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Summary. The mixed effects model, in its various forms, is a common model in applied statistics. 
A useful strategy for fitting this model implements EM-type algorithms by treating the random 
effects as missing data. Such implementations, however, can be painfully slow when the vari- 
ances of the random effects are small relative to the residual variance. In this paper, we apply the 
'working parameter' approach to derive alternative EM-type implementations for fitting mixed 
effects models, which we show empirically can be hundreds of times faster than the common EM- 
type implementations. In our limited simulations, they also compare well with the routines in S- 
PLUS' and Stata?' in terms of both speed and reliability. The central idea of the working param- 
eter approach is to search for efficient data augmentation schemes for implementing the EM 
algorithm by minimizing the augmented information over the working parameter, and in the mixed 
effects setting this leads to a transfer of the mixed effects variances into the regression slope 
parameters. We also describe a variation for computing the restricted maximum likelihood 
estimate and an adaptive algorithm that takes advantage of both the standard and the alternative 
EM-type implementations. 

Keywords: Data augmentation; Incomplete data; Missing data; Random effects models; Rate of 
convergence; Restricted maximum likelihood; Variance components models 

1. Introduction 

Since Dempster et al. (1977) showed its great potential for finding maximum likelihood 
estimates or more generally posterior modes, in problems that involve missing data or can be 
formulated as such, the EM algorithm has become one of the most well-known and used 
techniques in applied statistics. Fitting mixed effects models with the EM algorithm was one 
of the more novel applications presented in Dempster et al. (1977) because this particular 
application makes it clear that we can apply the algorithm even when there are no missing 
data in the usual sense, in that we can treat latent variables as missing values. Since Dempster 
et al. (1977) this topic has been well developed in the literature (e.g. Laird (1982), Laird and 
Ware (1982), Dempster et al. (1984), Laird et al. (1987) and Liu and Rubin (1994)). In 
particular a series of articles on animal breeding studies which use variance component 
models fitted via the EM algorithm has made the Journal of Dairy Science fourth in the list of 

journals that have published the most EM-related articles since Dempster et al. (1977), 
according to Meng and Pedlow (1992) (also see Meng and van Dyk (1997)). 
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Although the simplicity and stability (e.g. monotone convergence in likelihood values) of the 
EM algorithm have made it a popular method for fitting mixed effects models, the algorithm's 
slow convergence, especially when the variances of the random effects are relatively small, has 
led various researchers to consider alternatives (e.g. Thompson and Meyer (1986), Lindstrom 
and Bates (1988) and Callanan and Harville (1991); also see Harville (1977)). Although these 
alternatives (e.g. Newton-Raphson iteration) do provide fast convergence with careful imple- 
mentation and monitoring, they have not been as popular as the EM algorithm in practice 
mainly because they require a larger human effort. For example, without extra computational 
effort, these algorithms can produce negative variance estimates (e.g. Thompson and Meyer 
(1986) and Callanan and Harville (1991)). Even with careful monitoring, as implemented by 
some commercial software, such algorithms can converge to a wrong point within the param- 
eter space. For example, we have encountered such cases in our use of S-PLUS, as reported in 
Section 3.2. It is therefore of practical interest to speed up EM-type algorithms within the 
EM framework, and the 'working parameter' method of Meng and van Dyk (1997) provides 
one way of searching for fast EM-type implementations. 

Briefly, the EM algorithm and its various extensions start by defining an augmentation 
Yaug such that the observed data Yobs = M(Yaug) for some many-to-one mapping M (more 
precisely, Yaug is shorthand for the underlying augmented data model). The theoretical speed 
of convergence of the algorithm is then determined by the smallest eigenvalue of the matrix 
'fraction of observed information' (Dempster et al., 1977) IobsIaulg where 'aug is the expected 
augmented Fisher information matrix and Iobs is the observed Fisher information matrix (see 
Meng and van Dyk (1997) for details). The key idea of the approach adopted in Meng and 
van Dyk (1997) is to construct a class of augmentations, Yaug(a), indexed by a working param- 
eter a such that Yob. = Ma{ Yaug(a)}; here the mapping Ma can depend on a. Once a class of 
possible data augmentation schemes has been constructed, we can search for optimal or 
nearly optimal values of a in terms of minimizing the expected augmented Fisher information 
Iaug and thus maximizing the theoretical speed of convergence; note that Iobs does not depend 
on a. Constructing Yaug(a) such that the resulting algorithm is not only fast but also easy to 
implement is a matter of art in that, just as in the actual EM implementation, it needs to be 
worked out case by case. Meng and van Dyk (1997) illustrated how this approach can be used to 
construct efficient EM implementations for fitting multivariate t-models and for image recon- 
struction under a Poisson model. Here we present another application: the mixed effects model. 

Our presentation is organized as follows. After a brief review of the standard EM and EM- 
type implementations, Section 2 presents EM-type implementations based on our new data 
augmentation scheme; we also discuss the computation for restricted maximum likelihood 
(REML). Section 3 presents empirical evidence that a sensible selection of the data augmen- 
tation scheme can lead to EM-type implementations that are dramatically faster than the 
conventional implementations (e.g. more than 100 times faster) and comparable with some 
commercially available routines but with preferable convergence properties. Section 4 pro- 
vides theoretical insights using a simple mixed effects model. Section 5 concludes with a brief 
remark on the potential generalization to the Gibbs sampler. 

2. Standard and alternative implementations 

2.1. The standard implementation 
We consider the mixed effects model of the form 

Yi = X3 + ZTbi + i, bi Nq(O, T), ei - N(O, a2Ri), bi I ei, (2.1) 
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for i = 1, . ., m, where the (observed) response yi is ni x 1, Xi (p x ni) and Zi (q x ni) are 
known covariates (throughout we assume that the Zi are such that T is identifiable), /3 are the 
p x I fixed effects, bi = (bil, . .., biq)T are the q x I random effects and Ri > 0 are known 
ni x ni matrices. (We follow the literature to use Ri explicitly, though mathematically it is not 
more general than Ri = I since it is assumed to be known.) Although there is no general 
closed form solution for the maximum likelihood estimate 0*= (3*, a*, T*) of 0= (3, a , 
T) given Yobs = {(Yi, Xi, Zi, Ri), i = 1, .. ., m}, the EM algorithm provides a simple and 
stable fitting algorithm. The standard data augmentation (Dempster et al., 1977; Laird and 
Ware, 1982; Laird et al., 1987) which treats the bi as missing data (i.e. YaUg = {(Yi, Xi, Zi, 
Ri, bi), i = 1,.. ., m}) leads naturally to the following algorithm. The E-step finds the 
conditional expectation of the log-likelihood function of 0 based on the augmented data Yaug, 
conditionally on Yobs and 0(') from the previous iteration of the algorithm, Q(0I0('))= 
E{l(0I Yaug)I robs, 0(t)}. This amounts to calculating E(bilyobs, 0(t)) and E(bibf robs, 0T) 
i= 1, ..., m, which can be obtained easily because 

bilyobs, 0 Nq{bi(0), T- TZiFW(0)ZT T}, i= 1, .. ., m, (2.2) 

where 

bi()= TZiWi (((yi - XT13) with Wi(?) = (u2Ri + ZTTZi)', = (v, T). (2.3) 

The computation of Wi(() can be facilitated by reducing the dimension of the matrix inver- 
sion when q < ni by using the matrix identity (R7- is only computed once since it does not 
change with iteration): 

Wi(( = {R-' - R7 ZT(u2T-' + ZiR ZT)1 ZiR1}/u 2. 

The M-step of the algorithm then updates 0 with the value 0(t+1) which maximizes the 
expected augmented data log-likelihood Q(010(')), which in this case factors into two terms, 
one involving : and c2 and the other involving T, and thus the M-step has a particularly 
simple form. First we update (,3, a2) via the linear regression implied by model (2.1), 

/3(t+1) - X(R-IXT) X,R71 {y,-z ( b0'0)} (2.4) 

and, letting r+) = i- 3(t+l) -ZT (t)) 

I(+) (t+1)T 1(t+1) -1 Z( a2( t=-[r ) R1r +? tr{Ri var(ZTbilYobs, 0()}] (2.5a) 
nl j=i 

= - Z [r(+ R-lr(t+ )(t) tr{J - p7(t) Wj(((t))Ri}], (2.5b) 
n j=1 

where n = S7 I ni; we express U2(t+') in two ways here to facilitate the discussion of REML 
computations in Section 2.3. We then update T with 

T('+') =-EE(bib iT Yobs, 0(t)) - bi(O() bi(0(')) +T'-( {E zi wi((')i } T'U T(t1 +EbTY 0t\ ((? + T(t) -.0 )T(tf) F Z~~~')T(t) 
hi obs, ik lrn MI 

(2.6) 

thus completing a single iteration of the standard EM implementation. 
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It is generally advisable (e.g. Laird and Ware (1982) and Laird et al. (1987)) to replace 
equation (2.4) with 

3( +l) xi E i((( +I))XTI XE WF((( "))yi, (2.7) 

the conditional maximizer of l(0l YobS) with ( = (T, u2) fixed at its most recent update ((t+1) 
Accordingly, the 3(t+1) in r(t+') needs to be replaced by p(t) when computing equation (2.5a) 
or (2.5b). This replacement can be justified by the theory underlying the 'expectation- 
conditional maximization either' (ECME) algorithm (Liu and Rubin, 1994), which allows 
maximizing either the expected log-likelihood Q(010(t)) or the actual log-likelihood 1(01 Yobs). 

More generally, it is an example of the 'alternating expectation-conditional maximization' 
algorithm AECM that we discussed in Meng and van Dyk (1997). We use ((t+) in equation 
(2.7) instead of ((t) because of an order restriction on implementing the ECME algorithm, as 
discussed in Meng and van Dyk (1997). More specifically, with the ECME algorithm, 
equations (2.5a)-(2.6) form the first CM-step, which maximizes Q(0I0't)) conditionally on 
:3 =:(t), and equation (2.7) gives the second CM-step, which maximizes l(01 Yobs) con- 
ditionally on ( = ?(t+l), the output of the first CM-step. An interesting by-product of this 
ECME implementation is that it unifies maximum likelihood and REML computations, as 
we shall discuss in Section 2.3. For clarity, we shall distinguish between ECME and EM, 
whenever appropriate. 

2.2. Alternative implementations 
To search for an efficient EM algorithm for fitting t-models, Meng and van Dyk (1997) intro- 
duced a working parameter into the data augmentation scheme by rescaling the missing 
variable which resulted in a remarkably fast EM implementation for the t-model. Inspired by 
this success, we tried the same idea with the mixed effects model (2.1). Because in this setting 
the unobserved random variable b is generally a vector, the construction of an appropriate 
data augmentation scheme is more complicated. In principle, we can rescale b by Ta/2, where 
a is an arbitrary constant, and treat {bi(a) = Ta-a2bi, i= 1, . . ., n} as the missing data. 
Indeed, when bi is univariate or when T is assumed to be proportional to a known matrix, this 
rescaling with a = 1 is a natural consequence of expressing model (2.1) with standardized 
random effects, as in Anderson and Aitkin (1985) with binary response and in Foulley and 
Quass (1995) with heterogeneous variances mixed effects models. For a general T, however, it 
is difficult, if not impossible, to implement the EM or ECME algorithms resulting from using 
T -a/ with an arbitrary a. This violates our requirement that the resulting algorithm not only 
needs to be fast but also needs to be simple and stable. For a discussion of the resulting 
algorithms in the special case of a = 0 or a = 1, however, see van Dyk (1995). 

To circumvent this problem, we use the Choleski decomposition to diagonalize (i.e. to or- 
thogonalize) Tbefore we implement an EM or ECME algorithm. Specifically, we let T = A UAT, 
where A is a lower triangular q x q matrix with Is on the diagonal and U is a diagonal 
matrix. It is well known that such a decomposition exists and is unique (e.g. Horn and 
Johnson (1985), p. 162). This parameterization of T has been used to help to stabilize 
Newton-Raphson-type algorithms (e.g. Lindstrom and Bates (1988) and Groeneveld (1994)) 
and for reducing computation time within each iteration of the standard EM or ECME 
implementation (Lindstrom and Bates, 1988). We use it to introduce a new class of data 
augmentation schemes by letting ci = A bi, then ci - Nq(O, U). Since U diag{II, ... ., u- 
is diagonal, we now have the flexibility to rescale each element of ci = (cil, . . ., ciq)T by a 
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power of its own standard deviation. Specifically, for any vector a = (a,, . . ., aq)T E Rq, we 
can define 

ci (a) 
Ci 4 Ciq) 

(Ul U2 Uy 

and treat Ya,g(a) = {(yi, Xi, Zi, Ri, ci(a)), i= 1, . ., n} as the augmented data. Notice that 
the definition of ci(a) depends on the order of the random effects and thus there are q! 
possible data augmentation schemes of this sort. We do not consider the issue of ordering 
here, which may be worthy of investigation, though we doubt that it has a substantial effect in 
typical applications. 

With this alternative augmentation, model (2.1) can be expressed as 

Yi = XTi: ? Zf A (a)ci(a) + ei = XTf ? E E ci(a)Zik&k jUa + ei, (2.8) 
j=1 k=j 

where A = (8k1), &(a) --diag{ul', .I . ., uq} ci(a) = (ciI(a), ... ciq(a))T and Zi = (Zi, . 
Ziq)T with Zik an ni x I vector. Although in principle we can derive the EM algorithm for any 
a E Rq, we restrict ourselves in this paper to a E {0, 1 }q, i.e. ai can only take values 0 or 1, to 
keep the resulting algorithms simple to implement (i.e. a closed form M-step), which is one of 
the main objectives of our search; a more general search can lead to even faster algorithms 
but can also increase the complexity of the algorithms. Within this class of data augmentation 
schemes, given Yaug(a), model (2.8) is a linear regression with p + q(q - 1)/2 + Ejq aj regression 
coefficients when we view (note that 8jj = I for all j) 

{6kjUj, k > j, for a. = 1} U {6k ; k >j, for aj = 0} 

as the q(q - 1)/2+ Ejq aj regression coefficients besides /3. Notice that model (2.8) is a 
regression on 3 and the elements of A when a = (0, . . ., O)T; when a = (1, . . ., I)T', in 
contrast, model (2.8) is a regression on , and the elements of the lower triangular matrix 
L=AU1/2 (i.e. T=LLT). 

As discussed at the end of Section 2.1, the ECME implementation has two CM-steps at 
each iteration. For our new augmentation scheme, the first CM-step updates (72, A, {uj, for 
aj = 1I) via the linear regression (2.8), by treating {cij(a)Zik, k > j} as the missing covariates 
and /3 = -/('). For example, for a = (1, . . ., i)T (this is the case that we generally recommend, 
as we shall reason later), we can rewrite model (2.8) as 

Yi-xT/') = XXTi + ei, 

where Xi is a [q(q + 1)/2] x ni matrix with rows cij(a)ZT for] = 1,..., q, k-j, . . ., q, and / 

is a vector with corresponding components &kjUj. Consequently, (a2, A, U) is updated by 

0 = {E (O('))} E X(Or('))R-1(yi - XT/(t)) (2.9) 
i=l i=l 

and, letting i(i) = -XTO(t) _ ZTA(t)( t')(a)Ci(a, 0(t)), 

2(t+1) tT 
2(t) 2(t)W(((t))Ri] (2.10) whe[ R1 Xi( + p2(7) tr{II- 0 (2.10 

where Xi (O) =E(XCiI Yrob,, 0), A (0) =E(X1 R7 -T ros 0) and 8^i(a, 0) = El{ci(a)I robs, 0}, which 
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are found in the E-step (see below); note here that Wi(() is the same as in equation (2.3) 
except that T is calculated as AUAT . Computationally, the matrix inversion in equation 
(2.9) can be avoided by using the SWEEP operator (Beaton, 1964), as discussed in Little 
and Rubin (1987), pages 53-57; for Ri + 1, a simple orthogonalization (i.e. R. /XiT and 
RI 1/2ZT) may need to be performed before iterations. Finally, for general a E {0, I}q, we 
update {uj, for a, = 01 by using cj(a) - N(0, ui) when aj = 0 and thus 

2(t+l) 1 o()I u1 = - E E{c2,(a)l obs, S for j such that aj = 0. (2.11) 

When a = (1, .. , 1)T, equation (2.11) is not needed. The second CM-step is the same as 
equation (2.7). 

To perform the E-step, first we note that 

ci(a, 0) = [(2- a)ATZ1W1Q)(yi- Xi0, (2.12) 

recall that Q(a) = diag{u1', .. ., I and 

Bi(a, 0) = E{ci(a)cT (a) I Yobs, 0} 

= ci(a, 0)c'T(a, 0) + U{2(1 -a)} - [(2- a)ATZ )ZTA[(2 - a), (2.13) 

where we have used the fact that U = U(2) and 2 - a means (2 - a,, . . ., 2 - aq)T, etc. We 
then use the components of ci(a, 0(t)) and the elements of 4(a, 0('"), i = 1, . . ., n, to calculate 
the conditional expectations of the required augmented data sufficient statistics. In particular, 
E{cl.(a)l Yobs, 0(t)} needed for equation (2.11) is simply the (j, j)th (diagonal) element of 4(a, 
Q(t)). The rows of Xf(0(')) are calculated with 

E{cij(a)Z.lYobs, 0 } = cj1(a, 0(t))ZTk, (2.14) 

for j = 1, .. ., q and k > j, where c j(a, 0(t)) is the jth component of the vector ci(a, 0(t)). The 
elements of 4i(0(')) are calculated using 

E{cij(a)Z,kR7 Zi.1ci1(a)j robs, ~()0 } = [Bi(a, Rt )J11Z-1R, Z1111, (2.15) 

forj= 1, . . ., q, k ) j, I= 1, . . ., q and m . 1, where [B(a, 0('))]jl is the (j, I)th element of 
Bi(a, 0(t))- 

Once the algorithm has converged, it is easy to compute the original parameter via T* = 
A*U*A*T . Fitting the regression model (2.8) can result in negative values for the {u,j 
j = 1, .. ., q} (in certain special cases, Foulley and Quass (1995) have shown that the negative 
values cannot occur as long as the initial values are positive). Concerns for this possibility 
(e.g. Thompson (1995)) should be distinguished from the concerns of negative variance 
estimates from using algorithms like the Newton-Raphson algorithm, for which a negative 
estimate indicates a numerical error and one generally cannot recover the correct estimate 
from it. In our case, the recovery is trivial because A*U* A*T will remain positive semidefinite 
regardless of the sign of the componens of (u,, . . ., uq). In fact, since A and U are unique for 
each T, there are exactly 2E'"i modes of 1(3, 2, ([(1), AI Y0bs) (corresponding to the diagonal 
roots of U) for every mode of 1(3, au2, TI Yobs). In other words, when we rewrite model (2.1) as 
model (2.8), it is understood that the support of each uj has been extended to the whole real 
line when a- = 1. The extension of the support of (ul, . . ., uq) seems to be one reason why the 
alternative algorithms can be much faster; see Section 3.4 for more discussion. 
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We now have 2q + 1 algorithms when q > 1, i.e. the 2q algorithms corresponding to a E {O, 
1 q and the standard ECME implementation, which corresponds to a = (0, . . ., O)T if A 
is constrained to the identity matrix in the fitted model; for q = 1, the standard algorithm 
is the same as the new algorithm with a = 0. Each of these algorithms is straightforward 
to implement but they will generally converge at different speeds. To evaluate the relative 
computational merit of the algorithms we shall present simulation studies in Section 3 and 
outline theoretical comparisons in Section 4, after we discuss some useful variations of the 
algorithms in Section 2.3. 

2.3. Variations 
Variations of the algorithms can be derived to accommodate structure in T. For example, 
suppose that T= T2B, where B = LLT is known with L lower triangular. In this case, we can 
write the model as 

Yi = XT:G + TaZT Lci(a) + ei, 

where ci(a) = L-'bi/Ta for a E {0, 1}. When a = 1, T can be updated as a regression param- 
eter with missing covariate ZT Lci(a). Similar calculations lead to algorithms for T block 
diagonal where each block can be completely unknown, completely known or known up to 
a scale factor. An algorithm similar to ours with a = (1, . . ., I)T (but without using the 
Choleski decomposition) for the special case of T block diagonal with each block known up 
to a scale factor was presented by Foulley and Quass (1995). They, however, suggested the 
use of Newton-Raphson iteration when T is not block diagonal or when some blocks are 
completely unknown. 

The algorithm described in Section 2.2 can also be modified for REML computations, 
which corresponds to an empirical Bayesian analysis with the constant (improper) prior on /, 
as detailed in Laird and Ware (1982). The variation is obtained by replacing 0 = (/3, a2, T) 
with ( = (a2, T) = (U2, A, U) as the parameter of interest and including / in the data 
augmentation, i.e. by treating ,3 as missing data, with an improper uniform distribution on 
RP. Note that the EM theory (e.g. Dempster et al. (1977) and Wu (1983)) does not require 
thatf(fYfugl0) be a proper density, but only thatf(Ymislyobs, 0) be proper so that the E-step 
is well defined. This point, which seems not to be generally well recognized, is important 
because improper distributions are frequently encountered in Bayesian computations; see the 
rejoinder to Meng and van Dyk (1997) for additional discussion. 

Once we realize that we can perform REML calculations by using the EM algorithm and 
treating /3 as additional missing data, we can easily modify the algorithms for maximum 
likelihood to accomplish our computational goal. For REML, we only need to replace Wi(() 
in equation (2.5b) and in equation (2.6) by (see Laird et al. (1987)) 

Pi(() = Wi() - WiDXT {E XiWi(WIXT} XiWix ) 

This replacement is the consequence of the additional E-step calculations for finding the 
conditional expectations of the required missing augmented data sufficient statistics, which now 
includes /3, /3/3T and {/bT, i = 1,..., m} in addition to {bi, bibT, i = 1, ..., m}. In particular, 
the term, var(ZTbil yobs, 0(')) in equation (2.5a) needs to be replaced by var(XT/3 + ZTbil Yobs, 

((')) because 3 is now part of the augmented data. The required additional derivation is 
straightforward by combining expression (2.2) with the fact that under a constant prior on / 
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Yobs , N [(){EX i()Xi 

where f3(() has the same expression as equation (2.7) with ((t) replaced by (. 
It is worthwhile to point out that, although expression (2.7) stays the same for both max- 

imum likelihood and REML calculations, it has different interpretations in the two calculations. 
For the maximum likelihood calculation, equation (2.7) comes from an (conditional) M-step, 
since d is a parameter in the sampling model. For the REML calculation, however, equation 
(2.7) comes from the E-step since /3 is a part of the augmented data, just like the random 
effects, {b,, . ..., b,1, }. That these two steps produce the same expression is due to the fact that 
for a normal distribution the mean (i.e. the E-step) is the same as the mode (i.e. the M-step). 

For the alternative implementation described in Section 2.2, we can carry out a similar, 
albeit less straightforward, modification for the REML computations. In addition to replacing 
Wi(() with Pi(() in equations (2.10) and (2.13) we need to replace equation (2.9) with 

1l Pi= {Zi(O(t))} E{ZXYRoI(y;-X773 robs, &t)} (2.16) 

where 3i(Q(t)) is calculated in the same way as before, using equation (2.15) with 0(t) = (((t)), 
((t)) and noting the replacement in equation (2.13). The second term on the right-hand side of 
equation (2.16) can be computed via 

{( ikR- (Y Xi i 0IYobs, (()} = iii(a, 0k)ZiR, -ziRT1Xi[it()If (2.17) 

for j = 1, . . ., q and k > j, where [b (j((t))]j is the jth row of 

Di(((-)) = E{ci(a)/ I Yobs, (t } 

= ci(a, 0(t))2T(2(t) )- (2 -a)ATZiWj($))XTTZ X gjW($))X;W 

Alternatively, a2(t+l) and 6(1?1) can be computed via the SWEEP operator by using equations 
(2.15), (2.17) and 

- X,T3)T R( -XT3O)l obs, ?} = (yi -X X (((t)))TR (Y- (())) 

+ tr [X-R-1 XT{ Xi WIV(()XT} 

to calculate the input for the SWEEP operator. 

3. Simulation studies 

3. 1. Variance component models 
Two sets of variance component simulations were conducted, one with data similar to a 
typical repeated measure analysis (i.e. ni small and m large) and one similar to a common 
unbalanced analysis-of-variance analysis (i.e. ni large and unequal, and m small). In the 
repeated measures simulation data were generated from the model 

yi = XT3 + ZT bi + ei, i= 1, . ., m, (3.1) 



Mixed Effects Models 567 

where yi is 2 x 1, X = Z = (1, 1),3 = 1, bi - N(0, 9) and ei - N2(0, r2I,) with bi and ei 
independent. 

As will be discussed in Section 4, the relative efficiency of the algorithms depends on the 
relative sizes of the variance of ZTb and the residual variance a2. The simulation was therefore 
repeated with a2 = 0.5, 1, 4, 9, 16, 36, 49, 64, 81. For each of these values, we generated 
m = 100 observations from model (3.1). The starting values 3(0) and a2(0) were obtained by 
fitting model (3.1) ignoring the variance components, and T(?) was set to 1. We ran the 
standard ECME algorithm along with the ECME(l) algorithm, i.e. the alternative algorithm 
with Yaug(l) (i.e. with a = 1), and recorded ts,d and talt the time required (in seconds) by 
the standard and alternative algorithms respectively before the convergence criterion 
L(O(t)I Yobs) - L(o(t-)I Yobs) < l0- was reached. Of course the computation time depends on 
the machine used but comparisons of algorithms should be similar regardless of the machine. 
We used a Sun Sparc 4 computer and computed ts,d and tal, by multiplying the number of 
iterations required by the average central processor unit time per iteration for each algorithm 
(averaged over the total number of iterations cumulated over all the repetitions). The simu- 
lation was repeated 200 times and the results appear in Fig. 1, which displays a sequence of 
plots that highlight the computational savings that the ECME(l) algorithm offers over the 
standard algorithm, especially when J2* is large relative to T*. Fig. 1 (a) displays the efficiency 
of the standard algorithm measured in log1o(seconds) as a function of a measure of the over- 
all coefficient of determination, 

17t 

Z tr(ZTT*Zi)/m 
D*_ i=1 In 

C)2* + E tr(ZTT*Zi)/m 

See Section 4 for the theoretical result on the relationship between the rate of convergence 
and D*; Foulley and Quass (1995) chose to plot their simulation results against a similar 
quantity, and their choice seems to be based on empirical findings. 

It is clear from Fig. 1 (a) that the standard algorithm becomes very slow when D* is close to 
0. Also plotted (as plus signs) is the loglo(seconds) required by the commercially available 
xtreg routine in STATA for a single data set selected from the data sets corresponding to 
each of the values of U2 in the simulation configuration. Fig. l(b) displays the time required 
(in loglo(seconds)) by the ECME(i) algorithm. This algorithm performs very well unless D* is 
very small or very large. In particular it performs very well relative to the xtreg routine, 
which only allows for a single random effect and requires all elements of Z to be 1. Notice 
that xtreg requires between 4 and 7 s (median time 5 s) whereas ECME(I) required only 
0.08-2.90 s (median time 0.15 s). Of course, it is difficult to make a fair comparison of 
computational efficiency, since the computer time required is a function of the actual coding, 
the programming language and the machine. None-the-less, it is clear that xtreg (and the S- 
PLUS lme routine, as discussed in the next section) does not dominate ECME(i), even in 
terms of computational time. Fig. l(c) compares the standard algorithm with the ECME(M) 
algorithm. The smaller D*, the greater is the computational advantage of the new data 
augmentation scheme. When D* is very large, the standard algorithm can be as much as 10 
times faster. But, when D* is less than about 2, the ECME(1) algorithm is preferable and can 
be several hundred times faster when D* is close to 0, and is often 10-25 times faster. 

The second set of variance component simulations were also under model (3.1), but only 10 
groups were generated (i.e. m = 10), five of size 3 (i.e. ni = 3) and five of size 7 (i.e. ni = 7). 
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Fig. 1. Time required by the ECME algorithm as a function of the coefficient of determination D*: (a) time (in 
log10(seconds)) required by the standard algorithm; (b) time (in log10(seconds)) required by the ECME(1) algorithm; 
(c) logarithm of the relative time (the ECME(1) algorithm performs better when D* is smaller than about 2/3); ?, 
time required by the xtreg routine in STATA for 10 randomly selected data sets 

The simulation used the same starting values, convergence criterion and values of the 
parameters, and the results appear in Fig. 2, which plots the log-ratio of the computation 
time required by the ECME(,) algorithm and the standard algorithm against D*. Again we 
see that the smaller D* is the better ECME(l) performs relative to the standard algorithm, 
with ECME(1) preferable when D* <2 (approximately), which is in good agreement with the 
theory given in Section 4. 
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Fig. 2. Relative performance of the ECME(1) algorithm and the standard algorithm as a function of the coefficient 
of determination D* for unbalanced data generated in the second simulation in Section 3.1 

3.2. Mixed effects models 
The second pair of simulation studies was similar to the first except that, to look at the more 
general mixed effects model, the components of Zi were independently generated from the 
N(0, 1) distribution and multivariate random effects were considered. In the first set of 
simulations, data were generated from the model 

yi=/ +xi ? /32?ZTbi+?ei, 1=1, ..., i, (3.2) 

where yi and xi are scalar, Zi is 2 x 1, ol = /52 = 1, xi = 

bi -N? 0, 9(0 ) 

and ei - N(O, cr2), with bi and e, independent. The second set used 

Yi = XT1 A+ZT bi +ei, i .. 1, ,m, (3.3) 
where yi is 2 x 1, X= (1, 1), 13 = 1, Zi is 2 x 2, 

bi -N? 0, 9(0 ) 

and ei - N2(0, cr2I2) with bi and ei independent. For each simulation, a data set with m = 100 
was generated for each value of a2 (0.25, 1, 4, 9, 16, 25, 36, 49, 64, 81) and the same conver- 
gence criterion and starting values were used, except 

T(?)_ I 0.18 ( 0.1 ) 

The first simulation set was repeated 200 times and the second set 100 times, and the results 
are summarized in Figs 3 and 4 respectively. Again, we want to compare the efficiency of the 
standard ECME algorithm with the ECME(l 1) algorithm (i.e. the new algorithm with a = 
(1, 1)) as a function of the coefficient of determination, and we plotted performance against 
logit1O(D*) the logit scale was used to highlight the comparisons when D* is small or larger. 
For both models, the standard algorithm performs best when the residual variance is some- 
what smaller than the average variance of ZTbi (i.e. when logit1O(D*) ; 1) and the ECME(l 1) 
algorithm does very well when the residual variance is moderate to large relative to the 
average variance of ZT bi. When the residual variance was small in the univariate response 
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Fig. 3. Time required by the ECME algorithm as a function of logitlo(D*): (a) time required by the standard 
algorithm; (b) time required by the ECME(j,j) algorithm; (c) relative time; the standard algorithm performs better 
when the residual variance is small, and the ECME(j, 1) algorithm performs better when the variance ot the random 
effects is small; the parallel lines represent the range of time required by the lme routine in S-PLUS for 10 
representative data sets; all times are reported in loglo(seconds) 

simulation, both algorithms are very slow as opposed to the variance component simulation 
in which both algorithms performed relatively well. Figs 3(c) and 4(c) indicate that, when D* 
is greater than about 0.9, the standard algorithm tends to outperform the ECME(I I) 
algorithm slightly (as much as 10 times faster). However, when the average variance of the 
random effects does not dominate the residual variance, the ECME(j,I) algorithm is clearly 
superior (as much as 1034 times faster). 
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Fig. 4. Similar to Fig. 3 except that model (3.3) was used instead of model (3.2); *, A, 10 arbitrarily selected 
data sets fitted using the lme routine for comparison; the vertical values of these symbols refer to the time (or 
relative time) for the ECME algorithm when fitting the corresponding data set; the range of time required by S- 
PLUS is within the parallel lines; for the data sets represented by triangles, S-PLUS converged to a point that was 
lower on the likelihood surface than did the ECME algorithm; all times are reported in log10(seconds) 

The two lines in Figs 3(a) and 4(a) give the range of computation time required by the 
commercially available routine lme in S-PLUS for 10 data sets covering the range of the 
simulation. The ECME(l, 1) algorithm generally compares quite well with the lime routine and 
exhibits superior stability properties. For example, of the 10 data sets generated in the 
multivariate response simulation which were also fitted by lme (represented by squares and 
triangles in Fig. 4), the lme and ECME algorithms converged to different limits five times 
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Fig. 5. Comparing the convergence of the ECME algorithm with the S-PLUS implementation: cross-section in 
the log-likelihood surface for the data set represented by the leftmost triangle in Fig. 4 (E, point of convergence of 
the S-PLUS implementation; X, point of convergence of the ECME algorithm; A is clearly not even at a local 
mode) 

(represented by triangles in Fig. 4). In all five cases the ECME algorithm converged to a point 
that is higher on the log-likelihood surface. One of these is represented in Fig. 5 which 
illustrates a cross-section of the log-likelihood surface (computed with our C code which 
agreed with the lime output) along the line (1 - e)S + 6O*ECME, where Os is the point of con- 
vergence of S-PLUS, O*ECME is the point of convergence of ECME and c ranges from 0 to 1. 
The S-PLUS routine does not even converge to a local mode. For this data set, the ECME 
algorithm converged to O*ECME even when O* was used as the starting value. This is yet another 
illustration of the advantage of the stable convergence properties of the EM-type algorithms. 
Although these properties can come at the cost of slow convergence, this is a small price to 
pay for some assurance of the properties of the point of convergence. The central theme of 
efficient data augmentation is to maintain these properties while reducing the computational 
time. 

The 10 data sets fitted with lme are available on request. We have used the same lme 
implementation for all the 10 data sets and it provided the same answer as our ECME 
implementation for five sets. We make no claim of any kind about the general reliability of 
the lme routine. We are simply reporting what we have encountered in our implementation 
of it, which, to our best knowledge, was in accordance with the instructions in the S-PLUS 
manual. 

3.3. An adaptive algorithm 
Although the relative gain of the standard algorithm over the ECME(l 1) algorithm is small 
when the residual variance is very small, cutting the computational time even in half can be 
significant since both algorithms can be so slow in this case (e.g. Fig. 3). To take advantage of 
the standard algorithm when it is more efficient, a preliminary approximation of 0* can be 
used to decide between the two algorithms. To invesigate this, we repeated the univariate 
response random effects simulation (with new random seeds) with an adaptive algorithm, 
which first runs the ECME(l, 1) algorithm for 20 iterations and then switches to the standard 
algorithm if 
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2q[a ]20 ) Z tr(Zf T")Zj). (3.4) m i-I 

This criterion is based on an extension of the results of Section 4 to the case with q > 1 (see 
van Dyk (1995)). 

Fig. 6 plots loglo(Nadp/Nstd) against logitlo(D*), where Nadp and NStd are the number of 
iterations required by the adaptive and the standard algorithms respectively. Displaying the 
number of iterations required instead of time makes it a little easier to detect whether a switch 
has occurred - comparisons using actual time do not alter the overall pattern of the plots 
(for example, see Fig. 7). As Fig. 6 indicates, the adaptive algorithm almost always switched 
to the standard algorithm when it was beneficial to do so. (Interestingly, the switched 
algorithm was often slightly faster than the pure standard algorithm.) Since this adaptive 
algorithm is easy to implement and generally performs well against both the ECME(l 1) and 
the standard algorithm, we recommend its use in place of either the standard or ECME(l 1) 
algorithms. We also expect that a switching criterion that is more effective than condition 
(3.4) can be found. 

1. . 

z 

-10 0 10 20 

logft(D*) 

Fig. 6. Relative number of iterations required by the adaptive and standard algorithm (log10-scale): after 
20 iterations of the ECME(1j1) algorithm, the current approximation '(2O) was used to determine which algorithm 
should be used; if 4[o2]120) < (1/m) ,; Z TT20ZT the standard algorithm was used until convergence; otherwise 
we continued with the ECME(1,j) algorithm until convergence; this procedure almost always resulted in an 
algorithm that was faster than the standard algorithm 

%0-........................................................................................ .................................................................................... 

-6 -4 -2 0 2 4 6 
logt(D*) 

Fig. 7. Computational gain when the T* is small: when T* is small, the reparameterization of T induced by the 
new data augmentation, in effect, keeps T* from the boundary of the parameter space and thus helps to increase 
the computational efficiency of the ECME algorithm 



574 X.-L. Meng and D. van Dyk 

3.4. The EM boundary problem 
It is well known that the EM-type algorithm can be very slow to converge when the max- 
imum likelihood estimate is near the boundary of the parameter space (e.g. with the image 
reconstruction problem; see Meng and van Dyk (1997), section 3.5, for discussion). This 
observation may lend partial insight into the computational gains that our new data aug- 
mentation scheme avails. Consider the case where the random effect is univariate. By moving 
the estimation of T into the mean structure at each M-step, the parameter space for the 
variance, [0, oo), is transformed to the parameter space for a regression coefficient, (-oo, oo). 
Thus, small values of the variance T* which are near the boundary of [0, no) are transformed 
to points that are far from the boundary of (-oo, oo). To illustrate this, we conducted 
another simulation with data generated from model (3.2), but this time with 

b-.~NT0 0.01 0 i 
2l ~ k~ N{? (0 0.02} 

and aX = 4. The results of the simulation appear in Fig. 7 and demonstrate the magnitude of 
the computational gain of the new data augmentation when T* is relatively small, with an 
average reduction in computational time of a factor greater than 65. Thus avoiding the 
boundary problem seems to be a reasonable interpretation of why the relative size of the 
variance of ZTb compared with the residual variance is the driving force behind the speed of 
convergence. Consequently, in the absence of other information, we recommend the use of 
the ECME algorithm that transfers all of T into the mean structure (i.e. using a = (1, 
1, .. .., )T), which avoids the potential boundary problem for any particular component. 

The very slow convergence of EM-type algorithms sometimes can be taken as an indication 
of problematic aspects of the underlying model specification. In Fig. 3, data sets in which 
the maximum likelihood estimate of the correlation of the two random effects was close to I 
in absolute value (and thus a single random effect may be sufficient) were among those 
for which the new algorithm offered the most improvement. Fig. 3 indicates, however, that 
slow convergence of the standard algorithm can be attributed to at least two aspects of the 
model (i.e. either a is small or T* is almost singular). A quick computation of the correct 
maximum likelihood estimate (in contrast with a fast but unstable algorithm which may 
converge to a point that has no statistical significance) retains this information and facilitates 
a diagnosis of model misspecification. 

4. Theoretical derivations 

4.1. A useful theoretical simplification 
The theory behind choosing an efficient augmentation scheme for mixed effects models is 
considerably more complicated than for the t-models presented in Meng and van Dyk (1997) 
(but the complication is for those who design the algorithms, not for general users). The main 
difficulty is that the expected augmented data information matrix Iaug(a) is generally of large 
dimension and has a complicated structure. Specifically, the dimension of the parameter 
0 = (A3, A, U, a2) is p + q(q + 1)/2 + 1, and Iaug(a) consists of the submatrices 

/ I3(a) Io.(a) IJu(a) 13,2(a) 

I ITA(a) IAA(a) IAu(a) IJA2(a) 

aug(a) - II(a) ITu(a) Iuu(a) IU,2(a) . 

\IT2 (a) ITA2(a) ITJU2(a) Ia2z2(a), 
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It is not difficult to show, by differentiating the expected augmented data log-likelihood 
(without loss of generality here we assume that Ri = I,,), 

Q(,B, A, U, a- IO'-) =-2 log() - - E (1-aj) log(u) 
2 2 ''= 

-- EE[cT (a)U{2(a - l)}cj(a)I0('), Yobsl ZE{(fy- _ XT 2 j=1 2f Yobs 

-ZT AU(a)ci(a))T (yi - XT'3 -ZT AJ(a)cj(a))j0('), Yobs}, (4.1) 

that (when evaluated at 0 = 0*)IpU2(a) = 0, IA,2(a) = 0, Iu,,2(a) = 0 and Ip,(a) and I,2,2(a) do 
not depend on a. Furthermore, when E(yj1X1, Zi, 0) = XT/3, i.e. when the mean structure of 
the posited model is correctly specified, limU1 3 {I,A(a)/n} = 0 and limI1, {I/u(a)/n } = 0. 
Thus, as long as n is not too small, the only part of Iaug(a) that can change substantially with a 
is the [q(q + 1)/2] x [q(q + 1)/2] submatrix 

Iaug(a)= (iT (a) IAU(a) (4.2) 

In fact, even when I/3A(a) or I/,u(a) are non-zero, we expect that they have less effect on the 
smallest eigenvalue of the speed matrix relative to the effect of Iaug(a) because the positiveness 
of Iaug(a) requires that off-diagonal blocks be dominated by the diagonal blocks. Further- 
more, for the ECME implementation described in Section 2.2, Iaug(a) plays a more direct role 
in the corresponding rate of convergence (see theorem 4 of Meng and van Dyk (1997) for 
a derivation). We thus focus on equation (4.2) when we search for optimal, or good, values 
of a. 

4.2. Derivation for a scalar random effect 
We shall apply Meng and van Dyk's (1997) theorem 1 which requires us to order (in the 
positive semidefinite ordering sense) Iaug(a), which, as we have seen, is approximately equiv- 
alent to ordering Iaui(a). For simplicity, we consider the case of one random effect (i.e. q = 1); 
for more than one random effect, see van Dyk (1995) or Meng and van Dyk (1995). When 
q = 1, Iaug(a) is a scalar and equation (4.1) reduces to 

Q(,B, u2,u2IO}')) =-2-o log( 2) - 2 (I - a) log(u2) - - Eff(a 0 ) 
2 2 ~~~~~~~2 j=_ 021-a) 

2u2 Z {(yi _ XTi3)T(yi- XT O-2(y -XTO)TZT (a 0(t))Ua 

+ ZiZTBi(a, O(t))U2a (4.3) 
i~~~~~~~~~~~~ 

Differentiating equation (4.3) twice with respect to u2 and evaluating at 0 = 0*, we obtain 
(details are given in van Dyk (1995)) 

Iaug(a) = 2u4* [a2{ 2 2* Z tr(Z, TT*Z)1 + ( - a)2m, (4.4) 

where Ti*= E(bi I obs, 0*). It is easy to see that Iaug(a) is minimized as a function of a for 



576 X. -L. Meng and D. van Dyk 

Z tr(ZTT7Z)/m 2(1 -D*) a0 ~~2u2* 2~B (45 

where 
in 

Z tr(ZTT:Z,)/m 
D* = i=l (4.6) 

C)2* + Z tr(ZT T>i3)/m 
i=1 

is a measure of the overall coefficient of determination. Note that D* is slightly different from 
the D* that we used in the plots; the latter replaces T*by T* and thus is directly calculable 
from the maximum likelihood estimate of T (when Zi does not depend on i, as in common 
variance component models, D* = D*). Unfortunately, implementing the ECME algorithm 
with augmented data Yaug(ao) results in a rather complicated M-step and thus does not satisfy 
our objective of using simple algorithms. We thus confine our attention to algorithms which 
result from a = 0 or a = 1 (or, more generally, for q random effects a E {0, 1 }q); equation 
(4.5) suggested that we do not need to consider a outside [0, 1]. In this class of algorithms, 
equation (4.4) is minimized by 

aoPt = {~~~ if 
I 

lEt(ZT Uiz)>2a , = Oif D)* 2 
aop 

0 f 
m (4.7) 

if othr(ZwisZe, >{1 otherwise, 

i.e. the (finite sample) augmented information au-g(a) is smaller for the new augmentation (i.e. 
a = 1) than for the standard augmentation (i.e. a = 0) if and only if D* < 2. In other words, 
we take aopt = 1 if aO > 1 aopt = 0 if a < 2 and a opt ifaO 2 

2' 0 opt = ora - 
The obvious difficulty with the condition in expression (4.7) is that it depends on the 

parameter values (unlike the t-model presented in Meng and van Dyk (1997)). Happily, how- 
ever, our limited empirical studies suggest that the standard algorithm, relatively speaking, 
is only slightly more efficient when a21* is small and that using a = (1, . . ., 1)T will generally 
lead to computational advantages and occasionally will lead to a slight disadvantage. More- 
over, the adaptive algorithm discussed in Section 3.3 can help to eliminate even this slight 
disadvantage. 

5. A concluding remark 

We conclude by noting that the new data augmentation scheme described here is also useful 
for implementing the Gibbs sampler. The EM algorithms described here can readily be 
adapted to find posterior modes, which can be used to construct starting values for the Gibbs 
sampler (e.g. Gelman et al. (1995), chapters 9-i 1). Moreover, efficient data augmentation 
schemes are very useful in the Gibbs sampler itself where fast convergence is especially 
important since often in practice a user must stop running a sampler simply because he 
cannot afford to run it longer. Preliminary investigations indicate that the data augmentation 
scheme introduced here can substantially reduce autocorrelation in the Gibbs sampler, when 
the coefficient of determination is not too large. This may be useful in conjunction with the 
recentring parameterization proposed by Gelfand et al. (1995), who argued that such a 
parameterization works well when the coefficient of determination is large. For a more 
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detailed discussion of this and related topics, including possibly even better data aug- 
mentation schemes for both the EM algorithm and the Gibbs sampler, see Meng and van 
Dyk (1997), section 4, and the accompanying discussions and the rejoinder. 
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