CONTROL VARIATES FOR QUASI-MONTE CARLO

it. As a CV to be used jointly with the stratification,
one may consideH = A — E[A|B], with a coeffi-
cient 8(B) that depends on the value &f. The op-
timal coefficient isp*(B) = E[HL|B]/E[H?|B] if
the goal is to estimat&[L]. To estimates*(b) as a
function of b, one could estimate the two functions
q1(b) = E[HL|B = b] and ga2(b) = E[H?B = b]
from the samplg(B;, H;, L;), i =1,...,n} of n val-
ues of(B, H, L), for example, using least-squares ap-
proximation to fit a curvej; to the points(B;, H;L;)
and another curvé, to the points(B;, Hl.z). The ra-
tio will estimate the functiorg*(b). In the situations
where this function is far from being a constant, this
could make a significant difference compared with us-
ing the sames for all values ofB.

CVS FOR FUNCTIONS OF
SEVERAL EXPECTATIONS

The authors have considered a setting where lin-

ear CVs are used to correct the estimator ofira
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of a function of several expectations, sa(u) =
g(ua, ..., pa) by

g()?l,..

whereg is continuously differentiable ap1, ..., wq)
and/n(X1 — u1, ..., Xq — nq) converges to a multi-
normal with mean zero whem — oo (as in Glynn,
1994, e.g.). The asymptotically optim@lin this case

is Bmc = (COMH]) "1 CoMH, X]Vg (1), and similarly
for RQMC, whereX = (X1, ..., X4). In other words,

in the generalization it suffices to replace CBv /]
with Cov{H, X1Vg(n) in (15). One simple useful ex-
ample of this is the estimation of a ratio of expecta-
tions, whereg (1, u2) = 1/ 2.

L Xa)—BT(H —0),
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Comment: Computation, Survey

and Inference

Xiao-Li Meng

1. THE SURVEY CONNECTION

1.1 Anticipating the “Surprises”

As someone who has benefited greatly from the sam-
ple survey literature, | am particularly pleased to see

Hickernell, Lemieux and Owen’s (HLO) emphasis on

sample (SRS) of a well-defined population of house-
holds (SRS is too simplistic for most practices, but
adequate for the current discussion). Suppose a pre-
vious year’s population counterpart is available (e.g.,
from a census source) for covariance adjustment (i.e.,
as a control variate). LetY be the variable for the
current semiannual consumption and J}etrepresent

the equivalence between the control variates in Monte ha same period of the previous year. Given an SRS
Carlo estimation and regression estimators in the sam-(y, v,), i = 1,...,n}, asymptotically our best esti-

ple survey literature. Indeed, the “surprises” described mator is the well-known regression estimator

in HLO can be anticipated from similar phenomena
in sample survey. For example, suppose that we, as

marketing firm, want to estimate the average house-

hold consumption of a certain product for the first

a

/:\Ly =Yn — ﬂy,x(in — x),

(1.1)

whereu, andpu, are population averages, aﬁgx is
the usual least-squares estimator from regres3ing

six months of this year, based on a simple random onX.

Xiao-Li Meng is Professor, Department of Satistics,
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USA (e-mail: meng@stat.harvard.edu).

Suppose, however, that we discover that the popu-
lation average consumption for the first quarter, de-
noted byuym, can be treated as known (e.g., there
was a much larger survey for the first quarter by a dif-
ferent marketing firm). Then we can estimate by
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;l’; = [y +/ly<s> , Wherew sy denotes the population  be two regression estimators for the same estimand ¢,
average for the second quarter, assunfing’, i = where ,38&2 Cov(0®, )/ Var(y)) > 0 is treated
1,...,n} were available (e.g., we collected monthly asknown. Let

consumption for the first six months). This setting AL2) A @ (51 )

mimics HLO's setting with £(x) = fo(x) + fa(x), &3 007 =0 = o™ — )

where the integration ofc is done with no error by  pe the “wrong” regression estimator, that is, it uses
design, so all the estimation or integration errors come v () _ (D tg adjust 6V, but with the regression slope
from the second component. [The analogy, of course, from the other estimator. Then Var(@:-2)) > Var(@®)
is not perfect because in HLO the choicefgfdepends it and only if

on the design andg approacheg (in L2) as the data

size increases. In sample surveys, the estimand rarely ﬁc(,f))t .
depends on the choice of designs, including the sam- ~0 1‘ >1,  thatis,
ple size. Fortunately, these differences are immaterial (1 4 opt

for our current discussion because the use of control ﬂé?t ﬂc()%)t
variates is postdesign and with a given finite sample - >2 o — <0
size.] Bopt Bopt

This hypothetical survey example makes it clearer  The proof of this lemma follows directly from the
that as far as the estimation pfs) goes, neitheX fact that

nor B, . is necessarily the best choice, even if they are

o . ) A A 172 A
for (1.1). Itis likely that a better covariance adjustment Var(§®?) = Var(dV) — [Bgpr]* var(y )
for Y is X(S)_, the second quarter consumption for n [/3(2) 3 ﬁ(l)]ZVar(z}m)
the same previous year, perhaps due to the seasonal- opt — Popt :

ity of the product. This is analogous to HLO's discus- Thjs result provides theoretical support of HLO'’s em-
sion in Section 4 withf = fc + fg andh = hg + hg; pirical finding that the use ofuc still often leads
since fg andhg do not contribute to the variance cal- g yseful improvement with QMC, because it assures
culation, the goal is not to have correlated withf, us that unless the regression slope changes substan-
but ratherhp correlated with fg. Furthermore, even tg|ly, that is, either it changes the sign or it is at least
if the semiannual consumptiok is still a better co-  yyice as large in magnitude, the use of the wrong re-
variance adjustment fafS) because Cof(x, Y9)) > gression slope is still beneficial compared to not mak-
CorP(X®,¥®), the regression slope in (1.1) will ing any adjustment, regardless of whether or not we
need to be changed fromfl, . to By ,. Therefore,  yse the same control covariate. For HLO's “caution-
unless Cof(X, Y®) > Cor(X®, Y®) andB, , = ary example” (Section 4.1)8yc = 1 — 2M~? > 0,
Bys) . USINGBy x (X, — 1) to adjustys® willnotpro-  but Bromc = —1, so there is a switching of the sign
duce an optimal estimator. This is in agreement with of the regression slope. Consequently, usfiyg in
HLO’s summary discussion at the beginning of Sec- place of Bromc Will lead to an estimator with larger
tion 4. variance than the RQMC estimator without adjusting
for the control variate. Note that in HLO’s example,
U ® = @: indeed Lemma 1 can be recast with only

Indeed, it is also well known in the survey literature one regression class estimatyy= 6 — (1 — ), and
that using a nonoptimal adjustment may actually do then using a nonoptim#@ becomes harmful if and only
some harm compared to no adjustment, for example,if |(8/Bopt) — 1/ > 1. Also note that in real applications
in the context of comparing ratio estimators with SRS the regression slope is seldom known and will be re-
estimators (e.g., Cochran, 1977, Chapter 6). The sameplaced by its least-squares estimator. This replacement,
survey literature inspires the following general result however, does not affect the conclusion of Lemma 1
regarding when it becomes harmful to use a wrong op- asymptotically because of the forgiving nature of the
timal regression adjustment compared to making no regression estimators to the error in the slope, as dis-
adjustment. cussed toward the end of Section 3 of HLO.

It is also known from the survey literature that the
. . use of regression estimators tends to have diminishing
(1.2) Gyp=0" — By —yD), =12, gains for stratified sample designs relative to SRS, be-

1.2 When Does the Wrong Optimality Hurt?

LEMMA 1. Let
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cause covariance/regression adjustment is essentially One may argue that the problem occurred simply be-
a form of (deep) stratification. Consequently, unless cause the user did not understand the actual form of the
the two stratifying variables are uncorrelated with each estimator, but this is exactly the issue: For a general es-
other, the stratified design has already “achieved” atimation procedure, which can be of arbitrary complex-
part of gain in efficiency intended by the regression ad- jty, how can we tell when it is and when it is not benefi-
justment. The degree of the “achievement” depends oncial to substitute a part of our estimation procedure by a
how deep the original stratification is in the sampling more precise estimator (including its true value)? This
design. Since QMC designs, especially the more ad-qestion is particularly relevant for Monte Carlo esti-
vanced ones as reviewed in HLO, are often very deepmators, be they quasi or not, because in a simulation
_stratlflcatlons (compa_red to the types of str_atlflcatlons setting, nothing isinknown, in its original sense. Con-

in sample surveys), it comes as no surprise that thegeqently, the formulation of optimal estimators based
gains of using control variates tend to be noticeably on simulated data will depend intricately on how we
less pronounced for QMC than for MC, as summarized model what weignore, not what we know—a question

in Section 10 of HLO. that is beyond the realm of any design-based perspec-

1.3 Why Do We Need to Go beyond the tive. A different perspective is therefore needed, which
Design-Based Perspective? is the subject of the next section. In particular, we shall

see how the new perspective leads to a new interpreta-

The sampling survey, or more generally the design- > _ :
based perspective, however, does not explain every—t'on of control variates and, more importantly, leads to

thing. Consider the following question/comparison. In & NeW control-variate estimator that appears to be diffi-
the semiannual consumption example in Section 1.1 cult to anticipate from the traditional design-based per-
we had spective of Monte Carlo integration or of sample sur-
. . . . . vey.

(1.5)  fy=h(iye, idys) = Ly + L.
When the true value ohym is known, it is almost 2. THE INFERENCE CONNECTION

impossible to resist the temptation to repla«fzgm h ikelihood Inf
with its true value inh(/ly<p>,,&y<s>) to form ¥ = 2.1 Why Does Likelihood Inference Appear to Be

N Y - Y Useless with Simulated Data?
h(pym), ly®) = [y + [y to estimatep,. In-

deed, why not? How could we get hurt, as far as effi-  To define optimality meaningfully, we first need to
ciency/variance goes, by taking advantage of as muchquantify what data and model assumptions we permit

truth as we know? ourselves to use. In a real-data analysis, once the data
Now consider the regression estimator givenin (1.1), are collected or provided, the central challenge typi-

which can also be written as cally is to postulate a suitable set of reasonable as-

(1.6) iy =8Tns Ens Byx) = I — By.x (Fn — 1) sumptions, parametric or nonparametric, to link our

data with our estimand of interest. Once the model is
posited and a measure of efficiency is chosen (e.g.,
variance), the corresponding optimality can then be
quantified theoretically, at least asymptotically (e.qg.,

It is legitimate to consider (1.1) as a function¥f, x,
andﬁy,x only, because only these quantities depend on
the sample. Putting it differently, we can give a user a
“black-box” software routine that computes the value 7 """ . )
of fiy, with y,, x, and ,éy,x as input, calculated from via Fisher mforrnaﬂon_). . .

the User's particular sample. Suppose that the user ac- 1€ above discussion might lead us to believe that
cidentally discovered that the population true value of du@ntifying optimality with simulated data is an eas-
1, was actually available from a census source, just '€" task, because there is no issue of model uncer-
as we (hypothetically) discovered that the true value of tainty, for we are the one who generated all the data
jtym Was available. Now if the user adopts the same (or design points). Ironically, the issue turns out to
reasoning/intuition as we did with, then she or he be far more complicated, precisely because we know
would surely inpuiu, in g in place of her or his sample  too much. To illustrate, consider importance sampling,
averagex,. However, this action will completely wipe as discussed in HLO. We are interested in the value
out the regression adjustment. See Liu, Rubin and Wuof c1 = [ q1(x)u(dx), where g1(x) is our known
(1998) for a similar discussion in the context of view- integrand andu is the baseline measure, typically
ing the PX—EM algorithm as a covariance adjusted EM Lebesgue or counting. We have draws from a trial den-
algorithm. Sity po = g2/c2, denoted by X2, i =1, ...,n2}. Then
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the well-known importance sampling identity which is free of any data! So once again, the likelihood
1 q1(X) method seems to fail, whereas estimators based on the
(2.1) r=—= 2[ X ] estimation equation approach abound (see Meng and
. 2 LaX) Wong, 1996).
where E is the expectation with respect je, pro- One answer to the above paradoxes is simply that

vides us with an estimation equation from which we |ixelinood methods are not applicable to simulated
arrive at the well-known importance sampling (IS) €s- a3 Whereas logically this is an admissible answer, if

timator it were true, it certainly would be the most disturbing
. 1 & (X2 puzzle lying in the foundation of likelihood inference,
(2.2) = ns ~ g2(Xi2)’ at least to some of us. How could it be? How could
i=1 an inferential method so powerful with an uncertain

Note that in common IS settings, as in HL@,is cho-  gata-generating mechanism becomes completely use-

sento be 1 and thus= c1, but in more general settings

ratios are of interest; see Meng and Schilling (2002) for

a recent discussion of this issue. 2.2 The Answer: Because We Were Looking at the
So on what basis can we claim (2.2) is optimal? Wrong Parameter!

How do we know there is no other estimation equation

that can deliver a more efficient estimator than (2.1)

can? Since asymptotically the maximum likelihood . . L

estimator is most efficient (under standard regularity norma_llzmg constant; is deterministically related

conditions) and since asymptotic arguments are moret® 4j Via

relevant for simulated data because the size of data is .

under our control, we naturally wonder what the well (2.5) ¢ = /Q‘Ij Wudx), j=12

established likelihood theory can tell us for such ques- _

tions. For simplicity, let us assume that the draws from S©Whenwe ignorg; (X;;) from (2.4) because they are

P2 = qa/co are i.i.d. Then the density of our “data” known, we actually have also effectively ignored a part

less when the mechanism is completely known?

An astute reader may have already seen a hidden
problem with the “likelihood” as given in (2.4). The

{Xi2, i =1,...,n2) is given by of the “parameter” that our likelihood intends to infer.
s A closer inspection of .(2.5) reveals_ that the problem is

(2.3) P(X12. ... Xny2) = l—[ ClZ(XiZ)‘ far more serious than just appropriately sorting out the
i1 €2 connection between; andg;(X;;). The problem is

The above expression immediately suggests that some‘Ehat itis impossible to treat; as an unknown parame-

thing is quite amiss. On one hand, our estimandoes Ler wlhen we treag; as krlw(own, urI\Iestshwe car:jtrea:]the
not even appear in our “likelihood function” (2.3). On aseline measufe as unknown. In otherwords, when

the other hand, it is clear that witholK», i = 1, yve treat bothy; andu as known, there_is no_statistical
... n2}, we do not even have the IS estimator (2.2). So Nference problem for; to speak of, since, is com-
could this be an obvious counterexample to the likeli- P€tely determined by; and .. Putting it differently,
hood principle? althoughc;’s or their ratios are what we are after, they
Take bridge sampling as another example. Bridge c@nnot be thenly unknown model parameters for any
sampling is a generalization of importance sampling, Meaningful statistical modeling.
as described by Meng and Wong (1996). Here our 10 resolve this problem, Kong, McCullagh, Meng,
goal is still to estimate = c1/c, as in the IS set- Nicolae and Tan (2003) proposed to conduct the like-
ting. The difference is that we now have draws from lihood inference by treating the baseline meaguas
both p1 = gq1/c1 andp2 = g2/c, denoted by X;;, i = the unknown parameter and then to estimatas a lin-
1,...,n;}, j =1,2. Sinceq1 andg; are assumed to  ear functional ofu via (2.5). With this approach, (2.3)
be known, under the assumption of independent draws pbecomes a well-defined and meaningful likelihood in

the “likelihood” for ¢1 andcy becomes the form of
L(C]_, ool{Xij, i=1...,n5}, j=1, 2) L(IL|X12, L anz)
>
4) =T1 7 4 X)) x My 2.6) 1"—2[ (X (Xi2) [172; n(Xi2)
j=1i=1 ¢ i1 [aa)pdx) — [f g2(x)u(dx)]m2’
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where u(X) = n({X}) or u({dX}). The maximum
likelihood estimator oft, among all possible nonnega-
tive measures, is given y(x) o P,,(x)/q2(x), where
Py, (x) is the usual empirical measure, whljl mass

at each observed;,. Clearly from (2.6),u (and
thusc;’s) can only be estimated up to a multiplicative
constant. Substituting in (2.5) with & shows that

of (2.2) is indeed the (nonparametric) maximum likeli-
hood estimator (MLE) of under the likelihood (2.6).
This suggests that, without employing any other in-
formation, 7 of (2.2) is indeed (asymptotically) the
best possible estimator sfgiven{X;2, i =1, ..., n2}.
Similarly, Kong et al. (2003) have shown that the op-
timal bridge sampling estimator given in Meng and

25

measure is invariant to reflection with respect to the
origin, we can restrict our parameter space to all non-
negative measures that satisfy this invariance property,
if the trueu is indeed Lebesgue. The resulting MLE of
ris

1 & 1(Xia) + q1(—Xi2)

n2 = q2(Xi2) + q2(—=Xi2)’

Ak
r =

2.7)

which is the Rao—Blackwellization treatment ohy
averaging over the orbit of the reflection group—1},

and hence its variance never exceeds that @fnder
the assumption of i.i.d. draws). See Kong et al. (2003)
for a general formulation of using group invariance to
restrict the parameter space foand hence to improve

Wong (1996) is the same as the MLE when we have Monte Carlo efficiency. Also see Casella (1996) for a

{X;i,i=1,...,n;; j=1,2} asour data.
J J

The reason why this likelihood perspective can eas-
ily resolve these paradoxes is that it captures the real

inference structure of Monte Carlo integration. Specif-
ically, Monte Carlo simulation means that we $sar
plesto represent, and therefore effectivelyimate, the
underlying populatiow ; (x) . (dx), and hencestimate
w sincegq; is known. One may find the phrase “esti-
mate” puzzling because we invariably know whats

(e.q., Lebesgue or counting). However, our knowledge .

of u is never used in any way, for example, in form-

ing (2.2). This can be best seen by considering that
there are two individuals: a simulator and an analyst.

The simulator provides the simulated d&é», i =

1, ..., n2} to the analyst, who has the task of estimat-
ing r. The analyst is also given both andg», but is
never told about the actualused in simulation. Never-
theless, the analyst can consistently estimatghich
obviously depends op, as long as the support gf
does not exceed that @b. (This well-known condi-

detailed discussion of the use of Rao—Blackwellization
methods in Monte Carlo simulation and, more gener-
ally, the interrelationship between statistical inference
theory and computational algorithms.

2.3 Indeed a Surprise: An Unexpected
Control-Variate Estimator and Insight

Another fundamental advantage of this likelihood
approach is that it provides a unified framework for
investigating variance reduction techniques, including
control variates. In the importance sampling context,
when we use g with
(2.8) | e@nn =0
as a control variate, we effectively put a constraint
on the unrestricted parameter sp&ge= {x :all non-
negative measures @}. Consequently, the MLE un-
der this submodel will be more efficient than the MLE
under the full model. The resulting MLE far under

tion on the supports can also be clearly seen from theys constraint, however, is not the usual regression es-

likelihood perspective, because we can only make in-

ference abouft on a support that is identifiable from
the data{X;2, i = 1,...,n2}.) Consequently, as far
as (2.2) goesyu is completely unknown; more pre-
cisely, no knowledge of: is used in (2.2) and thus it
is legitimate (and actually necessary) to trgaas the
unknown model parameter.

timator, albeit asymptotically they are equivalent, as
they should be.

Specifically, because any measure with zero mass at
any single observation will lead to a zero likelihood
in (2.6), the maximization of (2.6) under constraint
(2.8) is effectively discrete, as is typical with nonpara-
metric or empirical MLE (e.g., Owen, 2001). The dis-

The above diSCUSSiOﬂ aISO SUggEStS that we can US%rete problem we need to Solve is

partial knowledge ofx to improve upon (2.2), as long
as the resulting MLE for is still easy to compute.
Clearly we should not use our full knowledge abauit
which will lead us back to the infeasible analytic calcu-

np n2
(2.9) max Z'Og(ui)—nzlog[Zqzim”,

ned,d li=1 i=1

lation required by (2.5). For example, since Lebesguewhere, for simplicity, we have letu; = u(X;2),
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q2i = q2(Xi2), & = g(X;2) and

O =1(u1....
(2.10)

sMnp) i >0, i=1,...,ny;

nz

and Zgiﬂi =0;.
i=1

Second, we can show that the inequality in (2.14)
actually is an equality. This is because, under condi-
tion (A), A,, is a finite open interval containing zero
and

np
) =) log(gai + Agi)
i=1

(2.15)

Tan (2003) presented an elegant solution to this maxi-js 4 strict concave and differentiable function ap,.

mization problem under the more general setting with Consequently¢(%) has the unique maximutne A
multiple control variates. The following is a slightly which satisfies

more elementary recast of Tan’s (2003) derivation.
We start by assuming condition (A): migy < O

and maxg; > 0. This is not a real restriction in

view of (2.8) and relatively large, in practice, but

n»

ey &2 ;
(2.16) ) 8 g
dx i—192i +Ag

technically it is a necessary and sufficient condition In other words, when we lét= 1 in (2.13), the result-

for (2.9) to have a solution. Clearly it is necessary, ing i = (i1, .

because without it©' will be empty. The suffi-

.., ln,) indeed satisfies the constraint in
(2.13), and therefore this, and only this, choiceuof

ciency is established by the following argument, which equates the two sides of (2.14). Consequently,

shows that (2.9) has the uniqgue maximizer when con-

dition (A) holds.
First, becaus@ 2, gini = 0, (2.9) is the same as

np

max {Z log(u:)

neo iz

(2.11) 1 M
—n2 |09[n—2 > (g2 + /\gi)m} —n2 |09n2}

i=1
foranyr e Ay, ={A:iq2 + 28>0, i=1,...,n2},
which is nonempty because it contains at lgast 0

Pnz(x)
g2(x) + Ag(x)
is the unique solution to (2.9), wheRg, (x) is the stan-

dard empirical measure based Xy, ..., X,,}. The
corresponding MLE of is given by

. 1 & 1(Xi2)
(218) fmE=—) R :
n2 1 q2(Xi2) + Ag(X;2)
The form of this MLE is rather intriguing. First,
unlike the standard regression estimator, which takes

(2.17) fi(x) o

since allgz; > 0 by our sample design. Consequently, g jinear form for adjustmentfy e retains a ratio
by Jensen's inequality applied to the second log expres-torm. The advantage of the ratio form is that it en-

sion in (2.11), we obtain

n» na
max [Zlog(m) — nzlog[qui“

peo® iz i—1

(2.12

np
< —>_l0g(g2i + Agi) — n2logna,
i=1
where the equality holds if and only if

n2

1
(2.13) ujx—— and gini =0.
q2i + Agi ;
Since (2.12) holds for any € A,,, we can minimize
the right-hand side ovet, which leads to

np n2
max{ » "log(u;) — n2 |09[ > 6]21#1} }
o) li=1 i=1
(2.14
n2
< — max Y _log(qz + Agi) — n2logns.

€ .
ngi_q

sures the nonnegativity éf; e whenever the integrand
q1 is nonnegative. This is, of course, expected because
FMLE is an MLE and hence it must be within the orig-
inal allowable space of (as determined by our usable
knowledge ofg1). In contrast, the regression estimator
does not have this property. Asymptotically, however,
linear adjustment is all one needs, and thiyse is
equivalent to the regression estimator by a Taylor ex-
pansion argument, as given in Tan (2003).
Second/uLe has the same form as the IS estima-
tor (2.2), but withgo(x) + Ag(x) as the “trial” density.
This can be seen more clearly when our control variate
is introduced by using an unnormalized dengiyuch
that [ g2(x)u(dx) = [q3(x)u(dx) (see Kong et al.,
2003, for anillustration), that ig,(x) = g3(x) — g2(x).
Then the function in the denominators in (2.18) be-
comes a mixture of, andgs, (1 — A)g2 + Aga, where
X is the MLE of the mixture weight from fitting the
mixture model(1 — X)g2 + Ag3 to the simulated data
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{X;2, i=1,...,n2}. (Note that here. is not restricted  generating mechanism to start with), the inference per-
to the unit interval, as long as it is insi@fg).) spective is still very fruitful. This was, for example,
This fitting aspect is the most intriguing part of the discussed by Diaconis (1988), where a Bayesian ap-
MLE approach because the true valuerofs known  proach, which does not necessarily require a sampling
to be zero, since all the data were drawn frgm scheme or a likelihood, was investigated. This ap-
However, with any finite sample, the best fitted  Proach is to put a prior model—a stochastic process—
under the mixture model will almost surely deviate ©N the integrang, with ¢’s values at the design points
from the true valuer = 0, indicating an “imperfec- S the observations. The inference is then carried out by
tion” of the sample to répresent the intended popu- computing the conditional distribution of the process,
lation ¢». The MLE approach uses this deviation to and hence the integration, given the observations. The
adjust for the imperfection via the known relation- gdvantage C.Jf this class c.)f methods is that, by chqos-
ship (2.8), in the same spirit as the regression esti-'"NY appropriate stochastic models, one can take into

mator usest, — s, to adjust. Specifically, just as the account known properties of the integraqpdin con-

. , . trast, our likelihood approach takes advantage of us-
regression estimator (1.1) effectively treats an “imper- : ) .
., 4 . . able known properties of the baseline measure, either
fect” sample{yy, ..., y,} with meanu, as a “perfect

sample with meanz, + By (%, — 1), the MLE via group restrictions or other constrqints such as con-
ireats an imperfect sya mpl év)fcrogg as ; [')erfect sam- trol variates. As a resul't,'the Bayesian apprqgch can
A ~ . produce much more efficient results for specific inte-

ple fr_om (1 —4)g2 + Ags! It Is perfect as far as es- grands. Indeed, many well-known numerical integra-
timating /o g(x)u(dx) =0 goes because of (2.16). o methods can be rederived from this perspective, as
The MLE then uses this “perfect” model/sample 10 ghown by Diaconis (1988) and the references therein.
perform the usual importance sampling, as in (2.18). on the other hand, the MLEs obtained under the like-
This construction appears to be dlfflcu_lt to conceive jihood approach are much more generally applicable,
from a purely design-based perspective, which in- pyt they can be made more efficient if specific knowl-
evitably would only call for inverse-probability weight  edge of the integrand (e.g., differentiability) can be uti-
1/g2(X), sinceX was drawn fromy,. In particular, this  ized. So the two approaches complement each other
is another example where the use of the fitted value isand, ideally, we would like to have a combined infer-
better than using the truth, as discussed in Section 1.3.ence method that will model the usable knowledge of
both the baseline measure and the integrand. Research
in this direction is very much needed, and HLO’s inves-

The discussion so far centers on MC designs, wheretigation of using control variates with RQMC methods
there is a natural sampling distribution and hence acan be viewed as an important step in this direction be-
natural likelihood. The central issue there is to recog- cause it takes into account both the properties of the
nize what the correct model parameter is. For deter-integrand and the restriction on the baseline measure
ministic QMC, this approach is not directly applicable via the use of the control variates.
since there is no sampling distribution in the design. Finally, to complete the circle, the new ratio-type
However, when randomness is reintroduced into QMC, control-variate estimator also suggests a possible cor-
as with the RQMC methods discussed in HLO, the responding counterpart for sample survey applications,
likelihood method appears to be applicable, albeit the Where the two standard estimators for covariance ad-
implementation could be more complicated in view justments have been the direct ratio estimator [i.e.,
of the more stratified nature of the design compared ity = (¥n/%x)f1x] @nd the regression estimator (1.1).
to i.i.d. or even the more genera| MCMC designS, Such a counterpart, if it exists, would be of direct prac-
which are typically without stratification. In addition, fical value, because it retains important advantages of
there appear to be more constraints pnsuch as both the_ ratio est_imator _and the regre_ssion esti_mat_or,
[ fo(x) fa(x)u(dx) = 0 with the QMC methods (Sec- &S We discussed in S_ectlon 2.3, espfs_ually considering
tion 2.1 of HLO). It would be interesting to see the thatmany survey estimands are positive by nature.
form of the resulting MLE forf[ fo(x) + fa(x)]u(dx)
under the likelihood approach.

For deterministic QMC, although the likelihood ap-
proach is not directly applicable (and this time there As HLO correctly pointed out in their Section 2.5,
is no paradox, because there is no random data-both MCMC and QMC have a long history and both

2.4 Possible Applications to QMC and Surveys

3. FURTHER CONNECTIONS BETWEEN
MCMC AND QMC
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have grown rapidly in recent years, yet there is very a pair of antithetic variables is used (e.g., Frigessi,
little overlap between the two fields. This is certainly a Gasemyr and Rue, 2000). Viewing antithetic variates
very unfortunate and ironic situation, considering that as a form of stratification, employing more than two
both fields share exactly the same goal. HLO’s paper strata becomes an obvious next step. However, unlike
is certainly a very timely contribution to changing this the case of using a pair, generating a set of 2 an-
situation—a change that is much needed, because théithetic variates is not a trivial task. This is because
two fields can learn a great deal from each other, asthere is no unique way to generate- 2 antithetic vari-
HLO's paper clearly demonstrates. Here | want to add ates that ar@egatively associated (i.e., preserve neg-
two topics from recent work that | was involved in to  ative correlation under monotone transformation) and
demonstrate the great benefit of using techniques andextremely antithetical (i.e., as negatively correlated as
ideas from both fields. _ o possible). Nevertheless, we (Craiu and Meng, 2005)
The f_|rst topic Is path sa_mpllng, Wh'_ch IS '@ §€N" f5und that Latin hypercube sampling, as mentioned in
er_allzatlon of bridge sampling with mflnltely many  gection 6 of HLO, as well as an iterative extension
bndges;, as well asa ge”.e“?" formulgnon of thermo- of it, serves as an effective general-purpose scheme.
dynamic integration in statistical phyS|cs,_ as sh_own by The advantages of running multiprocess antithetically
Gelman and Meng (1998). The method is particularly coupled MCMC, for both the standard forward imple-

suited for handling some very high-dimensional inte- - i L )
grations, as discussed by Ogata (1989). The key iden_mentatlon and the backward perfect-sampling imple

fity that underlies path sampling exoressesloghere mentation (see Casella, Lavine and Robert, 2001, for
y P piing expres ognere an introduction), include not only further reduction of
r is the same as in (2.1), as a low-dimensional inte- . ,
. . ) ) . Monte Carlo variances compared to usihg- 2, but
gration over a prior parameter of a high-dimensional

: . " ._also reduction of biases due to slow mixing, because
expectation that is conditional on the parameter. This antithetically coupled chains can search a state space
presents an ideal situation to use both MCMC meth- Y P b

ods and QMC methods, with the former applied to more thoroughly compared with usirigindependent
estimate the high-dimehsional expectation and thechains, which is the current common recommendation

latter applied to numerically estimate the outside low- (eig., Gelrlna_n an?tEUb:(n’Hngng)' iting this timel
dimensional integration. The effectiveness of such a n conclusion, 1 than or writing this timely
hybrid approach was demonstrated by Gelman andand inspiring article and the Editor for inviting me to
Meng (1998), where very basic numerical approachesdiscuss it. Given the clear benefit of cross-fertilization

(e.g., trapezoidal rule; rectangular lattices) were usedbetw_een MCMC and QMC, | hope this set of dis-
for the low-dimensional integrations. It is likely that cussion articles can serve as a successful matchmaker

the effectiveness will be even more impressive if the [°F @101, happy and (re)productive marriage between

more advanced QMC methods, such as those reviewed@MC and MCMC!
in HLO, are used for these low-dimensional integra- ACKNOWLEDGMENTS
ions.
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