ≡ c1

c2
= E2

[
q1(X)

q2(X)

]
,(2.1)

whereE2 is the expectation with respect top2, pro-
vides us with an estimation equation from which we
arrive at the well-known importance sampling (IS) es-
timator

r̂ = 1

n2

n2∑
i=1

q1(Xi2)

q2(Xi2)
.(2.2)

Note that in common IS settings, as in HLO,c2 is cho-
sen to be 1 and thusr = c1, but in more general settings
ratios are of interest; see Meng and Schilling (2002) for
a recent discussion of this issue.

So on what basis can we claim (2.2) is optimal?
How do we know there is no other estimation equation
that can deliver a more efficient estimator than (2.1)
can? Since asymptotically the maximum likelihood
estimator is most efficient (under standard regularity
conditions) and since asymptotic arguments are more
relevant for simulated data because the size of data is
under our control, we naturally wonder what the well
established likelihood theory can tell us for such ques-
tions. For simplicity, let us assume that the draws from
p2 = q2/c2 are i.i.d. Then the density of our “data”
{Xi2, i = 1, . . . , n2} is given by

p
(
X12, . . . ,Xn22

) =
n2∏
i=1

q2(Xi2)

c2
.(2.3)

The above expression immediately suggests that some-
thing is quite amiss. On one hand, our estimandc1 does
not even appear in our “likelihood function” (2.3). On
the other hand, it is clear that without{Xi2, i = 1,

. . . , n2}, we do not even have the IS estimator (2.2). So
could this be an obvious counterexample to the likeli-
hood principle?

Take bridge sampling as another example. Bridge
sampling is a generalization of importance sampling,
as described by Meng and Wong (1996). Here our
goal is still to estimater = c1/c2, as in the IS set-
ting. The difference is that we now have draws from
bothp1 = q1/c1 andp2 = q2/c2, denoted by{Xij , i =
1, . . . , nj }, j = 1,2. Sinceq1 andq2 are assumed to
be known, under the assumption of independent draws,
the “likelihood” for c1 andc2 becomes

L
(
c1, c2|{Xij , i = 1, . . . , nj }, j = 1,2

)
(2.4)

=
2∏

j=1

nj∏
i=1

qj (Xij )

cj

∝ c
−n1
1 c

−n2
2 ,

which is free of any data! So once again, the likelihood
method seems to fail, whereas estimators based on the
estimation equation approach abound (see Meng and
Wong, 1996).

One answer to the above paradoxes is simply that
likelihood methods are not applicable to simulated
data. Whereas logically this is an admissible answer, if
it were true, it certainly would be the most disturbing
puzzle lying in the foundation of likelihood inference,
at least to some of us. How could it be? How could
an inferential method so powerful with an uncertain
data-generating mechanism becomes completely use-
less when the mechanism is completely known?

2.2 The Answer: Because We Were Looking at the
Wrong Parameter!

An astute reader may have already seen a hidden
problem with the “likelihood” as given in (2.4). The
normalizing constantcj is deterministically related
to qj via

cj =
∫
�

qj (x)µ(dx), j = 1,2.(2.5)

So when we ignoreqj (Xij ) from (2.4) because they are
known, we actually have also effectively ignored a part
of the “parameter” that our likelihood intends to infer.
A closer inspection of (2.5) reveals that the problem is
far more serious than just appropriately sorting out the
connection betweencj and qj (Xij ). The problem is
that it is impossible to treatcj as an unknown parame-
ter when we treatqj as known, unless we can treat the
baseline measureµ as unknown. In other words, when
we treat bothqj andµ as known, there is no statistical
inference problem forcj to speak of, sincecj is com-
pletely determined byqj andµ. Putting it differently,
althoughcj ’s or their ratios are what we are after, they
cannot be theonly unknown model parameters for any
meaningful statistical modeling.

To resolve this problem, Kong, McCullagh, Meng,
Nicolae and Tan (2003) proposed to conduct the like-
lihood inference by treating the baseline measureµ as
the unknown parameter and then to estimatecj as a lin-
ear functional ofµ via (2.5). With this approach, (2.3)
becomes a well-defined and meaningful likelihood in
the form of

L
(
µ|X12, . . . ,Xn22

)
(2.6) =

n2∏
i=1

q2(Xi2)µ(Xi2)∫
q2(x)µ(dx)

∝
∏n2

i=1 µ(Xi2)

[∫ q2(x)µ(dx)]n2
,
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where µ(X) = µ({X}) or µ({dX}). The maximum
likelihood estimator ofµ, among all possible nonnega-
tive measures, is given bŷµ(x) ∝ Pn2(x)/q2(x), where
Pn2(x) is the usual empirical measure, withn−1

2 mass
at each observedXi2. Clearly from (2.6),µ (and
thuscj ’s) can only be estimated up to a multiplicative
constant. Substitutingµ in (2.5) with µ̂ shows that̂r
of (2.2) is indeed the (nonparametric) maximum likeli-
hood estimator (MLE) ofr under the likelihood (2.6).
This suggests that, without employing any other in-
formation, r̂ of (2.2) is indeed (asymptotically) the
best possible estimator ofr given{Xi2, i = 1, . . . , n2}.
Similarly, Kong et al. (2003) have shown that the op-
timal bridge sampling estimator given in Meng and
Wong (1996) is the same as the MLE when we have
{Xij , i = 1, . . . , nj ; j = 1,2} as our data.

The reason why this likelihood perspective can eas-
ily resolve these paradoxes is that it captures the real
inference structure of Monte Carlo integration. Specif-
ically, Monte Carlo simulation means that we usesam-
ples to represent, and therefore effectivelyestimate, the
underlying populationqj (x)µ(dx), and henceestimate
µ sinceqj is known. One may find the phrase “esti-
mate” puzzling because we invariably know whatµ is
(e.g., Lebesgue or counting). However, our knowledge
of µ is never used in any way, for example, in form-
ing (2.2). This can be best seen by considering that
there are two individuals: a simulator and an analyst.
The simulator provides the simulated data{Xi2, i =
1, . . . , n2} to the analyst, who has the task of estimat-
ing r . The analyst is also given bothq1 andq2, but is
never told about the actualµ used in simulation. Never-
theless, the analyst can consistently estimater , which
obviously depends onµ, as long as the support ofq1

does not exceed that ofq2. (This well-known condi-
tion on the supports can also be clearly seen from the
likelihood perspective, because we can only make in-
ference aboutµ on a support that is identifiable from
the data{Xi2, i = 1, . . . , n2}.) Consequently, as far
as (2.2) goes,µ is completely unknown; more pre-
cisely, no knowledge ofµ is used in (2.2) and thus it
is legitimate (and actually necessary) to treatµ as the
unknown model parameter.

The above discussion also suggests that we can use
partial knowledge ofµ to improve upon (2.2), as long
as the resulting MLE forr is still easy to compute.
Clearly we should not use our full knowledge aboutµ,
which will lead us back to the infeasible analytic calcu-
lation required by (2.5). For example, since Lebesgue

measure is invariant to reflection with respect to the
origin, we can restrict our parameter space to all non-
negative measures that satisfy this invariance property,
if the trueµ is indeed Lebesgue. The resulting MLE of
r is

r̂∗ = 1

n2

n2∑
i=1

q1(Xi2) + q1(−Xi2)

q2(Xi2) + q2(−Xi2)
,(2.7)

which is the Rao–Blackwellization treatment ofr̂ by
averaging over the orbit of the reflection group{I,−I },
and hence its variance never exceeds that ofr̂ (under
the assumption of i.i.d. draws). See Kong et al. (2003)
for a general formulation of using group invariance to
restrict the parameter space forµ and hence to improve
Monte Carlo efficiency. Also see Casella (1996) for a
detailed discussion of the use of Rao–Blackwellization
methods in Monte Carlo simulation and, more gener-
ally, the interrelationship between statistical inference
theory and computational algorithms.

2.3 Indeed a Surprise: An Unexpected
Control-Variate Estimator and Insight

Another fundamental advantage of this likelihood
approach is that it provides a unified framework for
investigating variance reduction techniques, including
control variates. In the importance sampling context,
when we use ag with∫

�
g(x)µ(dx) = 0(2.8)

as a control variate, we effectively put a constraint
on the unrestricted parameter space�µ = {µ : all non-
negative measures on�}. Consequently, the MLE un-
der this submodel will be more efficient than the MLE
under the full model. The resulting MLE forr under
this constraint, however, is not the usual regression es-
timator, albeit asymptotically they are equivalent, as
they should be.

Specifically, because any measure with zero mass at
any single observation will lead to a zero likelihood
in (2.6), the maximization of (2.6) under constraint
(2.8) is effectively discrete, as is typical with nonpara-
metric or empirical MLE (e.g., Owen, 2001). The dis-
crete problem we need to solve is

max
µ∈�

(g)
n2

{
n2∑
i=1

log(µi) − n2 log

[
n2∑
i=1

q2iµi

]}
,(2.9)

where, for simplicity, we have letµi = µ(Xi2),
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q2i = q2(Xi2), gi = g(Xi2) and

�(g)
n2

=
{
(µ1, . . . ,µn2) :µi > 0, i = 1, . . . , n2;

(2.10)

and
n2∑
i=1

giµi = 0

}
.

Tan (2003) presented an elegant solution to this maxi-
mization problem under the more general setting with
multiple control variates. The following is a slightly
more elementary recast of Tan’s (2003) derivation.

We start by assuming condition (A): mini gi < 0
and maxi gi > 0. This is not a real restriction in
view of (2.8) and relatively largen2 in practice, but
technically it is a necessary and sufficient condition
for (2.9) to have a solution. Clearly it is necessary,
because without it,�(g)

n2 will be empty. The suffi-
ciency is established by the following argument, which
shows that (2.9) has the unique maximizer when con-
dition (A) holds.

First, because
∑n2

i=1 giµi = 0, (2.9) is the same as

max
µ∈�

(g)
n2

{
n2∑
i=1

log(µi)

(2.11)
− n2 log

[
1

n2

n2∑
i=1

(q2i + λgi)µi

]
− n2 logn2

}
for any λ ∈ �n2 = {λ :q2i + λgi > 0, i = 1, . . . , n2},
which is nonempty because it contains at leastλ = 0
since allq2i > 0 by our sample design. Consequently,
by Jensen’s inequality applied to the second log expres-
sion in (2.11), we obtain

max
µ∈�

(g)
n2

{
n2∑
i=1

log(µi) − n2 log

[
n2∑
i=1

q2iµi

]}
(2.12)

≤ −
n2∑
i=1

log(q2i + λgi) − n2 logn2,

where the equality holds if and only if

µi ∝ 1

q2i + λgi

and
n2∑
i=1

giµi = 0.(2.13)

Since (2.12) holds for anyλ ∈ �n2, we can minimize
the right-hand side overλ, which leads to

max
�

(g)
n2

{
n2∑
i=1

log(µi) − n2 log

[
n2∑
i=1

q2iµi

]}
(2.14)

≤ − max
λ∈�n2

n2∑
i=1

log(q2i + λgi) − n2 logn2.

Second, we can show that the inequality in (2.14)
actually is an equality. This is because, under condi-
tion (A), �n2 is a finite open interval containing zero
and

�(λ) ≡
n2∑
i=1

log(q2i + λgi)(2.15)

is a strict concave and differentiable function on�n2.
Consequently,�(λ) has the unique maximum̂λ ∈ �n2,
which satisfies

d�(λ̂)

dλ
=

n2∑
i=1

gi

q2i + λ̂gi

= 0.(2.16)

In other words, when we letλ = λ̂ in (2.13), the result-
ing µ̂ = (µ̂1, . . . , µ̂n2) indeed satisfies the constraint in
(2.13), and therefore this, and only this, choice ofµ

equates the two sides of (2.14). Consequently,

µ̂(x) ∝ Pn2(x)

q2(x) + λ̂g(x)
(2.17)

is the unique solution to (2.9), wherePn2(x) is the stan-
dard empirical measure based on{X1, . . . ,Xn2}. The
corresponding MLE ofr is given by

r̂MLE = 1

n2

n2∑
i=1

q1(Xi2)

q2(Xi2) + λ̂g(Xi2)
.(2.18)

The form of this MLE is rather intriguing. First,
unlike the standard regression estimator, which takes
a linear form for adjustment,̂rMLE retains a ratio
form. The advantage of the ratio form is that it en-
sures the nonnegativity ofr̂MLE whenever the integrand
q1 is nonnegative. This is, of course, expected because
r̂MLE is an MLE and hence it must be within the orig-
inal allowable space ofr (as determined by our usable
knowledge ofq1). In contrast, the regression estimator
does not have this property. Asymptotically, however,
linear adjustment is all one needs, and thusr̂MLE is
equivalent to the regression estimator by a Taylor ex-
pansion argument, as given in Tan (2003).

Second,r̂MLE has the same form as the IS estima-
tor (2.2), but withq2(x) + λ̂g(x) as the “trial” density.
This can be seen more clearly when our control variate
is introduced by using an unnormalized densityq3 such
that

∫
q2(x)µ(dx) = ∫

q3(x)µ(dx) (see Kong et al.,
2003, for an illustration), that is,g(x) = q3(x) − q2(x).
Then the function in the denominators in (2.18) be-
comes a mixture ofq2 andq3, (1− λ̂)q2 + λ̂q3, where
λ̂ is the MLE of the mixture weightλ from fitting the
mixture model(1 − λ)q2 + λq3 to the simulated data



CONTROL VARIATES FOR QUASI-MONTE CARLO 27

{Xi2, i = 1, . . . , n2}. (Note that hereλ is not restricted
to the unit interval, as long as it is inside�(g)

n2 .)
This fitting aspect is the most intriguing part of the

MLE approach because the true value ofλ is known
to be zero, since all the data were drawn fromq2.
However, with any finite sample, the best fittedλ̂
under the mixture model will almost surely deviate
from the true valueλ = 0, indicating an “imperfec-
tion” of the sample to represent the intended popu-
lation q2. The MLE approach uses this deviation to
adjust for the imperfection via the known relation-
ship (2.8), in the same spirit as the regression esti-
mator uses̄xn − µx to adjust. Specifically, just as the
regression estimator (1.1) effectively treats an “imper-
fect” sample{y1, . . . , yn} with meanµy as a “perfect”
sample with meanµy + βy,x(x̄n − µx), the MLE
treats an imperfect sample fromq2 as a perfect sam-
ple from (1 − λ̂)q2 + λ̂q3: It is perfect as far as es-
timating

∫
� g(x)µ(dx) = 0 goes because of (2.16).

The MLE then uses this “perfect” model/sample to
perform the usual importance sampling, as in (2.18).
This construction appears to be difficult to conceive
from a purely design-based perspective, which in-
evitably would only call for inverse-probability weight
1/q2(X), sinceX was drawn fromq2. In particular, this
is another example where the use of the fitted value is
better than using the truth, as discussed in Section 1.3.

2.4 Possible Applications to QMC and Surveys

The discussion so far centers on MC designs, where
there is a natural sampling distribution and hence a
natural likelihood. The central issue there is to recog-
nize what the correct model parameter is. For deter-
ministic QMC, this approach is not directly applicable
since there is no sampling distribution in the design.
However, when randomness is reintroduced into QMC,
as with the RQMC methods discussed in HLO, the
likelihood method appears to be applicable, albeit the
implementation could be more complicated in view
of the more stratified nature of the design compared
to i.i.d. or even the more general MCMC designs,
which are typically without stratification. In addition,
there appear to be more constraints onµ such as∫

fG(x)fB(x)µ(dx) = 0 with the QMC methods (Sec-
tion 2.1 of HLO). It would be interesting to see the
form of the resulting MLE for

∫ [fG(x)+fB(x)]µ(dx)

under the likelihood approach.
For deterministic QMC, although the likelihood ap-

proach is not directly applicable (and this time there
is no paradox, because there is no random data-

generating mechanism to start with), the inference per-
spective is still very fruitful. This was, for example,
discussed by Diaconis (1988), where a Bayesian ap-
proach, which does not necessarily require a sampling
scheme or a likelihood, was investigated. This ap-
proach is to put a prior model—a stochastic process—
on the integrandq, with q ’s values at the design points
as the observations. The inference is then carried out by
computing the conditional distribution of the process,
and hence the integration, given the observations. The
advantage of this class of methods is that, by choos-
ing appropriate stochastic models, one can take into
account known properties of the integrandq. In con-
trast, our likelihood approach takes advantage of us-
able known properties of the baseline measure, either
via group restrictions or other constraints such as con-
trol variates. As a result, the Bayesian approach can
produce much more efficient results for specific inte-
grands. Indeed, many well-known numerical integra-
tion methods can be rederived from this perspective, as
shown by Diaconis (1988) and the references therein.
On the other hand, the MLEs obtained under the like-
lihood approach are much more generally applicable,
but they can be made more efficient if specific knowl-
edge of the integrand (e.g., differentiability) can be uti-
lized. So the two approaches complement each other
and, ideally, we would like to have a combined infer-
ence method that will model the usable knowledge of
both the baseline measure and the integrand. Research
in this direction is very much needed, and HLO’s inves-
tigation of using control variates with RQMC methods
can be viewed as an important step in this direction be-
cause it takes into account both the properties of the
integrand and the restriction on the baseline measure
via the use of the control variates.

Finally, to complete the circle, the new ratio-type
control-variate estimator also suggests a possible cor-
responding counterpart for sample survey applications,
where the two standard estimators for covariance ad-
justments have been the direct ratio estimator [i.e.,
µ̂y = (ȳn/x̄n)µ̄x ] and the regression estimator (1.1).
Such a counterpart, if it exists, would be of direct prac-
tical value, because it retains important advantages of
both the ratio estimator and the regression estimator,
as we discussed in Section 2.3, especially considering
that many survey estimands are positive by nature.

3. FURTHER CONNECTIONS BETWEEN
MCMC AND QMC

As HLO correctly pointed out in their Section 2.5,
both MCMC and QMC have a long history and both
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have grown rapidly in recent years, yet there is very
little overlap between the two fields. This is certainly a
very unfortunate and ironic situation, considering that
both fields share exactly the same goal. HLO’s paper
is certainly a very timely contribution to changing this
situation—a change that is much needed, because the
two fields can learn a great deal from each other, as
HLO’s paper clearly demonstrates. Here I want to add
two topics from recent work that I was involved in to
demonstrate the great benefit of using techniques and
ideas from both fields.

The first topic is path sampling, which is a gen-
eralization of bridge sampling with infinitely many
bridges, as well as a general formulation of thermo-
dynamic integration in statistical physics, as shown by
Gelman and Meng (1998). The method is particularly
suited for handling some very high-dimensional inte-
grations, as discussed by Ogata (1989). The key iden-
tity that underlies path sampling expresses logr , where
r is the same as in (2.1), as a low-dimensional inte-
gration over a prior parameter of a high-dimensional
expectation that is conditional on the parameter. This
presents an ideal situation to use both MCMC meth-
ods and QMC methods, with the former applied to
estimate the high-dimensional expectation and the
latter applied to numerically estimate the outside low-
dimensional integration. The effectiveness of such a
hybrid approach was demonstrated by Gelman and
Meng (1998), where very basic numerical approaches
(e.g., trapezoidal rule; rectangular lattices) were used
for the low-dimensional integrations. It is likely that
the effectiveness will be even more impressive if the
more advanced QMC methods, such as those reviewed
in HLO, are used for these low-dimensional integra-
tions.

The second topic is multiprocess parallel antithetic
coupling for backward and forward MCMC (Craiu and
Meng, 2005). Using antithetic variates is a very old
variance reduction technique in the Monte Carlo lit-
erature (e.g., Hammersley and Morton, 1956). How-
ever, in the standard MCMC literature, typically only

a pair of antithetic variables is used (e.g., Frigessi,
Gåsemyr and Rue, 2000). Viewing antithetic variates
as a form of stratification, employing more than two
strata becomes an obvious next step. However, unlike
the case of using a pair, generating a set ofk > 2 an-
tithetic variates is not a trivial task. This is because
there is no unique way to generatek > 2 antithetic vari-
ates that arenegatively associated (i.e., preserve neg-
ative correlation under monotone transformation) and
extremely antithetical (i.e., as negatively correlated as
possible). Nevertheless, we (Craiu and Meng, 2005)
found that Latin hypercube sampling, as mentioned in
Section 6 of HLO, as well as an iterative extension
of it, serves as an effective general-purpose scheme.
The advantages of running multiprocess antithetically
coupled MCMC, for both the standard forward imple-
mentation and the backward perfect-sampling imple-
mentation (see Casella, Lavine and Robert, 2001, for
an introduction), include not only further reduction of
Monte Carlo variances compared to usingk = 2, but
also reduction of biases due to slow mixing, because
antithetically coupled chains can search a state space
more thoroughly compared with usingk independent
chains, which is the current common recommendation
(e.g., Gelman and Rubin, 1992).

In conclusion, I thank HLO for writing this timely
and inspiring article and the Editor for inviting me to
discuss it. Given the clear benefit of cross-fertilization
between MCMC and QMC, I hope this set of dis-
cussion articles can serve as a successful matchmaker
for a long, happy and (re)productive marriage between
QMC and MCMC!
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