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ABSTRACT

The EM algorithwm is a very general and popular iterative algorithm in statistics for
finding maximum-likelihood estimates in the presence of incomplete data. In the
paper that defined and popularized EM, Dempster, Laird, and Rubin (1977) showed
that its global rate of convergence is governed by the largest eigenvalue of the matrix
of tractions of missing information due to incomplete data. It was also mentioned that
componentwise rates of convergence can ditfer from each other when the fractions of
information loss vary across different components of a parameter vector. In this
article, using the well-known diagonability theorem, we present a general description
on how and when the componentwise rates differ, as well as their relationships with
the global rate. We also provide an example, a standard contaminated normal model,
to show that such phenomena are not necessarily pathological, but can occur in useful
statistical models.

1. BRIEF INTRODUCTION TO THE EM ALGORITHM

Since it was formally introduced by Dempster, Laird, and Rubin (1977,
henceforth DLR), the EM algorithm has been widely applied to many
problems that can be formulated as incomplete-data problems. The popular-
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ity of EM {or finding maximum-likelihood estimates and posterior modes
arises trom its simplicity m implementation, stability in convergence (e.g.,
monotone increases in objective functions). and applicahility in practice; in
fact some problems now solved were considered intractable before EM, Tts
application can be found almost in any field that encounters statistical analysis
with incomplete data; Meng and Pedlow’s (1992) recent bibliographic review
provides over 1000 EM related articles spanning over more than 270 journals,
approximately 85% of which are nonstatistical journals." Tt has also stimulated
other powerful comnputational methods in statistics, as discussed in Meng and
Rubin (1992, 1993).

The idea bebind EM is quite simple and intuitive. It comes from a quite
old ad hoc idea for handling missing data: (i} if the missing values were
known, then complete-data techniques could he applied to estimate the
unknown parameters of the underlying maodel, and (i) if the madel parame-
ters were known, then the missing values could be imputed according to the
model. An iterative procedure thus arises—iterating between (i) and (i) until
no changes occur in the parameter estimates or imputed values (see e.g.,
Healy and Westinacott, 1956, for the analysis of variance). The key contribu-
tion of EM, in contrast to its ad hoc predecessors, is to recognize that the
correct procedure is not to impute the individual missing values, but rather to
impute the complete—data sufficient statistics, since maximum-likelihood esti-
mates depend on data only through sufficient statistics (e.g., Cox and Hinkley,
1974), and these are not necessarily linear in the data. In the more general
cases with no (useful) sufficient statistics, the correct procedure is to impute
the complete-data log-likelihood tunction itsclf.

The mathematical description of EM can be summarized briefly as
tollows. Let f(Y | 8) be the density of complete data Y that would occur in
the absence of missing values, where 6 = (8,,..., 8;) is a 1 X d parameter
vector with parameter space &. We write Y = (Y., Y, ..), where Y, denotes
the observed values and Y, ;, denotes the missing values. We are interested in
finding € that maximizes

I‘(B I );Uhh) Ef( Uhh ' 8) - ff()(l]]‘a mis J 9) s T (1.1)

that is, the maximum-likelihood estimate (MLE) {or @ based on the observed
data, ¥,,. Because of the integration in (1.1), the required maximization is

obs*”

typically substantially more ditficult than the maximization of the complete-

‘A preliminary EM bibliography is availahle upon request. This article only lists references
that are directly related to it.
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data likelihood, L(# | Y ) = f(Y | ). The EM algorithm converts the difficult
incomplete-data maximization into a sequence of easier complete-data maxi-
mizations.

Starting from an initial guess 8™ each iteration of EM consists of an
expectation step and a maximization step. At the (1 + st iteration, ¢ =
0,1,..., the E-step finds the conditional expectation of the complete-data
log-likelihoad given the observed data and 8 = AR

O(GI 0(”) = flog L(Bl Y)f(Ymis l }:)bs’ 6 = 8(”) d);mim (1'2)

where f{Y,, Y, .60)=fY|8)/f(Y, |8)is the conditional density of
Y, ., given Y, and 0. The M-step then determines 6" " by maximizing this

mis obs
expected log-likelihood:
QAU 6U) > (01 09)  forall A€ 0. (1.3)

As shown in DLR, from any starting point inside @, the resulting iterative
sequence {8, ¢ > 0} monotonically increases L(#| Y, ), a feature that is
generally viewed as providing stable convergence. Also, under mild conditions
in practice, EM converges to an MLE; see DLR, Bovles (1983), and Wu
(1983) for convergence conditions.

The iterative procedure given by (1.2) and (1.3) implicitly defines a
mapping 8§ — M(6)} {rom the parameter space © to itself such that

g+ = M(8Y)  for t=0,1,.... (1.4)

Assuming that 9" converges to the MLE ¢ and that M(@) is differentiable
at 8, a simple Taylor expansion yields

getn — §= (0~ 0)DM(§) + O(Il6" — 4l*), (1.5)
where
DM(8) = (%(_ﬂ)_) (1.6)

is the d X d Jacobian matrix for M(8) = (M (4),..., MH,(B)) and || - |l is the
usual Euclidean norm. Thus, in a nmghborhood of 19 the EM alg()nthm is
essentially a linear iteration with iteration matrix DM(8), since DM(8) is

typicatly nonzero.
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2. THE RATE OF CONVERGENCE OF THE EM ALGORITHM

The performance of an iterative algorithm is commonly measured by its
order and its rate of convergence. It was seen in Section 1 that the order of
EM is generally linear, so we will focus on the rate of convergence for linear
iterations. For EM (and for other linear iterating algorithms), the global rate
of convergence is defined as

lo«-1 — g
R = lim 8 = lim —————=— (2.1)
T L e — )
and the ith (i =1...., ) componentwise rate of convergence is defined as
, 8ld ~ g,
R, = lim R{) = lim L (2:2)
) {— = PRy Bi(t) — B:’

provided these limits exist. In the case 6% = 8/ for all t = ¢, (= 1), we
define R, = 0. Such cases can happen, for example, when some components
have no missing information, as in the bivariate normal example of Meng and
Rubin (1991).

In view of (1.5), it is easy to see that the global rate of convergence of EM
is gaverned by the spectral “radius of DM(), which in this case is its lar gest
cigenvalue (';ee Section 4). Under mild regularity conditions, DLR estab-
lished an important identity between DM () and the matrix of fractions of
missing information. More specifically, after taking the second derivative of
1061 Y ) with respect to 8. we let

d*log L{0|Y)

ILK'( 8 | TYU}JS) = —f f( ‘Y—IT\]‘\ nh‘. 8) dY (2'3)

G- 04
and similarly
aglog f(Ym leObS ’ 9)
Ln{01%,) = = [ —— 2= f(YalYoy, . 6) Y, (24)

and

azlog L( 0 l Yobs)

2.5
a6 - db o)

In(6 I Yﬂbi) = =
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DLR showed that, if Q(81 8"?) is maximized by setting its first derivative
equal to zero, then

DM(8) = 1,61 Y, )12 (61 Yo} = J(81Y,p,). (2.6)

The right-hand side of (2.6) is the matrix of the so-called “fractions of missing

information,” because [ (9! Y,,,) measures the “missing information™ (i.e.,

the loss of information due to the missing data), and I,.(8|Y,,,) measures the
“complete information” (ie., the information we would have if we bad
complete data). Because of the “missing-information principle” (Orchard and
Woodbury, 1972; Meng and Rubin, 1991), which states that

(6 i Y, |:5) m.( nlls) r}m(9 || }nhs) (27)
or in words,
observed information = complete information — missing information,

it follows that another expression for | = | (017, is

J=1I- In(é | Ynhs)Il;r!l(é\J Ynlrﬂ)'

Thus, the global rate of convergence of EM, R, is governed by the largest
eigenvalue of J, which is less than 1 when 1,(8]Y,,,) > 0, that is, when it is
positive definite, which is a sufficient condition to gnarantee that 0 is a (local)
maximum-likelihood estimate. This condition will be used in the Lemma of
Section 4,

It was also pointed out in DLR that the componentwise rates of conver-
gence of EM, R, (i =1,..., d), can differ from each other because the
fractions of missing information can vary across different components of . It
is natural to ask how and when this can happen, and what the relationship is
between the R,’s and R. One obvious case occurs when [ is diagonal but nat
proportional to the identity matrix, which we show in the next section can
indeed happen in practice. Then in Section 4, we give a complete answer to
the general question. From a purely algebraic point of view, our results fall
within the extensive literature on finding eigenvalues using the power method
(e.g., Faddeev and Faddeeva, 1963).
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3. AN EXAMPLE OF UNEQUAL R/S

Suppose x,,..., x, is a simple random sample from a univariate contami-
nated normal model

f(xlp, o®y=(1—m)N{pn, o)+ 7N(nu, a*/A),

where 0 < 7 < 1, A > 0, and both 7 and A are known. We are interested in
finding the maximum-likelihood estimate of & = (u, ¢?). The direct maxi-
mization of the likelihood is difficult because the actual density is a mixture of
two densities.

As described in Chapter 10 of Little and Rubin (1987), this problem can
be treated as an incomplete-data problem even though there are no missing
data in the usual sense. Specifically, let

1—m it g=1,
h(q) = { = if gq=A,

0 otherwise;

then ¥,,, = X = (x),..., x,) can be considered as a random sample from a
population such that

ind

x 18, QI”N(M Uz/fh)

where the g;’s constitute an “unobserved” simple random sample from the
density h(g). We can thus apply EM treating Y, =(g,,...,4q,) as
missing data. Treating mixture models as missing-data problems is regarded
as one of the contributions of DLR.

The implementation of EM here is quite straightforward, as described in
Little and Rubin (1987, p. 210). The resultant EM mapping is given by

Zio o (8%} x,
- 1“52(9(”)

(t—1) o

(3.1)

and

T

(o)™ = zwt(e“})(n—mz, (3.2)
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where
&) = B | oo 1— 7+ @AY? exp{(l — A)(x — #)2/20'2}
wl0) = Elqlx.0) = T exp{(1 - N)(x, — n)’/20%}
(33)

To compute the rate of convergence, we can either directly differentiate
the EM mapping given by (3.1)-(3.3), or calculate the matrix of fractions of

missing information using I.(#1X) and I,,(6|X) defined in (2.3) and
(2.4), respectively. Let

S.(61X) = —Zw,(e)(’”‘“) for m=0,1,... (3.4)
I=1 o

and

m(ﬂlX)*"Zul(f))( “) b 5=0,1,.... (3.5)

where v,(0) = Vgr( g;lx;, 8) = [wl6) — 1[A — w,(8)]. Noting that Sl((;{
X

) =0 and S,(8|X) = 1, which are consequences of (3.1) and (3.2), one
can verify

L(61%) = — (&ZS”(HIX] 0},

x| R (3.6)
and
L (01X} = — (AzT(G'X) T(01X)/2) (3.7)
T,(81X)/2 T,(81X)/4
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By the law of large numbers and the fact 6> 6asn— %, it is easy to show
that, with probability one,

Tz(é\l X) = Tu(0) = E(Var(q lx,8) (i;—‘u]z)

T.(61X) = 0,

T(61X) ~ T(0) = E(Varwnx) (=2 )
and
So(61X) = E(q) = Am+ (1 — 7).

It follows immediately that | (f1X), the matrix of fractions of Inissing
information, converges to a diagonal matrix with diagonal elements

dy, = Ts(8)/E(q)
and
dyy = T(8)/2.

Therefore, when the ample size is large, the componentwise rate of conver-
gence R, (for the mean u) is equal to d,,, and R, (for the variance o?) is
equal to d,,. Since d;, # dy, in general (their values can be obtained via
numerical integrations for a specific value of the parameter #), the two
components converge at different rates.

To illustrate these results numerically, we conducted a simulation with
n =100, 7 = 05, A = 0.3, u = 0, and o* = 1. The initial guess is set at an
unbiased estimate of ( u, o *). A similar numerical example was used in Meng
and Rubin (1991) to illustrate the supplemented EM (SEM) algorithm for
computing the large-sample variance-covariance matrices associated with
maximun-likelihood estimates found by EM., It is interesting ta observe from
Table 1 that the different-rate phenomenon can also occur with finite
samples.

4. ALGEBRAIC RESULTS

We now answer the general question concerning globhal and component-
wise rates of convergence of EM by studying the following linear iteration:

‘p(t-ﬂ) - ‘P(t)], (4_])
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TABLE 1
EM ITERATIONS WITH UNEQUAL H.'S
“(!) p.(‘) - i R(lt) (o2} (a2 — 52 3(2”

—0.040021 0.018032 0.099236 1.014000 0.012115 0.137961
—-0.057164 0.001889 0.100717 1.003357 0.001671 0.125666
~0.058863 0.000190 0.101899 1.002095 0.000210 0.126038
—0.059034 0.000019 0.103233 1.001911 0.000026 0.126302
—0.580051 0.000002 0.104778 1.001888 0.000003 0.126495
—0.059053 0.000000 0.106518 1.001885 0.000000 0.126618
—=0.059053 0.000000 0.108323 1.001885 0.000000 0.126535

U B W= |

where ¢ = ¢ — § and | is the matrix of fractions of missing information
defined in (2.6). As a consequence of (1.5) and (2.6), this linear iteration has
the same rates of convergence as EM. Recall that the largest eigenvalue of |
must be less than 1 in order to guarantee the convergence of the linear
iteration of (4.1). To study the linear iteration in (4.1), we use the following
decomposition of J.

LEMMA.  Suppose 1061 Y.) > 0. Then the d X d matrix | has the
following decomposition:

k
J=X A v, (4.2)
j=1

where 1> A > Ay > o+ > A, 20 are k (< d) distinct eigenvalues of ]
with the mn'espondmg multiplicities m,, ..., my; the m; X d matrices Uy, v;

(j=1,...,k) form the bases of the jth ezgenvector spaces for | and ]
respectiv?ly, and

53]

(o7 ooind) =1, (4.3)

Uy
with I, the d X d identity matrix.

Proof. It is well known in statistics that the matrix I, of (2.4) is
nonnegative definite because it is equal to

dlog f( Y, | Yoo, ) \{ 0 log f( Y | Yopss €) " '
f( a8 )( 30 f(}mis obs * 8) mis ?
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which can be verified using integration by parts (e.g., Cox and Hinkley, 1974).
It follows then from our assumption and (2.7) that I (817, ) > 0. The

lemma then follows immediately from the well-known diagonability theorem
and the fact that | is similar to a symmetric matrix

J = I_I/z(al Ylbs) om(G | Y)bS)IOC‘UZ(G ] lob‘)’

which is always diagonalizable (e.g., see Searle, 1982, Chapter 11).
We now summarize our main result as a proposition. To avoid trivial
cases, we assume 69 # 6 so that e =909 - p#£0,

PROPOSITION,
(a) Foreachico ={1.2,..., d} let

A, {; e@lu,u—gp“”uTbeT# 0}

where ¢, is the ith row of the identity matrix 1,, and let

jy=min{j e A, k+ 1}. (4.4)

Then the ith componentwise rate of convergence of EM, defined in (2.2), is
given by

R, = /\j(, (4.5)
where Aoy =
(h) Let
Jo = minj,. (4.6)

Then the global rate of convergence of EM, defined by (2.1), is given by

R = = max R,. (4.7)
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Proof. (a): Following (4.1)-(4.2), we have

o = Z)J Wyl v (4.8)

It follows immediately that, for i €2, if j, <k or j, = k but A, # 0, then

(t+1) ):k AHl
P ) [ §
R, = lim Rg” = lim —5—(;)— = lim —Q—J—f—v
t— oo f o w ‘P! {—x E A

J=1i

=t A DA M) Ay /ey,
t=e 1+Z’k3+1(/\//\ )u’q/wq

This last step follows because lim, ﬁx(z\ /A =0 for any j>j = 1L If
ji=kand A, =0o0rj, =k + 1, then ¢ =0 for any ¢ 2 1, and hence, by

definition, A, = 0 = A,.
(b): By (4 6) and (4 8) we have (notice A;, > 0 because @ # 0)

2
”‘P(HJ)” Ed 1[ (t+1)] [ A//\ AJw‘J]
“4’(”“2 EEI:\[(PE(:)] Zi=1[2j=j.(AJ/AJO) w"f]

Since lim, _,..(A,/A, ) = 0 for any j > j,, the above identity leads to

I DI AR,

RZ = liIn - _— i ]x .f(l - tiu = /‘2
o [l Ty jimgo i
¢ E:ji=fo™ iy
which completes our proof. |

Part (a) of the Proposition indicates that although each R, (i €2) must
equal one of the eigenvalues of | and R, < A, (the largest eigenvalue of [),
the R,’s are not necessarily equal to A,. Part (b) confirms our intuition that
the global rate of convergence should be equal to the componentwise rate of
convergence of the slowest component(s), since the whole algorithm con-
verges if and only if all components converge.

As a consequence of the Proposition, the following corollary gives the
condition under which all componentwise rates of convergence will be the
same.
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CorOLLARY. R; = R forall i €92 if and only if
¢l =0 forj<j,, and w, #0 fordli€F, (4.9)
where u, = 0.

Proof. Following (4.5) and (4.7), we only need to show that j, = j, for
all i €@ if and only if (4.9) holds. It is clear that, by the definition of j, of
(4.4),

Jisie = Mo =0 forj <j, and w;, # 0 foralli €2,

But this is equivalent to (4.9), because ¢Wu/ ;v = 0if and only if cp“” =1

: Tk p ) :
(since v s nonsingular), completing the proof. [ ]

This result suggests that all R;’s are the same i{ and only if ¢ = ¢ — g
has “hr)mogeneous” projections onto the cigenvector spaces. For example,
R, = A,, the second largest eigenvalue, if and only if ¢® is orthogonal to the
first eigenvector space ) and there is no zero coordinate in the projection to
the second space: ¢Wu; v,.

In practice, betswse one typically has no control aver ¢ (since 8 is
unknown before running EM), it is very unlikely that there will be zero
coordinates in the projection ¢'™u/ v, unless | has special structure, as in
the diagonal case in Section 3. Consequently, in most practical situations, all
components converge at the global rate, which equals the largest eigenvalue
of the matrix of fractions of missing information. Nevertheless, as illustrated
in Section 3, the phenomenon that different components converge at differ-
ent rates can occur with models used in statistical practice.

Ingram Olkin has been one of statistics’ most prolific contributors 1o
multivariate models and linear algebra. We are particularly pleased, there-
fore, to be able to contribute to this special issue honoring his 70th birthday,
especially with a topic on a method whose theoretical foundation is built upon
linear algebra, and whose primary applications are in multivariate statistics.
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supported in part by several National Science Foundation Grants awarded to
the Department of Statistics at The University of Chicago, and by The
University of Chicago Block Fund.
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