WILEY-
BLACKWELL

Inference in Molecular Population Genetics

Author(s): Matthew Stephens and Peter Donnelly

Source: Journal of the Royal Statistical Society. Series B (Statistical Methodology), Vol. 62, No.
4 (2000), pp. 605-655

Published by: Blackwell Publishing for the Royal Statistical Society

Stable URL: http://www.jstor.org/stable/268061 1

Accessed: 22/06/2011 11:27

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at

http://www jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www jstor.org/action/showPublisher?publisherCode=black.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

Blackwell Publishing and Rogal Statistical Society are collaborating with JSTOR to di%itize, preserve and
extend access to Journal of the Royal Statistical Society. Series B (Statistical Methodology).

http://www jstor.org



J. R. Statist. Soc. B (2000)
62, Part 4, pp. 605-655

Inference in molecular population genetics

Matthew Stephens and Peter Donnelly
University of Oxford, UK

[Read before The Royal Statistical Society at a meeting organized by the Research Section on
Wednesday, March 15th, 2000, Professor P. J. Diggle in the Chair]

Summary. Full likelihood-based inference for modern population genetics data presents
methodological and computational challenges. The problem is of considerable practical importance
and has attracted recent attention, with the development of algorithms based on importance
sampling (1S) and Markov chain Monte Carlo (MCMC) sampling. Here we introduce a new IS
algorithm. The optimal proposal distribution for these problems can be characterized, and we exploit
a detailed analysis of genealogical processes to develop a practicable approximation to it. We
compare the new method with existing algorithms on a variety of genetic examples. Our approach
substantially outperforms existing IS algorithms, with efficiency typically improved by several orders
of magnitude. The new method also compares favourably with existing MCMC methods in some
problems, and less favourably in others, suggesting that both IS and MCMC methods have a
continuing role to play in this area. We offer insights into the relative advantages of each approach,
and we discuss diagnostics in the 1S framework.

Keywords: Ancestral inference; Coalescent; Computationally intensive inference; Importance
sampling; Markov chain Monte Carlo methods; Population genetics

1. Introduction

There has been a long and mutually beneficial history of interaction between population
genetics and statistical science, dating back principally to Fisher, Wright and Haldane (for
background, see for example Ewens (1979)). For most of this history, population genetics
was largely theory driven, with the theory depending often on applied probability modelling.
Markov chains, diffusion processes and more recently measure-valued diffusions and the
coalescent have played important roles in the study of stochastic models for genetic evolution
within a population.

Recent experimental advances have led to an explosion in data which document genetic
variation at the level of deoxyribonucleic acid (DNA) within and between populations. These
kinds of data lead to challenging inference problems. In the abstract, they consist of a high
dimensional, but partial, snapshot, taken at a single point in time, from the evolution of a
complicated stochastic process. Whereas the structure of the stochastic models may be well
understood, explicit expressions for probability distributions are typically not available.
Further, distinct data points — typically genetic information from sampled chromosomes at a
particular region of interest—are highly positively correlated, exactly because the sampled
chromosomes share ancestral history. As a consequence, there is limited information even in
very large samples. (In many problems, this information grows only as the logarithm of the
sample size or worse. In others the amount of information in a sample is bounded as the
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sample size increases.) The limited information in data puts a premium on efficient inferential
methods. In practice though, inference has typically been based on low dimensional summary
statistics. There has thus been growing interest in the development of full likelihood-based
inference methods.

Although there are several directions from which inference may be approached, all have
the flavour and structure of missing data problems. Two principal schools have pioneered full
likelihood-based inference in population genetics via computationally intensive techniques.
The first, due to Griffiths and Tavaré (Griffiths and Tavaré, 1994a, b, c, 1999), exploited a
clever computational method for approximating the solution to recursive equations for
quantities of interest. The second, due to Felsenstein and colleagues (Kuhner et al., 1995,
1998), takes a Markov chain Monte Carlo (MCMC) approach. Subsequent developments on
each theme have either adapted the methods to different genetic systems or, in the MCMC
context, adopted alternative formulations or proposal distributions (Griffiths and Marjoram,
1996; Nielsen, 1997; Wilson and Balding, 1998; Beaumont, 1999; Bahlo and Griffiths, 2000;
Slade, 2000).

The Griffiths—Tavaré approach has recently been shown (Felsenstein et al., 1999) to be a
version of importance sampling (IS). This observation is the starting-point for our analysis.
The optimal IS distribution can be characterized. It effectively depends on the time reversal of
certain stochastic processes. Although this optimal solution is tantalizingly inaccessible in
most (but not all) settings, insights into the stochastic models suggest natural approximations
for the optimal proposal distribution. We use these as the basis for a new IS approach.

All methods for these problems are extremely computationally intensive, and often on or
beyond the borders of practicability for realistically sized problems. Our new approach is
most naturally compared with the original method of Griffiths and Tavare. It represents a
substantial improvement in efficiency (typically by several orders of magnitude) and accu-
racy. We also compare our method with existing MCMC approaches. In problems in which
the genetic structure is ‘constrained’ (in a sense which will become clearer later) IS seems
competitive with, or superior to, these MCMC approaches. The latter seem to have an ad-
vantage for less constrained problems. There are parallel difficulties with implementation of
either MCMC or IS methods in complex problems such as these, effectively because one can
never be sure that the algorithm has been run for sufficiently long. These difficulties seem to
have been underestimated in early applications within genetics. Our analysis may offer some
useful practical insights.

At a more generic level, inference in population genetics may provide a useful model
system in which to gain insight for inference procedures in other complicated settings, and in
particular in high or infinite dimensional stochastic processes. The success of IS methods in
this context may provide a useful counterpoint to the routine use of MCMC sampling as the
first choice for implementing computationally intensive inference. More specifically, there are
useful general guidelines on which sorts of MCMC or IS approaches may be more successful
than others.

We set the scene in the next section, describing the simplest versions of the genetics and
demographic models of interest. Section 3 describes the simplest generic inference problem
and the potential for both IS and MCMC methods in its solution. Motivated by genealogical
arguments, and the structure of the optimal IS function in this context, we introduce a new IS
function in Section 4. We implement this for several different types of genetic data and
compare its performance with existing IS and MCMC methods (Section 5). The final section
offers insights into the strengths and weaknesses of the various methods and discusses
possible extensions and improvements.
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The flavour of the inference problem on which this paper is focused is reminiscent of the
problem addressed by Edwards (1970). In each case, the structure in genetic data arises
through the action of stochastic processes superimposed on an evolutionary tree. In the
phylogenetic context addressed by Edwards the central question relates to inference for the
unobserved tree. In the population genetics setting considered in this paper, much or all of
the structure of the tree is not of primary interest, instead playing the role of missing data. Of
course, computationally intensive statistical methods were in their infancy in 1970, but we
note an analogy between the approach suggested by Whittle (1970) in the discussion of
Edwards (1970) and the approach which we adopt here.

2. Demographic and genetic models

To illustrate our methods we shall consider what is effectively the simplest demographic and
genetic scenario. Although rather simple, this model is nevertheless the basis of most existing
inference from the growing amounts of molecular population genetics data. We shall give a brief
informal description of the underlying model. For more applied background see Donnelly and
Tavare (1995) and references therein. For a rigorous treatment see Ethier and Kurtz (1993) or
Donnelly and Kurtz (1996a). The methods discussed here have been extended to several more
general models.

Many organisms are diploid, carrying chromosomes in pairs. We focus attention on a
chromosomal region that is sufficiently small that the possibility of recombination over
relevant timescales can be ignored. As a consequence, each chromosomal segment is descended
from a single chromosome in the previous generation, and it is enough to consider haploid
demographic models, i.e. those in which ‘individuals’ have a single parent.

Our methods apply to a wide range of specific demographic models (formally, those which
are in the domain of attraction of the Fleming—Viot diffusion; Donnelly and Kurtz (1999)).
For example they apply to the Wright—Fisher model, in which a population that has been of
constant (large) size N chromosomes throughout its history evolves in non-overlapping
generations, with the joint distribution of offspring numbers in a particular generation being
symmetric multinomial and independent of offspring numbers in other generations. For
definiteness we shall focus the description here on populations of constant size N chrom-
osomes which evolve in non-overlapping generations.

Within the region of interest each chromosome has an associated genetic type. We denote
the set of possible types by E, which we assume for now to be countable. (In practice, the
choice of E will depend on the genetic system being modelled; a model for which E is
uncountable is considered in Section 5.5.) Independently of all other events, the genetic type
of each progeny of a chromosome of type a € E is « with probability 1 — u, and g € E with
probability P,g, i.e. mutations occur at rate 4 per chromosome per generation, according to
a Markov chain with transition matrix P. We assume that the evolution is neutral, in that
the demography is independent of the genetic types of the chromosomes. To simplify the
description we focus on the case where P has a unique stationary distribution.

Now consider a random sample of n chromosomes, taken from the population at stationarity.
In the region of interest, each chromosome has a unique ancestor in any previous generation.
The ancestral relationships among the sample back to its most recent common ancestor
(MRCA) can then be described by a genealogical tree (see for example Fig. 1). It turns out
that the natural timescale on which to view the evolution of the population is in units of N/
generations, where »/? is the variance of the number of progeny of an arbitrary chromosome (see
for example Wright (1969), page 215, and references therein). On this scale the distribution of
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C
| Time before
_______________________________ sampling
- 2.0

Fig. 1. lllustration of a genealogical tree G, typed ancestry A and corresponding history H, for five individuals
with genetic types in E = [C, T}: the sampled individuals are represented by the tips at the bottom of the tree, and
their ancestral lineages are reé)resented by thick lines running up the page (time runs backwards up the page and
is measured in units of N/v° generations); ancestral lineages are joined by horizontal lines (and are said to
coalesce) when they share a common ancestor; the dots represent mutations, and horizontal dotted lines indicate
the times at which events (coalescences and mutations) occur; the typed ancestry .4 consists of all the information in
the figure, whereas the genealogy G consists of only the full lines (including times of coalescences); for this typed
ancestry, the history H = (H_p, H_(m_1), . - -, Hi, Hy) may be represented as ({C}, (C, C}, (C, T}, {C, C, T},
(G P B, T, T O, B0 T AT, TG T, 1, 7,71

the genealogical tree of the sample is well approximated by that of a random tree called the
n-coalescent (Kingman, 1982a, b,c). At stationarity, under the neutrality assumption, the
distribution of the type of the MRCA is given by the stationary distribution of the (mutation)
Markov chain P. Conditionally on the genealogical tree and the type of the MRCA, types
change along different branches of the tree as independent continuous time Markov chains
with rate /2 = Nu/v® and transition matrix P (see for example Donnelly and Tavaré
(1995)). Throughout the paper we shall adopt the coalescent approximation as the model
underlying the data.

Define the typed ancestry A of a sample to be its genealogical tree G, together with the
genetic type of the MRCA, and the details and positions of the mutation events which occur
along the branches of G (see Fig. 1). The distribution of the typed ancestry of a random
sample of n chromosomes taken from the population at stationarity depends on N, x and
only through 6. Later we regard # as unknown, and the transition matrix P as known, and
focus on inference for 6, so we shall suppress dependence on P and denote probability distri-
butions by Py(-). The distribution of A may be sampled from (directly) using the following
algorithm.

Algorithm 1. To sample from Py(A) we follow these steps. (This is a continuous time
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version of the discrete time urn model discussed by Ethier and Griffiths (1987); its properties
are investigated by Donnelly and Kurtz (1996b).)

Step 1: choose a type in E at random according to the stationary distribution #(-) of the
transition matrix P. Start the ancestry with a gene of this type which splits immediately
into two lines of this type.

Step 2: if there are currently k lines in the ancestry, wait a random amount of time which
is exponentially distributed with rate parameter A\, = k(k — 1 + 6)/2 and then choose an
ancestral line at random from the k. Split this line into two lines (each with the type of the
progenitor) with probability (k — 1)/(k — 1 + 6); otherwise mutate it (according to P).
Step 3: if there are fewer than n + 1 lines in the ancestry return to step 2. Otherwise go back
to the last time at which there were » lines in the ancestry and stop.

For mutation models such as the infinite sites model (Section 5.5), in which the transition
matrix P does not have a stationary distribution, it is usually sufficient to measure types
relative to the type of the MRCA, with an arbitrary type being assigned to the MRCA in step
1 of algorithm 1.

One aspect of A which will play a key role in what follows is the history H, which we may
describe informally as A with the time and topology information removed. Formally we
define H to be the type of the MRCA, together with an ordered list of the split and mutation
events which occur in the typed ancestry (including the details of the genetic type or types
involved in each event, but not including the details of exactly which line was involved in each
event). The history H thus includes a record of the states (H_,,, H_(,,_y), . . ., H,, Hy) visited
by a Markov process beginning with the genetic type H_,, € E of the MRCA and ending with
the genetic types H,, € E" corresponding to the genetic types of a random sample. Here m is
random, and the H; are unordered lists of genetic types. For notational convenience we shall
write H = (H_,,, H 1y, - - ., Hy, Hy), although H actually contains details of the transitions
which occur between these states (which may not be uniquely determined by the list of states
if P, > 0 for more than one « € E). If H; is obtained from H;_; by a mutation from a type «
to a type [ then we write H; = H; | — a + (3. If H; is obtained from H;_; by a split of a line of
type « then we write H; = H,_; + «. The concept of a history is illustrated in Fig. 1.

It follows from algorithm 1 that the distribution Py(H) is defined by the distribution () of
the type of the MRCA, the stopping procedure (step 3 of the algorithm) and the Markov
transition probabilities

0 .
PoHH,.,) —% if Hy= H,_ | +a, v
0 otherwise,

where # is the number of chromosomes in H;_; and n,, is the number of chromosomes of type
ain H_,.

Consider now the distribution my(-) of the genetic types 4, = (a;, a, . . ., a,) € E" of a
random (ordered) sample of n chromosomes. Since the history H includes (in H;) the genetic
types of a sample, algorithm 1 also provides a straightforward way of sampling from my(-). To
give an ordered sample, a random order must be assigned to the n types in H,, so
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n,! ! if H, is consistent with A4,,
ro(AuJH) = To( A, Ho) = (QEIE o )/ 0 @
0 otherwise.

3. Approaches to inference

We now focus on the problem of performing inference based on the genetic types 4, = (a;,
a, . . ., a,) € E" of a random (ordered) sample of n chromosomes taken from the population
at stationarity. Questions of interest may relate to inference for

(a) the ‘evolutionary parameters’ (in our case the scaled mutation rate 6, or the mutation
matrix P),

(b) aspects of the unobserved ancestry of the sampled chromosomes (e.g. the time to the
MRCA of the sample) and

(c) the demographic history of the population.

For ease of exposition we focus on the problem of likelihood inference for # (assuming P is
known). We define

L({;) = ﬂ-ﬁ(An) (3)

and refer to this as the likelihood. 1t is typically sufficient to know the likelihood up to an
arbitrary multiplicative constant (which may depend on the data, but not the parameter), and
indeed likelihood is often defined only up to such a constant. We shall distinguish below
between approaches which approximate the probability of the data as a function of the
parameter and approaches which approximate a function proportional to this (where the
constant of proportionality is unknown). To facilitate this distinction we shall reserve the
term likelihood for definition (3) and refer to any function proportional to this as a relative
likelihood. We note that in some circumstances, e.g. when a model is to be compared with
other (non-nested) models, it can be helpful to know the likelihood rather than only the
relative likelihood.

For most mutational models of interest, no explicit expression for L(f) is available. Writing

L(6) = my(4,) = j (A, H) Po(H) dH, (4)

and noting that my(4,|H) is easily calculated (using equations (2)), suggests viewing this as a
missing data, or data augmentation, problem with H being the missing data. (Some of the
many generic methods that are now available for such problems, including MCMC methods
and variants on the EM algorithm, are described in Tanner (1993) and Gilks et al. (1996).) As
is common in this context, there is a choice of what to include in the missing data, with the
usual trade-offs (typically, the lower the dimension of the missing data 7, the harder it is to
calculate m4(A4,|7)). We note though that for all potential data augmentation strategies the
dimension of the space in which the missing data live will be enormous. For example, there
are n!(n — 1)!/2"" different possible topologies for the underlying trees. The high dimensional
nature of the missing data is one of the main reasons that these problems pose such a
computational challenge.
Expression (4) suggests a naive estimator of L(6):



Molecular Population Genetics 611

1 M
L(6) = mo(4,) ~ 37 ; (A, | H?) )

where H, . . ., H™ are independent samples from Py(*). Since my(A,|H) is 0 unless H is
consistent with 4,, each term of the sum will be 0 with very high probability, and reliable
estimation will require values of M (in the range 10°~10'? for the examples that we consider
here) which are too large for the method to be practicable. Similar problems appear to persist
for any other potential choice of missing data. It is therefore necessary to turn to more
sophisticated computational methods to approximate the likelihood.

3.1. The Griffiths—Tavare scheme

The first such method in this context was developed by Griffiths and Tavare (1994a). They
showed that by finding recursions for probabilities of interest the likelihood could be written
in the form

L(0) = my(4,) = E{ l_£ F(B))|By = An} (6)
e
where By, By, . . ., B, is a particular set-valued Markov chain stopped the first time 7 that
it has cardinality 1. This leads to a natural Monte Carlo approximation for L(#): simply
evaluate the expectation above by repeatedly simulating the chain started from A4,, and
averaging the realized values of IT[_, F(B;) across the simulated realizations of the chain.
Naive application of this method to estimate the likelihood function L(-) requires sim-
ulation from a different Markov chain for each value of . Griffiths and Tavaré (1994a)
showed how to use realizations of a single Markov chain to estimate the likelihood function.
They subsequently extended the method to more general models and inference questions (see
for example Griffiths and Tavaré (1994b, c, 1999)).

3.2. Markov chain Monte Carlo method |

A natural alternative to the Griffiths-Tavaré scheme, which was first pursued by Kuhner et
al. (1995, 1998), is to deal with the missing data by using MCMC methods. If 7 represents
missing data for which my(A4,|7) is (relatively) easy to calculate, then it is straightforward
to use the Metropolis—Hastings algorithm to construct a Markov chain with stationary
distribution Py(7'4,). If 7", 7®, ... is a sample (after burn-in, and possibly thinning)
from a Markov chain with stationary distribution Py (7'|4,), then a relative likelihood sur-
face for A can be estimated by using

o) _| Py(T, A,)dT
L(0,) Py,(4,)

_ i PG(T5 An)
= [ ay e

1 g Py(4,, TY)
M o Py (4, T’

as in Geyer and Thompson (1992) (see also Geyer (1996)).

(7
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3.3. Markov chain Monte Carlo method Il

Wilson and Balding (1998) developed an alternative MCMC approach. They took a fully
Bayesian view, putting a prior distribution P(6) on 6, and constructing a Markov chain with
stationary distribution P(7, 8| 4,). Although they base inference on the posterior distribution
of @ (an approach which we fully endorse), we note that, since the posterior density is propor-
tional to the product of the prior and the likelihood, an estimate of the relative likelihood surface
for # may be obtained by estimating the posterior density and dividing by the prior density. The
posterior density is most easily estimated by smoothinga sample 8", . . ., #* from the Markov
chain, although potentially more efficient methods exist (see for example Chen (1994)).

In contrast with the Griffiths-Tavaré scheme described above, and the IS methods
described below, these MCMC approaches give only relative, rather than absolute, likeli-
hood surfaces (although methods such as those reviewed by Raftery (1996) may allow the
likelihood itself to be computed).

3.4. Importance sampling

IS (see Ripley (1987) for background) is a standard method of reducing the variance of
Monte Carlo estimators such as expression (5). If Q,(-) is any distribution on ancestries
whose support includes {H: my(4,|H) > 0}, then equation (4) may be rewritten as

Py(H)
L(O) = A, H H)dH 8
0 = | a5 04 ®)
1 M nPH?) 1 M
Y 4, H(i) . — 4 s 9
M ; ?Tﬁ'( | )QG(H(Q) M ; W™ say ( )
where H'", . . ., H" are independent samples from Q,(-). The distribution Q,(-) is known as

the IS function or the proposal distribution, and the w" are known as the IS weights. For a
careful choice of Q, the variance of the estimator (9) will be much smaller than that of
estimator (5). The optimal choice Qj of Q, is the conditional distribution of histories given
the data,

Oy(H) = Py(H|4,), (10)
as then every term of the sum (9) is identical:
Py(H) Py(H)  Py(HNA,) _
Trﬂ(AulH) Q:(H) - TTH(AnIH) Pﬁl(HiA”) - PQ(H]A”) - ?Tﬂ(AH) - L(Q)! (1 l)

and the variance of the estimator is 0. Unfortunately the conditional distribution of histories
given the data, Py(-|4,,), is not known in most cases of interest. Indeed, it follows from equation
(11) that knowledge of Py(H|A,), for any H, is equivalent to knowledge of the likelihood L(6).

Expression (9) could be used to estimate the likelihood independently for many different
values of 6, using samples from a different IS function Q, for each value of #. However, it
appears to be more efficient to reuse samples from a single IS function. This is in theory
straightforward: for any fixed 6, we have

1 M i Po(H?)
L)~ = mp(A,|HH L — 12
O 3 2 AT 5" (12)
where H, . . ., H™ are independent samples from Qy, (). This approach is due to Griffiths

and Tavaré (1994a), which refers to 6, as the ‘driving value’ of 6.
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In summary, three frameworks can be distinguished: the use of IS to estimate the likelihood
at one particular value of #, with further IS (via equation (12)) to estimate the likelihood sur-
face (we shall see below that the Griffiths-Tavaré method is a particular instance of this
approach); the use of MCMC methods to sample from the conditional distribution of the
missing data, again at one particular #-value, with IS (via equation (7)) to estimate the
likelihood surface; MCMC methods which sample from the joint conditional distribution of
the missing data and 6.

4. Towards a more efficient proposal distribution

Felsenstein et al. (1999) recently noted that the Griffiths—Tavaré scheme is a version of IS
with a particular proposal distribution. (As noted by Griffiths and Tavaré (1994a), their
method is a particular instance of a Monte Carlo approach to solving linear equations, which
has a long history. The connection with IS in this context had already been observed; see for
example Ripley (1987), section 7.3.) It is thus natural to ask whether other IS schemes,
corresponding to different proposal distributions, may be more efficient.

A natural class of proposal distributions on histories arises if we consider randomly con-
structing histories backwards in time, in a Markov way, from the sample 4, to an MRCA,
i.e. a random history H =(H_,,, . . ., H_;, Hy) may be sampled by choosing H, = 4,, and
successively choosing H,_,, i—1=—1, =2, ..., —m, according to prespecified backward
transition probabilities gy(H;_,|H;). The process stops at the first time —m at which the
configuration H_,, consists of a single type.

For equation (8) to hold it is necessary to restrict attention to the subclass M of these
distributions for which, for each i, the support of g,(-|H;) is the set

{Hi_y: po(H;|H,_) > 0},

where the forward transition probabilities p, are defined at equations (1). Specifying such
backward transition probabilities gy then defines a distribution Q, with support the set of
histories consistent with 4,. Furthermore it is straightforward to simulate from Q, and to
evaluate the ratio Py(H)/Q,(H), so that approximation (9) may be applied.

When viewed as an IS method, the Griffiths—Tavaré scheme corresponds to a proposal
distribution Qf'" in the class M, with

qo(H;_|H;)  po(H | H,_y), (13)

where the forward transition probabilities p, are defined at equations (1). In fact there is a
whole family of Markov chains satisfying equation (6), each with its own function F. There is
a one-to-one correspondence between the Markov chains in this family and the class of Markov
proposal distributions described two paragraphs above. (Note that this is different from the
generation of alternative Griffiths—Tavaré schemes via ‘renormalized sampling probabilities’
suggested in Griffiths and Tavaré (1994a), page 157.) Implementations of the Griffiths—
Tavaré scheme (by themselves and others) have routinely used the particular Markov chain
leading to expression (13), which Griffiths and Tavaré (1997), page 174, refer to as the
‘canonical candidate’.

We begin our search for a more efficient proposal distribution by characterizing the
optimal proposal distribution (10) in theorem 1 below. Although it is not possible to sample
from this distribution directly, the key to our IS approach is to exploit the characterization in
approximating the optimal proposal distribution.
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Theorem 1. Write w(-|4,) for the conditional distribution of the type of an (n+ I)th
sampled chromosome, given the types, 4,, of the first » sampled chromosomes:

mol(Ay: )}

‘JT(O."A,, = 14)
)= ) :
The optimal proposal distribution Qj is in the class M, with
10 w(BH: — ) ;
g o M fH, ,=H—
C 2”& ?r(alHl _ a) ,60' 1 HI—]. H{ a—i_ﬁ!
GHNH) = i (N, 1 ; _ (15)
¢ ( 2 ) m(a|H; — o) EHpr ==y
0 otherwise,

where n, denotes the number of chromosomes of type « in H;. The constant of propor-
tionality C is given by

_n(n—1+6)
==

where n is the number of chromosomes in H,.

C

Proof. That Qj is in the class M follows from the Markov nature of H (in particular, the
fact that {H_,,, H_g,_yy, . . ., H;_1} and {H;y,, Hyy5, . . ., Hy, including the fact that the his-
tory ends at H,} are conditionally independent given H,).

We now derive the backward transition rates for A using the ‘particle representation’ of
Donnelly and Kurtz (1996a) which is a convenient embedding of both Py(A) and my(4,)
within the following continuous time Markov process on E".

(a) Attime ¢ = 0 assign types from E randomly to 4,(0) = (¢,(0), . . ., a,(0)) exchangeably.

(b) Let a,(-) evolve from a,(0) according to a continuous time Markov process with rate
0/2 and transition matrix P (the mutation process).

(c) Letay(-) (k=2, ..., n)evolveas follows: at points of a Poisson process of rate k — 1, a;
chooses i uniformly at random from 1, . . ., £ — 1, and ‘looks down and copies’ the value
of g; at that time. Between these events it evolves according to the mutation process.

(d) All the above ‘look down’ and mutation processes are independent, and independent
of (a).

Donnelly and Kurtz (1996a) showed that this process has stationary distribution my(-), and
that looking backwards in time (at stationarity) in this process, treating the ‘look down and
copy’ moves as coalescence events, gives the typed ancestry of a sample.

Suppose that at time ¢ the ancestry consists of k lineages. Since the lines of the particle
model are exchangeable, we can assume without loss of generality that these ancestral
lineages correspond to the first & lines of the particle model 4,(¢1) = (a,(?), a,(?), . . ., @ (?)). If
the configuration of types at time ¢ is 4,(?) = (o, @, . . ., &_;, @) then the probability of
the event Y, that in the last 6 time units there was a mutation from q,(t — 8) = B to a;(¢) = «
is given by

P{Y, N Ap(t —6) = (e -« o oy, PINA(D) = (s« « -5 Oy, Q)
P(Toa NA(t—06) = (o, . . o 0y, BN A1) = (s . . o, Oy, @)}
PlA4(t) = (v, . . ., Q15 @)}
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o ?T((lq, s Qg /8)69P,6a/2
B TI'(C!:'], s (g, O.’)

_5€W(5|Ak —a)
T2 mald, — )

+ 0(6)

P,ﬁ(x + 0(6)

By exchangeability this result holds for every line of type «, and so multiplying through by #,
gives the total rate at which mutations occur backwards in time from « to 3.

Similarly, if 4,(¢) = (e, . . ., 45, @, @), then the probability of the event Y, that in the
last 6 time units there was a coalescence of lineages k and k — 1 (i.e. line k looked down and
copied line k — 1) is given by

% P{Y, N A4p(t = 8) = (ays « - - Oz, @ AN A(D) = (0, . . . O3, O, )}

P{Ak(t) = (als < ey Qo QY C'-')}
> PlA(t—6) = (v, - - -, Oz, @, P)}6
=7 + 0(6)
P{Ak(’!) = (ala cen o, O 0‘.‘)}

+ 0(9).

~ n(ald; — a)

Again, by exchangeability every pair of lineages of type a coalesces at this rate, and so the
total rate is obtained by multiplying by n,(n, — 1)/2.

These results imply that Qj(-) is in M and give equations (15) up to the constant of
proportionality C. The value of C follows from the fact that events must occur at total rate
k(k — 1+ 6)/2 when there are k lineages in the ancestry (see Stephens (2000)). O

Theorem 1 shows how to find the optimal IS function Q} from the conditional probabilities
7(-|-). We have seen at equation (11) that knowledge of Qj is equivalent to knowledge of the
likelihood L(#). It is also easy to see that knowing the conditional probabilities (-|-) appear-
ing in equations (15) is equivalent to knowing L(#). Not surprisingly then, these conditional
probabilities cannot be found explicitly in most cases of interest. We can, however, gain con-
siderable insight into their structure from knowledge of the underlying genealogical processes.
Theorem 1 then has two helpful consequences. For any particular proposal distribution Q, €
M, such as that used by Griffiths and Tavaré, we can assess the associated ¢, in the light of
equations (15) to gain insight into when, or whether, it may behave well. Secondly, we can hope
to construct well-behaved proposal distributions by developing good approximations for 7(:|-)
and substituting these into equations (15) (renormalizing if necessary).

We now consider the conditional probabilities 7(:|-) in more detail. These are known
exactly for the special case of parent-independent mutation (PIM), in which the type of a
mutant does not depend on the type of its parent:

P,s=Pg for all a, 3.
In this case
ns+ 0P
ﬂ-(ﬁ|AH) = ﬁT{-_ﬁ—ﬁ’ (16)

where ng is the number of chromosomes of type #in 4,,. (See Hoppe (1984) for the infinite alleles
case; the general result then follows as in Donnelly (1986).) Equivalently, with probability
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n/(n + 60) the type of the (n + 1)th sampled chromosome is given by that of a chromosome
sampled uniformly at random from 4, and with probability 8/(n + ) its type is § € E with
probability Pj.

In the more general setting in which the type of a mutant depends on the type of its parent,
this simple structure is lost. Nevertheless we would expect types which have high frequency in
A, to have reasonable probability in 7(-|4,). Among types that are not present in the sample
there are two different effects. Loosely speaking, those types which are closer (in the sense of
requiring fewer mutational changes) to the sample should have higher conditional probability
in 7(-|4,) than those which are more distant. In contrast, types which are more likely under
the stationary distribution of the mutation process should have higher conditional probability
in 7(-|4,) than those which are not. These two effects may work in different directions; the
relative importance of the second effect increases as the mutation rate increases. (In the limit as
0 — oo, 7(+|4,) converges to the stationary distribution of the mutation process for any 4,,.)

It follows from the discussion in the previous paragraph and theorem 1 that in the optimal
proposal distribution there will be a tendency for mutations to occur towards the rest of the
sample, and that coalescences of ‘unlikely’ types are more likely than those of ‘likely’ types.
The proposal distribution (13) underlying the Griffiths-Tavaré approach does not, in
general, enjoy these properties. As an example suppose that £ = {1, 2, . . ., K} (where K is
large), and that the mutation process is a symmetric random walk with reflecting boundaries.
If 4,=(5,5,5,5,5,5, 11) then, under the Griffiths-Tavaré proposal distribution, if the
most recent event is a mutation which gave rise to the allele 11, the progenitor is equally likely
to be 10 or 12. It is clear intuitively here, and borne out by the form of equations (15), that
under the optimal proposal distribution (unless @ is large) the progenitor is more likely to be
10. Similarly, under the optimal proposal distribution the progenitor of this 10 allele is more
likely to be 9 than 11, and so on, whereas under Q°" each such choice remains equally likely.
As a consequence histories sampled from Q%" will tend to involve lengthy excursions through
unlikely configurations. These histories will be computationally expensive and contribute
negligible importance weights. This kind of effect will be most marked in settings where (as in
the example just given) there are few long-term constraints on the types of ancestral alleles,
and it explains the instances of unreliable performance by their method in our examples
(Section 5) for mutation models other than infinite sites.

Having reflected on the underlying genealogical processes, we propose the following
approximation to the conditional sampling probabilities.

Definition 1. Let 7(-|4,) be the distribution which is defined by choosing an individual
from A4, uniformly at random, and then mutating it according to the mutation matrix P a
geometric number of times, with parameter 6/(n + 0), i.e.

A o N 9 m
#BlA)=3 3 ”—( ) 2 (P 17)

acEm=0 1 ?’!""9 n+9

We now summarize some of the properties of 7(:| 4,) when considered as an approximation
to w(-|A4,)-

Proposition 1. The distribution 7(-|4,) defined by definition 1 has the following properties.

(a) 7(-|4,) = =(:|4,), for all 4,, in the case of PIM.
(b) 7(-|4,) = w(-|4,) for the case n = 1, provided that P is reversible.
(¢) The distribution 7(-|4,) is of the form
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#(Bl4,) = 3 "2 Mo (18)
ack N

for some M, i.e. a chromosome 8 may be sampled from 7(-|4,) by first sampling a

chromosome uniformly at random from A4,, and then choosing 3 from a distribution

which depends only on the sample size #, and on the type of the sampled chromosome,

and not otherwise on 4,. In our case

M® =(1-X\)I-X\P)"! (19)

where A, = 0/(n + 0).

(d) The approximation 7 is the only distribution of the form (18) which both satisfies
condition (b) above and is consistent in the sense that the conditional distribution of
the (n + 1)th observation given the first #» observations is the same as the (marginal)
conditional distribution of the (n + 2)th given the first n observations:

7(Bl4,) = 3 *el4,) 7{BI(A,, o)} (20)

acE

for all 4,. (We note in passing that in general our approximation lacks the stronger

property #(a|A,) T{BI(4,, @)} = T(B|4,) T{al(4,, B)}.)
(e) The distribution 7(-|4,) is the stationary distribution of the Markov chain on £ with
transition matrix

0 No

B 9 fa | 8 3 ( )
i.e.
ajAa,) = BEG: n 7] Bo l 7] .

Remark 1. Properties (a), (b) and (d) give grounds for optimism that 7 is a sensible approxi-
mation of 7. Property (c) can be computationally very convenient, as it means that 7(-|H)
may be computed efficiently for any H with fewer than n» chromosomes, once the matrices
MO M@ M™ have been found, which need only be done once. (Appendix A exploits
further computationally attractive features of 7(:|-) to facilitate implementation when these
matrices are not easily found.) Property (e) provides a characterization of 7 which is, in some
more general settings not considered in this paper, more amenable to generalization than
definition 1. The Markov transition matrix (21) is the transition matrix associated with the
(n + 1)th line of the particle representation described in Section 4 (or the Moran model) when
the first n lines are fixed to be 4,,.

Proof of property (a). The conditional probabilities 7(-| 4,) for PIM are defined at equation
(16), and the result follows from the fact that, for PIM, P" =P form=1, 2, .. ..

Proof of property (b). Consider the coalescence tree which describes the ancestry of two
sampled chromosomes (labelled 1 and 2), and denote by m, and m, respectively the number
of mutations between the MRCA and chromosomes 1 and 2. It follows from the reversibility
of P that at stationarity, conditionally on m, and the type «; of chromosome 1, the type of
the MRCA is 3 with probability (P™), 5. Conditionally on the type v of the MRCA, and m,,
the type of chromosome 2 is 8 with probability (P"), 5. Thus, conditionally on «;, m, and
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m,, the type of chromosome 2 is 4 with probability (P"™*"2), ;. The result follows from the
fact that m; + m, is geometric with parameter /(1 + 6), independently of «,.

Proof of property (c). Definition 1 gives

#BlA) =2 3 ( 9 ) L _pmy,

acEm=0 N n+0 n+0
=2 E —(1 A) (A P)os
aeE m=0
" E —(1 . n)(‘r )\nP)aﬁ:
ack

from which the result follows.

Proof of property (d). Suppose that 7 is an approximation of the form (18):
A(BlA) = 5 M,

Define n (= n(A4,)) to be the vector (n,/n), so 7(B|4,) = [nM(”)]ﬁ. Substituting into equation
(20) gives

[nM(")]ﬁ = E 1"..I-("{J'-'lf‘:li'r) ﬁ{ﬁl(Am O‘.‘)}

ael

=yyh M@ 5 et Ot ”& +5ae MED

acE~veE N EcE
— e M("H‘l} n, M(n) M(.u 1)
%Q{MH T

1
— m [n(nM(:Hl) ) M(H)M{u+1))]ﬂ_

This must hold for all n (since equation (20) holds for all 4,), and so
(n+ DM® = nM®*D 4 M@y, (23)

If 7 satisfies property (b) of the proposition, then M = (1 — A\,)(I — A, P)"". It then follows
from equation (23) and mathematical induction that M™ = (1 —\,)(I—\,P)”', and so
'I-T = ‘JT

Proof of property (e). Expressions (18) and (19) give

6 -1
HalH) =3 nn+9(1—n+9P)ﬁa. (24)

GeE

For notational convenience write 7, for n(«|H), and write 7 for the vector (,). Then equa-

tion (24) becomes
= glr P Y
YA n+0 ’

and on post-multiplying each side by 7 — {#/(n + 0)} P and rearranging we obtain
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o g
n+06 nto"

from which equation (22) follows. ]

We now define our proposal distribution and describe how it may be sampled from
efficiently.

Definition 2. Define the proposal distribution Q3" as the distribution in M corresponding
to the backward transition probabilities g, obtained by substituting 7(-|-) for «(:|-) into equa-
tions (15):

L0 #BIH,— ) R
C 5 miv lin-_]v—-H;- O:"'+‘6,
Go(H;_,|H;) = = : _ (25)
) ';r(alH — Q) Wi =t

otherwise,

where n,, is the number of chromosomes of type a in H; and C = n(n — 1 + 6)/2 where n is the
number of chromosomes in H,.

Proposition 2. For any given H,, the backward transition probabilities g,(H,_;|H;) defined
by equation (25) sum to 1 and may be sampled from efficiently as follows.

(a) Choose a chromosome uniformly at random from those in H;. Denote the type of the
chosen chromosome by a.

(b) For each type 8 € E for which Ps, > 0, calculate 7(3|H; — «) from equation (18).

(c) Sample H; , by setting

H.

i—

_ | H; — a+ 8 with probability proportional to 67(5|H; — &) Pyg,,
L™ | H,— « with probability proportional to n, — 1.

Remark 2. The proof of proposition 2 involves showing that, under the transition prob-
abilities gy(H,_,|H;), the probability that a randomly sampled transition involves either a
mutation from a chromosome of type o or a coalescence of two chromosomes of type « is
n,/n. The sampling algorithm described makes use of this feature to reduce the number of
pairs (a, ) for which 7(3|H; — o) must be calculated, by first sampling the type « of a
chromosome which is involved in the transition, and then sampling the exact nature of the
transition (a mutation to type 3, or a coalescence with another chromosome of type «), from
those possible. This, combined with the fact that 7(3|H; — «) is easy to calculate (see remark
1), makes Q5° very efficient to simulate from (in general much more efficient than the
Griffiths-Tavaré proposal distribution, particularly where the number of possible types is
large).

Proof. The results follow directly from the definition of the backward transition probabilities
Go(H,_||H;) given in equation (25), provided that we can show that the probability that a
randomly sampled transition involves either a mutation from a chromosome of type o or a
coalescence of two chromosomes of type « equals n,/n.

The probability that a transition randomly sampled from g,(H,_,|H;) involves a mutation
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from a chromosome of type « is given by

Pm(ﬁﬂ) s C—I Z 0 ﬁ(ﬁlH{ = 05)

= 2
22 Nl —a) (26)

and the probability that it involves a coalescence of two chromosomes of type « is given by

Ry 1
pe)=C (2 ) #olH,— o)’ @7
where n, is the number of chromosomes of type « in H;. We need to show that p ()

+ p(@) = ny/n.
From equation (22) we have

| _ s ABIH; ~ ) 0 L, Ma=l
Tl falHi—a)\n—14+60"""n-14+6)
Thus

n_a_hz 7(BIH; — a) 6 n, Hy N, — 1

n b maHi—a)\n—1+0n e oy n—1+6
_« #BlH—a) . 8 Y
_ﬁggﬁ(a[h’j-a)c 2Pt r o = © (2)
= Pm(®) +pc(). O

5. Applications

We now illustrate our method on some examples and compare its performance with the
Griffiths—Tavaré scheme and MCMC schemes devised by Kuhner ez al. (1995, 1998) and
Wilson and Balding (1998). All the methods that we consider naturally provide estimators of
likelihood or relative likelihood surfaces. From a classical perspective it would be more
natural to consider estimating and plotting log-likelihood surfaces. However, because of the
limited information in data, it is at best unclear whether the classical asymptotic theory
relating to the interpretation of the log-likelihood applies in genetics settings of interest.
(Further work on this question would be welcomed.) From a Bayesian viewpoint, the like-
lihood is of more natural interest than is the log-likelihood. In part for these reasons, and in
part to facilitate a direct comparison with published estimates, we focus here on likelihood
and relative likelihood estimation.

Our comparisons, with one exception, are made on relatively small problems, so that by
using a large number of iterations of our method we believe that we can estimate likelihoods
accurately. Methods may then be assessed on the basis of the accuracy of likelihood estimates
obtained by using fewer iterations (where possible, these estimates were obtained either
directly from the literature or by applying each method according to published general
guidelines given by the authors). To allow a fair comparison of the relative efficiency of the
methods used, we have tried where possible to give (in table and figure captions) an idea of
the central processor unit time (on a Sun Ultra-Sparc 200 workstation) required to produce
the data shown. Even for these small problems an accurate estimation of the likelihood can
involve non-trivial amounts of computing, and modern computer power puts us at a distinct
advantage over practitioners of earlier years.
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Methods which give reasonably accurate estimates of the likelihood may be more stringently
compared, by assessing the degree of uncertainty associated with the estimates due to sampling
variance. For the IS schemes, assuming that the distribution of the weights has finite variance o”,
then (by the central limit theorem) the estimator (8) is asymptotically normal with variance
o’ /M. A natural measure of the variability is then given by the standard error 6/+/M, where 6°
is the sample variance of the M weights. However, caution is necessary, as even assuming finite
variance (which is not guaranteed) the distribution of the weights may be so highly skewed that,
even for very large M, o is (with high probability) underestimated by 6°, and/or the normal
asymptotic theory does not apply. Despite this important caveat, we quote standard errors in
some of our examples to allow a direct comparison with published estimates. For both MCMC
schemes and IS schemes, an alternative and more reliable (though computationally more
expensive) assessment of sampling variability can be obtained by comparing the results of
different runs using different seeds for the pseudorandom number generator. We plot results
obtained from several different runs for some of our examples, to give an indication of sampling
variability, though we have not performed the larger scale simulation studies that are necessary
to obtain accurate estimates of Monte Carlo errors. Further discussion on methods of
estimating sampling variability is deferred to Section 6.

5.1. Parent-independent mutation

For PIM models, the conditional distributions =(:|-) are known exactly (see equation (16)
above), and hence so also is the likelihood. This class of models thus provides a convenient
check on the correctness of the implementation of any algorithm for estimating the like-
lihood. In our case, it follows from proposition 1 (property (a)) that for PIM our proposal
distribution Q3" is exactly the optimal proposal distribution Q}(H) = P,(H|A,). Thus our IS
estimator (9) should have zero variance and give the exact value for the likelihood, which in
fact it does.

Our focus throughout the paper is inference for 4. Although this is trivial for PIM,
questions of ancestral inference, i.e. inference for aspects of the ancestry of the sample,
remain apparently non-trivial in this context. However, for PIM our IS is actually
independent sampling from the full conditional distribution of the history of the sample and
thus represents an extremely efficient solution to questions of ancestral inference for these
kinds of data.

5.2. Simulated sequence data

We consider data given in Griffiths and Tavaré (1994a), who simulated sequences of length 10
from a model with only two possible nucleotides at each sequence position (so £ = {1, 2}'0).
Mutations were assumed to occur at total rate /2, with the location of each mutation being
chosen independently and uniformly along the sequence. The transition matrix governing

mutations at each position was
0.5 0.5
P:(Oll 0'9). (28)

Note that this model has 2'° different alleles, and so the calculation of the quantities 7(3|4,,)
using equations (18) and (19) appears to be computationally daunting. In fact the special
structure of this model allows an efficient approximation of these quantities, as described in
Appendix A.
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Table 1. Comparison of estimated likelihoods (with standard errors in parentheses) obtained
by using the IS functions Qf" and @;°, for simulated data from Griffiths and Tavaré (1994a),
described in Section 5.27

“ 08" (20000 samples) 03P (20000 samples) OSP (107 samples)

2.0 734 x 107° (1.35 % 107%)  7.33 x 107° (4.01 x 107%) 7.29 x 107° (1.87 x 107%)
10.0 6.96 x 107 (3.52x 107%)  3.10x 107 (2.53 x 10™"")  3.09 x 107° (1.50 x 107'?)
15.0 241 x107° (1.89x 107%) 474 %1072 (1.39 x 107%) 537 x 107'2 (8.08 x 107'%)

1The second column comes from Griffiths and Tavaré (1994a), Table VI. The calculations required to
produce the third column took less than 2 min per row on average.

Griffiths and Tavaré simulated three sets of 10 sequences from the model, each set being
produced using a different value of # (6 = 2.0, 10.0, 15.0). In each case they used 20 000 iterations
of their algorithm (or equivalently 20000 samples from their IS function Q§") to estimate the
likelihood (together with a standard error). For comparison we obtained corresponding es-
timates by using 20000 and 10 million samples from the proposal distribution Q3" . The results
are shown in Table 1.

We can assess the accuracy of the estimates obtained from the shorter runs by comparing
them with those obtained from the longer run. For the data generated using ¢ = 2.0, 20000
samples from either foT or Q?D appear to produce a reasonably accurate estimate of the
likelihood. For 6 = 10.0, 20000 samples from QBD are sufficient to estimate the likelihood
accurately, but 20000 samples from Q" are not. For @ = 15.0, although neither method
produces a very accurate estimate of the likelihood using 20000 samples, the samples from
09" underestimate the likelihood by seven orders of magnitude. The IS interpretation of the
Griffiths-Tavaré method helps to explain this rather startling observation. Griffiths and
Tavaré (1994a) noted that, for the data generated with 8 = 10.0, effectively only nine of their
sampled histories contribute to their estimate of the likelihood, and that many of their
sampled histories contained huge numbers of mutations. We conclude from this that their IS
function puts too much weight on histories which have a large number of mutations and are
unlikely under the posterior distribution Py(H|A4,), and correspondingly too little weight on
histories with a smaller number of mutations. This results in a very skewed distribution for
the importance weights, which are very small with high probability, but are occasionally very
large, producing a highly variable estimator. For € = 15.0, the distribution of the impor-
tance weights is so skewed that only very small (effectively negligible) importance weights
are observed in the 20000 iterations (none of their sampled histories had fewer than 20
mutations, and most had many more, when a minimum of six are required to produce the
data). As a result the sample mean of the importance weights severely underestimates the true
mean (the likelihood).

Although in principle the accuracy could be improved with more iterations, in our own
implementation of the Griffiths-Tavaré proposal distribution, 1 million samples took 72 h
and gave an estimate of the likelihood (dominated by a single large importance weight) of
4.93 x 107", In contrast, 20000 iterations of a modified Griffiths-Tavaré scheme (imple-
mented in the computer program SEQUENCE, kindly provided by R. C. Griffiths), which
includes some of the computational tricks described in Griffiths and Tavaré (1994a), took 23
min and produced an estimate of 4.67 x 10~'?, with an estimated standard error of 8.72 x 107",
The lesson is clear: longer runs are not always a satisfactory replacement for better methods.

Examining the standard errors of the estimates in Table 1, it is notable that the standard
error obtained from 20000 iterations of the QET with @ = 15.0 does not adequately reflect the
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uncertainty in the estimated likelihood. This is another effect of the severely skewed
distribution of the importance weights in this case. A failure to observe rare, large, weights
not only leads to severe underestimation of the likelihood but also means that calculated
standard errors can seriously underestimate the standard deviation of the importance weights
and hence give an extremely misleading impression of the accuracy of the algorithm.

We can use the standard errors from the long run of Q5" to check whether the standard
errors for the shorter run accurately reflect the standard deviation of the importance weights.
If they do then the longer run should result in standard errors which are smaller by a factor of
V/500 & 22. For 6 = 2.0 and @ = 10.0 the changes in the estimated standard error (by factors
of about 21 and 17 respectively) between the long and short runs for QED suggest that these
standard errors are being estimated reasonably accurately. In contrast, between the long and
short runs for Q3° with # = 15.0, the change in the estimated standard error is less than a
factor of 2, indicating that (at least for the short run) the standard error severely under-
estimates the standard deviation in this case.

5.3. Likelihood surfaces for sequence data
Griffiths and Tavare (1994a) also used their method to estimate likelihood curves for simu-
lated data, consisting of 50 sequences of length 20, using the same model as above, but with

0 =1.0 and
0.5 0.5
F= (0.5 0’5)' 29)

Figs 2(a) and 2(b) show a comparison of the likelihood surface obtained by Griffiths and
Tavaré (1994a), Table IX, using 10000 samples from Qg ~10° with the likelihood surface that
we obtain using 10000 samples from the IS function Qo _10- The standard errors for the
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Fig. 2. Comparison of estimated likelihood and relative likelihood surfaces obtained for simulated sequence
data from Griffiths and Tavaré (1994a), described in Section 5.3: (a) likelihood sudace estimate ( ) with £2
standard deviations (- - - - - ) obtalned by using 10000 samples from IS function Oﬂ _10, (b) the same, by using
10000 samples from IS function Oa =1.00 (c) relatlve likelihood surfaces (each scaled to have a maximum of 1.0)
obtained by using 10000 samples from Og —10 ( ) and the Fluctuate program of Kuhner et al. (1998)
using long chains of length 50000 |terat|ons (----- ) and 1 million iterations (— — —, corresponding to two
different initial seeds, which led Fluctuate to select final driving values of 8, near 0.6 and 1.0 respectively) (as
the data contained only two ‘nucleotides’, Fluctuate was used as in the analysis of purine data in Kuhner et al.
(1995); all runs were started from the same starting tree obtained from the file besttree output by Fluctuate
during a preliminary run (from a random starting tree) of five short chains of length 10000 and two long chains of
length 50000)
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surface obtained using QEE__,.O are substantially smaller, suggesting that this is the more
efficient of the two proposal distributions in this case. We confirmed this by comparing the
estimated surfaces with a surface estimated using 10 million samples from Q?f’:m. The
estimated likelithood values using this larger sample were very close to those in Fig. 2(b) (data
not shown), and the standard errors were smaller by about a factor of 31, suggesting that the
standard errors in the smaller sample are accurately reflecting the standard deviation of the
weights (they should in theory be reduced by a factor of +/1000 & 32).

We also compared the results obtained by our IS method with those obtained by using the
MCMC scheme developed by Kuhner er al. (1995, 1998), implemented in their program
Fluctuate (available from

http://www.evolution.genetics.washington.edu/lamarc.html).

Instead of considering the typed ancestry of the sample as missing data, they considered the
unknown scaled genealogical tree G, i.e. the genealogical tree G with branch lengths scaled by
the mutation rate 6/2, so that mutations may be assumed to occur at unit rate along the
branches. Thus Py(G) depends on # and is easy to calculate from the coalescence prior,
whereas Py(4,|G) is independent of @ and may be calculated efficiently by using the peeling
algorithm (Felsenstein, 1981). Kuhner ef al. (1995) used a Metropolis—Hastings algorithm to
construct a Markov chain with stationary distribution P30(§|A,,) and estimated the relative
likelihood surface L(6)/L(6,) by using equation (7).

Kuhner et al. (1998) suggested running several short MCMC runs (of a few thousand
iterations each), with each run being used to estimate a relative likelihood surface, and the 6
which maximizes this surface being used as the driving value 6, for the next chain. One or
more long chains would then be run in the same way to obtain more accurate estimates of the
likelihood surface. We found that using this method with chains of the kind of lengths
suggested (specifically five short chains of 10000 iterations, followed by two long chains of
50000 iterations) could give very inaccurate estimates of the likelihood surface (Fig. 2(c)).
Increasing the lengths of the long chains to 1 million iterations improved the accuracy, but
the surfaces obtained still tended to underestimate the relative likelihood away from the
driving values used, thus giving a false impression of the tightness and/or position of the peak
of the likelihood surface, presumably because Py, (G|A4,) is a poor approximation to Py(G|A,)
in this range. (In fact Stephens (1999) has recently shown that for § > 26, the estimator has
infinite variance.)

5.4. Microsatellites

At microsatellite loci, alleles consist of a number of repetitions of a short DNA motif. Alleles
are conveniently defined by counting the number of repeats. A commonly used mutation
model is the so-called stepwise model in which mutations occur at rate /2, regardless of allele
length, and mutation either increases or decreases by 1 the number of repeats, with both
possibilities being equally likely. Under this mutation model the joint distribution of sample
configurations is invariant under the addition of any fixed number of repeats to each sampled
allele (Moran, 1975).

The implementation of our IS scheme is facilitated by centring the sample distribution near
10 repeats and truncating the type space E to {0, 1, . . ., 19} by insisting that all mutations to
alleles of length 0 or 19 involve the gain or loss respectively of a single repeat. This truncation
will make little difference to the likelihood of samples whose allele lengths are not too close to
these boundaries. Nielsen (1997) implemented the Griffiths-Tavaré proposal distribution for
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a similar model using more alleles. We consider estimating likelihood surfaces for a sample
consisting of allele lengths {8, 11, 11, 11, 11, 12, 12, 12, 12, 13}. (This sample was obtained by
adding five repeats to each allele of a random sample simulated under the stepwise model by
Wilson and Balding (1998), shown in their Fig. 1.) Fig. 3 compares estimated likelihood
surfaces obtained for these data by using our own implementation of the Griffiths—Tavaré
proposal distribution QE ! 0o With those obtained by using our proposal distribution Q3 4 0.
It is clear from the varlablllty exhibited in Fig. 3(a) that 10000 samples from ng 10,0 are not
sufficient to obtain an accurate estimate of the likelihood surface. (Indeed, Fig. 3(c) indicates
that 50000 samples are also insufficient.) In contrast, 10000 samples from QE{]D:,O_O appear to
suffice, demonstrating the increased efficiency of our proposal distribution.

Fig. 4 shows a comparison of estimated relative likelihood surfaces obtained by using our
proposal distribution Qj” 5, and by using an MCMC scheme developed by Wilson and
Balding (1998), implemented in their program micsat (available from

http://www.maths.abdn.ac.uk/~ijw/).

Their scheme is designed to perform a full Bayesian analysis, and micsat can be used to
produce a sample from the posterior distribution of ¢ given the data. For an (improper)
uniform prior on @ > 0, this posterior distribution is proportional to the likelihood, and so a
relative likelihood curve can be obtained by smoothing a sample from this posterior dis-
tribution. A comparison of the accuracy and variability of the estimated relative likelihood
surfaces, together with a consideration of the computer time required to produce these results
(see the caption of Fig. 4), suggests that for this problem our IS method is considerably more
efficient than micsat, although there are many ways in which our use of the MCMC scheme
could be improved (for example, the parameters of the MCMC scheme could be tuned to
achieve better mixing over #; we used the default values).

As a more challenging example we also applied our method to the so-called NSE data set
considered by Wilson and Balding (1998) and supplied with micsat. The data are a subset
of those given by Cooper et al. (1996) and consist of 60 males from Nigeria, Sardinia and
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Fig. 3. Comparison of estimated likelihood surfaces obtained by using Q —100 and O ~100 for the simulated
microsatellite data from Wilson and Balding (1998) described in Section 5.4: &) five mdependent likelihood
surface estimates, each obtained by using 10000 samples from the IS functlon =100 (€ach run took about 330
s); (b) the same, but using 10000 samples from the IS function ng 100 (each run took about 30 s); (c an
‘accurate’ estimate of the likelihood surface obtained by using 10 million samples from the IS function Ogu —100
), and likelihood surface estimates obtained from the combined samples of size 50000 from
030210_0 (----- ) and 030210_0 (eereneers , Which is almost superimposed on )
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Fig. 4. Comparison of estimated relative likelihood surfaces obtained by using micsat and Q;ic;mo for the
simulated microsatellite data from Wilson and Balding (1998) described in Section 5.4: (a) five independent
relative likelihood surface estimates (each scaled to have a maximum of 1.0) obtained by smoothing a sample of
size 10000 obtained from the posterior distribution of # given an (improper) uniform prior, using the micsat
program of Wilson and Balding (1998) (each run took about 1.5 h) (the density estimate obtained is sensitive to
the smoothing method used; we used a kernel density smoother, with bandwidth chosen automatically according
to a rule given by Sheather and Jones (1991) using the S routlne width.sJ from Venables and Ripley (1997));
(b) the same, but using 10000 samples from the IS function Qg ~100 (each run took about 30 s); (c) an ‘accurate’
estimate of the relative likelihood surface obtained by using 10 million samples from the IS function Ogu 10.0
( ), and relative l:kehhood surface estimates obtained from the combined samples of size 50000 from
micsat (----- ) and an 10,0 (reemeemees , which is almost superimposed on )

East Anglia, each typed at five microsatellite loci on the Y-chromosome (so we assume no
recombination). Following Wilson and Balding (1998), the loci are each assumed to mutate
independently at the same rate, 6/2, according to the stepwise model of mutation. The type
space is large (E = {0, 1, . . ., 19}°) but the required backward transition probabilities may be
efficiently approximated by the computational methods described in Appendix A. Fig. 5
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Fig. 5. Comparison of estimated likelihood and relative likelihood surfaces obtained for microsatellite data
set NSE considered by Wilson and Baldlng (1998): (a) estimated likelihood surfaces obtained by using five
independent samples of size 500000 from Og ~s.0 (each run took about 18 h); (b) relative likelihood surfaces (each
scaled to have a maximum of 1.0) estimated by using the same five independent samples from Ggo_.a o: (c) relative
likelihood surfaces (each scaled to have a maximum of 1.0) obtained by usmg the combined sample of size 2.5
million from Q3 _80( ), and by smoothing (using the method described in the caption to Fig. 4) a sample of
size 10000 frorn the posterior distribution of # given an (improper) uniform prior, obtained by using micsat
(----- ), which took 4.5 h
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shows the results obtained by using both our method and micsat. Five different estimated
likelihood and relative likelihood curves were found by using our method, each based on half
a million samples from Qj . The variability of the estimated curves is notably larger for
the absolute likelihoods than for the relative likelihoods, as might have been expected. There
are small but noticeable differences in the relative likelihood curves obtained by using our
method and micsat. Further investigation (more runs of each method) suggested that the
curve obtained by using micsat is more accurate.

5.5. Infinite sites data

The infinite sites model of mutation is applicable to DNA sequence data and assumes that no
two mutations occur at the same site. A rigorous formulation of the model is given by Ethier
and Griffiths (1987). Briefly, the sequence is modelled by the unit interval [0, 1], and each
mutation is assumed to occur at a position uniformly distributed along the sequence.
Thus, with probability 1, all mutations occur at distinct sites. In many ways the infinite sites
assumption simplifies modelling and analysis. Certain types of genetic data, notably samples
of nuclear DNA sequences, are often consistent with this model.

For the infinite sites model the type space E becomes uncountably infinite and the
conditional probabilities m(:|4,) become densities. Technical challenges then arise when
attempting to extend the theory of the previous sections to develop an efficient IS function for
this model. Furthermore, the mutation process is not reversible. These problems are not
insurmountable, but for simplicity we adapt our earlier approach to this context by analogy
with proposition 2: recall that one method of simulating from our IS function Q" begins by
choosing a chromosome uniformly at random from those present and assuming that this
chromosome is involved in the most recent event backwards in time.

Under the infinite sites model any configuration of types H, is equivalent to a unique
‘unrooted gene tree’ (Griffiths and Tavaré, 1995) which is a graph representing the relationships
between the sequence types and mutations, as illustrated in Fig. 6. The chromosomes which
may be involved in the most recent event backwards in time from H; are limited:

(a) any chromosome which is not the only one of its type may coalesce with another of the
same type and

(b) any chromosome which is the only one of its type and has only one neighbour on the
unrooted gene tree corresponding to H; may have arisen from a mutation to that
neighbour.

For example, if H; consists of the types a—e in Fig. 6, with two sequences of type a and one
each of the other types, then the possible events are a coalescence of two of type a or one of
the mutations 3, 4, 2 or 5. Since no chromosome can satisfy both these conditions, knowing
the type of a chromosome which took part in the last event backwards in time is equivalent to
knowing the event. Analogy with proposition 2 then suggests choosing the most recent event
backwards in time by drawing a chromosome uniformly at random from those satisfying
either (a) or (b). This procedure defines an IS function Q°° which we note is independent of 6,
removing the need to specify a driving value. The likelihood for the unrooted gene tree is
estimated, as in equation (9), by the average of the importance weights.

The natural comparison for our method is with the Griffiths-Tavaré scheme for infinite
sites data, described in Griffiths and Tavaré (1994b), and implemented in their program
genetree available from

http://www.stats.ox.ac.uk/mathgen/software.html.



628 M. Stephens and P. Donnelly

o
X
X

4
5 2 ~ 1
OEE=o==gs
3

d HK——K
¢ Fas o
1 23 4 5

Fig. 6. lllustration of an unrooted gene tree (right) corresponding to sequence types a—e (left) assuming that
they were generated under the infinite sites model; there are five segregating sites, labelled 1-5; the two bases at
each segregating site are represented by a cross, and by no cross; in general it is not known which base is the
original (wild) type, and which is the result of a mutation; note that the order of the mutations 2 and 5 is unknown,
and their labelling in the gene tree is arbitrary

(We know of no published MCMC schemes for infinite sites data.) In fact they adopted a
slightly different approach for infinite sites data, in that the support of their IS function is
concentrated entirely on histories with a particular root (equivalently, a particular type for
the MRCA). The mean of their importance weights thus estimates the joint probability of the
data and a particular root, or in other words the probability of a particular rooted gene tree.
In the absence of information on the position of the root (see below), the likelihood for the
data is the probability of the unrooted gene tree, which is the sum of the probabilities
associated with each possible rooted gene tree. (There are S + 1 such rooted gene trees, where
S is the number of mutations in the data.) We note that there is a natural efficiency gain in
our method since it tends to concentrate sampling effort on the roots which contribute
most to the likelihood, although similar gains could be achieved by using suitable adaptive
strategies with methods which separately estimate the probability of each rooted gene tree.

If genetic data, O say, from related species (‘outgroups’) are available, then interspecies
comparisons can be performed which typically provide a substantial amount of information
on the type of the MRCA. Using IS as before gives

] M : o P HD
Pu(dy, 0) 2 5 ([ HO) Py AT (0)

i=1 Oy(HY)’

Typically it is reasonable to assume that Py(O|H) depends only on the root r(H) of H and is
otherwise independent of # and H. The optimal proposal distribution is then given by

Q5 (H) o Py(H|A,) P(OIr(H))

and thus shifts towards histories with roots which are most consistent with the outgroup
data. In extreme cases P{O|r(H)} is non-zero for only one root, and so the optimal proposal
distribution is concentrated entirely on histories with that particular root. It would be of interest
to design efficient proposal distributions which take proper account of such information.
To facilitate a comparison with published estimates, we modified our IS function to
analyse rooted trees, by adding to conditions (a) and (b) above a condition that no mutation
can occur backwards in time from the type of the MRCA. Note that this does not take full
account of the information contained in the position of the root, and the modified sampler is
likely to be less efficient for roots which are relatively unlikely given the data. We believe that
this property is shared by the Griffiths—Tavaré proposal distribution. It should be straight-
forward to design an importance sampler for rooted trees which makes more effective use
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Fig. 7. Comparison of estimated likelihood surfaces obtained for infinite sites data considered by Griffiths and
Tavaré (1994b) (their Table 2): (a) likelihood surface estimate ( ) with 2 standard deviations (- - - - - )
obtained by using 100000 iterations of genetree, with 6, = 4.0, which took 20 min; (b) the same, using 100000
samples from the IS function QS°, which took 10 min

of information on the root position than does either of these samplers. Fig. 7 shows a com-
parison of likelihood surfaces obtained for data given in Griffiths and Tavaré (1994b), using
100000 samples from Q°°, and 100000 samples from Qp ", , (as implemented in genetree).
The results suggest that our modified IS function is more efficient (with standard errors
reduced by about an order of magnitude in this example). Similar results were obtained on a
variety of other examples, with efficiency gains typically being greater for larger data sets
(not shown.)

It should be noted that IS methods remain practicable for reasonably large infinite sites
data sets, presumably because the space of possible histories is smaller in this context.
Further, our experience is that, even when the estimate of the likelihood surface is poor, the
corresponding estimate of the relative likelihood surface is often accurate. This might be
explained by the observation (R. C. Griffiths, personal communication) that, as a function of
0, the shape of Py(H) normalized by its maximum seems to be similar for many H. A more
thorough investigation of this would be welcome.

6. Conclusions

6.1. General

The examples in the previous section demonstrate the substantial gains in efficiency which
can be obtained by viewing the Griffiths—Tavaré scheme as IS and designing a more efficient
proposal distribution. Placing the method in the context of IS can also be helpful in extending
it to more complicated settings. For example, the various recurrence and integrorecurrence
equations derived in Griffiths and Tavaré (1994a, b, ¢, 1999) for the coalescent, Bahlo and
Griffiths (2000) for the structured coalescent, Griffiths and Marjoram (1996) for the ancestral
recombination graph and Slade (2000) for the ancestral selection graph are all effectively
replaced by the standard IS formula (8).

Our starting-point was the development of improved proposal distributions in the IS
framework, by considering the time reversal of underlying stochastic processes. We note that,
although developed for the IS framework, our proposal distribution leads naturally to a class
of Metropolis—Hastings schemes. Most naively it could be used as the proposal distribution
for an independence sampler. More generally a simple Metropolis—Hastings scheme could be
created by using our proposal distribution to propose an update to a random amount of the
upper (i.e. furthest back in time) portion of the existing tree. It is an open question as to
which such schemes perform best, and whether they outperform existing MCMC algorithms,
but there may be grounds for optimism, at least in cases where our IS method does well. The
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idea of exploiting appropriate time reversals may also be fruitful in other settings involving
inference for high dimensional stochastic processes.

Useful insights for further improving the transition rates in IS proposal distributions might
be gained by examining those of the optimal proposal distribution in small problems in which
the latter can be calculated using good estimates of the conditional distribution 7 in equations
(15). Since the likelihood in question is the solution of a system of linear equations, it may
also be fruitful to pursue other (non-stochastic) numerical methods.

Our examples illustrate some of the relative strengths and weaknesses of MCMC and IS
methods in these applications, which we believe may be of general interest. We summarize
our experience in the remainder of this section. We found that IS methods were generally
easier to code, and they performed well in situations (such as the infinite sites model) where
the space of trees consistent with the data is reasonably tightly constrained, both in the sense
of having lower dimension and in the sense of making movement around tree space for a
generic MCMC method more difficult. In the one larger and less constrained example that we
considered here an MCMC scheme appeared to have an advantage, and we conjecture that
this might be typical. Although the amount of human effort that is required to design an
efficient IS is often (as here) substantial, relatively simple MCMC update proposal schemes
may give a reasonable performance for a wide range of problems. However, the issues
involved in the choice of missing data and proposal distributions for MCMC methods are not
well understood in this context and remain an important open problem.

MCMC methods also provide a very natural framework for Bayesian inference. Although
this is theoretically straightforward using IS (posterior distributions can be found by using
the likelihood estimates for example), practical problems will arise as the dimension of the
parameter space increases. Further, we believe that MCMC methods II (see Section 3) which
move around the parameter space (i.e. that allow 0 to vary in the cases that we consider here)
will tend to mix better over tree space and are an efficient method of performing either
Bayesian or likelihood inference for the parameters, concentrating computational effort on
regions with reasonable support from the data (this advantage becoming more marked when
the dimension of the parameter space is higher). MCMC methods which fix 6 at a ‘driving
value’ 6, and use IS to estimate the relative likelihood, appear to make things unnecessarily
difficult for themselves (see Stephens (1999)). Since the IS function which these MCMC
methods use is most efficient (in fact optimal) at #,, and tends to become less efficient for # away
from 6, the distribution of the importance weights tends to be more skewed for # away from the
fy. As a result such methods will tend to underestimate the relative likelihood away from 6,,
leading to an estimated curve which is artificially peaked about this driving value (which we
believe helps to explain the overly peaked curves in Fig. 2(c) for example). In principle IS
methods based on a driving value of # will tend to share this undesirable property, as designing a
single IS function Q, which is universally efficient for all § may be extremely challenging.
Although this did not appear to cause major problems for our method in the examples
considered here, we note that methods which combine the results of more than one IS function,
such as bridge sampling (see for example Gelman and Meng (1998)) would produce more
reliable results.

For both IS and MCMC methods there is the tricky question of how long the algorithms
should be run for. Although generalizations are difficult to make, IS appears to have a slight
advantage here: although highly skewed distributions for the weights may cause problems,
detecting this pitfall once we are aware of it appears to be an easier problem (in most contexts)
than monitoring the convergence of a Markov chain in such a high dimensional space. (It is,
however, not difficult to contrive situations where the distribution of the weights is such that
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it would be impossible to detect any problems just by looking at the observed weights.)
Where more than one MCMC and/or IS scheme is available, running the different schemes
until they give similar results provides a powerful check of both convergence and coding
fidelity. Some other sensible procedures for deciding how long to run the IS algorithm are
discussed in Section 6.4 below.

6.2. Extensions

Although here we have concentrated on estimating the likelihood for 6, an extension of these
methods to questions of ancestral inference is straightforward. Indeed, it follows from standard
IS theory that the distribution with atoms of size w;/Z; w; on histories H” (i=1, .. ., M) is
an approximation to the conditional distribution of H given A4,,. For the simple demographic
models considered here, the conditional distribution of the full typed ancestry A of the
sample given H is easy to find, and it is straightforward to perform inference for all aspects of
the typed ancestry relating the sample, including the ages of particular mutations in the
ancestry, and the time to the MRCA (see Stephens (2000) for more details).

Although we have considered here only constant-sized randomly mating populations,
the Griffiths-Tavaré method and the MCMC method of Kuhner, Yamato and Felsenstein
have been extended to more complex demographic scenarios, involving for example varying
population size (Griffiths and Tavaré, 1994c; Kuhner et al., 1998) and structured populations
(Bahlo and Griffiths, 2000; Beerli and Felsenstein, 1999). An obvious extension of our work
would be to devise suitable IS functions for these contexts. Indeed, features of the structured
population case suggest that it should be possible to find much more efficient proposal
distributions than those so far considered. Our work, particularly theorem | and propositions
1 and 2, provides a starting-point for this search. In the case of a varying population size, the
simple Markov structure of the underlying processes is lost, and it seems necessary to include
time information in the missing data (as in Griffiths and Tavaré (1994c)).

Similarly, the Griffiths—Tavaré and Kuhner-Yamato—Felsenstein methods have been ex-
tended to more general genetic scenarios involving for example recombination (Griffiths and
Marjoram, 1996; Kuhner e al., 1999) and selection (Slade, 2000). An extension of our ideas
to the recombination context by Fearnhead (2000) has resulted in substantial, and practically
important, improvements in accuracy for a range of examples. Similarly, an extension of
our ideas to selection results in a huge improvement in efficiency (details will be published
elsewhere).

Most realistic sequence data typically consist of sequences which are thousands of sites
long, with only a few of these sites varying in type among different chromosomes in the
sample. Unless the infinite sites model for mutation can be assumed, a naive application of
our method to such data would be extremely inefficient. Most of the information about the
history H is in the bases which vary between chromosomes, and it would be much more
efficient to define the IS distribution on the basis of those positions which are varying. The
effect of the non-varying sites could then be taken into account by the factor my(4,|H?) in
estimator (9), which could be calculated by the peeling algorithm (to do this it would be
necessary to apply IS to the full typed ancestry A of the sample). A similar approach might
make the MCMC method of Wilson and Balding (1998) applicable to sequence data.

One important type of data that were not treated above arises from a common modern
two-stage experimental procedure. In the first stage a subset of the chromosomes in the
sample (the ‘panel’) is sequenced completely. In the second stage the remaining chromosomes
are assayed only at selected sites, often called single-nucleotide polymorphisms (SNPs), which
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were observed to vary in type among the panel. This ascertainment process complicates the
analysis. (In some ways this is the simplest version of the ascertainment problem for SNP
data.) Dealing with the particular ascertainment effect just described is straightforward in IS
and MCMC schemes, though the details will depend on the choice of missing data 7 and the
mutation mechanism that is assumed. For the IS schemes that we have considered, assuming
the infinite sites mutation model, the ascertainment effect can be accommodated by labelling
every lineage which leads to any chromosome in the panel as a panel lineage and adapting
both Py(H) and Q,(H) so that mutations can occur only on panel lineages. Modifying an
MCMC scheme typically involves simply ensuring that the evaluation of Py(A4,, 7) takes
appropriate account of the ascertainment process. For example, if 7 is the genealogical tree
G, this probability can be evaluated by peeling each site separately, and for each site including
only those chromosomes assayed at that site.

6.3. Bells and whistles

Our search for an efficient IS function was based exclusively on our knowledge of the
underlying stochastic processes. In fact, we tried a range of other possible IS schemes which
arose from different approximations to the conditional probabilities 7(-|4,). Many of them
were very much more computationally intensive than the scheme that we presented here
(which benefits considerably from the computationally convenient properties discussed in
remark 2) and none of them produced a consistent improvement in efficiency, even when
efficiency was measured per iteration and took no account of the amount of computation
required. We suggest that further efficiency improvements might be most easily made by
employing general computational tricks which have been successful in other contexts. In
particular the IS scheme that we described, which recreates the tree in a Markov way from
the sample back to the MRCA, may be viewed as sequential imputation (Kong et al., 1994,
Irwin et al., 1994) of the ancestral states. It may then be fruitful to apply the rejection control
ideas of Liu et al. (1999), in which unpromising trees would be discarded before reaching the
MRCA, with appropriate modifications of the weights of the undiscarded trees. (This is a
more sophisticated version of the strategy of discarding trees with too many mutations which
was used by Griffiths and Tavaré (1994a) and Nielsen (1997).)

6.4. Diagnostics

We return to the problem of deciding when the IS algorithm has been run for sufficiently
long. Some sensible procedures include monitoring (graphically for example) the mean and
variance of the importance weights, the effective sample size (Kong et al., 1994) and the
relative size of the maximum weight. However, all these methods will suffer if the sample
variance of the importance weights substantially underestimates the variance of the
underlying distribution, and it would be useful to have some way of correcting for this.
Although analytical results may sometimes be available, this is often not the case. For
example, we could not prove finiteness of the variance of our weights, except in the special
case of the infinite sites model where the number of possible histories is finite. (In contrast the
naive estimator (5) is guaranteed to have a finite (though usually huge) variance, as the weights
are bounded. We could use this fact as in Hesterberg (1995) to modify our IS function an to
guarantee finite variance of the weights for L(6), but it seems unlikely to be a fruitful way to
proceed in this case.) A possible procedure, which appears promising on initial investigation, is
to model the distribution of the weights by using distributions developed in extreme value
theory for highly skewed distributions (this idea has been suggested independently by Shephard
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(2000)). In particular we propose fitting a generalized Pareto distribution (see Davison and
Smith (1990) for example) to the weights above some threshold, and using a parametric
bootstrap to estimate confidence intervals for the mean of the weights (i.e. the estimate of the
likelihood). Although this procedure may be inexact, it should better represent the uncertainty
in the estimate than any current method that we are aware of.

6.5. Future challenges

Full likelihood-based inference for modern population genetics data presents computational
and statistical challenges. In this paper we have deliberately focused on a one-dimensional
inference problem under the simplest evolutionary model and compared methods on ‘small’
data sets. Although the field is still at an early stage, inference in these contexts is already
important in practice, and methods described in the paper are becoming routinely used by
biologists for much larger data sets, and in some more complex settings. The imminent
completion of many of the current genome projects will be followed by an explosion of data
documenting molecular variation in natural populations. Indeed, many real data sets are at
or beyond the computational limits of current algorithms. There is thus an urgent need for the
continuing development of more efficient inference methods, for their extension to more com-
plex genetic and demographic scenarios and for the incorporation of the kinds of ascertainment
effects which are rife in modern experimental data.

In parallel with the development of full likelihood-based methods in more complicated
settings, we should also look for practicable inference procedures which, although not fully
efficient, do not sacrifice much of the information in molecular genetics data. The availability
in simple settings of fully efficient methods provides a useful yardstick for comparison. A
better understanding of both small sample and asymptotic properties of the likelihood for
genetics models would also be valuable.
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Appendix A: Calculation of 7(3|A,) for sequence and multilocus models

Consider a model with / completely linked loci which mutate independently. If each locus has k possible
alleles, then the number of possible types is &’. This model includes models for sequence data (such as
the model described in Section 5.2) as a special case, with / being the length of the sequence, and each
site in the sequence being thought of as a separate ‘locus’. The large number of types in such models
makes a naive application of formulae (18) and (19) computationally daunting. However, the simple
structure of the mutation mechanism allows us to approximate 7(3|4,) efficiently for any given type
B =6, B . . . B),as wenow describe. We assume for simplicity that each locus mutates independently
at rate 6/2 (so the total rate is //2), according to a k x k transition matrix P. The methods that we
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describe are easily extended to the case where each locus has a different set of possible alleles, mutation
rate and transition matrix.

According to definition 1, a draw from 7(:| 4,,) for this model may be made by choosing a chromosome
from A4, uniformly at random, and then applying m mutations to this chromosome (each of which
involves choosing a locus uniformly and changing the type at that locus according to P), where m is
geometrically distributed with parameter /0/(n + [6). It follows from elementary properties of Poisson
processes that this is equivalent to drawing a time ¢ from an exponential distribution with rate param-
eter 1, and then applying m; mutations to locus i (i=1, .. ., [), where the m; are independent and
Poisson distributed with mean 6¢/n, and the mutations at each locus are governed by transition matrix
P. Thus, writing types as & = (e, . . ., @) and 8= (3, . . ., §;) we have

s n{( WL WL
#(pld,) = 3 - J exp(~DFup . ... Fag dt (31)
acAd,
where
o2 (0t/n)" ) 4
P = 52 P cxp (=) (P ()
m=0 L]

The integral in equation (31) may be approximated by using Gaussian quadrature (see for example
Evans (1993)):

A N (0,11,m) (6,1,m)
7]'(,6|A") = E 2 _gwaQ’|ﬁ| L FQ‘fﬁ: (33)
aed, i=1 1
wheret,, . . ., t,are the quadrature points, and wy, . . ., w, are the corresponding quadrature weights. The

matrices F®"" given by equation (32) may each be approximated by a finite sum with a large number of

terms (these matrices need only be found once for any particular problem). We used s = 4 quadrature
points. Although in some cases the approximation to 7(:|-) obtained through this procedure is rather
rough, we note that in any case the IS function defined by this approximation to #(:|-) is a valid IS
function in its own right, and so leads to an estimator (9) which is consistent.
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Discussion on the paper by Stephens and Donnelly

Ian Wilson (University of Aberdeen)

It is a great pleasure for me to propose the vote of thanks for this paper. For most of the last century,
despite— or perhaps because of — the lack of data there was a huge production of mathematical models
in population genetics. Now that we have data, can we develop powerful inferential techniques? Recent
work is answering this question.

Inference for molecular genetics is primarily inference about evolution, a historical process. This
history is written into patterns in deoxyribonucleic acid (DNA) at all levels, from different genes within
a single genome to comparisons between genes for different species. Patterns are created by the dupli-
cation of genes and subsequent modification on the different lines of descent and can generally be
described by tree structures. When we have recombination between different sequences the patterns can
be described as series of trees linked along DNA sequences (Wuif and Hein, 1999). Inference from
sequence variation should involve modelling what happened in the past. Methodologies that do not take
account of this history—such as those based on summary statistics—risk confounding information
about the evolutionary process with the history. Furthermore, aspects of the history, such as the time of
the most recent common ancestor for humans, are sometimes of interest in themselves.

The key advance in the paper presented is the development of new importance sampling (IS)
methodologies for the analysis of DNA sequence data that explicitly model the underlying mutational
history of the sample. These methods are improvements to those that are currently available for many
types of sequence variation and are extendable to refinements of the standard coalescent model such as
those for varying population size and population subdivision. The general methodology may also be
developed for other modelling frameworks, such as birth-death processes for phylogenetic inference
(Rannala and Zhang, 1997) or the evolution of transposable elements (Brookfield, 1986).

The authors tested micsat (Wilson and Balding, 1998) against their method and obtain substantive
agreement for the analysis of the samples from the Nigeria, Sardinia and East Anglia (NSE) data set,
which is pleasing to me. This replication is important, as it is difficult to show that Markov chain Monte
Carlo (MCMC) methods have converged and are mixing. Conversely the drawbacks of IS have been
covered in the paper.

I would like to touch on two areas of concern to me. One area where I feel that statistics should try to
take a more proactive role is in the design of surveys, particularly the design and analysis of surveys
from many different human populations; how do we sample from the world population? Sampling
individuals proportional to current population sizes may overrepresent ethnic groups whose popu-
lations have rapidly expanded over historical rather than biological timescales. One approach, taken
with BATWING, ‘Bayesian analysis of trees with internal node generation’, available from

http://www.maths.abdn.ac.uk/ ~1ijw,

is to model jointly a population ‘supertree’—a tree of subpopulations— with the gene genealogy. This
allows us to infer the relative size of different populations but may not reflect the complex history of human
migration. Further developments of inferential techniques may allow more informed survey designs.

Another problem is the increasing volume of data. micsat and its successor BATWING have been
successful at analysing variation in human Y-chromosomes, yet there is still the danger that the data
sets expand quicker than computer speeds increase and our techniques advance. The NSE data set
analysed here and in Wilson and Balding (1998) consisted of 60 Y-chromosomes with five microsatellite
loci and a single unique event polymorphism (UEP) scored for each chromosome. A recent data set,
that stretched BATWING to or beyond its limits, from the Centre for Genetic Anthropology at
University College London consisted of 1700 Y-chromosomes with six microsatellite loci and seven
UERP sites, from 10 populations. This is typical of the data that this centre is producing. Methods that
can jointly analyse microsatellite and UEP data are at a real advantage with problems such as these as
UEPs constrain the tree structure reducing the dimension of the tree space. The advantage of the IS
methodology developed by Stephens and Donnelly when we have constrained data and the relatively
better performance of MCMC methods for larger sample sizes with fewer constraints suggest that
hybrid IS and MCMC methods may be a productive direction for research for these large problems.

To conclude, the authors have provided an important tool for the statistical toolbox which we shall
need in the future. This should contain a diverse assortment of methods for accurate and efficient
inference. Stephens and Donnelly are to be congratulated on producing a paper of much interest and
substance that extends the possible directions of research in the analysis of the causes of genetic
variation. I have great pleasure in proposing the vote of thanks.
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D. A. Stephens (/mperial College of Science, Technology and Medicine, London)
I would like to concur with the proposer of the vote of thanks by saying that this paper, through the
technical developments introduced in theorem 1 and their practical implementation, and the more gen-
eral aspects of the inference problems that it contains, provides an excellent introduction to the area
and thus represents a major contribution.

I begin with some minor requests for clarification. Using the notation of the paper, taking a fully
Bayesian view, we have

(4,10, H) p(H|60) dH
pO14) = | p0, 14, ar = [ HELTOPIIONO g3y | 2(0)
p(4,) j jp(A,Je,H)p(HW)dew) a0
(7]
= PO _ . 1oy o),
JL(G) p(6)do

say, where p(#) is the prior distribution for 4. Clearly, p(#|4,) is available from L(#) by numerical in-
tegration, but obtaining L(6) or ¢ from p(6, H|A,) is much more challenging. However, any converged
Markov chain Monte Carlo (MCMC) scheme for p(6, H|A,) has, theoretically, traversed the support of
the posterior and, in particular, visited all H such that

p(A,10, H) p (H 10) p(6) > 0.

Thus an approximation to L(f) that utilizes the summation over (distinct) Hs visited by the Markov
chain is available; such an approximation would be valid for all 8, and thus gives a complete summary
of L(#). Do the authors have any feeling for how good or poor such an approximation might be?

Secondly, I have similar doubts to the authors’ concerning the use in general of a ‘driving value’, 6,
say, in any of the importance sampling (IS) schemes described in the paper; for example, different values
of @ encourage potentially radically different values of coalescence time m, thus compromising the
accuracy of the approximation of P, by Q;. Do the computational ‘efficiency’ gains outweigh the loss in
accuracy? Can the authors recommend a resolution to this problem? Is it valid to state that an MCMC
scheme operating on the full posterior avoids this difficulty in any case?

Finally, in many statistical applications, inference based on relative rather than absolute likelihood is
sufficient; in Gelman and Meng (1998), for example, emphasis is pointedly on the former. Can the
authors describe more specifically the importance of evaluating L(6) in absolute terms in the context of
the genetic inference problem?

As the authors acknowledge in their discussion (page 630), a well-behaved MCMC scheme that
facilitates inference via the full joint posterior (i.e. for (6, H) jointly) is probably preferable to an IS
scheme that holds @ fixed. However, theorem 1 may have a useful role to play in the construction of an
MCMC scheme; it is possible to use Q, as a Metropolis—Hastings proposal density for updating H in its
full conditional, or jointly with @; the desirability of Q4 as an IS proposal automatically recommends it
as a Metropolis—Hastings proposal. It appears that such an approach may compete with the Wilson and
Balding (1998) algorithm; have the authors any comments?

Throughout the analysis described, inference is carried out conditionally on the transition matrix
P. In general, this matrix comprises fundamental evolutionary parameters that are unknown (an
exception being the case of microsatellite data). In a system with a large number of alleles, the
specification of P may be difficult, and any uncertainty in the specification of P should perhaps be
recognized. Are inferences about f necessarily robust to the specification of P? In a full Bayesian
analysis, the uncertainty about P can be incorporated by including it as another parameter, although it
may not be possible to learn about both § and P from a single data sample. The incorporation of the
extra parameter may not introduce many extra difficulties, as by construction Qy is ‘optimal’ for any P.
To construct a prior distribution for P (or for specification of P itself), it may be possible to utilize
specification ideas about point mutations developed for biological sequence analysis (see, for example,
the discussion of PAM and BLOSUM matrices in Durbin et al. (1998)).

Finally, much recent attention has centred on other tree-based inference problems in genetics,
specifically the probabilistic construction of phylogenetic trees (e.g. Mau et al. (1999), Newton et al.
(1999) and Li et al. (2000)) where there is an emphasis on constructing MCMC schemes to solve a
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similar missing data problem, albeit where the likelihood and inference goals are somewhat different
from those in this paper. Are there any useful connections to techniques used in this parallel inference
problem? Can any advantages be gained by developing a different ‘co-ordinate system’ (Diaconis and
Holmes, 1998) for the missing data tree? Also, some standard bioinformatics texts (e.g. Baldi and
Brunak (1998)) describe solutions of phylogenetic inference problems by using standard machine
learning or Bayesian network algorithms; are such approaches feasible for the ancestral inference
problem that is described in this paper?

The authors are to be congratulated on the methodological developments introduced, their clear
elucidation of more general aspects of inference in such genetics problems and their attempt to address
the practical issues involved. I feel that the algorithm proposed will play an important role in the
simulation-based approach to inference in both IS and MCMC contexts. It gives me great pleasure to
second the vote of thanks to the authors.

The vote of thanks was passed by acclamation.

Rosalind M. Harding (University of Oxford)

There are two points on which I would like to congratulate the authors; first, for their synthesis. This
synthesis makes it easier to appraise both the strengths and the limitations of these new methods, and to
see a little way ahead into the manner of their improvement. Secondly, I congratulate them for using
this analysis of the role of importance sampling to find a way of improving the accuracy and efficiency,
but especially the efficiency, of these methods. In population genetics there is usually little reason for
confidence that an estimate is correct even to within an order of magnitude, but reaching it faster is
definitely progress. This is significant because, in applications to real rather than simulated data,
hundreds of computing hours are needed to explore the likelihood surfaces of models of interest.

I also have two questions. This paper suggests to me that there is still a long way to go before well-
designed tools will be available for working on the particular problems that geneticists currently choose
to study. The authors develop a better method for estimating 6 but estimating € is a means to an end. It
is not the end in itself. Among the reasons for estimating @ is to ask questions about the population size
N. Has the population in the past fluctuated in size and been squeezed through bottle-necks? Is the
population currently in an expansion phase, and, if so, how far back does this phase date? If V has been
small in the past, then how small? When it was small, did it become more structured, or did it shrink
into a single founding group? The right way to try to answer these questions is with likelihood-based
inference applied to population genetic data. So, how long is it to be before the new and improved
methods that you are developing will be available for application to the sorts of problem that motivate
data collection? My other question concerns the kind of problem that makes the estimation of 6
‘difficult’ for some algorithms, such as the example in Table 1. Is the difficulty caused by data that are
unlikely given the generating value of 6? Or, are problems difficult for a more complicated set of
reasons?

Bob Griffiths (University of Oxford)

Briefly here is some chronological history about the Griffiths-Tavaré method and the new importance
sampling method of the authors. In the original Griffiths—Tavaré method, we started from equations for
the probability p(n) of a sample configuration of n= (ny, . . ., n;) in a model with d possible types. d
could be very large, perhaps 4k for sequences of length k. The set of equations obtained by considering
the first event back in the coalescent process is

n—1 n

2

n+6‘— 1 {exn, >0} n-—1

9 d nﬁ—i_]'_éaﬁ
plo) = 1JH,J,_I{ZZ: e

a=] =1

T

|
Dpa P(N+€5 — ea)} + pin—e,). (34)

In Stephens-Donnelly notation let H; be the configuration of types at step j of the history, j=0, —1,
—2 ... ; then equation (34) has the form

p(H)) = S5 P(Hj[H;'—[)P(H}—;),

with summation over possible configurations H_,. This corresponds to equation (34) with H;=n and
(H_}={{n+e;—e,}U{n—e,}}. p(H) and {p(H_,} are unknown, and p(H,|H;_,) are the known
coefficients in equation (34)

In the Griffiths-Tavaré method, view the problem of finding {p(n)} as solving the system of linear
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equations (34). Importance sampling techniques were used to obtain a solution of the equations.
Rescale P(H;|H;_,) and interpret as a probability distribution

q(H)_\|H)) = p(H}|H}_,)/f (H)),
where f(H)) = ¥ p(H,|H}_,). Then
p(H)) = f(H)) 3 ¢(H;_ | H)) p(H].,),
leading to an importance sampling representation
p(Hy) = E{f(Hy) f(H_,). . . f(H_,)}

with absorption at —m, where there first is a single ancestor of the sample. The proposal distribution for
importance sampling is g(:|-).
In the Stephens—Donnelly method,

HI|H,_ ) .
pttt) = 5 BB ) o).
The importance sampling representation is
p(Hf!'H—I) p(H—-m—IvllH—m) }
Hy) = E;Q & H.,
#(H) p{P(H—ﬂHo) Bl i) )
p(Hl'J'H—I)' = -p(H-—mHlH—m)P(H—m)}
=F; - < 35
{ P H ) - PO Ho) )
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= FE;¢ = ;
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The proposal distribution for importance sampling is p(:|-) constructed from the authors’ {#(-|-)}. In the
numerator of equation (35) the history is evaluated in the direction from the ancestor type to the current
time, and in the denominator in the reverse direction.

A point is that all the information about {p(n)} is contained in equations (34), even though explicit
knowledge of the coalescent process is used to construct {j(-|-)}.

The Stephens—Donnelly approach suggests that there may be a nice probabilistic way to solve large
systems of equations by an analogous method, possibly combined with existing numerical methods.

Problem
Suppose that we have a set of N sparse linear equations in a = (c, . . ., ay)" with N a large dimension
with a non-negative coefficient matrix B,

a= Ba, (36)

for which we know a solution exists, and we know precisely a set {o;: je AC {1, ..., N}}.

Find an efficient stochastic importance sampling representation related to the Stephens—Donnelly
approach that allows a simulated solution of a. Equations (36) are related to those obtained for the
probability of absorption in a Markov chain with absorbing states .4, but the solution will be much
more sophisticated than a simple simulation to absorption.

Paul Joyce (University of Idaho, Moscow)

This paper makes an important contribution to the analysis of complex genetics data. Central to their
importance sampling method is the construction of a ‘good’ proposal distribution. For this, they make
two key observations.

(a) The structure of the history of the process conditional on the data is characterized by n(:|4,), the
probability distribution of an (n+ 1)th sampled chromosome given the types A, of the first n
sampled chromosomes. Under parent-independent mutation the distribution is well known.

(b) Constructing a probability distribution 7(:|4,) that is ‘close’ to m(-|4,) forms the basis of a
proposal distribution for the history of the data given the sample. Simulated histories, according
to the proposal distribution, form the bases for inference using importance sampling.
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The authors are to be congratulated for their accomplishment. The insightful observation of
Felsenstein, who noted that the Griffiths—Tavaré likelihood method is in fact a use of importance
sampling, is the starting-point for this clever paper.

The example given after the proof of theorem 1 is very illuminating, demonstrating that the Griffiths—
Tavaré method will (in this example) generate many unlikely histories that contribute little to the
likelihood of the data. It certainly helped me to gain insight into their methods.

Monte Carlo methods are more akin to stochastic numerical analysis than to statistics. The missing
data problem forces the investigator to tackle a nasty integral or summation over a space of large
dimension. More attention is paid to the integration problem than to the inferences one draws from the
data. Some statistical issues of concern are as follows.

Reporting errors in the estimates

Since one cannot rely on standard asymptotic theory, it is unclear whether or not the curvature of the
likelihood surface is a valid estimate of the standard error. What is the standard error of the maximum
likelihood estimate?

Robustness
In complex genetics data, how well do inferences hold up under mild violations of the model
assumptions?

Model selection

Can one develop criteria for selecting between coalescent models? As we add complexity to the model,
such as selection, recombination, populations structure and expansion, we begin to face the problem,
which is common to many statistical scenarios, between adding parameters and losing degrees of freedom.

I am not so much concerned that these items are addressed in the present paper as I am that
these issues should come to the forefront as we begin to overtake the technical issues of generating the
likelihood.

Again, I would like to thank the authors for a very insightful and useful paper.

A. W. F. Edwards (University of Cambridge)

I am glad to note the authors’ reference to Professor Whittle’s contribution to the discussion of my paper
which was read to the Royal Statistical Society in 1969 (Edwards, 1970). A combination of the theory of the
coalescent and the invention of powerful methods for the computation of likelihoods has since completely
revolutionized the field, but I should like to think that in the early years we were on the right track.

In particular, we had had the good fortune to have learnt statistics at the feet of R. A. Fisher himself,
twice a Professor of Genetics but never a Professor of Statistics. So we knew about likelihood, but what
we did not at first appreciate was that statisticians on the whole did not. The text-books of the day only
ever mentioned it in connection with the method of maximum likelihood. In my reply to Professor
Whittle’s comment I expressed the hope that I would have the opportunity to do some calculations
along the lines he suggested, but in the event I answered instead a compelling vocation to write a book,
Likelihood (Edwards, 1972, 1992), intended to persuade people to take the concept more seriously.

In their Section 5, ‘Applications’, Stephens and Donnelly imply that the main reason for using log-
likelihoods rather than likelihoods is the classical, i.e. repeated sampling, perspective. They go on to
claim that ‘From a Bayesian viewpoint, the likelihood is of more natural interest than is the log-
likelihood’. T differ from both these opinions. The second reveals no more than a preference for
multiplication over addition, but the first is more serious, for it ignores the role of log-likelihood as itself
a measure of support, requiring neither repeated sampling nor Bayesian justification. That was the main
message of my book. The additive nature of support is natural because it corresponds to the addition of
information, so although I applaud the authors’ decision to ‘focus here on likelihood and relative
likelihood estimation’, I should like to see all the authors’ diagrams on a logarithmic scale.

Two things became clear in the early years of inference studies on trees and genealogies: first, the need
to work with likelihoods, and secondly that whereas we could see how to solve in principle all our
probability problems, by complex calculation on trees and genealogies or even by forward simulation,
we could equally clearly see that finding likelihoods was an inverse problem of greater theoretical
difficulty, and that it was apparently intractable by simulation. Forward simulation conditional on
hitting the data precisely, which is what computing the likelihood seemed to require, was orders of
magnitude too time consuming. Professor Whittle’s ‘time machine’ suggestion was the first
mathematical attempt to analyse how the system might be run backwards.
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Paul Fearnhead (University of Oxford)

I should like to congratulate the authors on an interesting and stimulating paper. My comment is based
on their assumption of no recombination. In particular, I should like to explain how, using similar
ideas, importance sampling can be used to estimate the likelihood surface for models with recom-
bination efficiently.

Modelling recombination is important not only because the assumption of no recombination is
unrealistic for most genetic data but also because an estimation of the amount of recombination is very
important. Population data enable recombination to be estimated over small scales, and knowledge of
the small scale variation in recombination is important for understanding genetic effects involved with
diseases.

For population genetic models with recombination, the genealogy of a sample can no longer be
represented by a tree. Instead it is represented by a graph. This graph contains bifurcations (which in
some sense represent recombination events) as well as coalescences. Thus, the history of any sample can
now be represented by such a graph, and the mutations on it. Although the ancestral history is more
complicated, it is still straightforward to calculate the probability of any history.

As a result, the calculation of the likelihood can still be viewed as a missing data problem, with the
missing data being the history of the sample. Therefore, we can approximate the likelihood by using
importance sampling, with a proposal density which simulates ancestral histories for our sample.

As in the case of no recombination, we can characterize the optimal proposal density by considering
the time reversal of the underlying stochastic process (as in theorem 1). The optimal proposal density
depends on one-dimensional sampling distributions. By approximating these sampling distributions
(which is considerably more complicated in this setting, owing to the effects of recombination) we
obtain an approximation to the optimal proposal density. We use this approximation as our proposal
density in the importance sampling scheme.

The results for this importance sampling scheme are encouraging. There are two obvious compar-
isons. The first is with the importance sampling scheme of Griffiths and Marjoram (1996) (which is
an extension of the Griffiths—Tavaré approach), and the new importance sampling scheme can be up to
three orders of magnitude more efficient. It also appears more efficient than the Markov chain Monte
Carlo scheme of Kuhner ef al. (2000) (see Fearnhead (2000) for more details).

W. J. Ewens (University of Pennsylvania, Philadelphia)

I congratulate Dr Stephens and Professor Donnelly on their excellent paper. Several discussants have
already raised some of the points which I had intended to make, so I shall restrict myself to three or four
fairly independent comments.

So far as historical matters are concerned, this paper comes full circle in a pleasing way. In the 1970s
the importance of § as an evolutionary parameter was appreciated and the problem of its estimation from
data already considered. However, the models used were very simple, often one or other of the parent—
independent mutation models referred to by Stephens and Donnelly. For these models a likelihood was
often explicitly available so the question of the estimation of the likelihood did not arise. However,
the results obtained were sufficiently unexpected that Kingman was led to explain them through the
introduction of the coalescent process. This concept has revolutionized population genetics theory and
it is interesting to see that it is used in a central way by Stephens and Donnelly in their likelihood
estimation procedure, thus answering questions that could not have been attacked in the 1970s.

My next point relates to the estimation of @ rather than of its likelihood function. It seems to be
unavoidable that the variance of any reasonable estimator is of the order of 1/log(n), where n is the
sample size. Although an accurate estimation of the likelihood function is clearly an important first step
in the estimation of #, the value of an accurate estimation is diminished if an accurate estimation of ¢
remains elusive.

Finally, I remark that, although the focus in their paper is on the parameter 6, it is possible that the
methods that they propose would be useful for other parameters. My own interest is in the genetics of
diseases and here the parameter of interest is the linkage parameter between a purported disease locus
and a marker locus. There is a natural coalescent process from the disease genes of affected individuals
in a sample back to an originating disease mutation. However, we do not observe the genes at the
disease loci but the genes at marker loci, so these undergo a ‘quasi-coalescent’ process associated in
some way with that of the disease genes. Do Dr Stephens and Professor Donnelly see any way of using
their importance sampling methods in conjunction with the coalescent process to assist in estimating
linkage parameters?
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Mark A. Beaumont (University of Reading)

One of the many points raised by this important paper is that the computational techniques involved in
solving these problems are complex, and independent corroboration is useful. I present some results that
are relevant to one of the applications that the authors discuss.

The Markov chain Monte Carlo (MCMC) approach described in Beaumont (1999) is similar to that
of Wilson and Balding (1998) but draws samples from (4, H|4,). Using a uniform (improper) prior,
relative likelihoods for € can be obtained by standard density estimation on the sampled values.
Stephens and Donnelly note that the results depend on the smoothing method used (Fig. 4) and suggest
(Section 3.3) that more efficient approaches are available.

A feature of using an MCMC approach that samples H is that it is possible to use Rao—
Blackwellization (Gelfand and Smith, 1990) to estimate the marginal posterior distribution of 6. It is
straightforward to calculate

T (T'0/2)" exp(—T76/2)
2 mil g

where m' and 7" are respectively the total number of mutations and the total branch length in the ith
sampled genealogical history H'. We then estimate

m(0|H, 4,) =

n

% 1 i
?T(6|Au) = ; Z ﬂ—(ng ] An)'

The aim of this contribution is to obtain posterior densities for # by using Rao-Blackwellization, and to
compare the relative likelihoods with those obtained by Stephens and Donnelly (Figs 3 and 4) using the
test data of Wilson and Balding (1998). In addition, likelithoods are estimated using rejection sampling
as described by Beaumont (1999). The advantage of the latter approach is that sampling is independent
with known error.

Five independent simulations of 107 iterations were run. Trial values of 6 were proposed with prob-
ability 0.05 (H was updated otherwise). Every 500 iterations, values of H and @ were sampled. Each
simulation took about 5 min on a 500 MHz Pentium computer.

The estimated posterior distributions are scaled to enclose the same volume over the range § = 0-20
as the estimates from rejection sampling. There is good concordance between all the methods (Fig. 8),
although there is appreciable variability between independent runs of the MCMC simulation. Estimates
of the density using the program Locfit showed a similar degree of variability between independent
runs but there was substantial oversmoothing of the lower tail. A better fit would be obtained by
modifying the estimation procedure, but the Rao-Blackwellization avoids an ad hoc treatment. In more
complex models, the conditional distributions for the parameters will be more difficult to estimate and
approaches such as that suggested by Chen (1994) will be required.

Mary K. Kuhner and Peter Beerli (University of Washington, Seattle)

In their Fig. 2 Stephens and Donnelly show our Markov chain Monte Carlo (MCMC) algorithm
Fluctuate producing curves which vary greatly between runs and are narrower than their importance
sampling (IS) curve. We have independently repeated these simulations and confirm that on these data
our MCMC algorithm produces unstable results even in lengthy searches. We shall discuss a possible
reason for this behaviour and suggest a way to improve MCMC performance.

Stephens and Donnelly mention, but do not emphasize, a fundamental difference between current
MCMC and IS approaches. (Actually both sets of methods use IS, so the term ‘IS’ is somewhat
misleading). In MCMC sampling, the missing data of the genealogy is represented as a topology with
branch lengths. The size of the search space depends on the number of branches. Short sequences lead
to many possible combinations of branch lengths and make a stable estimate difficult.

In contrast, IS represents the missing data as a topology with mutations. The size of the search space
is determined by the number of mutations, which depends mainly on the number of sequence positions.
For short sequences the program needs to assign only a few mutations.

The data set used in Fig. 2 contains 50 individuals and only 20 sites, making it well suited to the IS
approach. As Stephens and Donnelly note, MCMC sampling and IS have distinct and complementary
strengths. Additional data would stabilize the MCMC estimate at little cost in speed.

Stephens and Donnelly suggest that MCMC sampling with a fixed ‘driving value’ may produce a
likelihood curve that is too narrow. Our simulations suggest that this does not happen with estimation
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Fig. 8. Plot of the likelihood for different values of ¢: , scaled posterior density estimates from the MCMC
simulations; @, likelihood estimates from the method of Stephens and Donnelly; ¢, estimates from rejection
sampling, with approximate 95% confidence intervals

of 6 on larger data sets (Kuhner et al., 1995) but may be a problem for the co-estimation of # and the
growth rate (Kuhner et al., 1998). A possible solution is to make several runs with different driving
values and to combine the resulting samples by using the method of Geyer (1991). Shown in Fig. 9 is an
MCMC curve (generated by the MIGRATE program of Beerli and Felsenstein (1999), without migration)
for the data of Fig. 2 combining 10 independent runs at different driving values of 6. The curve is now
similar to the result of Stephens and Donnelly.

The following contributions were received in writing after the meeting.

Stephen Brooks (University of Surrey, Guildford) and Andrew Gelman (Columbia University, New York)
First, we congratulate the authors on a stimulating paper. Our attention was drawn in particular to
Section 6.4 where we see some overlap with our own work.

One approach to detecting a lack of convergence is to estimate, using simulation, quantities that
have known values under the target distribution. If # denotes the parameter vector sampled via
iterative simulation, then we can use simulation draws to estimate E{U(f)} for any computable
function U. Many diagnostic techniques are based on monitoring functions that converge to some
specific value. However, in general this value is not known and so the resulting diagnostic is rather

05 0964 1.5
i}
Fig. 9. Results from MIGRATE ( ) superimposed on the Fig. 2 results of Stephens and Donnelly (---+-+---- ):

the MIGRATE estimate combines samples from the final long chains (100000 steps each) of 10 independent runs
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difficult to interpret in that it may have settled to some value, but it is unclear whether it is the
true value (e.g. Gelman and Rubin (1992a)). With Markov chain Monte Carlo (MCMC) algo-
rithms, it is often possible to diagnose convergence with multiple overdispersed sequences, but this
approach does not work with algorithms such as importance sampling that do not have local
dependence (Brooks and Gelman, 1998). This is one reason why we have found convergence
monitoring to be easier for MCMC than for importance sampling. We therefore welcome the
suggestion in Section 6.1 that the new importance sampling methods be used within an expanded
MCMC framework.

The difficulties in monitoring convergence of functions E{U(6)} would be removed if we knew the true
expectation of U under the stationary distribution, and there are some functions U for which this is
the case. One is the score function. If # € R, and we let 7(f) denote the target distribution for the
simulations, then we might take

=B gy .k
00,
Under fairly general conditions on the density m, E {U, (@)} =0 forallk=1, ..., K.

Thus, one might monitor the sample mean of each of these Uy functions as the simulations proceed,
until they appear to settle to around 0. One can estimate the standard error of the U,(f) from parallel
independent runs of the importance sampling or MCMC procedure, to determine whether or not
observed values are ‘significantly’ different from 0.

It is not necessarily true that, as claimed in the paragraph before Section 5.1, parallel simulation runs
are computationally more expensive. The results of the parallel runs can themselves be averaged, so
inference from several runs is more efficient than from any single run. More importantly, parallel runs
can give confidence about the accuracy of simulation results so the simulations may be stopped far
earlier than might be done under the condition of insecurity arising from using a single simulation run
(see Gelman and Rubin (1992b), and accompanying discussion).

Yuguo Chen and Jun S. Liu (Stanford University)
Stephens and Donnelly present a comprehensive account of an important problem in molecular
evolution and a new sequential importance sampling (SIS) method for computation with coalescence
models. For several decades, SIS has attracted attention from researchers in fields ranging from
molecular simulation to statistics (Liu and Chen, 1998; Liu et al., 2000). A technique proven essential in
many SIS applications but not covered by Stephens and Donnelly is resampling, also known as ‘pruning
and enrichment’ in molecular simulations (Grassberger, 1997). Here we show how resampling improves
the SIS computation for coalescence models.

As with many SIS applications, both Stephens and Donnelly, and Griffiths and Tavaré (1994)
propose trial densities g,(H) of the form

—(m—1)

g6(H) = [ ao(HiilH).

i=0
For such constructions we define the current weight (for t < m)

" :Pa(H—(;—lﬂH—;)- - po(HolH_y) _ , po(H __|H_)
T Go(H_|H ). - -qo(H_|Hy) ~ "V qo(H_|H (1))

The final weight is then w = w_,, pg(H_,,) pe(|1H,| = n+ 1).

In a parallel implementation of SIS, we first generate M samples from g,(H_,|H,) and then recur-
sively generate { _13, - H(_“f}}, called the current sample, for t =2, 3, . . . until coalescence in all
M processes. Along with producing the current sample, we also monitor the current weight. A
resampling step is incurred at time —¢ when the coefficient of variation in {wgf, e w(f',n} exceeds a
threshold B. In resampling, one produces a new current sample by drawing with replacement from
HY, ..., H) according to probability proportional to wh, ., w™). The weight for each new
sample is equal to the sample average of the w’,. Resampling helps to prune the H_, with small weights
and to enrich those with large weights.

We note, however, that resampling among {H(_I,? S A H(_Jf)} is inefficient because these samples differ
greatly in their coalescence speeds. Those HY, with small sizes (fast coalescence) often have small current
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Fig. 10. Estimated likelihood curves for five independent runs of SIS with resampling: the scale difference

between these curves and those in Fig. 3 is due to the fact that the authors omit the term p,(H_,,), the stationary
distribution of the mutation transition matrix

weights, but large final weights. A modification that we propose is to resample among the same size
samples { _I,vl, . HZ ), where §; = min{r: |H{i),| =i}

We applied our method with Griffiths and Tavaré’s ¢,(H) to the example shown in Fig. 3. With
sample size M = 10000 and bound B =4, we incurred two resampling steps in each of the five
independent runs. The extra computational cost was negligible. Fig. 10 displays the likelihood curves
estimated from five runs of our method. Fig. 10 is almost indistinguishable from Fig. 3(b) resulting from
the use of Stephens and Donnelly’s new g-function. Lastly, we note that resampling can be combined
with any SIS method including Stephens and Donnelly’s to improve efficiency.

Mary Emond, Adrian E. Raftery and Russell Steele (University of Washington, Seattle)
We congratulate the authors on their paper, which helps us to understand the comparative performance
of importance sampling and Markov chain Monte Carlo (MCMC) sampling in a complex setting.
It is interesting that the generally simpler method of importance sampling compares favourably with
MCMC sampling in the problems described. Could efficiency be gained by creating a more adaptive
proposal distribution? The authors’ proposal distribution depends on A, in a fairly rigid manner. Could
the dependence instead be parameterized by a small number of parameters that would then be estimated
from an initial sample from the authors’ proposal distribution? The study of histories with high weights
from the authors’ proposal distribution might suggest how to do this and how valuable it would be.

We have found this strategy to be useful in our study of importance sampling methods for computing
integrated likelihoods for mixture models. These are an essential component of Bayes factors and
posterior model probabilities used, for example, for choosing the number of components in the mixture
(e.g. Raftery (1996)). We write the mixture model likelihood in its usual ‘complete-data’ form, the
complete data consisting of the observed data X plus the missing group membership indicators Z.
Integration of the complete-data likelihood over the parameters of the component distributions, 7, can
often be done analytically. We use importance sampling to integrate over the finite space of group
membership indicators.

Information from the maximum likelithood estimate for 7 is used to create efficient importance
sampling functions, or proposal distributions. In one such sampling scheme, the proposal distribution is
itself a mixture of the form

h(Z) =6 P(Z) + (1 — 6) P(Z|T = %, X).

This is an example of the ‘defensive mixture’ proposal distribution, which has the advantage of yielding
importance sampling weights that are bounded above, thus ensuring a stable performance of the
importance sampling estimator (Hesterberg, 1995).

The parameter 6 is chosen to obtain good performance of the importance sampling scheme, and we
have found the following adaptive scheme for choosing § to work well. § is initially taken to be 0.5 to
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obtain an initial estimate of the integrated likelihood, I. Iis then used to obtain A(Z,,|X) = P(X, Z,,)/1,
where ZMA is an estimate of arg maxz{P(Z|X )}. An adaptive estimate of § is then obtained by solving
WZy) = P(Z|X). This amounts to setting /(Z) equal to the optimal distribution P(Z|X) at its mode.
h(Z) may contain more than one component of the form P(Z|r = 7;, X'), with the mixing proportions
estimated adaptively by equating #(Z) to P(Z|X) at more than one point. This adaptive approach not
only decreases the variance of 7 but also increases the accuracy of its estimated standard error.

Joe Felsenstein (University of Washington, Seattle)

Stephens and Donnelly have made an excellent improvement on the Griffiths—Tavaré method which
samples histories of mutation and coalescence events. The histories are sampled independently, which is
desirable, but the improvement was needed to prevent the importance sampling from wasting a large
fraction of its time. Stephens and Donnelly’s improvement of it makes it more competitive with our
Markov chain Monte Carlo (MCMC) approach (Kuhner et al., 1995). It may be worthwhile to point
out how our MCMC method differs from the Griffiths—Tavaré and Stephens—Donnelly sampler. The
missing information 7 in equation (7) is not a history of discrete events but a genealogical tree
connecting the samples, with times of coalescence specified but with no representation of mutations.
Thus 7y(A,|7) must sum over all possible mutational events; fortunately this can be done using existing
algorithms for computing likelihoods for phylogenies (Felsenstein, 1981). We propose changes in 7 by
relocating branches on 7.

Our MCMC method samples from a more focused distribution than the Griffiths—Tavaré or
Stephens-Donnelly independent sampling methods but, not being independent and identically
distributed, runs the risk of failing to explore the space of genealogies adequately. However, it is
comparatively straightforward to add new evolutionary forces; we have done so in separate programs,
and a unified program is nearing completion.

Stephens and Donnelly raise some doubts about our methods. In this discussion, Kuhner and Beerli
consider the poor performance of our methods in Stephens and Donnelly’s test case. With more sites
varying, we find an adequate performance in our simulations. Stephens and Donnelly also point out
that the variance of our importance sampling weights can become infinite when the trial value of € used
in the sample is smaller than the true value by more than a factor of 2. It is important to note that this
rule is for n=2. For more reasonable sample sizes the conditions for misbehaviour may be more
stringent. For example, Fig. 11 shows the progress of runs carried out by Peter Beerli on 10 cases with a
sample size of 50 and 1000 sites. As we adjust the value of f; in successive chains, an initial value of
0y = 0.0001 successfully converges on estimates near the true value of 6 = 0.01 in all 10 runs. Most of
the variation in the results is presumably natural rather than due to a failure of convergence.

Bret Larget (Duquesne University, Pittsburgh)

My comments pertain to the connections between the inference problems of molecular genetics described
in the paper and the related problem of reconstructing evolutionary trees (phylogenies) from genetics
data. In both problems the observable genetics data may be modelled as the result of a continuous time
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Fig. 11. 10 runs with initial starting-points of § = 0.0001 with 50 copies of one locus and 1000 sites: an MCMC
sampler with 10 short chains and three long chains was run for each
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stochastic process superimposed on a tree. In the problems addressed in the paper, the parameters of the
stochastic process are of primary interest whereas the underlying tree is a nuisance parameter. For
evolutionary biologists these roles are reversed. The authors make a convincing case that, in some
situations, importance sampling (IS) is competitive with or superior to Markov chain Monte Carlo
(MCMC) sampling as a computational tool for inference. As a developer of computational methods for
phylogenetic inference based on MCMC methods (see Mau et al. (1999), Larget and Simon (1999) and
Simon and Larget (2000)), I am intrigued to compare the techniques of this paper with our own.

Phylogenetic inferences produced by our methods are based on the post burn-in portion of a
dependent sample of trees. As determined by comparing results from independent long runs, the
amount of phylogenetic information in dependent samples can be similar to that from independent
samples hundreds or thousands of times smaller. This paper indicates that IS may be a computationally
tractable alternative.

I welcome a further expansion by the authors on the general characteristics for which an IS sampling
scheme may outperform analysis by MCMC sampling. The discussion in Section 6 indicates that
MCMC sampling may have an advantage when there are few constraints (meaning many trees have
similar likelihoods for producing the observed data) whereas IS may have an advantage in more
constrained situations.

The MCMC methods that we use propose new trees without regard to the genetics data and interact
with the data only through the acceptance ratio. This has advantages and disadvantages. A sampler
based on the methods of this paper may be much more efficient in some situations. However, changes
to the form of the likelihood models by which genetics information evolves must entail substantial
recoding for sampling methods based in part on the data whereas only minimal changes may be
necessary in methods that ignore the data in proposing new trees. Direct applications of the ideas of this
paper to phylogenetic inference and comparisons of the computational and statistical efficiencies would
be most interesting.

Lada Markovtsova, Paul Marjoram and Simon Tavaré (University of Southern California, Los Angeles)
The authors have presented a most inspirational paper on computational methods for the coalescent.
Their suggestion that one might combine Markov chain Monte Carlo (MCMC) and importance
sampling (IS) approaches is particularly intriguing. As an example they suggest using the IS proposal
distribution to update a random amount of the upper part of the tree. We have previously experimented
with a pure MCMC approach in which the proposal distribution worked in a similar manner, replacing
a random amount of the top of the tree with a random topology. Perhaps not surprisingly, such changes
may have a very low acceptance rate. Updates that replaced the tree from a relatively high point were
accepted frequently, but when the update involved a large part of the topology the acceptance rate was
very low. One can improve this naive approach by alternating such proposals with updates that replace
a random amount of the lower part of the tree (again we generated a random topology), but it is not
clear how this would be accomplished in the IS framework that the authors suggest. In our approach
such a scheme was very inefficient, particularly for large sample sizes, but there is reasonable hope that
the improved efficiency of the proposal distribution given in this paper might circumvent the problems
that we experienced.

Our experience with implementations of a fully Bayesian approach for deoxyribonucleic acid se-
quence data (e.g. Markovtsova et al. (2000a)) supports the authors’” observation that Bayesian methods
provide useful computational tools even when one’s interest is in maximum likelihood estimation.
Checking the adequacy of the estimated likelihood near a maximum can be accomplished by using dif-
ferent priors. The apparent simplicity of estimating relative likelihoods from marginals of the posterior
distribution and the prior seems difficult to pass up. Do the authors have any thoughts on when this
approach is likely to be misleading? We also note that posterior trees and rates can be used in a boot-
strap approach for checking model adequacy (e.g. Markovtsova et al. (2000b)).

Testing IS and MCMC implementations is notoriously difficult; the development of test examples
seems worthwhile. Another useful approach is to compare results with those generated by simpler
schemes like the rejection methods. For instance, we have found this helpful in checking tree topology
updates.

Bob Mau (University of Wisconsin, Madison)
Problems in population genetics are often intractable with analytical methods once the sample size
approaches 10. The reason is simple: the form of the likelihood, conditioned on the genealogy, is
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determined by its tree shape, a nuisance parameter. To calculate the full likelihood, we are obliged to
sum over all possible tree shapes— an impractical undertaking.

The computer-intensive approaches presented in this paper each recognize that a relatively minuscule
number of tree shapes contribute almost all of the absolute likelihood mass. Locating and weighting tree
shapes that support large chunks of mass is their common feature. Markov chain Monte Carlo
sampling finds such shapes by running a Markov chain on the space of trees. It uses a proposal
distribution that is independent of the underlying evolutionary model and the data, but subject to both
in the Metropolis—Hastings acceptance step. Shape weights are proportional to the frequency of visits.
By contrast, importance sampling employs a proposal distribution that incorporates a model and data.
Every proposed sample is included in the estimate, weighted by a ratio of conditional likelihoods.

The authors cleverly sample families of tree shapes, each member having the same conditional like-
lihood, courtesy of the exchangeability assumption. Their concept of the history H yields a partial
likelihood, summed over all genealogies in H, in one pass. The efficacy of their algorithm derives from
choosing the ‘right’ summary of the typed ancestry, and embedding the evolutionary process in the
particle representation of Donnelly and Kurtz. Discovering representations that admit natural proposal
mechanisms is the art to this science.

Perhaps my comments are obvious, but I had not made critical connections until I read this paper,
and for that I am grateful to the authors. They give importance sampling a framework that motivates
their proposal distribution. Too often, we are at a loss to understand why certain sampling algorithms
work well, even if we know how they work.

One criticism concerns the absence of any discussion on how to choose a starting value 6,. The
authors acknowledge that their sample selection depends on 6, and that simulating with a @, that is
distant from the true maximum may yield a sample that excludes important histories. That it did not
seem to matter in their reported examples is not a persuasive argument, especially since a posteriori one
observes that they guessed quite well. Some direction is needed here.

Xiao-Li Meng (University of Chicago)

The Griffiths—Tavaré and the Geyer—Thompson methods respectively belong to what I shall label
normalized importance sampling (NIS) and unnormalized 1S (UIS), depending on whether we can
evaluate the normalized proposal density or only an unnormalized one. The NIS category covers nearly
all traditional applications of IS. The UIS category is largely a by-product of the Markov chain Monte
Carlo revolution, which has made it routine to draw from densities computable up to a normalizing
constant. However, these normalizing constants are the quantity of interest in the authors’ applications.
Let Yo = A, Yiis = H (or 7) and p( Yl Yors, 0) = Py(H|A,). Then the almost tautological identity

L(9| Yobs) = J P( anis’ Yahslg) ,U.(d Ymis) = [ p( Yobs|9) P( anis| Ychss 9) Ju'(d Ymis)

tells us two trivial but important facts:

(a) the optimal proposal density for NIS is p(¥ | Yo 0), the target density;
(b) L(0|Y,s) is the normalizing constant of p(Y | Yops, 0), With the complete-data density p( ¥,
Y,1s|0) being the unnormalized density, viewed as a function of Y, only.

As a case of NIS, the authors’ method uses (a) to choose an efficient proposal density guided by the
unachievable target density. In contrast, Geyer-Thompson-like methods cash in on (b), turning the
computation of likelihood ratios into computing ratios of normalizing constants of densities from which
we can make draws. Interestingly, for these methods, the proposal density (class) is the target or optimal
density (class) as specified in (a). The key design question is then at which points of @ shall we make
these ‘optimal’ draws?

Although this question is not easy to answer in general, for univariate 6, with comparable
computational load, a reasonably fine equal-spaced grid design can substantially outperform the Geyer—
Thompson method as applied in the paper, as long as the estimation is done via (efficient) bridge
sampling (see Meng and Wong (1996)), which is a multiproposal extension of UIS. Incidentally, an
alternative way of utilizing the output from the Wilson-Balding Bayesian method is to use path
sampling, which is an infinitely many proposal extension of UIS (Gelman and Meng, 1998). With
enough draws {(Yy, 07), i=1,..., M} from a Wilson-Balding chain, we can estimate A(f) =
108{L(6] ¥ pe)} — log{L(0,| Y1)} (assuming 6, < 0) by X(6,, §) from formula (15) of Gelman and
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Meng (1998), page 167, which involves only finding the order statistics of {#,i=1, ..., M} and
evaluations of {U; = S(6”|Yys, Yous)s i =1, . . ., M} where S(6| Y, Yops) is the complete-data score
function. These more advanced UIS methods require comparable or even less implementation effort
(for example, no smoothing is used for A(f,, #)), and several comparative studies (e.g. Meng and
Schilling (1996), DiCiccio et al. (1997) and Jensen and Kong (1999)) give me reasons to specu-
late that they can offer non-trivial improvements over the methods compared in this timely paper.

E. A. Thompson (University of Washington, Seattle)

The proposed new class of importance sampling (IS) methods provides a breakthrough for Monte Carlo
likelihood methods and greatly clarifies issues of effective Monte Carlo realization of latent variables in
structured systems. Another such system arising in genetics analysis is the pedigree, more complex than
coalescent trees in that diploid individuals have two parents. In inference from multilocus genetics data
on members of a pedigree structure, there are two dimensions to the conditional independence struc-
ture of the latent variables which specify the descent of genes in pedigrees: S;;=0 or §;;=1
(i=1,..., M, j=1,... L) as the maternal or paternal gene is transmitted in meiosis i at locus j.
One is the structure imposed by Mendelian segregation, which provides that the vectors §; =
(Si15 - » S; 1) are a priori independent. The other is the linear structure of the chromosome, which,
in the absence of genetic interference, provides that the vectors § ; = (S ;, . . ., Sy ;) are first order
Markov in j.

Both Markov chain Monte Carlo (MCMC) sampling and IS have been used in Monte Carlo
likelihood analyses on pedigrees. Where exact single-locus computation is feasible, IS along the
chromosome may be used to obtain an estimate of the likelihood (Kong et al., 1994; Irwin et al., 1994).
Alternatively, an MCMC sampler updating jointly the components of S ; is quite effective (Heath,
1997). The latter provides only relative likelihoods but in a Bayesian framework allows for more
complex models of trait determination. No thorough comparison of Monte Carlo performance of IS
and MCMC sampling in this context has been made: examples can be constructed to favour either.
Where exact single-locus computation is infeasible, an MCMC approach which updates jointly the
components of S; provides another alternative. This sampler has the advantage that it can be extended
to more general meiosis models (Thompson, 2000). Although not in general irreducible, irreducibility
can be guaranteed by combining the two MCMC samplers.

What do we know about the fourth possibility — IS rather than MCMC sampling over the meioses of
the pedigree? As with coalescents, the data are at the bottom; gene ancestry must be realized within the
pedigree structure. IS has been attempted on a very large and complex pedigree by C. J. Geyer (Geyer
and Thompson, 1995), but without success. In the light of this paper, the reason is clear: we must
consider backward rather than forward transition probabilities. How this is to be accomplished on a
large and complex pedigree structure remains unclear, but the idea raises new hopes for Monte Carlo
analyses of data on very complex pedigrees. In conjunction with MCMC sampling of S; , it would
provide for irreducibility and an effective method for Metropolis-rejected restarts.

Valérie Ventura (Carnegie Mellon University, Pittsburgh)
A perfect importance sampling (IS) estimate of equation (4) is obtained using the sampler Q%(H)
o mg(A,|H) Pg(H) (Kahn and Marshall, 1953), i.e. Q%(H) = Py(H|A,). This paper provides a clever
and effective approximation to Q%(H).

Because P,(H) is typically more spread than 7,(4,|H), sampling from densities such as P, or Q"
might yield pseudobiased estimates as in Section 5.2, even if M is huge (Ventura, 1997, 1998). Generally
this means that there is a subset 4 of the sample space of H such that

M
Pr(ﬂ{?{‘” € A}) e
i=1

with € small, and
E{l(H)[H € A} = q,
var{ly(H)|H € A} = b,

while unconditionally
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E{l(H)} = a+d,
var{lf(H)} = b +c

with ¢ 3> b. We estimate E{/,(H)} by M~ £, [,(H"), which is close to a with high probability, and with
estimated variance b/ M, much smaller than the unconditional variance (b + ¢)/ M — so much smaller as
to indicate that E{/,(H)} is significantly different from a+d. Here

ly(H) = mo(A,|H) we(H),
wo(H) = Po(H)/ Qg (H)

and 4 = {H: ws(H) =0}.

Use of the sampler Q% prevents pseudobias at 6, (i gncidentally, I am puzzled about the estimate of
L(15) being pseudoblased when the almost optimal Q37,5 is used) but does not guarantee success at 6, if
g, Py, and my P, have different importance regions. The safe approach is the use of a mixture

O(H) = ; Ve Qu(H) (37)

that provides coverage for all P, and preferably consistent with 4,, e.g. with @, = Qa . Expression (37)
is not optimal for any one L(f). But efficiency may be recovered at all fs by using the control variate
wp = Qp (H)/Q(H) to form

M ) P H(f) ! — (i
M A, 1) % B (M Lt~ 1), (38)

with 3, the least square regression slope of /,(H"”) on wﬁ.(] Its asymptotlc vanance is (1- 05)”" times
smaller than that of expression (12), where typically pj = corr® {I,(H?), wy"} is large since Q% = Q3P
implies 1,(H") & w} o This also works well if equation (37) is not everywhere consistent with 4, ; see
Ventura (1999). .

Estimator (38) requires the evaluation of Q3" for all 6 at all H?, but

1 oy Pa(H?)
M E]: ?rﬂ(Aan )QQO(H(O)

with w,(H) = Qx(H)/Q(H), and Sy the estimates of fg in the regression
l(H) = By + Z Box Wi (H) + €,

- %6&& {M”' Z w(H?) — 1}, (39)

implicitly approximates expression (38), yet does not require additional computation other than the ;.
Owen and Zhou (2000) derived expression (39) independently and further proved that, although not
optimal, it is never worse than the regression estimator from an importance sample of size M+, from Q.
Therefore equation (37) in conjunction with expression (38) or (39) makes IS safe and efficient.

The performances of estimators (12), (38) and (39) hinge on the quality of the mixture. But, as
noted by the authors, more formal procedures are still needed to assess this, as well as the variability
of the estimates.

The authors replied later, in writing, as follows.

We thank all the discussants for their interesting comments. For brevity, our response will focus on
several common themes raised.

Several discussants (Mau, Meng, Stephens and Ventura) raise the issue of improving efficiency when
estimating likelihood curves by combining estimates for different driving values ¢,. Although our
method did not seem to experience difficulties in the simple examples considered in the paper—a fact
that we speculate is in part due to the small size of the problems, and in part because our missing data H
do not include times explicitly— this will be an important consideration in more complex problems.
Much of the discussion of Geyer and Thompson (1992) focused on potential problems caused by failing
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to combine estimates for different driving values, and led to the development by Geyer (1991) of the
‘reverse logistic regression” method implemented by Kuhner and Beerli. Within our group the use of
bridge sampling (as proposed in the paper, and by Meng) has also proved fruitful (Fearnhead, 2000).
We welcome the additional methods suggested by Meng (path sampling) and Ventura. We also agree
with Markovtsova and colleagues that in the Markov chain Monte Carlo (MCMC) framework the use
of Bayesian machinery to find likelihood surfaces is appealing in its simplicity, particularly when the
parameter of interest sits in a space of dimension 1 or 2, making estimation of the posterior density on a
fine grid of parameter values relatively straightforward.

The improvements to the GT algorithm achieved by Chen and Liu’s use of resampling (which has a
subtle connection with the rejection control method suggested in Section 6.3) are very impressive. We
look forward to assessing the improvements that its use offers to our method, especially in complex
problems.

The suggestion of Emond and colleagues of an adaptive proposal distribution is one which we had
considered. We have not yet been able to find any promising implementations. As noted in Section 6.4,
we believe that the use of a ‘defensive mixture’ (Hesterberg, 1995) is unlikely to be fruitful in this
context, though our view is tempered slightly by its success in another complex setting.

The question of diagnostics for importance sampling (IS) — assessing whether enough iterations have
been performed for accurate estimation—is clearly important. Fig. 12 shows plots of the estimated
mean and standard deviation of the importance weights, against the number of iterations, for 20000
samples from Qﬁf_ﬂ,m in the case @ = 15 in Section 5.2. The discontinuities are striking and evidence that
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Fig. 12. (a) Estimated likelihood (mean of importance weights) and (b) standard deviation of the importance
weights, against number of iterations, for 20000 samples from 09502,5_0, in the case # = 15 in Section 5.2: the
horizontal line in (a) shows the estimate of the likelihood obtained from the 107 samples used in Table 1,
illustrating the tendency for IS methods to underestimate the likelihood if too few samples are used; the standard
deviation is even more substantially underestimated (using 107 samples we obtained an estimate of 2.6 x 107'°,
which is off the top of the scale of the graph shown)
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insufficient iterations have been performed to overcome the extreme skewness of the distribution of the
importance weights. Monitoring of the effective sample size, another diagnostic which we have found
helpful, gives the same message. We welcome the suggestion by Brooks and Gelman, of a more formal
approach, though it is not clear to us how their diagnostic could be implemented in our case. Our target
distribution, which they denote w, consists of atoms in the space of histories and so cannot be
differentiated, at least in the usual sense. Incidentally, we are in complete agreement with Brooks and
Gelman on the use of parallel runs.

We are grateful to Beaumont, Fearnhead, Felsenstein, Griffiths, Kuhner and Beerli, Markovtsova
and colleagues, and Wilson for further descriptions of the methods that they have developed. They, and
other discussants, also highlight the importance of checking the accuracy of new, complex algorithms.
The growing availability of different methods for the same kinds of data will facilitate this, and we
welcome the suggestion by Markovtsova and colleagues of establishing standard test data sets. In the
light of some of the comments made in the discussion, it is perhaps worth reiterating that not all
MCMC methods involve IS, and that different MCMC methods can, and do, and IS methods could,
involve different choices of the missing data. The efficiency of different such choices is not yet well
understood, but Kuhner and Beerli’s suggestions about the way in which these choices may affect the
efficiency for different sorts of data is intriguing.

The result of Stephens (1999) can be extended to show that the variance of the IS weights for the
Fluctuate scheme (Kuhner et al., 1998) is infinite for 6 > 26,, regardless of the value of the sample
size n. We thus do not share Felsenstein’s optimism on this matter, and we note that Fig. 11 does not
bear directly on the problem, which relates to underestimating the likelihood away from its peak.
(Incidentally, the suggestion in Fig. 11 of differences by more than a factor of 2 in the estimated
maximum likelihood estimates from different runs is somewhat disquieting.)

In his discussion, Stephens raises the important issue of robustness, explicitly in the context of a
possible misspecification of the mutation matrix P. Analogous questions could be posed regarding other
genetic and demographic modelling assumptions. For reasons given in the paper we considered a
somewhat stylized inference problem. For real genetics problems little is known about the robustness of
likelihood procedures, but we suspect that it is likely to be a serious problem. In fact, as Harding noted,
in many practical problems the interesting inference questions concern these other aspects of the model,
rather than the value of 6.

Ewens and Joyce echo our hope that theoretical results concerning the sampling properties of
maximum likelihood estimators in these models will soon be available, and Edwards reminds us of the
alternative possibility of regarding the log-likelihood as an intrinsic measure of support. The imminent
availability of data from multiple, independent chromosomal regions across the genome will have a
major effect on accuracy for many estimation problems. With n sampled chromosomes sampled from r
regions, the information will grow as r or r log(n), in problems for which information can be combined
across regions. Indeed, these developments promise to revolutionize many genetic inference problems
(e.g. Di Rienzo et al. (1998), Reich et al. (1999), Pritchard and Rosenberg (1999), Devlin and Roeder
(1999), Nielsen (2000), Pritchard et al. (2000a,b) and Wall and Przeworski (2000)) and the resulting
methods at least partially address some of the important practical applications raised by Harding.

The theory developed in the paper, and its straightforward extension to more general demographic
and genetics models, offers considerable guidance in the choice of proposal distributions, in either the IS
or MCMC frameworks. None-the-less, there is a non-trivial human cost in the development of such
proposals, at least some of which must be incurred anew in each different setting. A careful design of the
proposal distribution, with the associated cost, seems essential to the development of practicable IS
schemes, for all except the simplest problems. In contrast, as Felsenstein, Larget and Mau note, it is
possible to design MCMC proposals which are independent of many of the details of the underlying
model. Our IS proposal distribution depends on each of the data, the demographic model and the
genetics model. Proposal distributions of the MCMC methods described in the paper and the discussion
depend on various subsets of these three factors. To what extent there are ‘plug-and-play’ MCMC
proposals that work well for a wide variety of models is not yet clear, but the difficulties described by
Markovtsova and colleagues in using one such proposal provide a salutary warning. We remain
convinced that insights gained through a careful consideration of the underlying stochastic models have
a role to play in the development of computationally intensive inference procedures, in this and related
settings. (Similar considerations with regard to the trade-offs between generic and tailored methods will
apply in connection with Griffiths’s suggestions concerning solutions of linear equations.)

Several discussants point to the connections between inference in population genetics and in other areas
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of genetics. We are grateful to Larget for his description of the phylogenetic inference problem in which he
and others have successfully used MCMC methods. We also enjoyed Thompson’s insightful comments on
the challenges of, and possibilities in, computationally intensive inference within pedigrees.

Ewens’s challenge to adapt these methods to the important problem of mapping susceptibility genes for
complex diseases from population data is timely. The insights gained from coalescent models, e.g. into the
correlation structure of such data, seem destined to be important. Whether or not full coalescent-based
likelihood procedures represent the best way to address the practical problem is not clear to us.

Finally, we appreciate the historical perspectives offered by Edwards, Ewens and Griffiths, and we
join Harding in her implicit hope that the future will see ever more rapid progress towards tackling the
challenging real world inference problems in molecular population genetics.
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