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Fractional Bayes Factors for Model Comparison 

By ANTHONY O'HAGANt 

University of Nottingham, UK 

[Read before The Royal Statistical Society at a meeting organized by the Research Section 
on Wednesday, March 16th, 1994, Professor V. S. Isham in the Chair] 

SUMMARY 
Bayesian comparison of models is achieved simply by calculation of posterior probabilities 
of the models themselves. However, there are difficulties with this approach when prior 
information about the parameters of the various models is weak. Partial Bayes factors offer 
a resolution of the problem by setting aside part of the data as a training sample. The training 
sample is used to obtain an initial informative posterior distribution of the parameters in 
each model. Model comparison is then based on a Bayes factor calculated from the remaining 
data. Properties of partial Bayes factors are discussed, particularly in the context of weak 
prior information, and they are found to have advantages over other proposed methods 
of model comparison. A new variant of the partial Bayes factor, the fractional Bayes factor, 
is advocated on grounds of consistency, simplicity, robustness and coherence. 

Keywords: ASYMPTOTIC NORMALITY; BAYESIAN INFERENCE; CONSISTENCY; FRACTIONAL BAYES 
FACTOR; MODEL CRITICISM; PARTIAL BAYES FACTOR; ROBUSTNESS 

1. INTRODUCTION 

1.1. Bayes Factors 
Two models are proposed for data x. Under model Mi, the data are related to 
parameters Oi by a distribution f (x I Oi), and the prior distribution is -uri(0i), i = 1, 2. 
The posterior odds in favour of model 1 against model 2 can be written 

P(MI x) = P(M1) q1 (x) = P(M1) B(x) 
P(M2 x) P(M2) q2(X) P(M2) 

where B(x) is known as the Bayes factor (in favour of model 1 against model 2) and 

qi (x) = -Xi i(0) f(x I ?i) d?i 

is the marginal density of x under model i. The posterior odds are therefore the prior 
odds multiplied by the Bayes factor, and the Bayes factor can be seen as representing 
the weight of evidence in the data in favour of model 1 against model 2. If model 1 
fits the data better than model 2, in the sense that q1 (x) > q2(x), then B(x)> 1 and 
the posterior odds in favour of model 1 will be greater than the prior odds. 

When prior information is weak, however, there are difficulties with the use of 
Bayes factors. The most obvious problem arises if we try to represent prior ignorance 
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about 01 and/or 02 by using improper priors. An improper prior for 0i is usually 
written as 

Ti(?i) oc hi(Oi) 

where hi is a function whose integral over the 0i-space diverges. For instance, a 
uniform prior would be expressed as 7ri(Oi) oc 1. Formally, we can write 

7ri(0i) = ci hi(0i), (1) 

although the normalizing constant ci does not exist, but treating it as an unspecified 
constant. This approach is common in Bayesian analysis of a single model, since the 
posterior distribution of the parameter 0i is 

i( X) = ir(0i)f(X I 0i) hi(0i) f(x 0i) (2) 
qi(x) ihi(t) f (x t) dt 

the constant ci cancelling out. Provided that the integral in the denominator 
converges, the posterior density is well defined despite ci being unspecified. 
However, if the prior distribution for model 1 is given in the improper form (1) the 
Bayes factor is 

B(x) = 
q2(x) 

i 
7x i (02) f2(x 02) dO2 

and the unspecified c1 does not cancel out. The Bayes factor is directly proportional 
to c1. If improper prior distributions are given to both models, 

XC hi (01) fi (x 01) dOl 
B(x) = - (3) 

c2 h2(02) f2(x 102) dO2 

and so depends on the ratio c1Ic2 of two 'unspecified constants'. 
Various approaches have been advocated for dealing with this problem. One is 

simply to reject improper prior distributions, insisting that model comparison (and 
perhaps inference generally) is not meaningful unless genuine prior information is 
represented by proper prior distributions. Although this strict line will indeed remove 
the specific indeterminacy described above, I shall argue in Section 5 that the problem 
is more deep seated, and that Bayes factors are inherently sensitive to errors of 
specification of prior distributions. 

1.2. Imaginary Minimal Experiment 
A second approach is to remove the indeterminacy by a kind of thought experiment, 

as proposed by Spiegelhalter and Smith (1982). The basic idea is that, if we can 
imagine a specific set of data x0 such that we are prepared to assign a particular 
value to B(xo), then c1 or c1 Ic2 is thereby determined. If both prior distributions are 
improper, equation (3) becomes 
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B h2(02) f2(xO 02) dO2 hi h(1) fi (x j1) dOl 
B (x) = B (xo)- 

h, (01) fi (xo 01) d01 h2 (02) f2(x 102) dO2 

Spiegelhalter and Smith developed this argument in the context of nested linear models 
by supposing first that xo derives from a minimal experiment. The concept of a 
minimal experiment is not precisely defined, but it should have the smallest number 
of observations consistent with obtaining proper posterior distributions 'ri((O I xo) 
from equation (2) for both i = 1 and i= 2. Their second step is to choose xo to give 
maximal support to the simpler model, i.e. if model 1 is the simpler model xO is 
chosen to maximize B(xo). (This can of course be done independently of the 
unspecified cl or cl Ic2.) Finally, they argued that if the experiment is minimal then 
intuitively it can at best give only very slight support to the simpler model, and thereby 
justify setting B(xo) = 1 (as at least an approximation). 

There are several difficulties with this method, not the least of which is the 
justification of setting B(xo) = 1, but I shall concentrate here on the notion of a 
minimal data set. Consider a very simple regression situation in which model 2 asserts 
that observations xl, x2, . . ., xn are independent given an unknown regression 
parameter ,B, with distributions xj I , - N(Qaj, 1). The ajs are values of the regressor 
variable. Model 1 asserts further that i = 0 so that the xjs become independent 
standard normal observations. Under model 2, a uniform prior distribution h2Q) = 1 
is proposed, with an unspecified proportionality constant c2. Clearly, a minimal 
experiment needs one observation xo and a corresponding value ao0 0 of the 
regressor variable. However, it is not clear what value of ao would make this 
experiment 'minimal'. The guidance given by Spiegelhalter and Smith (1982), in a 
similar regression context, is to advocate that I ao I be as large as possible, but this 
would seem to make the experiment maximally informative about 3 (subject to being 
of minimal size). 

To pursue this point we can obtain B(xo). The numerator q1 (xo) is the marginal 
density of xo under model 1, which is simply (27r) - 1/2 exp( - x2/2). The denominator 
is 

1_2____-_ao _ C2 
q2(xO) = c2. (27r)/2 exp{ (xod-o 3ao)2}d,B a 

Therefore 

B(xo) = c) I I ao I (27r)-1l/2 exp( -x2 /2). 

This is maximized for any ao by xo = 0. Setting the resulting Bayes factor to 1 and 
I ao I to 00, since there is no limit to how large ao can be in the imaginary experiment 
(even if that is not true in reality), gives c2 = oo and therefore B(x) = 0 whatever the 
actual observed data x may be. The advice here seems to lead to a posterior certainty 
that model 2 is true, regardless of the actual data. In fact Spiegelhalter and Smith 
(1982) arbitrarily constrained I ao I < 1 and so obtained a finite c2, although there does 
not seem to be any justification for this constraint. 
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A more literal idea of a minimal experiment would surely set I ao I as small as 

possible, to be minimally informative. This is no better, for then c2 =0 and 
B(x) = oo, leading to posterior certainty that model 1 is true, regardless of the actual 
data. 

The point of this example is that, except in special circumstances, there is great 
ambiguity over the definition of a minimal experiment. The method simply does not 
resolve the indeterminacy of Bayes factors with improper priors. 

1.3. Asymptotics 
Suppose that x=(x1, x2, . . .,x,) and the xjs are independent and identically 

distributed given 0i under model i with common density gi, i.e. 
n 

f(X I ?i)= gi(x1 I Oi) 
j=1 

Expanding now around the maximum likelihood estimate Oi, 

log f (x I O) = log Li - (n/2) (Oi - O)' Vi- (Oi - Oi) + R, 

where Li = f(x I O) is the maximized likelihood, - n V.- is the Hessian matrix of 
log f1 at Oi = Oi and R is the remainder term. For I 0i - Ol of order n - 1/2, the remainder 
term is of order n - 1/2 and can be ignored for large n (and for larger I - ?il the 
likelihood f (x I 0i) is itself negligible). To the same order of accuracy, the prior 
density 7-i(Oi) varies slowly and can be replaced by the constant 7rir(0i). Then 

qi(x) irj(Oi)Li expt-(n/2)(Oi- 0)' Vl -(O-0) J dO 

= ij(0j) Lj (2nr)i2 I Vi 11/2 (4) 

where pi is the number of elements in Oi. 
This expansion is typically used to show that the posterior may be approximated 

by the N(Oj, n'- Vi) distribution. It obviously depends on standard regularity 
conditions, and those same conditions will be assumed for all asymptotic arguments 
in this paper. For a rigorous development of this approach to characterizing the 
asymptotic behaviour of Bayes factors, see Gelfand and Dey (1994). For model 
comparison, the Bayes factor is asymptotically given by the ratio of terms (4), and 
therefore 

-2logB(x)> -2logl+(p1-P2)logn+a, (5) 

where 1=L1IL2 is the classical likelihood ratio and 

a l r2 (02 ) (2r)2/2I V2 11/2 

is 0(1). Ignoring a (or setting a=O) produces the Schwarz (1978) test criterion 
-2 log 1+ (p -P2) log n. This, like Akaike's information criterion (Akaike, 1973) 
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of -2 log l+ 2(p1 -P2), adjusts the classical likelihood ratio criterion to favour more 
strongly the model with fewer parameters. The behaviour of these criteria can be 
examined by further asymptotic arguments. 

Under regularity conditions the asymptotic sampling distribution of - 2 log l is found 
in classical statistics to be a non-central x2-distribution. See for example Stuart and 
Ord (1991), paragraph 23.7. Letting model 1 be the simpler model in a nested situation, 
write 02= (01, k) where = q50, a constant, under model 1. Then -2 log l is 
asymptotically a non-central x2-variable with P2 -Pi degrees of freedom and non- 
centrality parameter 

X =n(Q-40)' V,'1(/- 0), 

where V.k derives from the information matrix of a single observation. The 
expectation of -2 log l is therefore asymptotically P2 -PI + X. If ? = X0, so that 
model 1 is true, X = 0 and the likelihood ratio criterion - 2 log l is 0(1), whereas if 
model 2 is true it is 0(n). The same is true of the Akaike criterion since 2(pI -P2) 
is also 0(1), but the Bayes factor and Schwarz criterion have different asymptotic 
behaviour. Under model 1, - 2 log B(x) is 0( - log n), whereas under model 2 it is 
still 0(n). 

Bayesian inference is therefore consistent when comparing nested models. If model 
1 is true, B(x) -X o and the posterior probability of model 1 tends to 1. If model 2 
is true, B(x) -O0 and the posterior probability of model 2 tends to 1. Although these 
results have been developed on the basis of independent and identically distributed 
(IID) observations, essentially the same asymptotics apply under increasing numbers 
of observations in linear models when the design matrix repeats cyclically or its rows 
are sampled at random. The development has, however, assumed proper priors 
-ri(0). It applies also to improper priors if the ratio cl Ic2 is specified in advance, for 
instance by using the Spiegelhalter and Smith method. In general, any attempt to 
resolve the problem of improper priors, if it is to achieve the same consistency property, 
must have appropriate asymptotic behaviour. 

The classical criterion - 2 log l and the Akaike variant would not produce consistency 
if used as Bayes factors. Under model 1, the posterior probability of model 1 would 
tend to a value less than 1. This reflects the classical hypothesis testing method, in 
which there is always a probability of wrongly rejecting the null hypothesis (model 1). 
The inconsistent behaviour of hypothesis tests as measures of evidence for or against 
a null hypothesis is emphasized by Berger and Delampady (1987) and Berger and Sellke 
(1987). 

2. PARTIAL BAYES FACTORS 

2.1. Training Samples 
Another approach to improper priors makes use of a training sample. Divide the 

data into two parts, x = (y, z). The first part y will be used as a training sample to 
provide information about 01 or 02, and the second part z will be used for model 
comparison. In the first step, y is used to obtain posterior distributions Ti(rO I y) as 
in equation (2). Now taking these as prior distributions the remaining data z are used 
to compute a Bayes factor 
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B(z I = q1(zly) -i (011 Iy)f1(zI01, y)d0l (6) 

q y 'r2(02 j Y)f2(z 1 02, y) d02 

Any unspecified constants or impropriety in the priors rir(0i) will have been removed 
in the first step, so that equation (6) is a well-defined Bayes factor based on proper 
priors sri (i I Y) 

B(z I y) will be referred to as a partial Bayes factor, as it is based on part of the 
data. It is also expressible as part of the full Bayes factor, since it is easy to demonstrate 
that 

7 0i-(Oj) f (x | Oi) dO, (x) 

Tir(Oi) f(y IOi) dOi 

and therefore that 

B(x) = B(y) B(z I y). (8) 

This is just a consequence of the coherence of Bayes's theorem under sequential 
updating. Any indeterminacy in the full Bayes factor B(x) applies also to B(y) in 
equation (8), leaving the partial Bayes factor unaffected. Partial Bayes factors have 
been suggested by several previous researchers. The first reference seems to be Lempers 
(1971), chapter 6, who used half of the data as a training sample. 

More recently, O'Hagan (1991) suggested using a proportion b of the data for 
training, whereas Berger and Pericchi (1993) advocated using a training sample of 
minimal size. Berger and Pericchi's suggestion is not affected by the discussion in 
Section 1.2 of difficulties with defining a minimal experiment. Their primary 
motivation is to devote as little of the data to training as necessary, to leave as much 
as possible for model comparison. If there were any debate about whether, for instance, 
two or three observations comprised a minimal size, then a training sample of 3 would 
be used. And, since the training sample is based on actual data, there is no difficulty 
over which values to use for regressor or design variables. 

There is, however, a difficulty with all methods using partial Bayes factors about 
how to select the training sample from the data. With n observations, there are (m) 
ways to choose a training sample of size m. Berger and Pericchi (1993) proposed using 
all possible training samples (which is feasible when the minimal sample size is 
sufficiently small) and averaging the resulting Bayes factors. They call such an average 
an intrinsic Bayes factor. However, it is not obvious how to average the factors. Berger 
and Pericchi considered both arithmetic and geometric mean forms of intrinsic Bayes 
factor. When the number of possible training samples of minimal size is large, they 
suggest averaging the partial Bayes factors from a random sample from this collection 
of possible training samples. 

The primary purpose of this paper is to propose a simple alternative to averaging 
over many different selections of y. This is the fractional Bayes factor (FBF) defined 
in Section 2.3. 
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2.2. Asymptotics of Partial Bayes Factors 
If y is fixed, and equation (4) is applied to the numerator of equation (7), exactly 

the same asymptotics will apply as in equation (5), with qi(y) now absorbed into the 
0(1) term a. In particular, this is true when y is a minimal training sample, and the 
same will hold through the process of averaging Bayes factors from all possible minimal 
training samples. The intrinsic Bayes factor will yield consistent posterior inference, 
even starting from improper prior information. 

Different asymptotics apply if m, the training sample size, also tends to 00. Now 
applying equation (4) to both numerator and denominator gives 

qi(z I y) 7ri(Oi) L~i V11112n-pi'2 (9) 
7rir0i(y)jLi(y) V(y) 11/2 mrpi/2 

where adding y in parentheses denotes calculation of a quantity from the training 
sample. For instance, Oi(y) is the maximum likelihood estimate of Oi from data y, 
whereas Oi as before is based on the full data x. Now equation (5) is replaced in 
general by 

- 2 log B(z I y) > - 2 log 1+ 2 log l(y) + (p1 -P2) (log n - log m) + 0(1), (10) 

where I and 1(y) are the likelihood ratios from the full data and the training sample 
respectively. The asymptotic sampling distributions and expectations of - 2 log I and 
- 2 log 1(y) can now be applied to obtain the behaviour of the partial Bayes factor 
generally. 

If model 2 is true, - 2 log B(z I y) is asymptotically O(n - m), whereas if model 1 
is true it becomes O(log m - log n). Posterior probabilities will consistently choose 
the right model if n/m tends to 00. 

2.3. Fractional Bayes Factors 
To avoid the arbitrariness of choosing a particular y, or having to consider all 

possible subsets of a given size, a simplified form of partial Bayes factor may be defined 
as follows. Let b = m/n. If both m and n are large, the likelihood fi(y I Oi) based only 
on the training sample y will approximate to the full likelihood f (x I Oi) raised to the 
power b. By analogy with equations (6) and (7) this motivates the alternative definition 

Bbx W= q, (b, x)lq2(b, x),(1) 

where 

- i(0?i)fi(x I 0i) d0i 
qi(b,x) - (12) 

Iidre(0i) f,(X I c s)b d0i 

If -7ir(0,) has the improper form (1), the indeterminate constant c, cancels out, leaving 
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i hi(O) fi(x I Oi) dOi 
qi(b I x) = (13) 

Xhi(0i)fi (x I oi )b dOi 

Bb(X) will be referred to as an FBF. Although this definition is motivated 
asymptotically, it is proposed as an alternative form of partial Bayes factor even when 
m and n are not large. However, it is clearly asymptotically equivalent to the original 
definition (6), equations (9) and (10) becoming 

qi(b, x)=l - bbPi 12 

since the approximation entails Oi(y) = 0i and Ji(y) = Vi, and 

-2logBb (X (1 -b)f-2 log 1+ (p1 P2) c(b)}, (14) 

with c(b)= -log b/(I -b). Equation (14) was given by O'Hagan (1991) as an 
asymptotic result for fixed b. However, consistency will require b -*0 and hence 
c(b)-* oo, as n- oo. 

Equation (12) could be generalized further to qi(a, b, x) = Ia(X)/Ib(X), where Ib(X) 
is the denominator of equation (13) and Ia(x) is the same with a replacing b. Ba,b(X) 
is then defined analogously. The full Bayes factor B(x) is B1,0(x). The FBF Bb(X) is 
Bl,b(x). We can now also include Aitkin's (1991) posterior Bayes factor B2, l(x). In 
place of equation (14) we have 

-2logBa,b(x)) (a-b)f-2log1+(pl -P2)c(a, b)} 

with c(a, b) = (log a - log b)/(a - b). Posterior probabilities derived from the posterior 
Bayes factor are not consistent because it gives c(a, b) = log 2, which therefore does 
not tend to co with the sample size. 

3. SOME EXAMPLES 

This section presents some simple examples to illustrate the derivation of FBFs, 
and to show their versatility. 

3.1. Testing Normal Mean 
Perhaps the simplest of all examples is as follows. Under model 1, xi, x2, . . ., x, 

are IID N(OO, 1), whereas under model 2 they are IID N(O, 1) and a uniform prior 
h2(0) = 1 is assumed. Under model 1 there are no unknown parameters, and equation 
(13) reduces to 

q, (b, x=f X/I (X)b = fi (X)l - b 

(27r)n/2 exp Z(j _ 00)2 /2}jlb 

= (27r) -b)/2 exp -(1 - b) j _ -O)2/2 
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Under model 2, equation (13) has denominator 

h2(0) f(x I 0)b dO = (27r)- nb2 exp { - b E (x1- 0)2/2} do 

=(27r)- nb2exp - b(Xj )2/2j expf nb(O -)2/2}dO 

= (2ir)-" 2exp - b E(x /2 (27r/nb)1/2. (15) 

Hence 

q2(b, x) = (2r)- -b)/2exp (1 b) j (xj-.)2 /2} bl2 (16) 

and 

Bb(x) = exp -(1-b) {Z(G -o)2- (X-x) /2jb 

= expt - n(I - b)(x-- 00)2/2]b- 1/2. (17) 

In this case 

- 2 log Bb (x) = n(I 1-b) (x~ _ oO)2 + log b ( 18) 

and equation (14) is exact. The FBF clearly has the expected property of decreasing 
as x- moves away from 00. It is maximized at b- 1/2 when x-= 00. Under model 1, x- 
will tend in probability to 00. Then, provided that b -O0 as stipulated in Section 2.3, 
Bb(x) -*0 with probability 1. Under model 2, Bb(x)-O with probability 1. 

In practice it is important to allow the variance to be unknown under both models. 
This is simply a special case of the general problem of comparing two linear models, 
which is considered in Section 4. 

3.2. Non-nested Example 
The FBF deals with non-nested models equally easily. As a simple example consider 

the problem in which IID observations x1, x2, . . ., xn are distributed as N(01, 1) 
under model 1, or as N(O, 02) under model 2. The standard non-informative priors 
are h1(O)= 1, h2(02)=0 -1. Now q1(b, x) has already been derived as equation (16) 
in the previous example, and we find 

q2(b, x) = j) b 2 r(n/2) 

Therefore 
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Fig. 1. Cumulative log Bb(x) for samples from (a) N(O, 5), (b) N(1, 1), (c) N(2, 3) and (d) N(O, 1) 
distributions 

where 

k = 2 - n(l - b)/2 b(l - bn)/2 F(bn/2) 
F(n/2) 

Fig. 1 shows the performance of log Bb(x) in four simulated data sets, each of 100 
observations. In each case, b has been set to n- 1. Since m = 1 is the minimal training 
sample size to estimate the one parameter in each model, b = n- is a kind of 
minimal value. The choice of b is considered more fully in Section 6. The first data 
set is generated from the N(O, 5) distribution, so that model 2 is the correct model. 
Then we see log Bb(x) decline steadily towards - oo as more data are gathered. Data 
set (b) is generated from the N(1, 1) distribution. Then the correct model is model 
1 and log Bb(x) climbs steadily towards oo. In both of these cases, 100 observations 
are more than enough to provide conclusive evidence in favour of the correct model. 

The third case is of data from the N(2, 3) distribution so that neither model is 
correct. Now logBb(x) behaves quite erratically, with the data unable to choose 
reliably which of N(01, 1) or N(O, 02) iS 'more correct'. Finally, data set (d) is 
generated from the N(O, 1) distribution, so that both models are correct. It is of course 
not possible to discriminate between the models, and log Bb(x) shows this by staying 
close to, and seemingly to converge to, 0. The behaviour is very different from the 
third data set, where the oscillations of log Bb(x) are very much larger and there is 
no apparent convergence. 
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3.3. Exponential versus Log-normal 
In this example, let xl, x2, . . ., x, be IID exponential random variables with mean 

0 under model 1, and let their logarithms be IID N(,u, a2) under model 2. Again we 
adopt the standard non-informative priors h I(0) = 0- and h2(it, a2) =a-2. Under 
model 1 the likelihood is 

f1 (x I 0) = 0-" exp( - n./0) 

and we find 

q1 (b, x) = (n) -n(l -b) bbn F(n)/I'(bn). 

Under model 2 the likelihood is 

f2(X |5 a 2) = (2yra2)"/2 (HXj) -lexp{-(log xj-Y/2a2} 

and then 

-)2- (I b/2 I b)bbl2 Ff (n -1)/2J 
q2(b, x)= F(-(log xj-X)xb - 1)/2' 

where x is the mean of the log xjs. 
The FBF Bb(x) = q1 (b, x)/q2(b, x) is found to discriminate effectively in practice 

between the exponential and log-normal models, although this is a more difficult 
problem than the previous example. Fig. 2 plots logBb(x) against sample size for 

10 

In Bb 

8 

6I 

4- 

2 

0X 

0 20 40 60 80 100 
n 

Fig. 2. Cumulative log Bb(x) for exponential(l) data 
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100 observations from the exponential distribution with mean 0= 1. A minimal value 
for b of 2/n has been used again, based on m = 2 being a minimal training sample 
size for this problem. After 100 observations the Bayes factor is about exp(10) = 22000, 
which quite conclusively points to the exponential model (although considerably less 
emphatically than the first two plots in Fig. 1). 

4. LINEAR MODELS 
The FBF is straightforward to derive for comparison between two normal linear 

models with conventional improper priors. For i= 1, 2, model i asserts that x is 
distributed as N(Zi j3i, a2 I), where Zi is an n x (pi - 1) matrix of known coefficients, 
j3i is a (pi - 1)-vector of unknown regression coefficients, I is the n x n identity matrix 
and U2 an unknown variance parameter. Then 0i = (i, ou2) is pi dimensional. The 
prior distribution under model i is the improper distribution specified by 

hi(0i) = (a2)-ti, 

for i = 1, 2. Setting ti= 1, so that hi(0i) = i-2, is generally used as an improper prior 
distribution for a linear model, but other values have also been proposed. In particular, 
the Jeffreys prior gives a ti depending on pi. Now 

Jr h ( ) f1(Xl O)b d0 = znb/2 zT Z-1/2 X 2-r/2b- (nb+p,-ri)/2 (S) - (nb- ri)/2 F f(nb -ri)12 

(19) 

where ri =pi - 2ti + 1 and S2 is the residual sum of squares 

Si = xTflI-Zi (ZT Zi) 1 ZT ix. 

Substituting equation (19) into equation (12) gives 

qi(b, X)= 7r n( -b)/2b(nb+p, rj)/2(S2)'n( -b)/2 Ff(n -r)/2j i I~F f(nb - ri1)2 

and hence 

IF f(n- rl1)2) IF f(nb -r2)/2) /2\-n(Il-b)/2 
b(X) = Ff(n - r2)/2) Ff(nb - rl )/2J b S2() (20) 

The FBF (20) is simple to compute. Unlike Bayes factors derived by Spiegelhalter 
and Smith (1982), it does not include the IZ Zi - 1/2-terms which appear in equation 
(19). This same feature is found in the criterion of de Vos (1993), who presented a 
way of obtaining the intrinsic Bayes factor for linear models, using a particular form 
of weighted averaging of the individual partial Bayes factors. 

Notice that there is no need for the two linear models to be nested. In the nested 
case of testing a general linear hypothesis, the ratio of sums of squares S2/S2 is a 
function of the classical F-statistic. For example, consider the regression problem 
of Section 1.2 modified to give an unknown variance U2 under each model, with 
prior proportional to a-2. Then equation (20) becomes 
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Bb(X) - F(n/2) rf (nb - 1)/21) fI + (n - 1)- ' F-n(I - b)/2 
IF f(n - 1)/2) IF(nb/2) 

where F is the classical test statistic 

F=(n- 1)E2Zaj/ (Xj-aj f)2 
J J 

and a ajxjlEja 2 

5. SENSITIVITY 

5.1. Sensitivity to Prior-Example 
Consider again the example of Section 3. 1, in which the data are IID N(0, 1) under 

model 2, and model 1 asserts that 0 = 00. Suppose that instead of the standard non- 
informative prior h2(0) = 1 the specification h2(0) = exp 0 is proposed. How sensitive 
are various Bayes factors to this change? 

For the FBF, the denominator of equation (13) becomes 

h 2(0) f2(x )bdo_= (2r) b/2 exp { -b(x1- x-)2/2} i exp( - Q/2) dO, 

where 

Q = bn(ix- 0)2 - 20 = bn f 0 - (x + b'- n -1)2)- 2x- b- in- 1'. 

Therefore 

h2 (0) f2 (x 0j)" dO (2X) -b2 exp { - b E (xj-x)2/2} (2-r/bn)"2 expf x-+ (2bn) -)* 

The last term here is new and results in the FBF being the previous expression (17) 
multiplied by expf(1 - b)/2bn). This multiplier therefore represents the sensitivity of 
Bb(x) to the change from h22(0) = 1 to h2(0) = exp 0. Notice that it decreases as b 
increases. Increasing the training sample size reduces the sensitivity. 

The same phenomenon is found with the partial Bayes factor B(z I = 
q1 (z j y)/q2(z Y), where qi(z l y) is given by equation (7). For model 1, we find 

ql (z I y) =f1 (x)/f1 (y) = (27r)(m-n)/2 exp[ { Z (yj-0o)2-Z (x- 0o)2} /21, 

and for model 2, by similar algebra to equation (15), 

q2(z I y) = (27r)(mn)/2 exp[ { Z (y1-y-)2 - E (Xj-X)2}/2 ](m/n)'2. 

Therefore 

B(z I y) = exp [ - fn(x- 0o)2 - m(y_- 02)/2] (mr/n)- 1/2. (21) 

With h2(0)=exp0, B(zly) is found similarly to be equation (21) multiplied by 
expfy--+ +(m-1-n-1)/2). This multiplier therefore represents the sensitivity of 
B(z I y) to the change of prior specification and naturally depends on the choice of 
a particular training sample y. The maximum sensitivity is obtained by training samples 
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whose mean y- differs as much as possible from x, and this will also decrease as the 
size of training sample is increased. 

The multiplier for B(z y) is exp(y--x) times that for Bb(x), and this causes Bb(x) 
to be less sensitive in general to the change in prior than B(z I y) is. Notice also that 
for a fixed training sample the sensitivity increases with sample size. 

Now consider a proper N(t, 1) prior distribution, h(O) = expt - (0 - t)2/2). The FBF 
(11) is still well defined and is found to be 

Bb(x) = expf - n(1 - b)(x- 00)2/2)f (nb + 1)/(n + 1))- 1/2 expfk(x- t)2/2), 

where k = (1 - b)n/(n + 1)(nb + 1) therefore represents the sensitivity of the Bayes factor 
to changes in the prior mean t. Notice again that this sensitivity decreases with b and 
increases with n. In this case the usual Bayes factor B(x) is properly defined and 
corresponds to b = 0. Therefore, even when proper prior distributions are specified 
and the usual Bayes factor is available for use, the FBF may be preferred because 
of its greater robustness to misspecification of the prior. 

5.2. General Sensitivity to Prior 
This example illustrates a much more general problem of sensitivity of Bayes factors 

to the prior distribution. It is well known that, as the amount of data increases, 
posterior inference about the parameters in a fixed model becomes increasingly less 
sensitive to the prior distribution. For a large sample, the likelihood fi(x Oi) is 
negligible for 0i outside an O(n - 1/2) neighbourhood of Oi. Over that range, 7ri(0i) 
varies little and the posterior tends to the normalized likelihood, regardless of the 
prior. The key to this result is that the posterior depends only on the relative values 
of 7rir(0i) as 0i varies over the range supported by the likelihood. Absolute values of 
the prior density are irrelevant because of the normalization by qi(x). As the sample 
size increases, the range of 0i-values supported by the likelihood shrinks, and for 
any smooth prior the relative variation over that range becomes negligible. 

That is for inference within a single model. A very different situation obtains for 
model comparison. The terms qi(x) in the numerator and denominator of B(x) 
depend on the average values of 7ri(0i) over the range supported by the likelihood. 
It is not relative values but absolute values that matter now. Dependence on the prior 
does not disappear as the sample size increases. For the same reason, the indeterminate 
cis in improper priors do not disappear. 

Moreover, there is a general sense in which sensitivity of model comparison to the 
prior increases with sample size, as sensitivity of inference within a given model 
decreases. If the likelihood is relatively diffuse, the variation of the prior density cannot 
be great in average value, since 7rir(0i) is constrained to integrate to 1. When fi(x I 0i) 
concentrates on a narrow range of Oi-values, however, a relatively mild perturbation 
of the prior could produce a much larger change in the average value over a small 
range, leading to greater sensitivity of B(x). It is almost as if there were a law of 
conservation of sensitivity, and increasing sample size only transfers sensitivity from 
inference about Oi within model i to inference between models. 

Use of partial Bayes factors reduces this sensitivity, as the example of Section 5.1 
illustrates. Sensitivity of B(z y) to the prior is now expressed as sensitivity to 
7ri(Oi I y). This is the posterior distribution of Oi after the training sample. As 



1995] FRACTIONAL BAYES FACTORS 113 

discussed at the beginning of this section, the more observations there are in the training 
sample, the less sensitive will 7ri(0i y Y) be to variation of the prior 7ri(Oi). Sensitivity 
of the model comparison is thereby also decreased. The intrinsic Bayes factor is based 
on a minimal training sample. For proper priors, the minimal training sample is no 
sample at all and there is no reduction in sensitivity. For improper priors, it derives 
the minimal benefit of reduced sensitivity. The preceding example also shows that 
the FBF is in general less sensitive than partial Bayes factors. 

The goal instead should be to make the best possible use of this property of partial 
Bayes factors. If a large amount of data is available, we can afford to devote a relatively 
large amount of data to the training sample to achieve robustness. As n -+ oo, complete 
robustness of the partial Bayes factor to the prior is obtained by letting m also tend 
to oo. As seen in Section 2.2, if m -+ oo as fast as n, so that m/n = b is constant, the 
partial Bayes factor will not produce consistent comparisons between nested models. 
But if, for instance, m increases as O(log n), then both asymptotic robustness and 
consistency can be achieved. The same benefits are also achieved by FBFs with 
b = O(n- l log n). 

Although the present paper is not primarily concerned with model comparison when 
proper priors are available, it is my belief that FBFs could also be beneficial there 
in reducing sensitivity to the prior. 

5.3. Sensitivity to Outliers 
Use of the FBF Bb(x) provides another way of reducing sensitivity. If the partial 

Bayes factor B(z I y) is computed over all (or many of) the possible ways of dividing 
the sample into z and y, then its value can vary greatly, particularly if there are outliers 
in the data. In general, some observations may be highly influential for the parameters 
of one model but not the other. In nested models, this arises with observations that 
are highly influential for parameters which are missing in (or set to specific hypothesized 
values by) the simpler model. Then there will be some divisions of the data into y 
and z which produce 'outlying' partial Bayes factors B(z I y). The sensitivity is greatest 
when y is minimal, as in the intrinsic Bayes factor. It disappears if Bb(x) is used 
instead. 

Consider again the simple example of Section 3.1. The partial Bayes factor B(z I y) 
was found in Section 5.1, equation (21). When the sample contains outliers, y- can 
be far from x- for some training samples, particularly if m is small. When computing 
an intrinsic Bayes factor, m is made as small as possible, and the outlying training 
samples can strongly influence the averaging process. In this example, the minimal 
training sample size is m = 1, and if the jth observation xj is selected for training then 
the partial Bayes factor is B(x(j) xj), where 

-2log B(x(j) I xj) = (n - 1)(j) -0)2 -log(n - 1) - logf 1 + (n- 1)-') 
- f + (n- 1--(()xj)2 

= n(x- Oo)2 - (Xj- Oo)2 - log n. (22) 

Even if the data support model 2 strongly, as measured by x- being relatively far 
from 00, a single observation xj far from 00 can produce a partial Bayes factor which 
actually favours model 1. Averaging these partial Bayes factors B(x(j) I xj) will yield 
an arithmetic mean form of intrinsic Bayes factor B, where 
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-2logB=n(x- 00)2+D-logn, (23) 

where 
n 

D= -2logn-1 E expf(xj-00)2/2). 
j=1 

A single outlier can dominate in this sum and produce a highly misleading Bayes factor, 
as in the following example. 

A much analysed data set with outliers is Darwin's data; see for instance Box and 
Tiao (1962). The data comprise the 15 observations 49, -67, 8, 16, 6, 23, 28, 41, 
14, 56, 24, 75, 60, - 48, 29. Dividing by 20 produces data that might reasonably be 
supposed to be from a normal distribution with mean 1 and variance 1, but with several 
outliers. The values of equation (22) range from - 21.60 to - 2.70, corresponding 
to Bayes factors ranging from 48968, very strongly favouring 00 = 1, to 3.85 which 
represents very much weaker evidence in favour of that value. However, the very 
large Bayes factors all result from outliers in the original data. Expression (23) is 
- 16.24, resulting in an intrinsic Bayes factor B = 3364 which has been heavily 
influenced by the most extreme of the outliers. Berger and Pericchi (1993) are aware 
of this difficulty and propose that the arithmetic mean intrinsic Bayes factor should 
always be computed with the more complex of the two models in the numerator. 
In this case their factor is defined by first inverting the factors B(x(j) xj) before 
averaging, and then inverting the average. This yields an intrinsic Bayes factor of 
6.62, which is far less influenced by the outliers. Berger and Pericchi discuss the 
problem of determining a 'more complex' model in the case of non-nested models, 
and that of comparing three or more models, and suggest various modified factors. 

Berger and Pericchi's alternative suggestion of geometric averaging implies averaging 
not B(x(j) I xj) but - 2 log B(x(j) I xj), thereby obtaining 

n n 
n(x-O0)2-n- j(x -00)2-logn=(n-1)(x-_00)2-n n (xi-2X)2-logn, (24) 

j=1 j=1 

but here the sample variance also affects unnaturally the model comparison. On the 
Darwin data equation (24) yields a value of - 6.00 and a corresponding Bayes factor 
of 20.8. 

For the FBF, set b = n- I as in previous examples to have the effect of a training 
sample of size 1. Then equation (18) becomes 

- 2 log Bb (X) = (n - l1)(x-- ao )2 _ log n . (25) 

The sensitivity to outliers, or to the sample variance, is eliminated. For the Darwin 
data, equation (25) is - 2.68, corresponding to an FBF of 3.814 which is more 
conservative than any of the various intrinsic Bayes factors. In fact it corresponds 
quite closely to taking the most conservative value of all the possible partial Bayes 
factors B(x(j) I xj). 

6. CHOICE OF b 

The key question remaining in the use of FBFs is the choice of b. It may seem 
that the only achievement of this paper is to replace an arbitrary ratio clIc2 in the 
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usual Bayes factor (3), or an arbitrary choice of imaginary experiment in the 
Spiegelhalter and Smith approach, by an arbitrary choice of b. Even if this were the 
case, there is progress because the arbitrariness of the ratio c1Ic2, or of the 
imaginary experiment in some kinds of application, allows the Bayes factor to take 
any value at all from 0 to oo. As b is varied from mo/n, where mo is the minimal 
training sample size, to 1 the value of Bb(x) is strictly bounded. It will, for instance, 
almost always lie on one side of 1 for all those values of b, and hence it will be clear 
whether the data favour model 1 or model 2. 

Furthermore, Section 2.3 makes it clear that b should tend to 0 as n -+ oo, to achieve 
consistent model choice. This criterion is satisfied by the minimal value b =mon, 
and this has been used in all the numerical examples of earlier sections. If robustness 
to misspecification of the prior or the models (as in the possibility of outliers) is not 
a serious concern, then b = mo/n is a natural choice. It makes maximal possible use 
of the data for model comparison. 

If, however, robustness is a serious concern, then Section 5.2 suggests strongly that 
a larger value of b is advisable, and that perfect asymptotic robustness may be achieved 
by letting nb -+oo as n - oo. Consistent with b- 0 and nb -oo, the cases b = n - 1 log n 
and b = n- 1/2 are worthy of consideration. The first corresponds to a training sample 
size m = log n, which increases very slowly with n. It makes some allowance for 
achieving robustness but in general keeps the training sample size very small. The 
second corresponds to a training sample size m = <n, which places much more stress 
on robustness. 

Formally, then, I propose three ways to set b: 

(a) b = mo/n, when robustness is no concern, 
(b) b=n-lmaxfmo, <nJ, when robustness is a serious concern, and 
(c) b = n - 1 maxfmo, log n), as an intermediate option. 

Figs 3 and 4 illustrate the effect of using the three different choices of b in practice. 
Fig. 3 corresponds to the first data set used in Fig. 1. The difference between the 
three choices of b is not large, and even with the square root choice the preference 
for model 2 is clear with very small samples. Fig. 4 uses the same data as Fig. 2. 
In this case the data are less strong in favouring the exponential model, and the 
differences between the three choices of b can be sufficiently substantial to have a 
noticeable effect on posterior probabilities of the two models. 

7. COHERENCE 
7. 1. Sufficiency 

Several questions can be raised concerning coherence of partial Bayes factors. First 
consider sufficiency. Coherent Bayesian inference is always a function of the sufficient 
statistics, a consequence of the likelihood principle. The FBF Bb(x) is coherent in 
this sense, since it clearly depends only on the likelihood function. This is not true 
of B(z I y), as is shown by equation (22). In that example x is sufficient (under both 
models), but B(x(J) I xj) depends on Xj as well as x-. Even averaging to yield equation 
(24) produces an intrinsic Bayes factor depending on the sample variance as well as 
x. Equation (25) confirms that Bb(x) depends only on the sufficient statistics. 
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7.2. Coherence for Given Sample 
After the training sample y has been observed, 7ri(Oily) is the correct posterior 

distribution, which then becomes the prior distribution for calculating a genuine Bayes 
factor B(z I y) based on the data z. It differs from the full Bayes factor only in that 
it ignores y for model comparisons, discarding the term B(y) in equation (8). It 
therefore does not use all the data for the model comparison stage (and this is the 
source of its dependence separately on the sufficient statistics from both z and y, 
rather than the sufficient statistics of the full data x). As long as y is not chosen 
deliberately to influence the value of the partial Bayes factor, it does not seem 
incoherent to ignore some of the data, merely potentially wasteful. This contrasts 
with the obvious non-coherence of Aitkin's (1991) posterior Bayes factor, where the 
full data x are used as a training sample and then reused for model comparison. 

Averaging partial Bayes factors from different training samples is not coherent 
in this way. Whereas B(z I y) is a genuine Bayes factor, the averaging (as in the intrinsic 
Bayes factor) does not result in a single Bayes factor. Similarly, Bb(x) is not a 
genuine Bayes factor, although the idea of using an idealized fraction of the data 
as a training sample seems sensible. If bn -+ oo, Bb(x) is asymptotically equivalent to 
a single partial Bayes factor. 

7.3. Sequential Coherence 
Coherence is by no means assured if further data x* become available. Again the 

partial Bayes factor with fixed y passes the test. As in equation (8), 

B(z, x*Iy)=B(zly)B(x*Iz, y). 

The new partial Bayes factor is the product of the partial Bayes factor B(z I y) and 
B(x* I x). This is the same process as that by which a full Bayes factor would be updated 
sequentially from B(x) to B(x, x*). 

However, fixing y is arbitrary and can be highly sensitive to the original choice 
of y from data x. In practice, Berger and Pericchi's (1993) approach of averaging 
many partial Bayes factors is obviously desirable to reduce that sensitivity (although 
Section 5.3 shows that this is an inadequate remedy). If the average is then updated 
by B(x* I x), the result is an averaging of partial Bayes factors B(z, x* I y). There is 
coherence in this, except that all the training samples in the averaging are drawn from 
the original data x. If all possible training samples are to be used, the average cannot 
be updated in this way, and many more terms must be included in the averaging. 

The FBF cannot be updated coherently by multiplying by B(x* I x) either. 
Bb(x, x*) is not derivable from Bb(x), 7rir(O, Ix) and fi(x* I Oi, x) alone, and in practice 
would need to be calculated from scratch. 

8. CONCLUSIONS 

This paper has considered various properties of partial Bayes factors, and in 
particular of FBFs. In general, FBFs are preferred because of their greater robustness 
and their conformance with the likelihood principle. 

Asymptotically, both consistency (selecting the correct model with probability 1 
in nested problems) and complete robustness can be achieved by using Bb(x) with 
b-*O but bn-*oo as n -oo. 
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In finite samples, there is a trade-off between robustness, which increases with b, 
and discriminatory power, which decreases with b. An extreme position is represented 
by the FBF with minimal b = mo/n, which may be appropriate when robustness to 
misspecification of the prior is not important. But where there is uncertainty over 
the specification of the prior a choice of b = n- 1 log n or b - n- 1/2 is recommended. 

Any practical application of partial Bayes factors or FBFs will be difficult to apply 
coherently in a sequential mode. This seems to be the only real drawback to their use. 
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DISCUSSION OF THE PAPER BY O'HAGAN 
W. R. Gilks (Medical Research Council Biostatistics Unit, Cambridge): Professor O'Hagan has 

presented a delightfully clear account of the problem of Bayesian model choice with improper priors 
and has provided an elegant solution. I would like to make some practical points. 

Scope of problem 
The formal Bayesian machinery of model choice depends on the marginal likelihood qi(x) defined 

in Section 1.1. As the author notes, this quantity is not well defined for improper priors -ri. The use 
of proper but vague priors does little to alleviate the problem as qi(x) can then be very sensitive to the 
choice of -xi, as is evident from the first term in the Laplace approximation of equation (4). Thus we 
are naturally led to question the very enterprise of model choice. If the aim of statistical analysis is 
to predict (and some would argue that this is always the case), then there is no need to choose between 
models. Prediction can be better done on the basis of a panoply of models, as is demonstrated in Draper 
(1995). However, even here qi(x) must be evaluated, since the predictive distribution of future 
observations y is 
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Z P(y x, M) P(Mi) qi(x) 
P(yIx)= - 

EP(Mi) qi (x) 

in the notation of the paper. Thus, whenever more than one model is entertained, a robust form of 
qi(x) is required. 
Solution 

The robust form of q(x) proposed in the paper is 

q(b, x r)I= | f1 -b(X I 0) -rb(I T 7) d0 =E (b) (f l -b), (26) 

where E(b) denotes expectation over the following distribution for 0: 

1Xb(O |r) l kf(X I 0) (O Ir). (27) 

Here I have introduced a parameter X which I shall need below, and I have suppressed the subscript 
i, but otherwise this expression corresponds to that given in equation (12) with some algebraic 
rearrangement. I shall call q(b, x I r) a fractional marginal likelihood, and irb(O I T) a fractional posterior 
since it has the form of a posterior distribution. 
Optimal choice of b 

In equation (26) some information about 0 has been transferred from the likelihood to the prior, 
so that the prior is no longer vague or in conflict with the data. This is similar in spirit to the partial 
and intrinsic Bayes factors. Professor O'Hagan usefully departs from tradition here by emphasizing 
that the amount of information transferred from likelihood to prior can be greater than required to 
make the prior proper. Transferring too little (setting b too small) will render q(b, x r) sensitive to 
ir; setting b too large will reduce the information available for model discrimination. 

This suggests a lurking optimization problem. Professor O'Hagan has avoided making this explicit, 
preferring to give some informal advice on the choice of b, such as choosing b = n- n log n. To formalize 
the problem, I have above introduced the parameter T to index a family of prior distributions, so that 
uncertainty about ir is represented by uncertainty about r. With a prior 4(r) for r we may define a 
fractional posterior for r: 

b (T) o (T) X fb(X 1 0) ir(0 I r) dO. 

Then we have 

A f(xI0) a |r(0I rb(r) drd0 
q(b, x) = E(b) E(b) (f 1 b)= (28) 

fb(x I 0) |7r(0 I T) +(r) dT do 

where E(b) denotes expectation over Jb(T). Equation (28) is the fractional marginal likelihood that would 
have resulted if full uncertainty about the prior had been acknowledged. However, the point of introducing 
T was not because we necessarily believe in it: it is merely a device for measuring the sensitivity of q(b, x I r) 
to the prior, which might be defined as 

var(b) I q(b, x | 7r) = var(b)1L^b)(fl b) }. 

The information available for model discrimination might then be represented as 

ETb ivar (b (f I - b 

This suggests choosing b to maximize the log-variance ratio: 

log [E( )[varb)(fi b)J] - log [var(b)EIb) (flEb)j] (29) 
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or the sum of contributions of the form of expression (29) over all models of interest. Although this 
might provide a theoretical framework for deciding on b, it leaves open the question about how to choose 
the priors 7r and k. Furthermore, the calculations required by expression (29) are difficult in even simple 
situations. One possible way forwards might be to use an c-contamination model for 7r(O I r) (see for 
example Wasserman (1992)). 

Hierarchical models 
In the paper, fractional Bayes factors are motivated and discussed solely for the exchangeable data 

model 
n 

f(XIO)= 1 g(xjI0). 
j=1 

Though this class of models encompasses a great many applications, it is uncomfortably restrictive in 
view of the breadth of models which can be routinely handled by using Markov chain Monte Carlo 
(MCMC) methods. For example, how should the fractional Bayes factor be defined for the following 
hierarchical model: 

m n 

f(x, y I O) = f g(xj I 0) II h(yjk I j, xi)? 
= k=1 

Here it would seem unreasonable to apply the same value of b to both levels in the hierarchy. A natural 
extension of the methodology would be to define the fractional marginal likelihood as 

i g(x I 0) h(y Ix, 0) ir(0) dO 
q(a, b, x) 

ga(x 0) hb(y I x, 0) -x(0) dO 

For yet more complex models, it could become increasingly unclear how to 'fractionate' the likelihood. 
Some guidance would be welcome. 

Calculation of fractional marginal likelihood 
The analytical approach used in the simple examples in the paper is clearly not an option for even 

moderately more complex applications, such as generalized linear models. Fortunately, a way out is 
provided by the MCMC method. Noting from equation (26) that q(b, x r) is an expectation of fl-b, 
we could perform MCMC iterations on the fractional posterior (27), estimating q(b, x I r) as the average 
of the values of fl-b in the MCMC-generated samples. This could be expected to work well, since the 
fractional posterior will tend to deliver samples in regions of high likelihood. Moreover, for most 
likelihoods encountered in practice, simulation from the fractional posterior should be no more difficult 
than simulation from the full posterior (the usual role of the MCMC method). Note that the analogy 
of this approach for the standard non-fractional Bayes factor would generally not work since it would 
involve sampling from the prior, which tends to deliver few samples in regions of high likelihood (Newton 
and Raftery, 1994). 

Other issues of model determination 
Of course there are many other issues in model determination apart from the calculation of marginal 

likelihoods. With the MCMC method, residuals of various forms can be calculated and plotted and 
departures from the model tested, perhaps by using Bayesian p-values (Gelman et al., 1994), and cross- 
validatory ideas can also be employed (Gelfand et al., 1992). 

Finally, I would like to congratulate Professor O'Hagan on a thoroughly interesting and useful paper. 
I propose the vote of thanks. 

A. F. M. Smith (Imperial College of Science, Technology and Medicine, London): The problem that 
this paper addresses is that of choosing between models. But what is a model? 

From the de Finetti perspective, a model is essentially a predictive machine for observable quantities, 
with the predictive density form 

q(x)= | r(O)f (x I a) dO 
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justified by some kind of representation theorem. As we acquire data xl, x2, . . ., the initial pair Lf( 10), 
ir(0)J is replaced, successively, by If( 10), 7r(0 I xl ) 1, [f( 10), 7r(0 I xl, x2)} and so on. The predictive model 
for the future is defined by the current pair and only acquires a predictive capability once ir(0 I ) is 
proper. Bayesians usually emphasize the dangers of focusing on a likelihood in the absence of a prior. 
But Professor O'Hagan seems to be regarding f( I 0) as 'the model', with 7r(0) an irritating extra. 

Moreover, with Mi, i= 1, 2, denoting alternative models, the Bayes factor is defined to be 

B2 (x) = P(M Ix) P(M1 ), 

P(M2 IX)! P(M2) 

which implicitly assumes that it makes sense to attach probabilistic beliefs to models. If we take the 
view that models are just simplified artefacts for helping to structure the way that we think, the status 
of P(Mi), P(MiIx), i= 1, 2, is, to say the least, debatable. 

So, is there any role for the Bayes factor in model choice problems? And, if so, which of the many 
varieties of Bayes factor on offer should we use? 

Let us consider a simple decision problem. Given x = (xl, . . ., xn) we want to predict y =x"+ , . For 
this, two 'off-the-shelf' models, M1 and M2, are available (computer packaged!) providing predictive 
densities qi(y I x) = q(y I x, Mi), i = 1, 2. But, of course, neither M1 nor M2 represents our actual beliefs. 
These we denote by qA(Y I x), although (through ignorance or indolence) they remain unformulated. 
If we use the logarithmic utility function to score our predictions, we arrive at the following decision 
tree representation of the problem: 

log q, (y Ix) 

M2 \ vlog q2(Y X) 

The Bayesian solution is to choose M1 if 

log {qi (yIxflAYIX)Y> 
(q2(Y X)j qA(yIx)dy>O 

But, how do we evaluate the integral (since qA is unspecified)? First, note that (x, y) = [(xl, . . ., Xn), 
xn + 1 ] can be mimicked by (xn- 1 (J) xj) for any j= 1, . . ., n, where Xn 1- (j) = x \ txjl. Then, in the case 
of exchangeable xis, a Monte Carlo approximation of the integral is available in the form 

1 K [ q1{,Ixj .Xnj)1 I K 
Z= log - - Y. logBl2tXj, xn-11,l, Kj1 q2XIXn II (I)Jj Kj11 

say, based on K random drawings from the possible partitions of x. The (approximated) solution to 
the model choice problem is thus to choose M1 if 

K I 
[Bl&2[x, Xn_1 (J)]1/K>1. 

j=1 

We have, therefore, found a role for the Bayes factor, without implicit reference to prior or posterior 
probabilities on models; or, more precisely, a role for the geometric mean of a version of what Berger 
and Pericchi (1993) called 'intrinsic' Bayes factors. 

The above illustration ('predicting the future') was based on taking the pair [f(Xn+1 I 0), ir(0 I xn) as 
the 'model version' of interest. But, we could follow the same sort of analysis using, for example, the 
pair [f(xn-Is I 0), 7r( I xs)1, where xs = (xl, . . ., xs), Xn-s= (Xs I I, . . ., xn), for, say, the smallest s such 
that 7r(0 I xs) is proper. This version is more concerned with 'fidelity to the data'. With logarithmic 
utility, the decision tree representation is 
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Ml ,log q1 (Xns Ixs) 

M2 \ ( ) , log q2(xn Is xs) 

The formal solution is to prefer Ml if 

log | (X s) qA (xn_s xs) dxns > 0 

and, based on K random selections from the j = 1, ..., (n) partitions x= [xs ), Xn,J - ]s a Monte 
Carlo approximation to the integral leads to the (approximated) solution: prefer Ml if 

K 

TI [B12(Xn-AA), Xs5j) }1/K> 1. 
j=1 

This is now precisely the geometric mean version of the Berger and Pericchi (1993) intrinsic Bayes factor 
solution. See sections 6.1.6. and 6.3.3 of Bernardo and Smith (1994) for further details and discussion. 

On previous occasions, I have heard a Professor O'Hagan berate audiences for their un-Bayesian 
sins. Were they clear about their fundamental concepts? Were their analyses focused on well-defined 
decision problems? Did their proposed solutions-with judicious approximation, if necessary-emerge 
from a coherent analysis? 

In seconding the vote of thanks for this paper, I cannot help wonder what happened to that Professor 
O'Hagan. 

The vote of thanks was passed by acclamation. 

Aart F. de Vos (Free University, Amsterdam): O'Hagan's exposition of the problems that Bayesians 
have in deriving robust Bayes factors is of rare clarity. His fractional Bayes factors (FBFs) are a new 
trial, and a miracle of symmetry and simplicity. Unfortunately, they look like a trick. First, a solution 
is provided which is reasonably independent of prior distributions, while at the same time the importance 
of the prior for the Bayes factor is stressed. This is simply a contradiction. Second, 'fractional probability 
statements' are used, unclear things that did not occur before. This is a pity, especially for a Bayesian 
who cherishes coherence and reproaches others for the use of badly motivated tricks. 

At the Bayesian riverboat conference in 1993 an earlier version of this paper confronted a similar 
paper of mine concerning the linear model (de Vos, 1993). O'Hagan was inspired to use his FBF for 
the linear model, I in my turn to try larger training sets than the minimal ones. The results, equation 
(20) and mine below, appeared to be strikingly similar. 

The linear model is particularly interesting as different training sets have different information content. 
My formulae use weighted geometric means of real predictive probability statements based on all possible 
training samples of size m. This is the only possible way to use an extremely powerful theorem from 
linear algebra (Binet-Cauchy) such that the Bayes factor depends on the sufficient statistics S7. In 
O'Hagan's notation (b = m/n), I obtained (without asymptotic arguments) 

Bm (x) = c(ZI , Z2) g(n, m, r, , r2)(5l2 S22) -(n -m)/2 

with Si2 = S 2/(n -pi + 1) (the 'unbiased' estimate of Ui2, more appealing than Si2) c_ 1 for well-behaved 
Z-matrices and g(n, m, r1, r2) almost equal to O'Hagan's multiplier. However, plausible (though 
speculative) extensions of my arguments lead to alternative formulae based on large values of the training 
samples while retaining maximum discriminatory power between the models. 

The good performance of the FBF and the similarity with my formulae suggest that we are nearing 
a spectacular answer to a question that is not yet clearly formulated. The key seems to be like entropy: 
the logarithms of predictive probability statements must in some way be averaged. The FBF does so 
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indirectly: it would be the simple geometric average of qi(x)/qi(y,) (from equation (7)) over all possible 
choices of the training sets y, if simple permutation arguments could be used. I thus expect that the 
answer will resemble O'Hagan's FBF, but no more than that. 

D. V. Lindley (Minehead): I claim that what follows is a counter-example to fractional Bayes 
methodology. A scientist approaches a statistician with data x- N(0, 1) and wishes to know whether 
0<0 or 0>0. The (fractional) statistician explains that there are two models, M1 that 0<0, M2 that 
0>0, and that it is required to calculate P(M1 jx). The difficulties with uniform priors over 0 are 
explained and the fractional solution is provided. The scientist is surprised by the complexity but is 
impressed, perceives the difficulty and accepts the statistical advice. 

Somewhat later, the scientist reflects that the statistician had a distribution over 0, so why not calculate 
ir(0 > OJx) and forget about the models? The scientist returns to the statistician who says that they now 
have an estimation problem. Even if 7r(O) is improper, ir(01x) is proper, the calculation is easy and the 
result differs from the earlier one. 

Why is there this conflict between easy estimation and difficult model choice? 
Consider, in the context of the scientist's problem, an improper prior 7r(0). Write I1(A) S A 7r(0) dO 

whenever this exists. A probabilistic interpretation for 7r(0) is that P(A |B) = rI(AB)/1rI(B) whenever I1(B) 
exists. With a uniform prior, this probability exists for any bounded B. I contend that these conditional 
probabilities are all that 7r provides. In particular, the uniform prior does not provide a value for P(0 > 0). 
Yet the fractional statistician, cited above, did provide such a value, calling it P(M2). Therein lies the 
contradiction. To see that P(0 > 0) must remain undefined with 0 uniform, let B be the set - n < 0 < pn 
for some positive p. Then P(0 > 0 |B) = p/(l + p). If n -- oo, so that B tends to the whole line, this tends 
to P(0 >0), which can assume any value in (0, 1), dependent on p. In other words, it is incoherent to 
assign both improper priors and a probability for the model. Almost all the papers referenced in this 
paper are similarly incoherent. Improper priors can be used but only with the greatest of care. It is 
better to think about 0 and what it means to the scientist. It is his prior that is needed, not the statistician's. 
No one who does this has an improper distribution. 

Steffen L. Lauritzen (Aalborg University): It is an important challenge to develop theoretically well- 
founded methods for model comparison. When comparing only a few models, the most important criteria 
are probably difficult to formalize and rest on connections between the model and the subject-matter 
context. But, for example, when analysing large, sparse contingency tables using graphical models 
(Whittaker, 1990) computers make it possible to compare astronomical numbers of models. A systematic 
approach then becomes mandatory. 

What assistance could fractional Bayes factors provide here? To keep things simple we may look 
at the case when the model of independence M2 is compared with the unrestricted model M1 in an Ix J 
contingency table with counts xij. If we use weak priors proportional to Hijp in M1 and proportional 
to Iijp,lp-JI in M2 we obtain 

r(x+ + r F(xij) r F(bxi+) r F(bx+j) 

Bx r(xi+) H r(x+j) r(bx+ +) f r(bxij) 

provided that xij> 0 for all i and j. 
The first problem appears if we have a cell with zero counts (which is quite common for large sparse 

tables). We could use that r(z) -z- 1 for small values of z, and replace Bb(x) by its limiting value when 
xij- 0. This would give rise to a factor bno where no is the number of zero cells and the products should 
then only extend to cells with positive counts. 

If we look around this difficulty, we must become very uneasy at the dependence of the Bayes factor 
on the arbitrary fraction b. Clearly, B1 (x) = 1 but, when b -+ 0, Bb (X) is approximately proportional to 
bI- 1)(J- 1) and so tends to 0. This gives great possibilities for manipulation. 

The author suggests using b = mo /n where mo is the minimal sample size and n is the actual sample 
size. But sample size is a fragile concept and it is not quite clear what it means, even in this case. In 
a certain sense, any fixed sample is of size 1. One interpretation in this case is to let mo = IJ and 
n =x+ + But, if we consider the corresponding Poisson model with x+ + being random, we have 
mo = n = 1 and therefore choose b = 1 when following the author's recommendation. And the expression 
for Bb(x) does not change. 
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So without convincing guidelines for the choice of b that are not based on asymptopia, I remain sceptical 
and tend to think that I have seen yet another ad hoc statistical tool that throws little light on the important 
issue of model comparison. 

David Draper (University of Bath): I would like to raise the issue of why we would wish to do model 
comparison in the first place, because this bears on how we should do it. As Professor O'Hagan notes, 
Bayes factors are central to the Bayesian approach to the comparison of a finite number of models, 
indexed discretely. Sometimes when the purpose of the underlying investigation is inference, the vector 
of implied posterior probabilities for the models, given a particular choice of prior probabilities, is 
sufficient to answer the scientific question at hand, for example when each model corresponds to a 
distinct substantive theory and the goal is to summarize the weight of evidence in favour of each theory. 
But often the role of model comparison is more technical, leading in routine current practice to a single 
specification choice such as the form of the error distribution in a generalized linear model. As noted 
in Draper (1995) and elsewhere, an alternative-arguably preferable in many cases-would be to deal 
with this sort of uncertainty more smoothly by indexing the models under consideration with one or 
more continuous parameters and adding a layer to the modelling hierarchy corresponding to the 
specification uncertainty. In effect one then computes an infinite number of Bayes factors, which give 
rise to mixing weights used in the calculation of a weighted average posterior distribution for the quantity 
of direct interest. I would be interested in any comments that Professor O'Hagan might wish to make 
on the extent to which his concerns with discrete Bayes factors, regarding the fact that the dependence 
on the prior distribution does not disappear with sample size, carry over to the continuous hierarchical 
case in which model uncertainty is dealt with more smoothly. I was surprised by these concerns even 
in the discrete case, given the 0(1) nature of the contribution to the Bayes factor of the prior distributions 
on the parameters specific to each model under comparison (see equation (5)). 

A. P. Dawid (University College London): Suppose that we assign a single 'distribution', i.e. a-finite 
measure, over the full parameter space, i.e. the disjoint union of model-specific parameter spaces. If 
this is improper then there is no sensible way of defining marginalization and conditioning, so we will 
not have well-defined prior model probabilities, or Bayes factors. However, even in this case the full 
posterior will typically be proper, so that we will have well-defined posterior model probabilities, thus 
answering our real need. The specification of such a prior still requires a 'ratio of constants', but at 
least we can now see why, which may give some guidance-unlike the situation considered by O'Hagan, 
with its inherent arbitrariness. 

Using an improper prior or an arbitrary proper prior, as above, a 'principle of precise measurement' 
applies. The full posterior, given enough data, is insensitive to the prior: it concentrates on the appropriate 
model, with the usual asymptotic normal form. The effect of the prior is of additive order 0(1) on 
a log-posterior-model-odds, or log-Bayes-factor when it is defined, of order 0(n) or 0(- log n). For 
extensive data, this is not worth worrying about. For small data sets it is surely appropriate that prior 
opinion is relevant and deserves careful elicitation. It seems a retrograde step to attempt to mask an 
0(1) effect by introducing a fractional Bayes factor with unspecified b, variations in which will have 
an effect of at least the same order-or even much larger under suggestions (b) and (c) of Section 6. 

Granted that the specification of priors is still an unfamiliar and delicate task, the following approach 
to coherence across models may be helpful. First, specify a proper prior for the most complex model 
considered, or for a new model generalizing all those considered. Then specify a proper prior within 
each of the other models to match, as closely as possible, the induced predictive distribution for a suitable 
'minimal sample', varying with the model considered. This idea is related to, but distinct from, that 
underlying the partial Bayes factor, and is fully coherent. Essentially this approach was used by Dawid 
and Lauritzen (1994) for comparing different decomposable graphical models. 

L. I. Pettit (Goldsmiths' College, London): I would like to congratulate Professor O'Hagan on an 
interesting paper that will be very useful. 

All the examples considered concern global model choice. What happens if we consider local model 
choice? In particular I shall investigate whether a normal sample contains a single outlier. The asymptotics 
of Section 1.3 do not now apply. 

Suppose, under MO, xi --N(1, a2) for i= 1, . . ., n and, under MI, xi-N(u, a2) for i?j, xj-N(JL+6, 
a 2). For comparison with Spiegelhalter and Smith's (1982) method I shall take the prior proportional 
to (a 2) - (p' + 3)/2 which leads to ri in equation (19) being constant. Note that this prior is necessary for 
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scale invariance in Spiegelhalter and Smith (1982), whose Bayes factor is 

Z (X, -~)2 
Bss= s 3(n-1) 12 1 (30) 

01 2n ) (X,-~X*)2 (0 

where x*=(n- 1)1 i,jxi (see Pettit (1992)) and O'Hagan's, taking b=3/n, is 

nJ(zi - (n - 3)/2 

Z(X, i)2) 
BOOH~ 1- (31) Z (x - x*)23 

I have argued elsewhere (Pettit, 1992) that this is a situation where we have some knowledge about 
the prior probabilities on the models (outliers are surprising) and that we should look for a log-Bayes- 
factor of - 4 or less before we have good grounds for believing that an observation is an outlier. 

To compare equations (30) and (31) I computed their values for a data set consisting of the expected 
normal order statistics for a sample of size 9 plus an extra observation y. Fig. 5(a) gives a graph of 
the log-Bayes-factors against y. For very small values of y equation (30) is the larger but this is reversed 
for bigger y-values. The value of y giving a log-Bayes-factor of about - 4 is 3.2 for Spiegelhalter and 
Smith's and 4.1 for O'Hagan's method. The latter value is very conservative. 

We can also compare regression models. Suppose, under MO, y, N(a + txi, a2) for i= 1, . . ., n 
but, under Ml, yj- N(a + 6 + fxj, a2). The Spiegelhalter-Smith Bayes factor is 

B (4(n-1)CS(xj), xU)) I/2s n/2 (32 
01 3n CS(x, x) } (2 

where 

2 = CS(y, y) _CS(x, y)2 
CS(x, x) 

N NX x 0~~~~~~~~~~~~~~~~~~~~~~~~ 
X A 

ED LL,O 

0 2 4 6 0 5 1 0 15 20 25 
(a) (b) 

Fig. 5. (a) Plot of log B`s( ) and log B?H(-- for a model that y is an outlier versus y for a sample 
consisting of nine expected normal order statistics and y; (b) plot of log Bss ( x ) and log B?H (O) that observation 
i is an outlier for the data of Mickey et al. (1967) 
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CS(u, v) = E (u - )(v i-) and subscript (j) denotes deleting the jth observation (Pettit, 1992). 
O'Hagan's factor with b = 4/n is 

2 X- (n - 4)/2 
BOOH = ( B?= 2 )(33) 

Fig. 5(b) shows the values of equations (32) and (33) for the data of Mickey et al. (1967). Observation 
19 shows up as an outlier although again O'Hagan's Bayes factor is more conservative. Observation 
18 is the only other observation showing much difference; it has a large leverage and the term CS(xuj), 
x(,))/CS(x, x) is substantial. 

To sum up in the examples that I have looked at (and also in Poisson samples; Pettit (1994)) the 
O'Hagan Bayes factor is more conservative than Spiegelhalter and Smith's, perhaps overly so. It does 
have the advantage that you do not need to think so much. 

K. D. S. Young (University of Surrey, Guildford): Recently many different types of Bayes factor 
have been considered to circumvent the problem of improper priors. These include Spiegelhalter and 
Smith's (1982) BSS, based on the device of imaginary observations, Geisser and Eddy's (1979) pseudo- 
Bayes factor BPSU, based on averages of predictive densities, Berger and Pericchi's (1993) intrinsic Bayes 
factor BINT, which uses minimal data sets to make the prior proper, and Aitkin's (1991) posterior Bayes 
factor BpOST- We must now add O'Hagan's fractional Bayes factor BFRAC. 

A comparison for these Bayes factors was made for the linear model 

y-~N(Aj0j, aIn ) 

with prior 

p(6i, ujAj)=cj(2iKU2)(P11)/2 a 

for i= 0, 1, where ci are undefined constants. In the case of testing a specified mean we have found 
that in general 

BINT > BFRAC > BSS > BPsU > BPOST 

A similar ordering is obtained for a simple linear regression testing whether the slope parameter is zero, 
the only difference being that BSS and BFRAC switch order when the data support the model with non- 
zero slope. 

In Section 3.1 O'Hagan considers an example 

Ml: xl, . . ., X- N(60, 1), 

wherep(6)occ. A diagnostic measure to determine the effect of a proper prior on a Bayes factor is (Young 
and Pettit, 1993) 

kp = ln BOP - ln BON 

where BP is a Bayes factor comparing models Mo and Ml based on proper priors and B N is based on 
non-informative priors. We have calculated kp using a proper prior for 0 - N(j, o2) and using both 
BFRAC with b = 1/n and BSS for BN. The difference in kp for the two Bayes factors is given by 

kpss - kpO = 2 (X-- 00)2 

which shows that the two will be different if x- is far from 00, i.e. if Mo is not true. 
In Section 5.1 O'Hagan uses a different non-informative prior of the form p(6)ocexp 0. In this case 

kss -kpOH = - - 1 1+ 1 - _f)2 p ~~~2n 2 
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Fig. 6. Fractional Bayes factor for a simple linear regression set y, =ao + Oxi which is (a) in agreement with model 
MO: = 0, (b) in disagreement with model Mo: A = 0 and (c) in disagreement with model MO: A= 0 

As before the two will be different when x~ is different from 00, although because of the form of the 
prior the difference is no longer symmetrical. 

The behaviour of the fractional Bayes factor as we vary b is important. In the simple linear regression 
model E [ yi ] = ct + fxi, we considered the case when the data are in agreement with model MO: ,8 = O 
and when there is disagreement. If we let m - n then BFRAC: 

1-~ whatever, which is clearly seen in Figs 
6(a) and 6(b). When there is agreement (Fig. 6(a)) it would seem that a small value of b is best. In 
Fig. 6(c) when there is disagreement there is a minimum when b = I In and this again suggests that a 
small value of b should be chosen. 

Some of this work has been done by Miss Julie Amiss as part of a doctoral thesis at the University 
of Surrey. 
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L. R. Pericchi (Universidad Simon Bolivar, Caracas): Since Berger and Pericchi (1993) will not be 
published for some time and the author refers to it heavily, I shall describe some features of the intrinsic 
Bayes factor (IBF). The IBF solves the problem of a fully automatic Bayesian model selection, by taking 
averages (arithmetic or geometric) of minimal training samples. No prior assessments are required except 
default prior measures as in estimation. Furthermore, we give a theorem proving the existence of an 
intrinsic proper prior which gives results that are quite close to the arithmetic IBF, and we provide a 
formula to unveil an intrinsic prior, in quite general problems. The use of an intrinsic prior is completely 
insensitive to outlying training samples, obeys the sufficiency principle, is coherent and is even sequentially 
coherent, which O'Hagan's method is not. Take the example in Section 3.1, testing a normal mean 
00 with variance 1. The intrinsic prior for 0 turns out to be normal with mean 00 and variance 2. This 
is quite reasonable for the problem in hand, as in all examples that we have encountered so far. (If 
the variances were unknown, the intrinsic prior is a new distribution and obeys Jeffreys's desiderata 
for this problem.) For Darwin's data, the intrinsic prior produces a Bayes factor of 5.48 in favour of 
the simpler model, compared with only 3.814 by the author's method with his choice of b = n-. In 
a previous version of his paper (kindly provided by him) he strongly defended the simpler model for 
these data. All versions of the IBF, arithmetic or geometric, favour the author's favourite model more 
strongly than his method. Besides, the fractional Bayes factor is not automatic. The parameter b must 
be assessed, and in this simple example it is equivalent to the selection of the variance of a normal prior. 
So, what is the progress achieved by the present paper in the author's first example? 

The examples in Sections 3.2 and 3.3 were not in the original paper, but they are analysed in detail 
in Berger and Pericchi (1993), where the IBF offers sensible automatic solutions. 

There are deeper questions which are not addressed, e.g. when this method corresponds to a real 
prior, as in the normal example when b -O 0, or, when it is unavoidable to use resampling methods like 
the geometric IBF, as when none of the models entertained is assumed to be the sampling model, as 
I and A. F. M. Smith have suggested (work in progress). 

Finally, even though this paper is far better than the previous version, the author has not yet justified 
his method besides interesting ad hoc arguments. 

The following contributions were received in writing after the meeting. 

Murray Aitkin (University of Western Australia, Nedlands, and Tel Aviv University): Conventional 
Bayes factors with diffuse priors are unworkable, and conjugate priors are not a workable substitute. 
The key to workable Bayes factors is the elimination of the arbitrary constant in the diffuse prior. This 
is achieved by integration with respect to the posterior (Aitkin, 1991) (Efron (1993) proposed the same 
idea under the name 'implied likelihood'). 

Professor O'Hagan achieves the same end by considering a fraction b of the data as a training sample, 
the remaining fraction 1 - b forming the likelihood. To avoid the obvious difficulty of deciding which 
subset of the data forms the training sample, he assumes the same data x in the full sample, the training 
subsample and the likelihood subsample. This leaves him open to the accusation of using the data thrice. 

How well do fractional Bayes factors (FBFs) work? In Fig. 7(a), with 100 observations simulated 
from exponential(1), I have replicated Professor O'Hagan's Fig. 2 including the value of the posterior 
Bayes factor (PBF) with the same priors for comparison. The PBF is the full curve and the FBF the 
broken curve. The vertical scale is log-Bayes-factor. 

The behaviours of the two Bayes factors are closely related, but the FBF is substantially better at 
identifying the exponential, a consequence of its heavy penalty on the two-parameter log-normal. In 
Fig. 7(b) the observations are generated from the log-normal distribution with (normal) / = 0 and a = 1. 
Now the PBF is better for the same reason: the FBF has to overcome the heavy penalty on the correct 
model. 

In conclusion, the FBF and the PBF have very similar properties except for comparing point null 
with general alternative hypotheses. Here the different penalties give characteristically different properties: 
the FBF can asymptotically confidently support a true null hypothesis, which the PBF cannot, but it 
pays the corresponding price of supporting less confidently a true alternative hypothesis. The relative 
merits of these properties may be debated, but it is puzzling to see the insistence, in this and other Bayesian 
discussions, that Bayes factors must have the properties of the Schwartz test criterion (5). This criterion 
is derived by using conventional priors and suffers all the disadvantages that Professor O'Hagan sets 
out in arguing for the FBF. Indeed, the constant a in approximation (5) is usually, as O'Hagan says, 
'ignored', but it may have a substantial value compared with log n and is very sensitive to prior changes, 
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to say nothing of its unreasonable dependence on the scaling of variables in the information matrices 
of the two models. It is the removal of these information terms in the FBF in equation (20) that O'Hagan 
puts forward as a feature of the FBF, and I agree with him on its importance-see Aitkin (1993). 

Other examples of applications of the PBF can be found in Aitkin (1992a, b) and Aitkin and Fuchs 
(1993). 

G. A. Barnard (Colchester): During the 1914-18 World War, before anyone had suggested that 
significance tests and Bayesian reasoning were totally incompatible, Ethel M. Elderton collected data 
about industrial accidents showing that they followed a negative binomial distribution. This suggested 
the concept of 'accident proneness', according to which some of us are more prone to accidents than 
others are. But Elderton's data were equally compatible with our all being the same in this respect, 
if, following an accident, a further accident became more likely. The two models, so far as the available 
data were concerned, were indistinguishable. 

On a strict interpretation the only one of Professor O'Hagan's examples that is free from difficulty 
in this respect is in Section 3.3. And even there the two models can be brought arbitrarily close to each 
other. One way of overcoming the difficulties would be to enquire what the client's prior (genuine, 
not 'conventional') for the parameters would be, on the supposition that model I is correct, and similarly 
for model II. Accepting each prior in turn converts each model into a simple statistical hypothesis and 
the likelihood ratio L given by the data for these two hypotheses would give a 'client's Bayes factor' 
which would seem to be more meaningful than that proposed by the author. If L turned out to be near 
to 1, it would suggest that we might be near an Elderton situation. 

Some Bayesians have propounded the wholly unjustified dogma that the solution to every problem 
of statistical inference must take the form of a posterior distribution. In cases of the kind considered 
here we must allow that the appropriate response to the client's question may be that the available data 
do not allow a response of this form. 

Referring to lines 7-9 of Section 7.2, ignoring part of the data does not necessarily lead to incoherence, 
any more than quoting a P-value does. But both these procedures may leave open the risk. 

I am surprised that Professor O'Hagan makes no reference to the recent book by Geisser (1993) in 
which the model selection problem is treated at length and from a point of view which strikes me as 
more realistic than that taken here. 

James Berger (Purdue University, West Lafayette) and Julia Mortera (Universita di Roma III): This 
work is a potentially significant advance, although the author seems reluctant to embrace the real advance. 
The use of fractional Bayes factors with b = mo/n results in useful automatic Bayes factors. However, 
the other choices of b discussed are, at best, some type of ad hoc non-Bayesianism. 

For testing a normal mean, consider the fractional Bayes factor (17). The identical expression would 
arise as an ordinary Bayes factor under an N(0o, r2) prior, with r2 = (b' - 1)/n. Jeffreys (and most 
Bayesians since) have recognized that the essential problem is simply that of making a sensible choice 
of r2. Jeffreys effectively recommended r2 = 1, which is roughly equivalent to b = mo /n. The alternatives 
discussed in the paper, for which nb -f oo, correspond to letting r2 -*0. This is not sensible from a 
Bayesian perspective. 

In this regard, the discussion in Section 5.1 is peculiar. Bayes factors have an inherent sensitivity 
to the prior, and this can be reduced only by inappropriately departing from Bayesian reasoning. We 
are reminded of the criticism one of us once received in an applied problem to the effect that the new 
statistical answer was unstable, having associated with it a non-negligible standard error, whereas before 
it had been their standard practice to use a non-statistical 'best guess', which was 'clearly better' because 
it had no instability. We are pleased to note that, in spite of the author's remonstrations on this issue, 
when it comes to actual examples he always uses the sensible b=tmn/n. 

With b=tmo/n, the fractional Bayes factor appears to be similar to the intrinsic Bayes factors of 
Berger and Pericchi (1993). Arithmetic intrinsic Bayes factors have the very attractive property of always 
corresponding to actual (sensible) Bayes factors (at least for large n), and it is of interest to ask whether 
the same is true of fractional Bayes factors. For linear models with ti = 1 the answer appears to be yes 
(details will be reported elsewhere), but for other choices of ti the answer is no: the resulting fractional 
Bayes factors cannot arise as true Bayes factors (although they are not far off). 

There are several references in the paper to issues such as 'sensitivity to outliers', 'sufficiency' and 
'coherence' of the intrinsic Bayes factors and fractional Bayes factors. These are not serious issues (for 



1995] DISCUSSION OF THE PAPER BY O'HAGAN 131 

properly defined intrinsic Bayes factors) unless the sample size is quite small; for very small sample 
sizes Berger and Pericchi (1993) recommend the 'intrinsic prior' which overcomes all these difficulties. 

David Cox (Nuffield College, Oxford): In the non-nested case, the Bayesian solution appears more 
incisive than that based on tests, but the latter may be more informative. By taking the two models 
in turn as the null hypothesis, we may study whether one, both or neither model is adequate. Clearly 
a model could have a large Bayes factor in its favour and yet be a very bad fit. 

In the non-Bayesian analysis, which has a very extensive econometric literature, the asymptotic 
calculations (Cox, 1961, 1962) are best replaced by simulation. 

D. V. Hinkley and I (Cox and Hinkley (1978), pages 160-162) put forward a very tentative Bayesian 
discussion leading to subtracting from the log-likelihood ratio a penalty log(n/no)Ad, where Ad is the 
difference in the dimensionality of the parameters involved and no is a notional sample size, said very 
boldly to be in the range (2, 2), although (2, 5) might have been better. The essence of the argument 
was that the prior probabilities in the two models should be the same over sets of parameters giving 
similar predictions. I hope that in his reply Professor O'Hagan will comment. 

Andrew Gelman (University of California, Berkeley) and Xiao-Li Meng (University of Chicago): The 
idea of fractional Bayes factors (FBFs) is an intriguing attempt to avoid the fundamental problem of 
using Bayes factors with unspecified joint densities. However, the usefulness of the Bayes factor is 
restricted to problems where it exists. The non-existence of the Bayes factor, as is well known, is a direct 
consequence of not having a density (proper or improper) defined jointly for the model indicator and 
the parameters within each model. The proposed solutions of this problem, therefore, have either been 
to complete (temporarily) such a joint specification in some way, as with partial Bayes factors, or to 
define different quantities that no longer have proper probability (density) interpretations, as with the 
FBF. The FBF is well defined in its own right but no longer has a direct Bayesian interpretation, even 
under a properly specified joint density (except in the limit of b = 0). When a method slides outside 
the Bayesian framework it is generally found that some incoherent aspects arise. The author discusses 
this issue in Section 8, but we are unsure whether sequential incoherence is the only drawback (for example, 
Section 7.2 does not convince us that the FBF is coherent for a given sample). 

From an applied point of view, we do not see the necessity of working hard to define Bayes-factor- 
like quantities for models without joint densities. In our experience, a full Bayesian modelling approach 
can always address the questions of applied interest more directly than these look-alikes. If the models 
being compared are nested, then we prefer conducting Bayesian inference under the larger model, using 
a prior distribution with preference to the region of the parameter space near the smaller model, if 
appropriate; an elementary illustration is given in Gelman and Meng (1994). If the models under 
consideration are non-nested, it is generally reasonable to expand to a larger model class with an additional 
continuous parameter with specific values corresponding to the original models. For instance, for the 
data example in the paper, Darwin's data set, we prefer the approach of Box and Tiao (1962) using 
the power family, which includes wide-tailed distributions, to compute the posterior distribution of the 
parameters of applied interest. 

Of course, in model comparison problems with proper joint densities (as, for example, in discrete 
models in genetics), we appreciate the utility of Bayes factors in posterior inference. We are also interested 
in seeing methods that can address applied interests, beyond what the full Bayesian modelling approach 
provides, in situations with no joint densities. 

Rob Kass and Larry Wasserman (Carnegie Mellon University, Pittsburgh): In his examples Professor 
O'Hagan takes b = n - l. This suggests that he may find it appropriate to take the amount of information 
in the prior to be about the same as that in one observation. Using this heuristic in a different way 
leads to an interesting result, at least for nested models where, say, 01 = / and 02= ( , b) with the first 
model corresponding to Ho: 4 = 40. We transform / so that the Fisher information matrix is block 
diagonal when b = b0 (which is always possible) and take the marginal priors on / to be equal under 
the null and alternative hypotheses with / and b independent under the alternative. Then, taking the 
prior on 4 to be normal centred at 4K and setting the determinant of the precision matrix equal to the 
determinant of the Fisher information matrix for 4 (so that 'the amount of information in the prior 
equals the amount of information in one observation') we find that the logarithm of the Bayes factor 
may be approximated by the Schwarz criterion with an error of order O(n - 1/2), rather than the usual 
error of order 0(1) (Kass and Wasserman, 1992). This result suggests that the Schwarz criterion should 
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provide sensible approximate solutions to Bayesian testing problems, at least for nested models. (Using 
a Cauchy prior, as suggested by Jeffreys, leads to the addition of a constant to the Schwarz criterion.) 

A related approach is to use data-dependent priors. For example, define 

ii(0i) = hi((0)fi(x I 0)1b / | hi(0i)fi(x O)b dOi. 

The Bayes factor based on this data-dependent prior is equal to the partial Bayes factor up to relative 
order 1 + 0(b) so the two are essentially the same. Such a prior is asymptotically coherent in that the 
dependence on the data vanishes for large n. 

Sometimes we may want to restrict attention to a set of priors r. For example, suppose that the null 
hypothesis is X, -N(O, 1/n) and the alternative is X, -N(O, 1/n). Let h2(0) = 1. We might take r to 
be all normals centred at 0. We then define i2(0) to be the Kullback-Leibler projection of 

h2 (0) f2 (x I )/ h2 (0) f2 (x I )b dO 

onto r. This yields the data-independent prior ir2(0)=N(O, 1). The Bayes factor based on this prior 
is again essentially the Schwarz criterion. 

These results make us think that the Schwarz criterion is a good substitute for the Bayes factor in 
moderately large samples-which is the only situation in which an automatic method is appropriate. 
Furthermore, Professor O'Hagan's approach using b = n'-I amounts to essentially the same criterion. 
We thus interpret the main result of his paper to be another justification for the Schwarz criterion. 
Perhaps he sees things differently. 

Michael Lavine and Robert Wolpert (Duke University, Durham): O'Hagan undertakes the problem 
of finding a Bayes factor for comparing two models when at least one of the models uses an improper 
prior. Before asking whether his solution is sensible we want first to ask whether any solution is sensible. 

Improper priors are often used in the hope that their posteriors approximate well the posterior that 
would have resulted from any well-thought-out proper prior. We typically reason that 'my prior is flat 
compared with the likelihood', 'there is much more information in the data than in the prior' and therefore 
'my posterior is well approximated by the posterior from a convenient improper prior'. Then we adopt 
the improper prior and invest our effort more productively in other aspects of the analysis. 

But approximation of the posterior is not the same as approximation of the Bayes factor. When 
O'Hagan considers an improper prior without saying which proper priors' posteriors he is hoping to 
approximate then we should bear in mind all proper priors with posteriors similar to that from the 
improper prior. If these priors were all to yield roughly similar Bayes factors, then it would be reasonable 
to associate a Bayes factor (or a small range of Bayes factors) with the improper prior, and it would 
be sensible to look for a convenient way to compute it. If, however, there are priors that yield posterior 
distributions similar to that from the improper prior, but that yield vastly different Bayes factors, then 
the specification of a Bayes factor for the improper prior is problematic at best. 

The example in Section 3.1 illustrates the point. The problem is that of choosing either model 1, x-N(O, 
1), or model 2, x-N(6, 1) for some uncertain 0E R. O'Hagan's prior for 0 is uniform on the real line, 
with density h(0) 1. Suppose that x= 5 is observed. For m > 10 all priors uniform on intervals (-m, 
m) yield roughly the same posterior as his prior. Under model 1, the marginal density at the observation 
is f(5) = 6 x 10-12 whereas, under model 2, x is approximately uniformly distributed between ? (m + 1), 
sof(5) can range from around 0.05 to 0. The Bayes factor in favour of model 1 can range from around 
10-10 to oo. 

We conclude that there is no uniquely acceptable Bayes factor, even approximately, although we admire 
O'Hagan's ingenuity in computing it! The hypothesis Ho: 0 = 0 will be preferred to HI: 0 - U [ - 1020, 
1020 ], but not to H2: 0 U [ - 10, 10] . When comparing models the investigator simply cannot shirk 
the responsibility of specifying the prior distribution (and hence the alternative hypothesis) in more detail. 

Adrian E. Raftery (University of Washington, Seattle): I congratulate Professor O'Hagan on an 
impressive paper and a clever idea. Overall, though, I am uneasy. The history of Bayesian estimation 
is marked by a cycle in which 'vague' improper priors are proposed, difficulties are found, adjustments 
are made, and the cycle starts again. The same cycle is apparent for testing. The device of Spiegelhalter 
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and Smith (1982) worked well in some difficult cases (Akman and Raftery, 1986; Raftery and Akman, 
1986), but now we learn that it has problems. 

Jeffreys (1961) himself did not recommend 'Jeffreys' priors for Bayes factors. Instead, he used proper 
priors that are fairly flat over the region where the likelihood could be substantial. I now feel that this 
approach is more promising than further efforts to trick improper priors into giving reasonable Bayes 
factors. It can be extended from the simple cases that Jeffreys considered to more complex models, 
such as linear regression (Raftery et al., 1993). It is the basis for the GLIB software, which computes 
Bayes factors for generalized linear models (Raftery, 1993); this can be obtained by sending the message 
'send glib from S' to statlib@stat.cmu.edu. 

Although Bayes factors are indeed sensitive to the prior, this often does not invalidate conclusions. 
The Darwin data illustrate this. Transform these by y* =y/20 - 1 and consider comparing model 1, N(O, 
1), with model 2, N(O, 1), with an N(O, q2) prior for 0. Berger and Sellke (1987) used = 1, which 
is close to the prior of Jeffreys (1961). I would not want to use 0 > 3 because this leads to 'substantial 
evidence' (Jeffreys's term) against model 2 when there is one observation at 0. I thus consider 0 = 1, 
2, 3, for which B= 3.9, 7.7, 11.5. The ratio of largest to smallest B is less than 3 (equivalent to evidence 
'not worth more than a bare mention') and the overall conclusion does not change much over this wide 
range of priors. The intrinsic Bayes factor of Berger and Perrichi (1993) is 20.8, which corresponds 
to 4 = 5.4. As the author said, this seems too big. 

The Schwarz criterion yields a 'reference' Bayes factor, because it provides a good approximation 
when, roughly speaking, the information in the prior is equal to that in one 'typical' observation (Kass 
and Wasserman, 1992). Thus it corresponds to a reasonable proper prior and is easy to compute. It 
can also be viewed as a fractional Bayes factor with b = n - n. For the Darwin data the fractional Bayes 
factor is 3.814, whereas the Schwarz approximation is 3.810. 

Donald B. Rubin (Harvard University, Cambridge): Although interesting, Professor O'Hagan's 
development appears to suffer from the same basic limitation as many standard methods for the 
comparison of Bayesian models: it is predicated on the truth of one of the models being compared, 
and if all the models being compared are wrong then selecting the best according to Bayes factors can 
be practically disastrous. If we accept the commonly held view that all models are likely to be wrong 
yet some can be very useful for many purposes, the critical issue when comparing, selecting and accepting 
models is to be sensitive to the purposes to which they will be put. For this goal, some goodness-of-fit 
measure tuned to the specific intended purpose is needed to compare and select models. 

For a specific example, in Rubin (1983) I drew inferences for a real finite population of 804 cities 
from a simple random sample of 100 by using Bayesian models with Box and Cox (1964) transformations 
to normality. The best fitting model according to straightforward likelihood or Bayes factors criteria 
gave atrocious real world inferences for the population total compared with the simple-minded, and 
obviously inferior fitting, normal model (see, in particular, my section 5). The use of fractional Bayes 
factors would not have helped here because, in a set of wrong models, the best model according to 
likelihood criteria can still produce predictions that are inconsistent with observed data or scientific 
understanding. 

Model monitoring using posterior predictive check distributions (Rubin, 1984) is a more reliable way 
to compare models with respect to their success at intended purposes because it allows us to focus on 
specific quantities of interest rather than omnibus likelihood ratios or Bayes factors. With this technique, 
we compare the posterior predictive distributions of model monitoring quantities that are of practical 
relevance to see which of the posited models can produce adequate agreement with the observed data 
and scientific understanding. Although using likelihood ratio statistics (as in Rubin and Stern (1994)) 
or Bayes factors for the model monitoring quantities may often lead to choices similar to those made 
by using fractional Bayes factors, posterior predictive distributions of other quantities can lead to very 
different choices for the best model, or to the rejection of all models being contemplated-even if there 
is only one such model, or to the acceptance of a parsimonious model-even if there is strong evidence 
that it does not fit in unimportant ways. Recent work expanding and clarifying posterior predictive 
check distributions exhibits the generality of the idea for many problems (e.g. Meng (1994), Gelman 
and Meng (1994), Gelman et al. (1994) and Imbens and Rubin (1994)). 

John W. Tukey (Princeton University): O'Hagan has presented us with an approach that seems better 
than previous Bayesian approaches. But I would very much like to see what more frequentist approaches 
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would do with the same data. How would plots of differences in log-tail-area for I t I and x2 compare 
with the plots in Fig. 1? 

A lesser point is raised by the same figure. Surely the author's evaluation of graph (c) has been biased 
by what he feels he ought to find. A ratio of e10, which is what the trace attains, has to be interpreted, 
in my view, as 'N(2, 3) is more like N(O.5) than N(1, 1)', although-not shown by the trace-the fit 
to both is very bad. Surely it is not a case of the data being 'unable to choose reliably' which model 
is 'more correct'. 

The emphasis on such large values of Ilog Bb l-on such near certainty of result-should not have 
a role in the real world. The pictures assume that the data come in piece by piece. Surely a well-regulated 
experimental programme would either stop collecting data, or, probably better, change the circumstances 
under which the data are being collected! 

The author replied later, in writing, as follows. 

I would like to thank the many discussants for their contributions. That so many eminent colleagues 
should have taken the trouble to contribute is a sign that this is a problem of genuine interest. Indeed, 
most agree that there is a problem (although not necessarily on what the problem is!), and I agree with 
them that it is a problem which probably does not have an ultimate solution. Fractional Bayes factors 
(FBFs) represent just one approach, which I believe to be the most useful so far within the framework 
of Bayes factors generally. Naturally, the discussants have some points of disagreement with me, and 
many make counter-claims for their own favourite methods. I shall try to deal as fully as possible with 
what has proved to be a fascinating and wide-ranging discussion. 

Comparing models 
I chose the words 'model comparison' in my title quite deliberately. I did not say 'model choice', 

'model selection' or 'model testing'. Bayesian inference is a very flexible process and can provide various 
ways of choosing between models. It can also provide inferences in which a diversity of models are 
used throughout, as Dr Draper explains and expounds eloquently in Draper (1995). In a formal Bayesian 
analysis of any of these questions, Bayes factors enter either explicitly or implicitly, as one component 
alongside (proper) prior beliefs and utilities. The FBF is my attempt to provide a firm foundation for 
each of these inference problems in the presence of weak prior information. 

I accept Professor Smith's comment that in a Bayesian analysis the prior distribution is just as much 
a part of the model as the likelihood. I have used the word much more in the classical statistician's 
sense of the way one structures beliefs about the data in terms of some unknown parameters. It would 
be nice to have a separate word for that. 

Professor Rubin's posterior check distributions focus on the problem either of choosing a model or 
of testing the adequacy of a single model. Professor Cox also refers to the latter problem. Professor 
Rubin's idea has much in common with the classical approach of constructing ad hoc tests of fit. Such 
methods certainly have a role in exploratory work to identify models for 'comparison', but I believe 
that Bayes factors are central to subsequent formal inference. 

Another important aspect of FBFs is that they are intended for the case where prior information 
is weak. Professor Barnard says that we should simply elicit the client's proper prior distributions and 
then there is no problem, but if the prior information is weak it is difficult to do this reliably. When 
conventional improper priors do not work, it does not help to force a proper prior distribution out 
of the client and to accept the result as a perfect representation of the client's prior knowledge. We 
must consider whether the inferences are robust to the substantial uncertainty which must attach to 
that prior specification. Professor Lavine and Professor Wolpert underline this fact. If in their example 
the client cannot assert which prior best represents his or her knowledge-uniform over a moderate 
range or uniform over a very large range-then the inferences will certainly not be robust. 

Sensitivity and encompassing models 
This brings me to my claim that the FBF gives greater robustness to prior specification. Both Professor 

Dawid and Dr Draper point out that the effect of the prior distribution in the Bayes factor is 0(1), 
and as n tends to 00 this will always be swamped by the data. The Bayes factor will go either to 0 or 
to oo for all priors. This is true but not very helpful when in practice we tend usually to have a finite 
amount of data. Indeed, as Professor Tukey points out, we rarely collect so much data as to be able 
to make an absolutely conclusive choice between competing models. With n < 00, 0(1) can be big. I 
still assert that the FBF can usefully increase robustness in moderate samples. 
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Professor Dawid's argument also relies on the prior distributions for the various models being absolutely 
continuous with respect to an encompassing underlying measure. We must then specify their densities 
with respect to that measure, but that is equivalent to specifying the ratio cl /c2 in Section 1.1. He is 
therefore merely evading the original problem. 

The related idea of embedding the various models in a grand encompassing model arises in the 
contributions of Professor Lindley, Dr Draper and Professor Gelman and Professor Meng. Any such 
solution must also imply finding a value for cl /c2 by some means. It is certainly true that the classical 
emphasis on hypothesis testing has led to too much consideration of nested models. The sharp null 
hypothesis should rarely be considered as a separate model with a non-zero probability mass. Professor 
Lindley's example is similar. Unless in the specific application there is some reason to consider that 
0 > 0 and 0 < 0 are so intrinsically different as to induce potentially very different prior beliefs over the 
positive and negative half-lines, there is no reason to treat this as a model comparison problem. As 
in the nested case, both models fit into a wider framework in which they are defined by a continuous 
parameter that is meaningful, and so prior beliefs for it can be realistically elicited. However, Dr Draper 
and Professor Gelman and Professor Meng go too far when they imply that this can be done generally. 
Of course we can create an artificial grand encompassing model, but combining disparate models with 
quite different parameter spaces in this way does not help. We cannot use such an artificial structure 
to specify prior beliefs, and certainly not to give an unambiguous value to cl Ic2. I agree with Draper 
(1995) that we must allow for model uncertainty by 'comparing' widely disparate models, which cannot 
be naturally subsumed in a continuous encompassing model framework. 

Other methods 
Several discussants advocate alternative methods, which surely all have their place in a statistician's 

toolkit. However, I still believe that the FBF is the most useful proposal so far in the class of methods 
based on partial Bayes factors and the idea of a training sample. Professor Smith, Dr Pericchi and 
Professor Berger and Dr Mortera favour intrinsic Bayes factors for various reasons. Dr Pericchi and 
Professor Berger and Dr Mortera regard the existence of an 'intrinsic prior' as important. One formulation 
of an arithmetic intrinsic Bayes factor is asymptotically equivalent to using a particular prior distribution, 
called the intrinsic prior by Berger and Pericchi (1993). Dr Pericchi advocates using this prior (assuming 
that it can be found) and computing the usual Bayes factor. This seems dangerous to me. The asymptotic 
equivalence to using a given prior is an interesting curiosity, but to suppose that this magically defines 
in any sense an ideal, natural or reasonable representation of one person's prior beliefs is to endow 
it with too much significance. 

Professor Smith's characterization leads not to an arithmetic intrinsic Bayes factor but to the geometric 
form. Geometric averaging of Bayes factors is vastly more natural than arithmetic averaging, and this 
is the only form that I could be happy with. (This is another reason for distrusting the intrinsic prior.) 
Professor Smith's derivation is via one way of computing a solution to a specific decision problem, 
and I do not have a comparable derivation of the FBF to offer. As I said at the beginning of this reply, 
I see the FBF not as a solution to any specific inference problem but as underpinning a variety of 
inferences. 

I am still suspicious of Professor Aitkin's posterior Bayes factor (see my discussion of conservatism 
below). Dr de Vos obtains other kinds of partial Bayes factor by using Binet-Cauchy methods. His 
work is certainly interesting but is rather a case of a technique looking for an application. His underlying 
rationale for averaging Bayes factors in the way that he does is just that he can derive a closed form 
solution in that case. 

Professor Raftery's suggestion of using proper priors that are fairly flat over the region where the 
likelihood could be substantial is essentially what the FBF does. A prior proportional to the likelihood 
to the power b is certainly concentrated where the likelihood is substantial and is fairly flat if b is 
sufficiently small. The FBF does this automatically: perhaps in his (unpublished) references Professor 
Raftery achieves a similar effect. He also suggests that the Schwarz criterion can yield a 'reference' 
Bayes factor. Professor Cox's contribution is similar and can be seen as a way of writing the O(1) term 
a in expression (5) by reference to his no, which is an effective sample size for some prior information. 
There may indeed be cases where there is real intuition about no, but in general its definition is rather 
abstract. 

I must end this part of my reply in the same generous spirit as several of the discussants. The FBF 
may be a step forwards but it is far from an ultimate solution. There are many ways to look at these 
problems, and in practice a statistician might be well advised not to rely on just one. 
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Conservatism 
Dr Pettit and Dr Young both point out clearly the conservatism of the FBF, in that it gives factors 

which are generally closer to 1 than some competing methods. There are two reasons for this. One is 
shared by other forms of partial Bayes factor, which is that some of the data are being used for training. 
This conservatism may be adjusted for by the following argument. 

Professor Lindley reasons convincingly that if the prior distributions on the Ois are improper then we 
cannot attach real meaning to the prior probabilities P(Mi) of the models. The apparent implication is 
that even if a Bayes factor can be computed there is no prior odds P(M1 )/P(M2) with which to multiply 
it to obtain the posterior odds P(M1 I x)/P(M2 I x). However, an important point is being missed. The 
partial Bayes factor B(z I y) should not be multiplied by P(M1 )/P(M2) to derive the posterior odds, but 
by P(M1 I y)/P(M2 I y). Now the training sample y produces proper posterior distributions conditional on 
each model separately and Professor Lindley's comments no longer apply. The odds P(M1 I y)/P(M2 I Y) 
can be properly defined. The statistician or client might specify this ratio directly, reflecting beliefs about 
the two models based on the training data as well as prior knowledge. Multiplying it by the partial Bayes 
factor B(z I y) results in a fully coherent assessment of the posterior odds P(M1 I x)/P(M2 I x). (Professor 
Aitkin's posterior Bayes factor cannot apparently be made coherent in this way.) 

In practice it would not be easy to specify P(M1 I y)/P(M2 I y). It would clearly depend on the choice 
of y and is in fact constrained so that every choice of y should lead to the same final posterior odds. 
Both the FBF and the intrinsic Bayes factors replace this ratio by some kind of typical value, which 
might in practice be easier or more difficult still to specify. An alternative is to defy Professor Lindley's 
logic and to insist on asserting a value for P(M1 )/P(M2), for instance by giving the models equal prior 
probabilities, and then to suppose that the training sample would have given similar evidence about 
the models, in proportion to its size, as the rest of the data. This is plausible for the FBF and would 
result in multiplying the asserted P(M1)/P(M2) by Bb(x) raised to the power (1 - b)'-. We might 
consider Bb (X)1/(1 - b) as an FBF 'corrected' for the loss of the training information. (A similar 
'correction' could be applied to intrinsic Bayes factors.) 

The other source of conservatism in the FBF is the fact that it replaces a particular training sample 
y by a kind of typical training sample that produces the most perfect match to the remaining data. 
In a sense this gives each model the maximum possible 'benefit of the doubt'. Intrinsic Bayes factors 
incorporate variation in y, which may be beneficial. The FBF could be likened to the simplistic classical 
approach to predictive distributions which replaces the parameter 0 by its maximum likelihood estimate 
in the predictive likelihood, thereby failing to allow for posterior uncertainty about 0. 

Other matters 
I have dealt above with what I perceive to be the major themes arising in the discussion. It would 

take much longer to answer every single point, and so I shall now content myself with addressing just 
a few. 

Professor Lauritzen makes some interesting observations concerning discrete data models. An even 
simpler example is a single binary sample, i.e. Bernoulli trials with probability 0 of success. If the improper 
prior distribution proportional to 0 1 (1 - 0)- I is used, what constitutes a minimal training sample? Two 
observations suffice to produce a proper posterior, but only if one is a success and one a failure. If 
this is the definition of a minimal sample, then all minimal training samples are alike, and all produce 
a uniform posterior. An alternative notion is that a sample is minimal if it has one success and at least 
one failure, or one failure and at least one success. Now the minimal training sample size is undefined. 
Provided that the full data contain a minimal sample (in either sense), the FBF can be defined for 
arbitrarily small b, but it is not clear what b corresponds to my 'minimal b' suggestion. Can any guidance 
now be given about b? As Professor Lauritzen found, letting b tend to 0 does not work at all. I think 
that the application of the FBF, and other kinds of partial Bayes factor, to discrete data problems will 
need separate and careful consideration. 

In general the FBF is properly defined for b smaller than the 'minimal' size. Letting b go to 0 is 
equally unhelpful in general models, as Dr Young's Fig. 6(a) shows, for example. Professor Kass and 
Professor Wasserman point, however, to the interesting connection with their own work for a training 
sample equivalent to one observation, which is possible even if the minimal training sample would have 
more than one observation. They suggest that this still produces a sensible FBF. An open question, 
then, is how low can we go? 

I am grateful to Dr Gilks for several very interesting comments. I particularly like his method for 
computing the FBF by the MCMC method. 
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Finally, Professor Smith is dismayed (as others appear to have been) by my lapse into practices which 
he seems to suggest are not strictly within the Bayesian paradigm. I will not stoop to identifying similar 
heresies that he has committed, or (as I did jokingly at the meeting) plead for clemency on the grounds 
that it is my first offence! I do not think that I have strayed from clear Bayesian thinking. If I have, 
and if these methods do not strictly conform to the Bayesian paradigm, then I am confident that a 
sensible solution has not yet been found that does conform, either for the problem of model comparison 
with weak prior information or for the general question of Bayesian robustness. 
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