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Assessment and Propagation of Model Uncertainty 

By DAVID DRAPERt 

University of Bath, UK 

[Read before The Royal Statistical Society at a meeting organized by the Research Section 
on Wednesday, March 16th, 1994, Professor V. S. Isham in the Chair] 

SUMMARY 
In most examples of inference and prediction, the expression of uncertainty about unknown 
quantities y on the basis of known quantities x is based on a model M that formalizes 
assumptions about how x and y are related. M will typically have two parts: structural 
assumptions S, such as the form of the link function and the choice of error distribution 
in a generalized linear model, and parameters 0 whose meaning is specific to a given choice 
of S. It is common in statistical theory and practice to acknowledge parametric uncertainty 
about 0 given a particular assumed structure S; it is less common to acknowledge structural 
uncertainty about S itself. A widely used approach involves enlisting the aid of x to specify 
a plausible single 'best' choice S* for S, and then proceeding as if S* were known to be 
correct. In general this approach fails to assess and propagate structural uncertainty fully 
and may lead to miscalibrated uncertainty assessments about y given x. When miscalibration 
occurs it will often result in understatement of inferential or predictive uncertainty about 
y, leading to inaccurate scientific summaries and overconfident decisions that do not 
incorporate sufficient hedging against uncertainty. In this paper I discuss a Bayesian approach 
to solving this problem that has long been available in principle but is only now becoming 
routinely feasible, by virtue of recent computational advances, and examine its im- 
plementation in examples that involve forecasting the price of oil and estimating the chance 
of catastrophic failure of the US space shuttle. 

Keywords: BAYES FACTORS; CALIBRATION; FORECASTING; HIERARCHICAL MODELS; 
INFERENCE; MODEL SPECIFICATION; OVERFITTING; PREDICTION; ROBUSTNESS; 
SENSITIVITY ANALYSIS; UNCERTAINTY ASSESSMENT 

1. INTRODUCTION 

The general framework of problems in inference and prediction involves two sets 
of ingredients: unknown(s) y-such as the causal effect of a treatment in inference 
or the price of something next year in prediction-and known(s) x, which will typically 
include both data and context. The desire is usually to express uncertainty about y 
in the light of x, for instance through a probability specification of the form p (y I x). 
Specifications of this type that involve conditioning only on things that are known 
are rare, even in comparatively simple settings (e.g. Lindley (1982)); instead we typically 
appeal to a model M that formalizes judgments about how x and y are related. 

1.1. Structural Uncertainty 
The model may be expressed (e.g. Draper et al. (1987) and Hodges (1987)) in two 

parts as M= (S, 0), where S represents one or more sets of structural assumptions-such 
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as a particular link function in a generalized linear model, or a particular form of 
heteroscedasticity or time dependence with data that are not independent and identically 
distributed (IID)-and 0 represents parameters whose meaning is specific to the chosen 
structure(s). (It will often be possible to express a given model M in more than one 
way by using this notation, but that does not affect the discussion that follows.) Once 
S has been chosen, 0 typically follows fairly unambiguously, apart from technical 
concerns about reparameterization; but how is S arrived at in practice? 

Often the design by which the data in x were gathered renders some structural 
assumptions compelling. For instance, the randomization employed in designed 
experiments and sample surveys may be regarded as serving the dual purpose of 
promoting comparability of treated (sampled) and untreated (unsampled) units and 
of supporting the assumption of a particular form of conditional exchangeability of 
the relevant outcome values (e.g. Draper, Hodges, Mallows and Pregibon (1993)). 
But even in controlled experiments and randomized sample surveys key aspects of 
S-such as distributional choices for residuals and functional forms for dose-response 
relationships-will usually be uncertain, and this is even more true with observational 
studies and data gathered with non-random sampling plans. 

Thus in practice the model often contains aspects that are not known with certainty: 
M is not necessarily a part of x. It is a routine feature of most statistical methods 
to acknowledge parametric uncertainty about 0 once a particular form for S has been 
chosen, but it is less routine to acknowlege structural uncertainty about S itself. A 
widely used approach involves examining the data in x to identify a single 'best' choice 
S* for S, and then proceeding as if S* were known to be correct in making inferences 
and predictions. The field of data analysis, for instance, which has grown considerably 
in the last 30 years (e.g. Hoaglin et al. (1985)), is devoted to the development of 
graphical and numerical methods, often based on the examination of residuals from 
the fit of a single standard model, that facilitate a data-driven search for S*. The 
very fact of this search, however, implies structural uncertainty that in general is not 
fully assessed and propagated with the S*-approach, and the result can be uncertainty 
assessments about y given x whose calibration is poor (e.g. in the sense that the 
empirical distribution of (f -Yactua)/SD(f) across one or more such assessments is 
unacceptably far from (say) N(0, 1)). When such miscalibration occurs it often results 
in anticonservatism: in retrospect one notices that one's uncertainty bands were not 
sufficiently wide. 

1.2. Overfitting 
This problem, which is often referred to as overfitting the available data, is well 

known but has yet to receive a fully satisfying treatment in statistical research and 
pedagogy. Most of the leading text-books on applied statistics (e.g. Cox and Snell 
(1981)) and regression (e.g. Weisberg (1985)) include warnings against overfitting, 
but also contain examples of empirical model building of the S*-form. Another applied 
area in which the problem has potential to arise (e.g. Chatfield (1994)) is in time series 
modelling, where model identification, fitting and forecasting are all routinely based 
on the same data. 

Good regression texts (e.g. Mosteller and Tukey (1977)) offer advice on the value 
of cross-validation-splitting the data into independent modelling and validation data 
sets-as a partial solution to the overfitting problem (e.g. Picard and Cook (1984)), 
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but model uncertainty will typically remain even after cross-validation. Moreover, 
with small samples of data-precisely when structural uncertainty is greatest-cross- 
validation may not be feasible, because there are too few data values with which to 
carry out both the modelling and the validation activities in a stable way. Bootstrapping 
the modelling process (e.g. Efron and Gong (1983))-creating bootstrap copies of 
the available data, conducting independent modelling activities on each copy and 
combining the results in a way that is sensitive to the modelling uncertainty thus 
uncovered-may help, but as yet little is known about the performance of this 
approach. 

2. CONSEQUENCES OF UNACKNOWLEDGED STRUCTURAL UNCERTAINTY 

There are many recent references on the degree of overconfidence generated by 
basing inferences and predictions on the same data set on which the search for structure 
occurred; see, for example, Freedman et al. (1986), Hjorth (1989), Miller (1990), 
Potscher (1991) and Faraway (1992). Instances may also be found in decision-making 
in which structural uncertainty is documented by analysts but ignored by consumers 
of the analysis. Examples of each of these phenomena follow. 

2.1. Model Selection in Regression 
Adams (1991) has conducted perhaps the most comprehensive investigation to date 

of the effects of the search for S* on inference in regression. He used simulation to 
estimate the combined effects of selection of variables, transformation of outcome 
and predictor variables, and deletion of outliers on the nominal observed significance 
level of R2. He varied the sample size from 10 to 70, the number of predictors x 
from 5 to 30 and the degree of correlation among the predictors from 0 to 0.75, and 
simulated random error and predictor values from t-distributions with degrees of 
freedom from 1 to o. He examined 114 regression strategies, each based on a different 
pattern of presence or absence of 

(a) a simple Bonferroni-based outlier rejection rule, 
(b) selection of variables by using a stepwise algorithm or Cp, 
(c) transformation of the x-values with the Box-Tidwell method and 
(d) transformation of the outcome y with the Box-Cox approach. 

Averaging over characteristics of the data sets-all in null situations in which y was 
unrelated to x, so that the average p-value for judging the significance of the observed 
R2 should have been 0.5-he found that the most opportunistic of the 114 strategies 
produced average nominal p-values well below 0.001, and that every strategy involving 
either stepwise- or Cp-based selection of variables yielded average nominal values 
below 0.01. The degree of similarity between some of the most egregious strategies 
in Adams's experiment and standard text-book prescriptions for empirical regression 
model building is disquieting. 

2.2. Forecasting Price of Oil 
In 1980 the Energy Modeling Forum (EMF) at Stanford University assembled a 

43-person working group of economists and energy experts, whose goal was to forecast 
world oil prices from 1981 to 2020 to aid in policy planning. The group generated 
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predictions based on each of 10 leading econometric models, under each of 12 scenarios 
embodying a variety of assumptions about inputs to the models, such as supply, 
demand and growth rates of relevant quantities. One scenario, the so-called 'reference', 
was identified as a 'plausible median case' and as 'representative of the general trends 
that might be expected', although readers of the group's summary report (Energy 
Modeling Forum, 1982) were cautioned not to interpret point predictions based on 
the reference scenario as ' [the working group's] "forecast" of the oil future, as there 
are too many unknowns to accept any projection as a forecast'. The summary report 
concluded, however, that most of the uncertainty about future oil prices 'concerns 
not whether these prices will rise . . . but how rapidly they will rise'. 

One may identify three sources of uncertainty in this situation (Draper et al., 1987): 
scenario uncertainty about the inputs to the models, model uncertainty (conditional 
on the scenario) about how to translate the inputs into forecasts and predictive 
uncertainty, conditional on the scenario and model. The working group did not attempt 
to assess predictive uncertainty, and their final report concentrated on the reference 
scenario, which-despite their warning above-tended to downplay scenario 
uncertainty informally as well, but model uncertainty conditional on the reference 
scenario was evident in the report's tables and figures. Fig. 1, for example, is a plot 
of the yearly point predictions from each of the 10 econometric models under the 
reference scenario from 1980 to 1990. 

Averaging across models-giving them equal weight, since the EMF summary report 
treats them even-handedly-to obtain a predicted value for 1986, for instance, would 
yield a figure of about $39, with implied 90% uncertainty limits (across models, 
conditional on the reference scenario and ignoring predictive uncertainty) of about 
($27, $51). This uncertainty band is consistent with those produced by other efforts 
parallel to the EMF's at the time (e.g. Energy Information Administration (1982)); 
indeed, as Syme (1987) puts it, '[many] reputable institutions and individuals made 
forecasts of 1986 oil prices in the 1970s and early 1980s, predicting prices over $40'. 
She goes on to report that an estimated $500000 million were invested worldwide 
by governments and private companies in the early 1980s on the strength of forecasts 

0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 

Year 

Fig. 1. Forecasts of the price of oil by each of the 10 EMF models under the reference scenario, 1980-90: 
the lower full curve is the actual price 
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Fig. 2. Forecasts of the price of oil by each of the 10 EMF models under one of the 11 non-reference 
scenarios, 1980-90: the lower full curve is the actual price 

and informal uncertainty assessments like those in Fig. 1. The actual 1986 world average 
spot price of oil (see the lower full curve in the plot) was about $13. 

What went wrong? It is not fair to criticize forecasters after the fact for making 
a sharply inaccurate prediction-no one can see into the future-but it is fair to note 
that both scenario uncertainty, which might be expected to dominate, and predictive 
uncertainty were missing in uncertainty assessments like that implicit in Fig. 1. In 
particular, anyone relying only on Fig. 1 to produce predictive intervals would in 
effect be assigning zero weight to the 11 non-reference scenarios. This observation 
may seem nothing more than hindsight-after all, perhaps what happened bore no 
relation to any of the 12 scenarios that the EMF's working group examined, and people 
can hardly be faulted for not anticipating something totally new-but in fact one 
of the non-reference scenarios was rather like what actually occurred (Fig. 2). In Section 
6.1 I examine the extent to which assessing and propagating between-scenario and 
predictive uncertainty improves predictive calibration in this example. 

3. STANDARD BAYESIAN SOLUTION 
In theory there is a straightforward Bayesian approach to solving the problem of 

failure to assess and propagate structural uncertainty, namely to treat the entire model 
M= (S, 0) as a nuisance parameter and to integrate over uncertainty about both S 
and 0, as in the expression 

p(yIX9 p(y|x,M)p(M|x)dM= p(y|x, 0, S)p(O, SIx)d0dS. (1) 

One forms a weighted average of the conditional inferential or predictive distributions 
p (yx, M), using as weights the posterior model probabilities p(MI x). This idea is 
present, implicitly or explicitly, in the writings of workers in at least three fields: 
statistics (e.g. Box and Tiao (1962), de Finetti (1972), Davis (1979), Geisser and Eddy 
(1979), Smith and Spiegelhalter (1981), Stewart and Davis (1986), Brown and Lindley 
(1986), Draper et al. (1987), Hodges (1987), Lavine (1988, 1992), Raftery (1988) and 
Madigan and Raftery (1994)), econometrics (e.g. Geisel (1974) and Leamer (1978)) 
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and artificial intelligence (e.g. Self and Cheeseman (1987) and Mackay (1992)). In 
the past the implementation of equation (1) in practice has presented major 
computational challenges, but advances in the last 10 years have greatly reduced this 
burden. I discuss computational issues in Sections 4 and 5. But first, what should 
one take for the range of integration ' in this equation? 

Writing the posterior model probabilities p(MI x) as 

p(O, Six)=p(SIx)p(0ix, S), 

it may be seen that the S*-approach described in Section 1 is a special case of equation 
(1), in which acting as if the structural assumptions in S*, chosen after a data-driven 
search, are 'correct' corresponds to conditioning on S*: 

p(y|x, At4')=p(yIx, S*)= p(ylx, 0*, S*)p(O* ix, S*)dO*. (2) 

This approach correctly assesses parametric uncertainty given S*-through the 
integration over 0* with respect to the posterior distribution p (0* x, S*)-and 
inferential or predictive uncertainty about y conditional on M* = (S*, 0*), through 
the distribution p(y Ix, 0*, S*). But the search for S* implies structural uncertainty 
that has not been fully assessed and included in the uncertainty about y contained 
inp(y|x, S*). 

Working backwards from p (MIx) =p (S I x)p (O I x, S) to the prior distributions on 
which the posterior model probabilities are based gives 

p(MIx)=cp(S)p(0IS)p(xI0, 5), 

where c is a constant of proportionality. This expression includes two familiar 
ingredients, a prior distribution p(O S) on the parameters and the likelihoodp(xI 0 , S)- 
both specific to a given structural choice S-but it also includes the unfamiliar p (S), 
a prior distribution on the set of all possible structural assumptions. The key issue 
in improving on the S*-approach to modelling is how to specify p(S). 

In effect the S*-approach solves this specification problem by equating p(S) to point 
mass on S*, a choice that may be too concentrated on a single set of structural 
assumptions to lead to well-calibrated inferences and predictions. At the other extreme, 
we might consider specifying p(S) much more diffusely, hoping that the updating 
process from p (5) top (SIx) would automatically identify plausible modelling choices. 
However (e.g. Diaconis and Freedman (1986)), in even the least complicated applied 
problems with any hint of realism, the space of all possible models is too large to 
guarantee the success of this updating. 

For example, consider perhaps the simplest case of all, a finite sequence x = (xl, 
. . ., xn) of binary outcomes with no predictors. A model for these data (e.g. 
Fienberg and Gilbert (1970) and Diaconis (1977) is just a joint probability distribution 
for the observables, i.e. a single point in the (21 - 1)-dimensional simplex [(Po ... o, 

* P,pii 1): O pi i -,po o+- . .+P1 1= l}. Making standard structural 
choices-such as taking the xi to have an IID, exchangeable or Markovian 
character-corresponds to conditioning on subspaces of this simplex of very low 
dimension. With only 10 observations, for instance, an amount of data insufficient 
to support any but the crudest comparisons of model plausibility, the set X6 of all 
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possible models has dimensionality more than 1000, whereas making a standard 
structural assumption such as 'IID Bernoulli with success probabilityp' corresponds 
to conditioning on a non-linear subspace of dimension only 1. The problem is that 
the dimensionality of XK increases exponentially with n, a rate much faster than that 
at which information about the relative plausibility of alternative structural choices 
accumulates. We cannot count on 'the data to swamp the prior' when what is at issue 
is the structural specification of how known and unknown quantities are related. 

Thus the space of all models is 'too big' to support a diffuse p(S): the promise 
of inference unconditional on a specific set of modelling assumptions-which appears 
to be offered by making the range of integration in equation (1) all of X-,is 
unrealizable. However, although it will always be necessary to set p(S) to 0 over most 
of model space, a single structural choice S* chosen by a data-driven search amounts 
to a specification of p(S) that may be 'too small' to be well calibrated. Is there a 
compromise between S* and all of X'? 

A reasonable intermediate position might be based in practice on model expansion 
(e.g. Box (1980) and Smith (1984)), i.e. starting with a single structural choice such 
as S* and expanding it in directions suggested by context, by the data analytic search 
that led to S*, or by other considerations. Good applied work already features 
sensitivity analyses (e.g. Skene et al. (1986)), in which the assumptions in S* are 
challenged by qualitatively exploring how much our conclusions would change if an 
alternative set of plausible assumptions were made. Equation (1) takes this process 
a step further, by integrating over structural uncertainty rather than simply examining 
it qualitatively. 

4. CONTINUOUS MODEL EXPANSION 

Model expansion fits naturally into the framework of hierarchical modelling (e.g. 
Lindley and Smith (1972) and DuMouchel and Harris (1983)), by adding to the top 
of the hierarchy a level that corresponds to the structural uncertainty: the usual 
Bayesian formulation 

( 0 p P(0) is S p(S) 
(xlO) - p(xIO) replaced (olI S) p(O IS) (3) 
(Yl 0)-~p(yIx, 0)) by (xI, 0 S) p(yxI,a, S) 

Two cases arise, discrete and continuous, according to whether the embedding of 
S* in a larger subset of model space-by including the top level in the right-hand 
side of formulation (3)-is indexed discretely or continuously. In the continuous case 
let ae be the expansion index and Moe be the expanded model, of which S* = MO (say) 
is a special case. 

4.1. Hierarchical Model for Location Inference 
An early example of continuous model expansion was given by Box and Tiao (1962), 

who reanalysed Darwin's data on the heights of self- and cross-fertilized plants. These 
data are in the form of a paired comparison, so that it is reasonable in modelling the 
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pairwise differences x = (x1, . . ., xn) to condition on the structural assumptions 
Mo = [xi = it + aei, ei IID symmetric about 01, but there is no a priori reason to insist 
on a specific distributional choice for the ei. Fisher (1935) had previously analysed 
these data by conditioning on the Gaussian distribution; Box and Tiao (1962) expanded 
Fisher's model continuously, by embedding the Gaussian distribution in the symmetric 
power-exponential family p (e I a) = c exp( - I I e 2/(1 +a)), which includes the double 
exponential (a = 1), Gaussian (a = 0) and uniform (az - 1) distributions as special 
cases. Regarding Box and Tiao's structural assumptions -7X (say) as an expansion 
of -%, note that the quantities pt, a and ae may be viewed as playing three different 
roles in this formulation: a may be thought of as indexing one aspect of the structural 
assumptions in , and /i, the location parameter of interest (the quantity y in 
equation (1)), and a, a nuisance (scale) parameter, are components of 0= (Gk, a). 
Equation (1) in this context becomes 

p(AIX _,)== p(plx, a, a)p(a, aIx)dada, (4) 

in which the integration over a may be regarded as acknowledging a form of structural 
uncertainty unaddressed in Fisher's formulation. Interestingly, even though Fisher's 
model corresponds to placing all our prior mass on a = 0 in the Box and Tiao model, 
so that Box and Tiao expressed greater model uncertainty than did Fisher, it is possible 
to have less posterior uncertainty about , in Box and Tiao's formulation than in 
Fisher's; see Draper (1993). 

In model expansion applications involving parametric inference it is important for 
the quantity of interest, in this case , to have the same meaning for each value of 
a in the expanded model Ma, so that for instance it would have been problematic 
in Box and Tiao's analysis to embed the Gaussian distribution in a family including 
asymmetric distributions. In predictive applications this sort of restriction does not 
arise, because the quantity of interest, a future observable y, is automatically common 
to all models Ma, 

4.2. Fixed and Random Effects Models for Combining Information 
from Related Experiments 

A more recent example of continuous model expansion, which arises in the 
combining of information from related experiments, is the case of so-called fixed 
effects and random effects models in meta-analysis (e.g. Wachter and Straf (1990)). 
Given data from k experiments or studies designed to measure essentially the same 
outcome, such as the change in mortality rate caused by a treatment in medical 
research, we may wish to pool the information from these k sources, to create a better 
summary of what is known about the effects of the treatment in question than that 
available from any single source. Letting Oi be the underlying treatment effect in 
study i, which may differ from that in study i' owing to unmeasured differences in 
patient cohorts or treatment protocols, and letting xi be the corresponding data 
summary in study i, a hierarchical Gaussian random effects model like the following 
may approximate our structural judgments: 

, a=-) '_p(lL)p(T2), 

Ma: (OfIitt, A) IID N(, T2), (5) 
(X I oi inep_ i 
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where the Vi are regarded as known for convenience (typically each xi is based on 
a sufficiently large sample of patients that this provides an adequate approximation). 
Fixed effects models are a special case of equation (5) in which all the 0, are assumed 
equal and correspond to random effects models in which the between-study variance 
parameter r2 is set to 0. Expanding the model from a fixed effects formulation 
to one in which r2>0 implies a net increase in uncertainty about the underlying 
effect of interest, arising from the between-studies component of variance; failing 
to adopt a random effects formulation when necessary may therefore lead to 
miscalibration. 

Model (5) has an interesting application in the physical sciences, in the determination 
of fundamental constants such as the speed of light c. As Henrion and Fischhoff 
(1986) and others have noted, if we plot a time series of the currently accepted value 
of c with uncertainty bands obtained from the standard fixed effects measurement 
error model, we notice that every 20 years or so a new value for c is accepted that 
is inconsistent with the previous uncertainty assessments, demonstrating the presence 
of bias in the measurement process in addition to the 'random' error in the fixed 
effects formulation. With i indexing experiment and j indexing replication within 
experiment, hierarchically expanding the usual measurement model xij = It + eij to 
account for the bias, as in the two-stage model xij = I + bi + eij, bi = ? + ci, leads to 
better-calibrated uncertainty assessments than those obtained from the fixed effects 
model. See, for example, Draper, Gaver, Goel, Greenhouse, Hedges, Morris, Tucker 
and Waternaux (1993) for other uses of model (5) in physics and chemistry. 

4.3. Computation and Calibration Issues 
Gaussian fixed effects models are easy to fit by using weighted least squares, and 

when appropriate lead to particularly simple pooling rules by which information from 
the available sources may be effectively combined. In contrast, even a relatively 
straightforward empirical Bayes approach to the random effects model (5) involves 
an iterative estimate of -? (see, for example, Efron and Morris (1973)). Thus 
practitioners tend to favour fixed effects models when appropriate, so much so that 
a common modelling approach involves performing a test of heterogeneity of the 
0i and only adopting the random effects formulation if the test rejects the null 
hypothesis H: -2 =0 of homogeneity (see DuMouchel (1990) for criticisms of this 
strategy). This is a so-called preliminary test method, similar in spirit to testimators 
that are sometimes used in econometrics (e.g. Waikar et al. (1984)). Methods of this 
type have been shown to be inferior in both accuracy and calibration to random effects 
methods, such as the empirical Bayes approach mentioned above, that deal more 
smoothly with the uncertainty about r2 (see, for example, Sclove et al. (1972) and 
Greenland (1993)). 

There is a direct analogy between preliminary test methods and the S*-approach 
to modelling described in Section 1: in the S*-approach we search for a single best 
structure, test its adequacy and adopt it unless it fails the test. Using model expansion 
to embed S* in a larger class of models, motivated by the structural assumptions in 
S* that are most in doubt, treats the modelling uncertainty more smoothly, and-as 
in the case of empirical Bayes improvements to testimators-may be expected in general 
to yield better calibration. 

Computation in hierarchical models has been difficult until recently, in most settings 
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other than that treated by Lindley and Smith (1972): Gaussian linear models with 
a conjugate prior structure, in which closed form expressions for many of the quantities 
of interest are available. The application of a variety of approximation methods in 
the last 10 years to hierarchical models-including the EM algorithm (e.g. Wong and 
Mason (1985)), Monte Carlo integration (e.g. Stewart (1987)) and Gibbs sampling 
and related Markov chain Monte Carlo (MCMC) methods (e.g. Smith and Roberts 
(1993))-promises to increase greatly the routine feasibility of continuous model 
expansion in applied work. The hierarchical structure in the right-hand side of 
formulation (3) is particularly well suited to MCMC methods; see, for example, Seltzer 
(1994) for educational applications. 

5. DISCRETE MODEL EXPANSION 
Although it is often preferable to perform model expansion continuously, so that 

all the structural uncertainty in the expanded model formulation is accounted for, 
it is not always possible to index departures from a single structural choice S* smoothly. 
Examples include the following: 

(a) dynamic linear models with discrete state spaces (e.g. West and Harrison (1989)) 
-in many applications of dynamic linear models it is natural to regard the 
state space as continuous, but in other problems (e.g. Smith and West (1983)) 
it is more fruitful to view the underlying process of interest as moving over 
time among a finite set of states that have direct substantive meaning; 

(b) discrete propagation of scenario uncertainty, as in the EMF oil example of 
Section 2.2, in which 12 distinct scenarios meriting non-zero prior probability 
but not readily indexed continuously were available. 

Discrete model expansion may also be used to approximate a continuous expansion, 
as in Spiegelhalter's (1981) approximation of the power-exponential model in Box 
and Tiao's (1962) approach in Section 4.1 by the three-point distributional family 
[Gaussian, uniform, double exponentialI to produce a robust location estimator. Recent 
applied examples of discrete model expansion include Racine et al. (1986), Taylor 
(1989) and Moulton (1991). For the remainder of the paper I shall concentrate on 
the discrete case. 

With a finite set f=S1, . . ., SJ of structural alternatives in the expanded 
model, equation (1) becomes 

m r m 
P(Yjx, i)= E |P(Ylx, Si, Oi)p(Si. Oilx)dOi= Zp(SIlx)p(ylx, Si). (6) 

i=l i=l 

There are thus three ingredients in the computation of p(ylx, f/): 
(a) the choice, and prior plausibility, of the Si over which model uncertainty is 

assessed and propagated; 
(b) the conditional inferential or predictive distributions p(ylx, Si) given 

structural choices Si and 
(c) the posterior structural probabilities p (Si I x). 

Each of these components is addressed in the subsections that follow. The second 
and third components are essentially technical; the first is substantive, and includes 
the greatest possibility for a retrospective judgment of error. 
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5.1. Alternative Structural Choices: Specifying p (S) 
As the examples in Section 6 indicate, the choice of the alternative structures Si 

in equation (6) is highly context specific, but several general comments may be made 
in any case. 

(a) L. J. Savage used to say that one's model should be 'as big as a house'. One 
way to express why this is desirable is by appeal to what Lindley (1982) calls 
Cromwell's rule, which reminds us that any possibility receiving prior probability 
0 must also have posterior probability 0. The main way to avoid noticing after 
the fact that a set of modelling assumptions, different from those originally 
assumed, turned out to be correct is for one's model prospectively to have been 
sufficiently large to encompass the retrospective truth. This argues for the routine 
use of 'big' models. In deciding how big is sufficiently big, we may undertake 
a kind of preposterior analysis of structural assumptions, with an eye to the 
avoidance of retrospective regret at not having included all plausible ways in 
which the unknown and known quantities might be related. 

(b) E m 1p (Si I x)p (y I x, Si) is intended to be a discrete approximation to 

p (y|x I )= _,,,p(Mjx)p(yjx, M) dM. 

To improve on the less satisfactory approximation p(y I x, S*), we can try to 
include structures Si' alternative to S* satisfying two criteria: 

(i) Si' would have high posterior probabilityp(S' Ix) (if not given zero prior 
probability) and 

(ii) Si' has inferential or predictive consequences p(ylx, Si') that differ 
substantially from those of S*. 

This was referred to in Draper et al. (1987) as 'staking out the corners in model 
space'. This idea may be employed to define directions of departure from S* 
that are the most relevant for model expansion. 

Other possible approaches to the generation of alternative structures Si were 
mentioned at the end of Section 1: creating cross-validation or bootstrap samples 
from the available data and conducting parallel modelling activities on each sample. 
Also see George and McCulloch (1993), who used Gibbs sampling to produce posterior 
probabilities for subsets of predictor variables in regression, and Madigan and Raftery 
(1994), who used ideas from expert systems, together with an implicit p(S) strongly 
weighted against complicated structural choices, to find parsimonious submodels of 
high posterior probability in large contingency tables. 

Once a choice of the set 9` has been made, the numerical specification of the prior 
probabilities p(Si) will also typically be context specific. In situations that are not 
strongly guided by contextual considerations, we may again proceed by preposterior 
analysis, e.g. starting with constant p(Si) and computing forwards with various 
possible data sets x to see whether the composite result p (y I x, L97) appears realistically 
to assess uncertainty about y given x, and then varying p(Si) as needed. A form of 
prequential reasoning (Dawid, 1984) referred to in Draper et al. (1987) as retrospective 
calibration may be helpful in specifying the p(Si) in time series contexts: with enough 
data we may 
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(a) choose a variety of points in the past and pretend temporarily that they are 
the present, 

(b) make predictions into the known 'future', building up a history of forecast 
errors, and 

(c) adjust the prior weights p (Si) to bring the predictive distributions into good 
calibration with the actual values. 

5.2. Computing the Conditional Inferential or Predictive Distributions p(y I x, Si) 
The second ingredient in discrete model expansion is the set of inferential or 

predictive distributions 

p (yx I gSi)= Vp(y Ix, Si Oi) p(Oi ISi. x) dOi. (7) 

This aspect of model expansion creates no new computational burden, since we would 
have had to compute these distributions anyway as part of our sensitivity analysis. 
Closed form expressions for the results of the (possibly high dimensional) integration 
in equation (7) exist in important special cases, such as normal linear models (e.g. 
Zellner (1971)), and approximations-based, for instance, on Monte Carlo integration 
(e.g. Geweke (1989))-are also available. For large n the simple approximation 

p(ylx, Si) p(YIx, Si, Oi), (8) 

where Oi is the maximum likelihood estimate (MLE) of Oi under structural choice Si, 
may be sufficiently precise (especially in prediction problems, where parametric 
uncertainty on the variance scale is O(n-1) but overall prediction uncertainty 
is 0(1)). For an example of a more accurate approximation of p (yIx, Si) see 
equation (15) later. 

5.3. Computing Posterior Structural Probabilities p(S1 I x) 
Evaluating the posterior structural probabilities p (Si I x) = cp (Si)p(x I Si) comes 

down to computing Bayes factors p (x I Si)/p (x I Sj) for structure Si against structure 
Sj,, by calculating 

p(xl|Si) = Jrp(fiJ|Si) p(xJ0 fig Si) dOi. (9) 

Several methods for approximating Bayes factors are available, including Gaussian 
quadrature and a variety of simulation methods based on importance sampling, 
acceptance-rejection techniques and MCMC; see Kass and Raftery (1994) for an 
excellent review. I focus here on two Laplace approximations (e.g. Lindley (1961), 
Cox (1961), Leonard (1982) and Raftery (1993)), of which the first is 

Inp(xlSi)= 2kiln(2-r)- 2lnlfil +lnp(xl&i, Si)+lnp(&iJSi)+O(n-1)g (10) 

where ki is the dimension of Oi, Oi is either the mode of the posterior distribution 
p (0i Ix, Si) or the MLE and Ii is the observed information matrix evaluated at Oi. A 
simpler approximation that is often somewhat less accurate with small samples is 
obtained by noting that, for large n, lnIfil kkilnn and the prior contribution 
lnp(O& i Si) becomes negligible, leading to 
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Inp(xl|Si) = 2ki ln(27r) - 2kiln n+l1np(xl| i, Si) +O(l). (I11) 

The second and third terms on the right-hand side of equation (11) are recognizable 
as the basis of the Bayesian information criterion for model selection (Schwarz (1978); 
also see Rissanen (1986)). The first term on the right-hand side, ki ln(2ir), has been 
omitted in most other treatments of this approximation, but its inclusion has improved 
the accuracy of expression (11) in examples that I have examined involving the 
comparison of structural choices Si whose Oi have unequal ki (see Kashyap (1982)). 
The main way in general to be sure when n is sufficiently large to use equation (11) 
instead of equation (10) is to compute them both and to compare them, although 
routine experience with this approach will yield guidelines that over time will lessen 
the need for such explicit comparisons. 

In small sample situations with vague prior information about the parameters, 
care must be taken, if improper priors are used, to avoid undefined constants in 
approximation (10); see, for example, Spiegelhalter and Smith (1982) for an approach 
to solving this problem. An alternative solution would involve the use of proper but 
relatively uninformative priors whose specification is guided by preposterior analysis. 

5.4. Summary of Large Sample Approximation to p (y I x, 5??) 
To summarize this section, a simple large sample approximation to 

m 
p(ylx, 5?)= Zp(SiIx)p(yIx, Si) 

i=l 

may be obtained by computing the MLE Oi and maximum log-likelihood value for 
each model Mi=(Si, 0k), and setting ki=dim(0i). With diffuse structural and 
parametric prior information and large n we may then take 

p(y Ix, Si) p(y Ix, Si, Oi) 

and 

lnp (Si I x) -ki ln(2i-x) - I ki ln n + loglikmax + c, 

with c chosen to permit accurate normalization of the posterior structural probabilities 
so that they sum to 1. It is also useful to note that if p (y Ix, Si) has mean %,i and 
variance o2 , and p(S jjx)=v,ri 

m 
E(yIx, x )Es[E(yIx, S)] = Z rii 

i=l 

V(y x, 9 =Es [ V(y x, S)] + Vs [E(y Ix, S)] 
m m 

- Z 7rii2+ 7ri(/i-/) 
i=l i=l 

within- 7 between- 
= structure + structure (12) 

variance / variance 
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The last expression may be used as the basis of a model uncertainty audit, in which 
the overall inferential or predictive uncertainty about y is decomposed into the sum 
of two terms: the average conditional uncertainty given each structural choice and 
the uncertainty about y arising from structural uncertainty itself. With the S*-approach 
of Section 1 this second term is set to 0, often inappropriately. 

6. EXAMPLES 
6.1. Predicting Oil Prices 

Continuing the example of Section 2.2, what may be said about the likely price 
of oil in 1986 (say) from the vantage point of 1980, when scenario and prediction 
uncertainty are accounted for? Fig. 3 plots the s = 12 scenario-specific time series of 
point predictions from 1980 to 1990 obtained by averaging across the m= 10 
econometric models described previously, with equal weights (X1, . . ., Xm)= 
(0.1, ..., 0.1). With i indexing scenarios and j econometric models, most 1986 forecasts 
yij ranged from about $30-60 per barrel, with the exception of those based on two 
scenarios (numbered 7 and 9 in Table 1) incorporating a large and sudden drop in 
oil production capacity by the Organization of Petroleum Exporting Countries (OPEC) 
in the mid-1980s. 

Table 1 gives the scenario-specific means y5 = E7 l Xj9ij and standard deviations 
li = 2mL1 Xj(Yij -yi)2l/2 for 1986, together with scenario descriptors and a probability 
assessment (irj, . .., irs) based on how many non-standard conditions (relative to 
the 'reference' scenario) must occur simultaneously to produce each scenario. Other 
probability specifications that I examined, ranging as far away from that in Table 
l as i-x=(0.2, 0.1, 0.05, 0.05, 0.1, 0.1, 0.05, 0.1,0.05, 0.1, 0.05, 0.05)and(0.49, 0.06, 
0.06, 0.03, 0.06, 0.06, 0.03, 0.06, 0.03, 0.03, 0.03, 0.06), yielded conclusions that 
are qualitatively similar to those presented here. 

Attempting to go beyond the implied uncertainty assessment in Figs 1 and 2 requires 
acknowledging three levels of uncertainty: 

(a) between scenarios, 

1980 1 981 1 982 1 983 1 98 1 985 198ff 1 987 1 988 1 989 1 990 

Year 

Fig. 3. Scenario-specific forecasts obtained by averaging across models, giving them equal weight 
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TABLE 1 
Scenario-specific summaries of the oil price datat 

Scenario i Mean y, ($) Standard deviation a; ($) Probability x, 

1, reference 39 8 0.32 
2, oil demand reduction 33 8 0.08 
3, low demand elasticity 54 22 0.08 
4, combination of 2 and 3 42 16 0.04 
5, low economic growth 34 7 0.08 
6, restricted backstop 41 9 0.08 
7, drop in OPEC production 82 44 0.04 
8, technological breakthrough 38 7 0.08 
9, combination of 3 and 7 121 67 0.04 

10, optimistic 29 5 0.04 
11, combination of 2 and 7 48 11 0.04 
12, high oil price 59 12 0.08 

t'Restricted backstop' means slow growth of alternative energy sources; 'optimistic' combines scenarios 
2 and 8, plus the assumption of expanded OPEC capacity. 

(b) between models within scenarios and 
(c) between predictions within models and scenarios. 

With y as the actual 1986 oil price, x as the means and standard deviations (SDs) 
in Table 1 and a2. as the predictive variance conditional on the scenario and model, 
the analogue of equation (12) in this case (with M standing for econometric model 
and S for scenario) is 

E(y X, ) = Es [ EMfE(y I x, M, S)}] = Z i--Y, 
i=l 

V(y x, 5?) = (1) + (2) + (3) 
= Vs[EMfE(y x, M, S)J] +Es [ VMfE(y Ix, M, S)J] + 
Es [ EMT V(y x, M, S)J] 
s s s m 

- Z ri(y2-y)2+ E 7rir+ a Ej vi orj.. (13) 
i=1 i=1 i=1 j=1 

The EMF made no attempt to assess the predictive SDs aij. I have chosen values 
of the form aij = c9ij for small to moderate c, in the range (0.05, 0.3). To obtain a 
composite predictive distribution for y I simulated nij= 100000 7rXii Gaussian random 
variates with mean 3ij and SD aij and merged the resulting sample of 100000 values 
together. The full curve in Fig. 4 is a density trace for a typical result with c = 0.25; 
this may be compared with the density (broken curve) implied by an analysis of the 
type examined in Section 2.2, which conditions on the reference scenario and ignores 
predictive uncertainty. The mean of the full curve in Fig. 4 is about $46, with an 
SD of about $30, and the (0.01, 0.05, 0.5, 0.95, 0.99) quantiles are approximately 
($14, $20, $39, $92, $187). The variance of this distribution (895) decomposes into 
the three terms (scenario, model, prediction)=(354, 363, 178), so that a model 
uncertainty audit on the variance scale would attribute about 40Wo of the overall 
uncertainty to variation across scenarios, 4OWo to variation across econometric models 
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Crude Oil Prce (1981 Dollars per Barrel) 
Fig. 4. Density of the simulated predictive distribution for the 1986 price of oil, including scenario, 
model and prediction uncertainty (- ) and conditioning on the reference scenario and ignoring 
predictive uncertainty (.....) 

given the scenario and 20%7o to predictive uncertainty given the model and scenario. 
Only the second of these terms is present in Figs 1 and 2. 

The actual 1986 oil price of about $13 is unlikely given the assessment presented 
here-for example, the ratio of the predictive density at $13 to its maximum value 
(at about $37) is about 1/18. But $13 is by no means out of the question in the context 
of this assessment, as it was in the informal assessments of those making decisions 
on the basis of an implied uncertainty band of ($27, $51). If decision makers had 
been basing their policies and business choices on something like Fig. 4 instead of 
Fig. 1, much more hedging against uncertainty would have been built into their actions, 
and there was nothing to prevent this retrospectively happier outcome: all the 
information needed to carry out this analysis was available in 1980. 

6.2. Challenger Space Shuttle Disaster 
On January 28th, 1986, the US space shuttle Challenger exploded shortly after take- 

off, leading to an intensive investigation of the reliability of the shuttle's propulsion 
system. The explosion was eventually traced to the failure of one of the three field 
joints on one of the two solid booster rockets. Each of these six field joints includes 
two 0-rings, designated as primary and secondary, which fail when phenomena called 
erosion and blow-by both occur. 

The night before the launch a decision had to be made regarding launch safety. 
The discussion among engineers and managers leading to this decision included concern 
that the probability of failure of the 0-rings depended on the temperature t at launch, 
which was predicted to be 31 OF. There are strong engineering reasons based on the 
composition of 0-rings, which are made of rubber, to support the judgment that 
the probability of failure may rise monotonically as the temperature drops. One other 
variable, the pressure s at which safety testing for field joint leaks was performed, 
was available, but its relevance to the failure process was unclear. 

Dalal et al. (1989) performed an extensive risk analysis of Challenger's field joint 
system, restricting themselves to data available on the night before the launch. A key 
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Fig. 5. Scatterplot of number of field joints with primary 0-ring erosion versus launch temperature 
for the 23 shuttle flights before the Challenger launch 

step in that analysis was the assessment of the probability p' of primary 0-ring 
erosion at t = 31 'F. Fig. 5 is a plot of the number of field joints experiencing primary 
0-ring erosion, as a function of launch temperature, on each of the 23 shuttle flights 
before Challenger's. It may be seen that the shuttle had never flown at a temperature 
lower than 53 'F, so that the assessment of the unknown y =p'1 requires con- 
siderable extrapolation from the body of existing data. Dalal et al. (1989) presented 
a lucid analysis of the data relevant to pa employing the S* modelling approach of 
Section 1, and concluded-after relating pa1 to the overall probability of catastrophic 
failure of the shuttle-that it should have been possible from the available data to 
foresee the unacceptably high risk created by launching at 31 'F. Here I offer a 
reanalysis of these data that focuses on model uncertainty, without (for brevity) 
bringing in the important ingredient of utility. For related alternative analyses see 
Lavine (1991), who does touch on utility, and Martz and Zimmer (1992). 

In the model of Dalal et al. (1989) field joint failures were independent, both between 
and within shuttle flights, so that we may regard the data x as consisting of 
n = 6 x 23 = 138 binary failure observations, together with the associated values of 
temperature t and leak check pressure s (see Table 1 in Dalal et al. (1989) for the 
raw data values). Dalal et al. noted 

(a) that the probability of failure did not seem to be strongly related to s and 
(b) that a logistic regression of primary 0-ring erosion against temperature t, entered 

linearly in the model, fits the observed data of Fig. 5 well. 
After a thorough sensitivity analysis examining alternative models, they conditioned 
on the logistic structural choice (with linear t and no s) to estimate pa, and assessed 
uncertainty at 31 'F with a parametric bootstrap. They obtained a posterior distribution 
for p 1 given x (see Fig. 8 later) that was well approximated by a beta distribution 
with parameters ao=2.52 and ,B=0.36. 

This distribution has a median of 0.95, a mean of 0.88 and a variance of 0.028, 
and is equivalent in information content to ao + , = 2.52 + 0.36 -3 binary field joint 
failure observations at 31 'F, an assessment that seems to understate extrapolation 
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uncertainty. Lavine (1991) arrived at a similar judgment; by examining the extrapolated 
estimates of pa1 based on link functions other than the logit, and by using a 
nonparametric method that assumes little more than independence of the binary failure 
outcomes and monotonicity of the relationship between temperature and failure 
probability, he obtained much wider implied uncertainty bands for pa1 than those 
produced by the logistic formulation of Dalal et al. (1989). 

An examination of the sensitivity analysis of Dalal et al. reveals that the following 
structural variations Si are good candidates for inclusion in a discrete model 
expansion: 

(a) three link functions-logit, probit and complementary log-log; 
(b) three functional forms for the temperature variable t-linear, quadratic and 

no temperature effect at all, which was a conclusion favoured by some involved 
in the Challenger decision-making process; 

(c) two functional forms for leak check pressure s-linear or no effect. 
The m = 6 structures 5?= {cloglog-t, logit-t, probit-t, logit-(t, s), logit-(t, t2), no 
effect] span most of the model uncertainty implied by this list of structural variations. 
I shall use this set of Si in what follows. Continuous model expansion from Dalal 
et al.'s (1989) S* logit-t choice-by embedding the logit in a parametric family of 
link functions (e.g. Taylor (1988))-yields results similar to those presented here. 

The models in 5? all have the same generalized linear model structure, 

(xj I0, S)indepB(pj) F 1(pj)=tj, =1, . . ., n, (14) 

where tij is the vector of predictor values for observation j assuming structure Si. 
With diffuse prior information about the Oi, Zellner and Rossi (1984) have shown 
that the required conditional posterior distributions p (y Ix, Si) in this case are given 
approximately by 

P (P | x, Si) (2 7r i2)12 exp L- 1 - ti 2l dpa Fi (Pt) , (15) 

where Oi and fi are the MLE and observed information matrix for structure Si, 
+=ti 'f1t- and ti is the vector of predictors corresponding, under structural 
choice Si, to a new temperature t. These conditional densities are well approximated 
by beta distributions obtained by equating moments. Fig. 6 plots the six densities 
[p (pa Ix, Si)) Si E 5?, which differ substantially in both centre and spread. 

Table 2 presents the results of a discrete model expansion, using equal prior 
probabilities on the Si and employing approximation (11) to compute the posterior 
structural probabilities p(Si Ix). (Changing from approximation (10) to 
approximation (11), with and without the 2 ki ln(27r)-term, produces differences in 
the composite posterior distribution of the same order of magnitude as variations 
in the prior on 5?' differing from constant p (Si) multiplicatively by a factor of 2 in 
any component, and all these choices yield conclusions that are qualitatively similar 
to those given below.) Fig. 7 plots the expected number of field joints with primary 
0-ring erosion, conditional on each of the structural choices in 5?(see Fig. 1 in Lavine 
(1991), which motivated the model uncertainty analysis presented here). It may be 
seen that, with the exception of the no-effect horizontal line, the expected value traces 
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Fig. 6. Conditional posterior distributions p(p1 | x, Si) for the six structural choices in S?9 

TABLE 2 
Discrete model expansion results for the Challenger data 

Si p (P31 |Xv Sd) p (Si I X) 

(x f3 Mean Median Variance 

Cloglog-t 2.0 0.06 0.971 1.0 0.009 0.282 
Logit-t 2.66 0.294 0.900 0.96 0.0227 0.286 
Probit-t 2.40 0.410 0.854 0.93 0.0327 0.300 
Logit-(t, s) 2.17 0.302 0.878 0.95 0.0307 0.064 
Logit-(t, t2) 0.116 0.1 0.537 0.69 0.204 0.063 
No effect 7.0 131. 0.051 0.05 0.0003 0.005 

Composite 1.11 0.155 0.88 0.98 0.0473 - 

in Fig. 7 all fit the data well in the observed range-in fact they are virtually coincidental 
throughout that range-but the various structural assumptions in if lead to quite 
different extrapolations at 31 OF. 

The posterior structural distribution (the last column in Table 2) differs considerably 
from [point mass on logit-tJ, the implicit result of Dalal et al. 's (1989) S*-style analysis: 
the assumption of no temperature effect is sharply discredited by the evidence, but 
all five of the other structural choices are sufficiently plausible in the light of the 
data to deserve inclusion in the overall uncertainty assessment for pa1. The com- 
posite posterior distribution p (p I x, _f) (see Fig. 8) is well approximated by a beta 
distribution with parameters 1.11 and 0.155; this distribution has median 0.98, mean 
0.88 and variance 

Vwithin structure + Vbetween structure = 0.0338 + 0.0135 = 0.0473, 

more than twice the value conditional on the logit-t model (here Vbetween structure iS 
about 30%0 of the total). The resulting assessment of p31 has about the same mean as 
Dalal et al. 's (1989) result but includes considerably more uncertainty: p (P aX, i) 
is equivalent to only about one binary observation at 31 OF, an implied information 
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Fig. 7. Expected number of field joints with primary 0-ring erosion, conditional on each of the structural 
choices in S' 
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Fig. 8. Posterior distributions p(p31 Ix, iY): -* -*, result of Dalal et al. (1989); , exact result 
from the discrete model expansion (equation (6)); ....., beta approximation to equation (6) 

content 56%o smaller than Dalal et al. 's value, and the 90% central interval for p31 
based on the discrete model expansion runs from 0.33 to 1, compared with their interval 
(0.5, 1). 

The model uncertainty audit presented here is not the only possible analysis of these 
data; for instance, V(pal I x, 5?) could easily increase somewhat more if more 
structures Si were to receive non-zero prior probability. This possibility raises the 
following question: in the limit as increasingly more model uncertainty is 
acknowledged, will the composite posterior distribution degenerate to beta(0, 0), i.e. 
no information at all at 31 OF? The answer is no; the available engineering judgment 
on the monotonicity of pa in t, and the data in Fig. 5 that support this judgment, 
would together imply an informative distribution like that presented here if other 
variations on the monotone theme were included in the model expansion (see Lavine 
(1991), whose analysis conditioning only on independence and monotonicity resulted 
in a nonparametric MLE for pa, of (0.33, 1)). 
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Note that in this problem the results of the discrete model expansion only reinforce 
the overall conclusion of Dalal et al. (1989): for any acceptably small risk r, the 
posterior distribution for P31, the probability of overall catastrophic failure (not just 
primary 0-ring erosion), concentrates even more of its mass on the interval (r, 1) 
when the extra structural uncertainty is taken into account. This need not have been 
so: as the oil price example shows, we may arrive at different substantive conclusions 
about what constitutes a sensible decision after model expansion than before. It is 
also noteworthy that the good fit of the logit-t model did not imply that model 
expansion was not needed-the identification of a single model that fits well does 
not preclude the possibility that other models, with different inferential or predictive 
consequences, fit equally well or better. 

7. DISCUSSION 

7.1. Accuracy and Calibration 
Much of statistical theory and practice emphasizes the value of accurate inferences 

and predictions, where accurate means 'likely to be close to the truth' in some sense. 
However, as Dawid (1984, 1985), Hodges (1987) and others have noted, to be fully 
useful an inference or prediction must also have an uncertainty assessment attached 
to it, and it is also important for this 'give or take' to be accurate, because otherwise 
choices are made that incorporate too little or too much hedging against our actual 
uncertainty. Thus calibration is also a goal in successful inference and prediction. 
These two goals compete: by making sufficiently strong modelling assumptions we 
may easily produce narrow intervals that look good on accuracy grounds, but what 
use are they if they consistently miss the truth? 

Most statistical theory has focused on a kind of conditional calibration, in which 
we make a set of modelling assumptions M and then figure out how to maximize 
accuracy subject to calibration constraints given M. This approach is purely deductive: 
if M is true then the interval (A, B) (say) is the best answer that we can obtain. The 
problem is that, if the particular set of modelling assumptions chosen to produce 
our intervals turns out in retrospect not to have been correct, it does not necessarily 
help much to have verified that our inferences assuming that M is true were 
conditionally accurate and well calibrated. This makes choosing a single Mon which 
to condition seem like a bad idea. 

As the discussion in Section 3 indicates, however, the space X4 of all possible models 
relating knowns x to unknowns y is too big to avoid conditioning on a subset 1' 
of it. The inability of the data-when the prior distribution on X# is specified too 
diffusely-to identify reliably which modelling assumptions will retrospectively be 
seen to be correct argues for making this subset small, but too small runs the risk 
of poor calibration (e.g. Lindley (1982)). In the oil price example of Sections 2.2 and 
6.1, for instance, what decision makers wanted was the likely price of oil taking all 
relevant forms of uncertainty into account, not the likely price of oil given that the 
reference scenario would come to pass. Model expansion permits additional forms 
of structural uncertainty, whose qualitative treatment in the past has not always led 
to good decision-making, to enter the probabilistic calculations quantitatively, in effect 
by permitting more realistic choices of X'. This can lead to decisions based on better- 
calibrated uncertainty assessments. 
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7.2. Alternative Approaches 
There are various techniques for dealing with model uncertainty that differ in spirit 

or implementation from the approach presented here, e.g. robustness methods based 
on solving a minimax problem over a neighbourhood of S* in model space rather 
than integrating over such a neighbourhood (e.g. Huber (1981)), or Bayesian sensitivity 
analyses examining the mapping from prior to posterior across a class of prior 
distributions or likelihoods (e.g. Berger and Berliner (1986)), nonparametric methods 
(e.g. Lehmann (1975) and Friedman (1991)), data analytic methods based on 
transformations and diagnostics (e.g. Carroll and Ruppert (1988)), and other 
approaches, including empirical forecast error distributions (Williams and Goodman, 
1971). I have argued here that the S*-approach, which may be thought of as a naive 
data analytic method, is often inferior to model expansion, but beyond remarks of 
this type-and theoretical criticism of most of the other methods on, for example, 
coherence grounds-little is known about the comparative merits of these various 
strategies empirically. Theory and case-studies closing this gap would have important 
practical implications. 

7.3. Value of Calibration Assessment 
The proportion of inferential and predictive applications in which an attempt is 

made to assess calibration, by direct comparison of our uncertainty assessment for 
the unknown y with the actual value of y, appears to be fairly low (a notable exception 
is in weather forecasting; see, for example, Dawid (1986)). In some applications 
the actual value is difficult or impossible to observe, making such comparisons 
problematical, but in many cases it is both possible and desirable to check our 
calibration in this way. The ease with which instances of understated uncertainty like 
those in Section 6 may be found, particularly in situations where substantial 
extrapolation from the body of available data is necessary for decision-making, makes 
plausible the speculation that empirical work of a statistical nature would be improved 
by an increase in calibration activity (see, for example, Shlyakhter and Kammen (1992) 
for a catalogue of appallingly bad uncertainty assessments in physics, energy policy 
and demography). Such an increase would be non-trivial, requiring the explicit setting 
aside of study resources that would have been used in some other way, but the long- 
term benefits of investment in calibration monitoring would often outweigh the costs. 
Examples in which this cost-benefit trade-off is formalized would be useful. 

7.4. Presentation of Structural Uncertainty 
At a minimum consumers of analyses like those in Section 6 need to be able to 

examine the conditional inferential or predictive distributions (e.g. Fig. 6) and the 
posterior structural probabilities (e.g. Table 2), so that they may decide for themselves 
whether the composite result is sensible. The already pressing need for a software 
system that encourages the realtime exploration of the mapping from assumptions 
to conclusions (e.g. Dickey (1973) and Smith et al. (1987)) is only heightened by the 
acknowledgement of structural uncertainty in addition to parametric and predictive 
uncertainty. A possible solution is provided by XLISPSTAT (Tierney, 1990), which 
supports graphical displays in which the prior structural probabilities and prior 
distributions on the parameters may be smoothly varied and the composite result is 
updated smoothly. 
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7.5. Combining Forecasts 
Model expansion may be thought of as a kind of combining of information from 

the structures over which model uncertainty is propagated. When the goal is prediction 
of future observables this amounts to combining forecasts, an activity with many 
references (e.g. Clemen (1989) and Palm and Zellner (1992)). Much of this work is 
devoted to constructing a weighted average composite forecast in the hope that the 
result will have a smaller uncertainty than any input forecast. Such an outcome would 
contrast with the findings of Section 6, where the overall uncertainty was greater than 
that implied by any single structural choice. It is worth noting that the uncertainty 
of the composite forecast will be smaller than that of the inputs only when all the 
input forecasts are assumed to be unbiased, a situation that clearly does not hold 
when substantial structural uncertainty is present (see Table 1). The situation is identical 
with that in choosing between fixed effects models (which assume no bias) and random 
effects models (which allow for bias) in meta-analysis (Section 4.2). 

7.6. Category 'Other' 
Model expansion is not a panacea; in particular it cannot protect us from something 

totally unexpected. In the oil price example of Sections 2.2 and 6.1, for instance, 
how much prior probability should have been placed on a scenario like the OPEC 
oil embargo of 1973, several years before it occurred? One is tempted by such events 
to set aside a little probability in model space for 'other', but how much probability, 
and where should it be put? This problem has no solution; inference and prediction 
always involve an assumption of conditional exchangeability of known and unknown 
quantities at some level of conditioning (e.g. Draper, Hodges, Mallows and Pregibon 
(1993)). Barnard (1988) (personal communication) has put the dilemma well: 

'When the time for decision has arrived, we can do no other than suppose we have spanned 
the set of possibilities; while at the same time we must allow that we may after all be 
mistaken-by not closing our minds to that possibility, and so dismissing evidence that 
may present itself later that our assumptions did not encompass the truth. To come to a 
decision, while retaining receptiveness to evidence that our decision was wrong, is the only 
rational course.' 

7.7. Unpleasant (Short Run) Outcome 
A greater acknowledgement of model uncertainty often has the consequence of 

widening our uncertainty bands in pursuit of better calibration. Since hedging against 
uncertainty is hard work, this is an unpopular turn of events, at least in the short 
run. But, in view of the oil price example, which is worse-widening the bands now, 
or missing the truth later? 
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DISCUSSION OF THE PAPER BY DRAPER 
David J. Spiegelhalter (Medical Research Council Biostatistics Unit, Cambridge): It was recently 

brought home to me that one should pay attention to between-model as well as within-model uncertainty. 
I was looking through the annual report of the Director of Public Health of a certain regional health 
authority and found projections made on the basis of a linear regression, with a predictive estimate 
of around - 12 and uncertainty covering a range from around - 28 to 3. It is quite possible that, given 
the model assumptions, these calculations were immaculately carried out. The fact, however, that these 
were projections for the 1995 rate of gonorrhoea per 100000 population suggests that some attention 
might have been paid to extramodel uncertainty. 

Dr Draper's paper is an extremely timely contribution to the burgeoning references on serious 
applications of Bayesian methods. Since, at last, computation is no longer a hindrance to Bayesian 
methods, it is natural that discussion of Bayesian model criticism and choice has come to greater 
prominence. One could argue that, had more of such work already been carried out, then we would 
be better placed to answer the questions of the new generations of statisticians who want to use Bayesian 
methods for their practical flexibility and care little for theoretical optimality properties. 

Section 5 is, to me, the guts of the paper. However, if these techniques are to become routine then 
certain guidelines may be appropriate in deciding the family it of structural alternatives. I would like 
to ask two main questions which, in the usual style of these discussions, I shall then immediately attempt 
to answer. First, when is it reasonable to select a single model from the family it being considered, 
and, second, should it vary with sample size? 

For selected Draper's equation (6) shows that inference on a quantity of interesty should be based on 
m 

P(y Ix, Y)= E P(Y x, S) p(Si Ix). 
i=l 

Bernardo (1979) showed that it is reasonable to measure the expected utility of the distribution p(y I x 
it) by 

U p(yix, Y?)J=E,,log p(y Ix, Y) I 

when the expectation is taken with respect to p(y lx, i). Suppose that we wanted to select a single 
model Si and hence base our inferences on p(y Ix, Si). Then the fall in expected utility is 

{log p(yjx, it) UAtp(y Ix, i)1- Lyp(ylx, S1)J=Ey log P(Y Ix *,) 5 
which can be recognized as the Kullback-Leibler directed divergence between p(y Ix, it) and p(y lx, 
Si). This non-negative quantity may be calculated numerically and could be thought of as representing 
the inadequacy of a single choice Si. 

Some insight into this measure comes from assuming a normal approximation y j x, Si - N(Ai, ai2). 
Then it is straightforward to show that 

LAt- logp(y Ix, Si)- -lo2g(2ir) + - E p(SZ I '2 + 
2 2 j= (u7u7i2 

The larger this quantity the more inadequate is Si, and hence no single model will be adequate if there 
is another model S- that both has reasonable posterior plausibility and either has a relatively large 
associated variance 2r/au2 or has a very different estimate yj from that under Si. This just formalizes 
the comments in Section 5.1 that models should be included if they are plausible in the light of the 
data and lead to substantially different conclusions from those following from a 'null' model. 

We shall illustrate this idea with location estimation for Darwin's data (a data set that perhaps should 
be honourably retired after many years' service to statistical science). Fig. 9 shows the posterior 
distributions that arise from consideration of a family of t-distributions with degrees of freedom 1 
(Cauchy), 2, 4, 8, 16 and oo (normal). Table 3 shows the posterior weights (calculated by using the 
approximation in Draper's expression (10)) assuming equal priors of 1/6 for each model, together with 
the above measure of inadequacy of each single assumption. We note that a t4-distribution has the 
highest posterior support, but a narrower tailed t8-distribution is the most adequate single choice of 
distribution, since its conditional conclusions are closest to those obtained by using the whole family. 
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Fig. 9. Posterior distributions for the location parameter under different distributional assumptions for Darwin's 
data: the annotations indicate the degrees of freedom of each t-distribution, together with the 'mixture' posterior 
distribution formed by using the posterior weights shown in Table 3 

TABLE 3 
Alternative assumptions for inference on location 

parameter for Darwin's data 

Distributional Posterior Inadequacy 
shape weight (x 10000) 

Cauchy-t, 0.11 543 
t2 0.24 385 
t4 0.29 159 
t8 0.18 48 
t,6 0.11 313 

Normal-t,,. 0.06 1009 

This warns us not to be overconcerned with probabilities of models, but to pay more attention to their 
consequences. 

My second question concerns the large sample properties of this technique. Berk (1966) showed that 
under broad conditions, assuming a true model SO which does not necessarily lie in -~, the model ^ 
will receive asymptotic posterior weight 1, and the parameter estimates will converge to 6, where S, 
6 maximize Eo Ilog p(x I , S^) . This leads the ratio of posterior weights p(Sj Ix)lp(g I x) to be Op (e) for 
Sj 1 S^, c < 1, and, as those who use Bayes factors are well aware, this entails a sometimes disquieting 
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tendency to obtain huge Bayes factors and hence all posterior weight plumping onto a single model. 
All this suggests that the granularity of the model space should crucially depend on sample size, with 
a few quite distinct models being sufficient for small samples and much finer gradations of model being 
appropriate for large samples. Thus perhaps Draper's comments on 'staking out the corners of model 
space' should include the observation that the size of this search area should decrease with n. 

Draper has been admirably careful in citing previous work and communicating with many people 
on this excellent paper. Preparing this discussion led me back to an old draft of a paper, buried in 
the bowels of my filing cabinet, with a 1980 letter from the Journal of the Royal Statistical Society, 
Series B, suggesting resubmission. I never got round to resubmitting the paper, so I am grateful to Dr 
Draper for giving me the opportunity to exhume some old work and at last, by the back door, to sneak 
it into Series B. 

It gives me great pleasure to propose the vote of thanks. 

A. P. Grieve (ZENECA Pharmaceuticals, Macclesfield): I welcome this paper because it addresses 
an issue which has for too long been neglected by both the academic and the applied statistical 
communities. It provides an opportunity for brethren from all inferential persuasions to reassess their 
own particular strategies for intra-experiment assessment of assumptions. I shall comment on three 
aspects: pretesting; continuous versus discrete model expansion; sensitivity to prior model beliefs. 

Many statisticians reading the description of Adams's experiment in Section 2.1 will regard it as a 
parody of the way that they work-discussants of Racine et al. (1986) suggested that 'no competent 
statistician' would use an essentially similar pretesting strategy. Yet such strategies are not only typical 
of 'standard text-book prescriptions' they are also redolent of what might be termed a regulatory 
prescription. As illustration consider stability studies which are carried out to estimate the shelf-life 
of a drug. In such studies random samples of, for example, tablets are taken from either a single 
production batch or a series of batches, and are stored under known conditions of temperature and 
humidity. Periodically a sample is taken and assayed for content. The data are modelled by a regression 
line and the shelf-life is defined to be the time at which the lower 95% confidence limit about the fitted 
line crosses the lower limit of acceptable drug content, typically 90%. When data are available from 
multiple batches an analysis of covariance is carried out to test the null hypothesis of equal regression 
slopes. The prescription proposed by the Food and Drug Administration (1987) is that the null hypothesis 
should be tested at the 25 % level, thereby ensuring a more sensitive test! The paradox in this prescription 
is well illustrated in two hypothetical examples given by Ruberg and Stegeman (1991). Studies which 
are well conducted will generally lead to low variability and are therefore likely to reject small interbatch 
differences as being statistically significant, whereas for poorly conducted studies the converse is true. 
Thus this prescriptive approach penalizes good experimentation. 

In Section 5 the comment is made that 'it is preferable to perform model expansion continuously'. 
I am not convinced that this is in general true and in particular I believe that it is often of interest to 
treat null models discretely rather than as part of a continuum. In Racine et al. (1986) we considered 
the two-period, two-treatment crossover in which interest centres on the treatment effect T with the 
carry-over effect X a nuisance parameter. For known variance parameters the posterior distribution of 
T given X has the form 

p(-fIX, a2, p, X)-N[T+X/2, ma2(1-p)/8J 

where m is a function of the sample sizes in each randomization group and from which the posterior 
for T under the null model X = 0 is given by 

p(IX= 0, I2, p, X)- N[, m2(1 - p)/81. 

However, equation (4) gives 

p(Ta2, p, = p(TIX a2, p, )p(Xa2, p, X)dX 

- N(z + X/2, mU2/4) 

and the variance of this posterior is based on between-patient variability rather than on within-patient 
variability as is the case for the null model. Therefore the posterior distribution under the null model 
is structurally very different from the marginal posterior distribution. Indeed if the latter is more 
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appropriate then it casts doubt on the use of the crossover since its primary advantage is usually thought 
to be that the treatment effect is estimated within patient. Similar arguments exist for the stability study 
already described and also for the random effects models of Section 4.2. 

The analysis of the Challenger disaster data is a particularly good example of the discrete model 
expansion approach. However, not all people looking at Table 2 will a priori believe that the six models 
are equally likely and therefore it is advisable to present posterior inferences as a function of prior model 
beliefs. In Racine et al. (1986) it was simple to provide a graphical representation of the relationship 
between a particular posterior inference P(i-> 0J X), the posterior probability of a positive treatment 
effect, and the prior belief in the non-null model, P(M1). When there are more than two competing 
models it is no longer so simple to look at the relationship as the following example illustrates. 

In Grieve (1994) I have extended the analysis of the two-period two-treatment crossover to include 
base-line measurements. The use of base-line measurements allows us to disentangle the carry-over effect 
from period x treatment interaction, which I denote by 0, which are aliased in the previous case. There 
are now four models of potential interest: 
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Fig. 10. Posterior probability of a positive treatment effect-P(T> 0IX)-as a function of the prior model beliefs: 
(a) P(M2)~=0.00; (b) P(M2) = 0.25; (c) P(M2) =0.50; (d) P(M2) = 0.75 
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M2: T, X, 0 (saturated); 
MI,: T, X=O, 0; 

M12: , X, 0=0; 
MO: , X=O, 0=0. 

In Grieve (1994) I developed a graphical method for displaying P(T> 01 X) on the simplex 
P(M2) + P(M11) + P(M12) + P(MO)= 1. An example of this is shown in Fig. 10 which is based on angina 
attack rate data taken from Nicholls et al. (1986) in a study comparing transdermal and oral formulations 
of nitrate therapy. For a fixed value of P(M2) contours of equal posterior probability P(T>0 1 X) are 
displayed on the simplex P(M11) + P(M12) + P(MO) = 1 - P(M2). The interpretation of the display for 
these data is that we would need to be a priori very certain that there is no period x treatment interaction 
before we could conclude that there is substantial treatment effect. Given the facilities available in 
XLISPSTAT we could smoothly vary P(M2) and update P(T> OIX) accordingly. 

It gives me great pleasure to second the vote of thanks. 

The vote of thanks was passed by acclamation. 

D. V. Lindley (Minehead): This admirable paper addresses an important problem and presents a fine 
method of solution. The examples are integral to the thesis and not merely illustrative. 

I shall confine my attention to one aspect, namely overfitting (Section 1.2), illustrating a general 
argument by reference to multiple regression. There are many published examples where fitting a 
regression of y on s variables xl, . . ., xs does better than a similar fit involving, in addition, t other 
variables x5+ I, . . ., x5+ t, even when the data are plentiful. These practical experiences can be supported 
by a mathematical argument that calculates the deterioration as the number of variables increases. 

However, there is an even simpler argument that demonstrates the opposite. This depends on the 
easily demonstrated, mathematical theorem that any information is expected to be of value: a result 
which is supported by intuition. Applying the result, the extra variables xs+I. .. ., xs+t are expected 
to be of value in improving the prediction of y. Indeed, this must be so, since, in choosing the best 
from the class of all regressions using all variables, the one with only s is included by putting the regression 
coefficients fi = 0, for i>s. 

There is direct conflict here. How is it to be resolved? I believe that the resolution lies in the appreciation 
that the results, both theoretical and practical, that suggest overfitting are all based on likelihood methods 
and fail to take account of our uncertainties about the roles of the variables. They are based onp(yIx, f) 
and ignore p(x, 3). They usually use least squares, which can be regarded as either omitting p(x, fi) 
or treating it as improper. Outside one and two dimensions, such methods lead to unsatisfactory, 
technically inadmissible, results, and the dissatisfaction increases with the dimensionality. It is least 
squares that has produced overfitting, which is not inherent. 

I argue that overfitting is not a problem in a world with proper, u-additive, distributions. These 
distributions should come from realistic considerations and not from studies of Greek letters, like A above. 

J. B. Copas (University of Warwick, Coventry): The paper reminds us of an uncomfortable fact which 
we know exists, but for a quiet life we would much prefer that it did not, namely that data dependence 
in an assumed model leads to inferences which are less precise than we pretend them to be. Our Society's 
new Code of Professional Conduct says that we should not knowingly promote misleading inferences 
from data, and so we should take this whole issue, and this useful paper, very seriously. 

George Barnard commented at one of these meetings that we statisticians spend far too much time 
trying to answer silly questions. To expect any sensible answer when w# is very large is rather silly, 
as the paper points out. We have to restrict to an assumed subset-an assumption-free inference is an 
illusion. The very fact that we use probability as the basis for inference, knowing full well that our 
observational data were not the result of a game of pure chance, is itself an assumption. 

Provided that we avoid extrapolations, such as in the alarming space shuttle example, and just want 
a well-calibrated fit within the range of our observed data, then shrinkage methods can sometimes give 
a practical solution to the problem of overfitting. Perhaps we have binary data y grouped by covariate 
vector x into counts of sx successes out of nx trials. We want to estimate Xx, the logit of P(y = lx). 
The rough estimates are the empirical logits zx. Simple methods such as point scoring lead to a score 
Tx which can be calibrated directly on the data to give smooth estimates 
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E WUZuITu= TX 

u uITU = T, 

where wX is a set of suitable weights. As in the paper the same data are here being used for both 
constructing the score and calibrating it. 

The plot of Lx against Tx is often remarkably linear: let C(L, T) be the sample covariance of this 
plot, and let C(L*, T) be the same quantity but with zx replaced by logits calculated from an 
independent replication of sx. The estimates Lx are now shrunk to 

Lx= L + K(Lx-L) 

where K is chosen such that E C(L, T) - C(L *, T)I = 0. A simple formula for K is given in Copas 
(1993). 

Andrew J. G. Cairns (Heriot-Watt University, Edinburgh): Firstly I would like to thank the author 
for writing a most interesting and stimulating paper. While I was reading the paper I identified several 
points for which I could find direct parallels in my own work on epidemic modelling, particularly of 
acquired immune deficiency syndrome (AIDS). The problem here is how to fit a complex epidemic model 
to a relatively simple set of AIDS incidence data. The key I found to solving this problem was to partition 
the basic parameters k into two sets: 

(a) 4p-the (small) set of primary components which are functions of the basic parameters which 
dictate epidemic dynamics; 

(b) Os-the remaining secondary parameters which have little effect on the shape of an epidemic 
curve if they stay within a realistic range. Such a realistic range may be determined by secondary 
studies or reflected in a more subjective prior for Os but still based on such studies. For example 
we know the mean incubation period of the human immunodeficiency virus to be around 10 years 
rather than 2 or 20. 

A number of different problems present themselves of which one is projection of the epidemic curve. 
In a recent series of papers (Cairns, 1991, 1993, 1994) I argue that in many such contexts if the set 
of primary components is well chosen then the result of the exercise will not be sufficiently compromised 
if we make the assumption that the secondary parameters are known and fixed. 

Fig. 11 illustrates the situation graphically. In the context of the present paper the vertical axis represents 
the continuous space of models described in Section 4 and the horizonal axis the space of parameters 
for a given model. In my own work these represent the secondary parameters Os and the primary 
components kp respectively. The left-hand upturned curve indicates how well different models (different 

Os Q 

(a) (b) 
Fig. 11. Effect of uncertainty in fixed secondary parameters, Os: (a) plausible values of Os give rise to quite 
different ranges of predictor variables Op; (b) with a well-chosen partition of the parameter set /, uncertainty in 
Os will not significantly influence the outcome of an uncertainty analysis 
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Os) fit the data. In Fig. 11(a) this degree of model uncertainty incorporates significant differences in 
parameter estimates and in projected quantities. Thus there is significant between-structure variance 
(Section 5.4) which is ignored by fixing attention on the best estimate S *. In Fig. 11 (b) we see that the 
incorporation of model or secondary parameter uncertainty will not significantly change our view of 
the future. This is what we should be aiming for. My work has concentrated on how to achieve this 
with a space of primary components of minimal dimension. The present paper indicates that we can 
often only achieve this by incorporating model uncertainty. 

Chris Chatfield (University of Bath): This paper should be warmly welcomed for tackling a sadly 
neglected topic. Traditional statistical inference generally assumes a model of known form and takes 
no account of possible uncertainty regarding its structure. Yet few statisticians believe that there really 
is a 'true' model in any particular situation. Rather a model hopefully provides an approximate, but 
useful, description of the main qualitative features of a given set of data. Sometimes a model is specified 
on external subject-matter grounds but computers now allow the analyst to try many different models 
and to pick the one that fits best. For example time series analysts often search for the 'best' autoregressive 
integrated moving average model. Although we have admitted model uncertainty by searching for a 
best fitting model, inferences and forecasts are then usually made as if the model were known in the 
first place. This is a 'quiet scandal' (Breiman, 1992). 

In a frequentist framework it is easy to demonstrate that (large) biases can result from formulating, 
fitting and checking a model to the same set of data, though rather hard to assess and overcome these 
biases. Limited progress can be made using theoretical and resampling methods (Chatfield, 1994), but 
the Bayesian model averaging approach reviewed by the author seems more satisfying in many ways. 
It avoids the necessity of choosing a single best model and gives a more realistic assessment of predictive 
uncertainty. The author's example of forecasting oil prices by using a weighted average of 12 models 
is a convincing case in point. In addition Tony O'Hagan has reminded me that the multiprocess models 
used by Harrison and Stevens (1976) in Bayesian forecasting have much in common with the approach 
described here. 

Perhaps the greatest compliment that I can pay the author is to say that his paper has made me seriously 
reconsider my attitude to Bayesian methods. For years I have regarded myself as an eclectic or pragmatic 
statistician. The contortions of Bayesians as they try to cope with prior ignorance or to carry out hideous 
numerical integrations, of frequentists as they struggle to make sense of P-values and of those who 
try to pretend that the likelihood function is of fundamental importance when it depends on the model 
that has been assumed in the first place would be amusing if they were not so serious. I firmly believe 
that no single philosophical approach can cope with the wide variety of real life situations which confront 
the applied statistician, but this paper emphasizes that Bayesian methods can be a valuable addition 
to our toolkit. 

George Box (University of Wisconsin, Madison): This is a fine example of how far a first-class 
statistician can go in the careful reanalysis of dead data sets. But I believe that he should aspire to more. 

Statistics has no reason for existence except as a catalyst for scientific enquiry in which only the last 
stage, when all the creative work has already been done, is concerned with a final fixed model and a 
rigorous test of conclusions. The main part of such an investigation involves an inductive-deductive 
iteration with input coming from the subject-matter specialist at every stage. This requires a continuously 
developing model in which the identity of the measured responses, the factors considered, the structure 
of the mathematical model, the number and nature of its parameters and even the objective of the study 
change. With its present access to enormous computer power and provocative and thought-provoking 
graphical display, modern statistics could make enormous contributions to this-the main body of 
scientific endeavour. But most of the time it does not. 

Statistics, I would like to believe, is finally at the end of the artificial tether imposed by the perceived 
needs of mathematics. If we confine our thinking to the reanalysis of single 'data sets', the statistician 
need never leave his office and mathematical statistics as presently prescribed can be king-but of a 
very small domain-a half-leg of a single iterative step whose optimization may be irrelevant to the 
final objective. 

As I argue in Box (1980) we should instead be prepared to share with experimenters a wider realm 
of scientific statistics with indeterminate and flexible models and sequences of data generation and analysis. 
To do this would change the present ideas of what statistics is about, how it should be taught and how it 
should be funded. But, since it would make our subject so much more useful, it might be worth the effort. 
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David Cox (Nuffield College, Oxford): Fitting different models to the same data is of most interest 
when the different models correspond to different interpretations of the data, but surely it is often wise 
even when the objective is the same for all models, the case considered by Dr Draper. 

The arguments for incorporating variation between models quantitatively into the formal assessment 
of uncertainty no doubt depend on the circumstances but seem to me in general uncompelling. 

For example, the report written in the summer of 1988 on forecasting the incidence of acquired immune 
deficiency syndrome in England and Wales (Cox, 1988) showed the results of 11 different models, and 
many more had been considered. The report, although written for a relatively non-technical audience, 
distinguished between Poisson errors, parameter estimation errors and errors arising from the model, 
the last being the most important. Two pages of careful, although qualitative, discussion of the advantages 
and limitations of the various models were given. Should these have been replaced by a Bayesian 
assessment of uncertainty: certainly not! Should these have been supplemented by such an assessment: 
I am not convinced. Where would the prior probabilities have come from? Would not this have been 
importing an air of bogus quantification? Other cases might well be different. 

John W. Tukey (Princeton University): Draper sends us four messages, the first two of which- 

(a) we badly need to take account of model uncertainty and 
(b) we can only afford to do this by looking at a small number of separate alternatives- 

I believe every statistician and every analyst of data need to take very seriously. The other two- 

(c) alternatives should be treated in terms of probability rather than reasonability and 
(d) the Bayes mechanism is appropriate for this- 

I find it impossible to accept. 
Suppose that we have one model that produces quite wide limits and either three or 12 others that 

produce quite narrow limits, all with consistent point estimates and all with the data appearing reasonable 
for that model. Draper's approach would provide much narrower limits if there were 12 acceptable 
models with tight limits rather than three models. This seems to me to be quite wrong, since I must 
believe in the possibility that the model with loose limits is the nearest to reality so we need to take 
the most conservative result-for a single model-if we wish to be sure of our conclusions. 

It is known, and should be well known, that given data it is easy to make up models that 

(a) find the data to be compatible with themselves and 
(b) yield very narrow limits. 

Although these models are not likely to appeal to either statisticians or analysts of data, their existence 
is enough to make the question 'Were the models selected before the data were examined, or not?' crucial. 

The most acceptable pattern, so far as I am concerned, for the development of a bouquet of models 
begins with a predata choice of a collection of models likely to be relevant in the field in question, 
followed by an examination of the reasonability of the data in the light of each model. For those models 
for which the data seem unreasonable, we have a choice: 

(a) drop them from consideration or 
(b) move them sufficiently close to a smoothed version of the data to make the data reasonable. 

Here reasonability is a yes-no decision, not a probability reduction, and the models are thought as 
challenges, trying to mark the boundaries of reasonability, not to represent likely outcomes. Taking 
the worst of what remains is a conservative but, in my judgment, reasonable step. 

Adrian E. Raftery (University of Washington, Seattle): It is a pleasure to congratulate David Draper 
on a fine paper that makes a strong case for accounting for model uncertainty. My comments will focus 
on software, approximating posterior model probabilities, and previous work. 
Software 

The GLIB (generalized linear Bayesian modelling) software gives posterior model probabilities and 
inference that take account of model uncertainty in generalized linear models (Raftery, 1993a); see Raftery 
and Richardson (1994) for a detailed application to epidemiology. GLIB is an S-PLUS function which 
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can be obtained free of charge by sending the electronic mail message 'send glib from S' to 
statlib@stat.cmu.edu. 

This can be used to take account of uncertainty about independent variable selection, the link function 
and the error function. For another case where, as in the Challenger example, conclusions are very 
sensitive to the link function, see Kass and Raftery (1994). 
Approximating posterior model probabilities 

In my experience, the term I ki ln(2ir) in equation (11) hurts the accuracy of the approximation. As 
the author points out, by omitting it, we recover the Bayes information criterion (BIC) approximation, 
which I have found to be more accurate. A reason for this was given by Kass and Wasserman (1992a), 
who showed, roughly, that if the prior has the same amount of information as one 'average' observation 
the BIC approximation has error O(n -1/2), compared with 0(1) for equation (11). 

It is possible to improve on the Laplace approximation (10) in its maximum likelihood estimate (MLE) 
form by taking a single Newton step towards the posterior mode, starting at the MLE (Raftery, 1993a). 
This is more accurate but still involves only the MLE and the information matrix at the MLE; it is 
the basis for the GLIB software mentioned above. 
Previous work 

The large sample approximation summarized in Section 5.4 was proposed in the context of time series 
by Taplin (1990) and Taplin and Raftery (1991, 1994). The idea of using discrete model expansion to 
account for model uncertainty can be found in these references and in Taplin (1993). 

The following contributions were received in writing after the meeting. 

Murray Aitkin (University of Western Australia, Nedlands, and Tel Aviv University): I support the 
need to allow for model uncertainty by averaging over the models which might reasonably have generated 
the data rather than conditioning on the best-supported model. However, the standard Bayes factor 
approach of Section 5.3 suffers the difficulties described by Aitkin (1991) and O'Hagan (1995). The 
posterior Bayes factor of Aitkin (1991) provides a better framework. I shall illustrate with the 0-ring 
example. 

The parameter of interest is the probability of failure at t=31: J=pal. Each model can be 
parameterized with g(46) as the parameter of interest and nuisance parameter(s) qj where g is the link 
function. For example, the linear logit model has 

g(p) = log t p) = 0i + 01 t. 

Our interest is in g(&)=io+31I31 so that the logit model can be expressed as 

log (1 )=g(4) +fl1(t-31) 

with q = l1 the nuisance parameter. 
I consider as candidate models only the three linear models Sj. For simplicity I omit the model with 

leak pressure s. Badly fitting models can be omitted, and I exclude the quadratic models as for certain 
values of 4 they will be non-monotone. 

It is straightforward to construct the profile likelihood for 4 for each model by defining a grid for 
4, transforming to the corresponding grid for g(4') and maximizing over q. Fig. 12 shows the profile 
likelihoods for the three models. They are surprisingly different from the model conditional posterior 
densities for 4 shown in Fig. 6. This may be because of poor agreement between the profile likelihoods 
and the normal approximation of equation (15). 

Formally, the average (posterior mean) likelihood in 4, given data y and prior density 7r(j, Sj) for 
model Sj with nuisance parameter qj of dimension pj, is 
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Fig. 12. Profile likelihoods for linear models: , logit; ------- probit; - - complementary log-log 

where ir(%j, Sj Io, y) is the conditional posterior density of qj and model Sj given the data y and i. 
Taking for convenience diffuse priors on qj and equal prior probabilities on the three models, and 
applying the Laplace approximation (10): 

m 

E 7rpj/2 L2[0?, Nj(o ljjfijTB(?0) I-1/2 
A(O- =m 

E(27r)PJ/ j[ niOIjffj(O0 Ij-1/2 

where Lj[0, fij(o)j is the profile likelihood for model Sj and Ij[1fj() is the information matrix at b 
from the profile likelihood. The average likelihood is easily computed from standard generalized linear 
model output. 

Fig. 13 shows the (approximate) average likelihood together with the profile likelihoods for the linear 
models. The average likelihood is much more diffuse than the linear logit profile likelihood and has 
a bump at the upper end where the log-log link model has a much higher likelihood than the other 
linear models. 

These results differ substantially from those of Draper, even allowing for his inclusion of the quadratic 
models, and it is puzzling to see the extremely strong support for b = 1 in his conclusions. 

G. A. Barnard (Colchester): I have space only for a brief comment on the final paragraph of Section 
4.2 of this most interesting and important paper. For more in this line see Barnard (1994a,b). 

The standard form of what I have called a 'Fechner density' is 

0(u)=Kexpf - IMc(u), -oo <U< o, 

where, for 1 <a< oc and M) 0, we define 

( uc for u > 0, 
(u) = l-Mu)P for u 0, 
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Fig. 13. Average likelihood over three models: . , linear logit; ------- linear probit; ---, 
linear complementary log-log; , average 

and K, here and below, denotes a norming constant. For M= 1 variation of a covers the Box and Tiao 
(1962) expanded model, whereas variation of Mcovers an arbitrarily high degree of left or right skewness. 
Since X has mode 0, the natural location parameter is the mode i of the distribution of independent 
and identically distributed observables xi, i= 1, 2, . . ., n; moreover it is the parameter of interest if, 
for example, the xi denote differences of matched pairs of patients in a clinical trial. The fact that for 
this family log X is homogeneous of degree a enables us to derive the exact conditional distribution 
of Student's pivotal t = (x- 4)1n/sns in the form 

,6(t|c!) = K/ {M- (t + ci) I"/o 
wbere c with ci = (xi -J.)i>n/sI is the maximal ancillary. Denoting by to the result of substituting 
observed values for the xi in t and ci we obtain the confidence distribution for pA, the posterior density 
relative to a uniform prior, based on the available sample. 

The fact that we can write a program with Mand a as parameters enables us here to apply serendipity- 
one thing perhaps not stressed by the author as much as it could be. It will often turn out that varying 
M and a over the plausible range will make unimportant differences to the confidence distribution, 
saving much time and effort that would otherwise be devoted to unimportant questions. 

For more details on Fechner densities, see Thomas (1993). 

Peter Donnelly (Queen Mary and Westfield College, London): The space shuttle example provides 
a good illustration of a setting in which the primary quantity of interest, the probability, PF say, that 
at least one field joint will fail (with the consequent destruction of the shuttle) is a function of parameters 
(such as the probability of primary 0-ring erosion) on which direct data are available. Any quantification 
of beliefs about this primary quantity thus necessitates a quantification of uncertainty about the parameter 
value. Further, under the assumption of independence of primary and secondary erosion and blow-by 
(and also under certain dependence assumptions) the mean Of PF, for example, will be increasing in 
the uncertainty about pal for fixed E(pal) (with the usual variability ordering; see for example Ross 
(1983)), highlighting the author's concerns about the dangers of under-representing the uncertainty in 
such estimates. 
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In deoxyribonucleic acid (DNA) profiling, the natural parameter is the 'match probability', the 
probability that an individual unrelated to the defendant, chosen randomly from an appropriate reference 
population, would match the defendant's DNA profile. What the author describes as the S*-approach 
is widespread in this context. Hypothesis tests, typically of low power, often fail to reject various 
assumptions which underpin the match probability calculation. These assumptions are then treated as 
true and the resulting point estimate is equated to the match probability. This is another setting in which 
the primary purpose, an assessment of whether the defendant has been proved guilty beyond reasonable 
doubt, is a function of the match probability. Under various assumptions the probability of innocence 
is increasing in the uncertainty about the match probability (Balding and Donnelly, 1995). Failure to 
acknowledge, or quantify, such uncertainty thus prejudices the trial process against the defendant. 

More generally, the (expected) costs of various decisions taken subsequently to data analysis will usually 
depend on the uncertainty involved. Some form of quantification of this uncertainty may thus be essential 
in advising decision makers. In any case the suggestion of simply presenting the conclusions of different 
possible models, without commenting on each model's a priori plausibility or their consistency with 
available data, seems undesirable. 

A. S. C. Ehrenberg (South Bank Business School, London): I welcome almost any attempt to grapple 
with issues of model choice, but I have three questions for David Draper at what I think he would 
call the scenario level. 

(a) Why focus exclusively on forecasting catastrophes? Why not dissect model selection issues for 
some of the thousands of success stories in the Challenger launch, say, or in science more generally? 

(b) Why focus so much on 'uncertainty' (lack of data, small samples, weak priors, too many models 
to choose from, etc.)? Why not help us to deal with problems of model choice in the many cases 
where there is plenty of data (or even well-digested 'information', submodels and grounded theory)? 
There are still many problems of model choice, in my experience. 

(c) Why accept George Barnard's characterization of the statistical status quo: 'We can do no other 
than suppose that we have spanned the set of possibilities'? Why not follow through on his own 
(Draper's) advice to 'stake out the corners in the model space', i.e. explicitly to establish the range 
of different conditions under which the chosen model is already known to hold? Is it because 
that process is fuzzy and does not lend itself to neat logical or mathematical formalizations? But 
science shows that it is what leads to routine predictability. 

Alan E. Gelfand and Bani K. MaHlick (University of Connecticut, Storrs): Draper offers some interesting 
foundational food for thought in observing that a component of the modelling job is the specification 
of structure, S, i.e. 'exact structure' is not known (and in most cases this is not a meaningful notion 
since the objective is not a 'correct' model but rather a parsimonious model which approximates reality 
well). Hence within the Bayesian paradigm we must place a distribution p(S) over S. However, in Draper's 
examples the set of specifications is treated parametrically implying that a complete specification of 
model M is still parametric, consisting of 0 augmented by structural parameters. Indeed in our own 
work we have handled structure this way-link functions in generalized linear models (GLMs) (Carlin 
and Gelfand (1991), p. 126, and Mallick and Gelfand (1994a)), integrated hazards in survival models 
(Gelfand and Mallick, 1994) and calibration functions in errors-in-variables models (Mallick and Gelfand, 
1994b). 

Does this render the distinction between parameter and structure semantic? The answer is no. 0 is 
only interpretable given S; the prior specification must take the form p(0 IS) p(S). In this sense, clarity 
would be added to the presentation if 0 were replaced with 0. There is no sensible notion of a marginal 
distribution for 'O', prior or posterior. A striking example is the case of mixture models where S is the 
number of components but even in, say, GLMs with unknown link the marginal distribution of a 
regression coefficient is not sensible. 

But then questions arise regarding inference. Posterior inference is sensible only with respect to S 
so, for instance, in a regression setting we cannot directly investigate the contribution of explanatory 
variables. (p(05 IS, x) is possible but conditioning over S returns us to the sensitivity analysis, Draper 
eschews.) Predictive inference, employed by Draper, is also not helpful in this regard. In fact, in the 
Bayesian framework, predictive distributions are customarily utilized for examining model adequacy 
and model choice but not for inference activity (Box, 1980). Hence, as food for thought, Draper presents 
an expanded menu but in the end, a not quite satisfying meal. 
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We offer a final thought. In many contexts S* does not arise on the basis of data x, but rather as 
a 'natural' assumption. Examples include conditional independence, exchangeability, canonical links, 
identity (or linear) calibration functions. Then, x would be used to check the adequacy of S* by using 
predictive distributions. 

Andrew Gelman (University of California, Berkeley) and Xiao-Li Meng (University of Chicago): We 
enjoyed this paper and largely agree with the author, even though we would emphasize some of the 
points slightly differently. 

We agree that averaging across competing models is better than choosing just one model, but it is 
often even better to consider the models as a continuous class (as the author briefly notes at the beginning 
of Section 5), which to do seriously often requires additional work to ensure that the individual model 
parameters make sense in the supermodel. We prefer the term 'model improvement' (Gelman and Meng, 
1994) instead of mere 'averaging' to indicate the additional information and consideration that goes 
into creating a sensible larger model. 

The author briefly mentions sensitivity analysis as a qualitative method that is improved on by model 
averaging; we believe that learning about sensitivity of inferences to model assumptions is often an 
important goal that is not achieved by merely looking at the combined inference. The author seems 
to recognize this implicitly in Fig. 7. For another example, in the context of dealing with incomplete 
data, it is typically important to display sensitivity to assumptions about the missing data mechanism; 
an illustration in an applied context is in Heitjan and Rubin (1990). 

The penultimate paragraph of this paper offers a qualitative view of not considering all possibilities 
in a model. In many cases, we can detect aspects of poor fit by comparing the observed data with their 
predictions under the model; in Bayesian terms, posterior predictive checks (Rubin, 1981, 1984; Gelman 
et al., 1995; Gelman and Meng, 1994). Even in the Bayesian context, model checking falls outside the 
'model uncertainty' framework. In addition, the larger model used in the uncertainty analysis can, and 
should, be checked against the data. Even if the large model fits, we must keep an open mind about 
other possibilities. 

Finally, the final paragraph of the paper might leave the impression that there is a trade-off between 
greater accuracy in a smaller model and better calibration in an expanded model. In both the short 
and the long term, the expanded model should be superior in both accuracy and calibration. The use 
of 'accuracy' in Section 7 seems also to include the concept of 'precision', which has quite different 
implications when considering the desirability of prediction procedures. The paper is somewhat unclear 
on such a distinction (e.g. Section 7.1). It is not that a statistician wants to 'widen the bands' to cover 
his neck; it is that real uncertainty governs the widths of the bands. This is especially important when 
explaining a statistical analysis to decision makers, such as those who authorized the launching of 
Challenger. 

C. A. Glasbey and G. J. Gibson (Scottish Agricultural Statistics Service, Edinburgh): This paper states 
the obvious, but it is apparent that these are issues which we all need to be reminded of. It is interesting 
to see a Bayesian approach being used to increase, rather than to decrease, the uncertainty in prior 
models. In our modelling work in the Scottish Agricultural Statistics Service (SASS) we must often 
consider uncertainty. 

(a) In most models of agricultural systems, scant attention is paid to uncertainty in any guise. The 
SASS undertook a study of model uncertainty for the Agricultural and Food Research Council 
(Gibson et al., 1993). We found a range of examples in which failure to take account of uncertainty 
led to models whose predictions are as misleading as those considered in this paper. We identified 
a fourth source of uncertainty in addition to those explicitly mentioned by Draper-the intrinsic 
stochasticity of many models. For example, the number of failed rings on the shuttle has a binomial 
distribution. 

(b) In an on-going study on the feasibility of developing systems models to aid decision-making in 
agricultural policy, Gibson (1994) considered predicting the detrimental effects associated with 
the release of genetically modified micro-organisms into the environment. In this case it was 
apparent that the various sources of uncertainty in the system, not least of which lay in the form 
of models for the survivability and transmission of organisms, meant that the uncertainty in model 
predictions would be so great that its utility was negligible. 

(c) Glasbey (1987) investigated the effects on estimates of ED50 (the dose at which 50Wo of subjects 
respond) from quantal dose-response data of relaxing assumptions about the tolerance distribution. 



84 DISCUSSION OF THE PAPER BY DRAPER [No. 1, 

The distribution was assumed either simply to exist (implying a monotonic response function), 
or to be unimodal, bell shaped, symmetric or Gaussian. A hierarchy of confidence widths was 
produced dependent on the strength of the assumptions. 

(d) One of the methodological problems raised by the paper is that of specifying prior probabilities 
for a range of models. In many scenarios these may have to be based on qualitative knowledge 
elicited from experts. As an aid to this process, the tools developed within the LIKELY project 
funded by the European Community (Talbot, 1993) could be of value. In particular, the use of 
cognitive mapping techniques to 'capture' the conceptual models of experts might offer a systematic 
method for specifying priors. 

Richard Glendinning (Defence Research Agency, Great Malvern): The author points out several 
weaknesses in the conventional approach to model uncertainty which is dominated by the use of a single 
model. The limitations of this approach and alternative strategies have been noted many times in the 
time series context; see Poskitt and Tremayne (1987) or Akaike (1985). For a recent survey of model 
selection for time series, see Glendinning (1993). 

The author emphasizes the problem of choosing an appropriate subset of all possible models for further 
analysis in a Bayesian framework. This problem has two facets. The first issue is purely a question 
of computational resources and can be mollified in the frequentist approach by the use of an efficient 
search strategy; see Fernholz and Fernholz (1986). 

The second issue is concerned with the development of procedures which have good statistical properties. 
How can various techniques for selecting a subset of all possible models be evaluated theoretically or 
computationally? This issue also affects the frequentist approach to model selection where the performance 
of penalized 'goodness-of-fit' criteria can be improved by restricting the number of candidate models 
relative to the data available. Several approaches have been suggested in the time series context. These 
include the use of the asymptotic properties of k, where k is the index of the selected model. For predictive 
least squares we can obtain an upper bound on the growth of the number of candidate models which 
ensure strong consistency; see Hemerly and Davis (1991). Similar results are obtained for penalized 
goodness-of-fit criteria using Bayesian ideas in Veres (1991). An alternative approach based on 
complexity is suggested in Smyth (1992). Here the aim is to restrict attention to models with lower 
complexity than the data themselves. Other ad hoc approaches which limit the number of candidate 
models are based on a variety of techniques including the use of preliminary hypothesis tests; see Wang 
and Chen (1985). 

Urban Hjorth (Linkoping University): That modelling uncertainty can be a magnitude worse than 
parameter uncertainty is now increasingly recognized by statisticians. Also the tools to analyse this 
uncertainty are now becoming more sophisticated and varied. Classical analysis based on model decision 
and ignoring competing models simply does not work in many regression, time series and other modelling 
situations. Draper includes an interesting example of oil price predictions based on different scenarios. 

We can choose between an analysis where the statistical effects of a model selection are analysed 
by computer-intensive methods like cross- or forward validation or the bootstrap (Breiman, 1992; Hjorth, 
1994), or an analysis like Draper's where all the models are maintained in a Bayesian formalism. An 
interesting question is whether recursive model selection or the suggested Bayesian method gives better 
predictions of time series. When applicable, a Bayesian description from the defined priors to the end 
result is very elegant. At the same time it has two major difficulties: the computational burden when 
many models are at hand and the difficulty of setting priors over both model structure and parameters. 
Draper shows in his examples how a reasonable model subset can be defined. However, the difficulties 
are also shown and the data-driven cross-validation and bootstrap methods suggested as a solution in 
Section 5.1 seem to me to be against the general philosophy of his work and may perhaps generate 
somewhat arbitrary error distributions. More needs to be known about these methods for defining a 
Bayesian model set and with the present state of knowledge I prefer these methods for the evaluation 
of more classical modelling approaches. However, the important thing is to find methods which explain 
and display the modelling uncertainty and Draper has given an important contribution towards this. 

Robert E. Kass and Larry Wasserman (Carnegie Mellon University, Pittsburgh): We have one small 
technical comment on Dr Draper's interesting paper. There are many order 0(1) approximations of 
the form (11). It is not at all clear that Dr Draper's choice, which includes the additional constant 
c= ki ln (2ir), will be more accurate than any other including Schwarz's. As noted in Kass and 
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Wasserman (1992b)-see also Kass and Wasserman (1995)-for nested models with an intuitive choice 
of a normal prior, Schwarz's criterion is accurate to order O(n- 1/2). This corresponds to replacing cl 
with c0 = 0. Using a Cauchy prior, as in Jeffreys (1961), leads to the constant 

C2= 2 In(2n) In IF I n 7r. 

For k> 16, c0 - cl < c2 but for smaller values of k Dr Draper's c1 can be somewhat greater than c2. In 
comparing two models for which 3 k2 - k<10, using c1 in place of c2 increases the posterior odds 
by a factor of 10. 

Michael Lavine (Duke University, Durham): Draper's point is that accounting for model uncertainty 
is both important and difficult. We agree, and we would like to borrow one of his examples to illustrate 
another way in which parametric models and priors over them understate uncertainty. 

In the example in Section 6.2 Draper reanalyses the space shuttle 0-ring data. Briefly, the probability 
of 0-ring erosion is modelled as a function of launch temperature and leak test pressure. The goal is 
to calculate a posterior distribution for pa1, the probability of erosion at 31 'F. Several generalized 
linear models are considered including three link functions, three functional forms for the temperature 
variable and two functional forms for the pressure variable. The data used are those available before 
the launch of Challenger: 23 flights at temperatures ranging from 53 'F to 81 'F. Draper uses a discrete 
prior over the set of models and computes a posterior variance for pa1 as the sum of variance within 
models and between models. 

But consider what happens in the limit, as data accumulate at temperatures above 53 'F. The posterior 
concentrates on the model that best fits the data above 53 'F and on the maximum likelihood estimates 
Ai for that model. The within-model variance and between-model variance both go to 0 so the posterior 
variance of pa1 goes to 0. 

The result is misleading; the uncertainty due to extrapolating from 53 'F to 31 'F has been hidden 
by mixing only over a finite number of parametric models. A similar phenomenon occurs with every 
parametric model. An accumulation of data in one region implies great certainty about another region. 
Of course, whether this is a disaster depends on the use to which the analysis will be put. In the space 
shuttle analysis the sample size is small, variances are large and the posterior for pa1 is reasonable. But 
in general it pays to think about how much information an observation in one region conveys about 
other regions. 

David Madigan (University of Washington, Seattle): It is a pleasure to congratulate David Draper 
on an important paper. Model uncertainty is the Achilles heel of statistics; to ignore it is to overstate 
your certainty and to risk making poor predictions. As Draper shows, data analysts can account for 
model uncertainty, at least approximately, by using the output from standard software. 

I am concerned that model expansion may be inadequate; model uncertainty is not always restricted 
to models that are expanded versions of some S*. Our own work focuses on methods which average 
over all 'supported' models: Occam's window involves summing over a smaller set of likely models 
(Madigan and Raftery, 1994), and Markov chain Monte Carlo model composition (MCMCMC) 
approximates averaging over all models (Madigan and York, 1993). We have applied these algorithms 
to linear regression (Raftery et al., 1993), graphical models (Madigan and Raftery, 1994), generalized 
linear models (Raftery, 1993b) and survival analysis (Raftery et al., 1995). A key finding is that, for 
most of the data sets we analysed, model averaging using Occam's window or MCMCMC had better 
out-of-sample predictive ability than any single model that an analyst might reasonably have chosen. 

Section 2.1 shows that the S*-strategy can be disastrous in linear regression. Freedman (1983) also 
made this point with a simple simulation and we call the phenomenon 'Freedman's paradox'. The Occam's 
window approach largely resolves Freedman's paradox (Raftery et al., 1993). 

We have had good results with priors p(S) that are diffuse over the entire model space, so that the 
criticisms of such priors in Section 3 do not apply. Recently we have also developed a method for eliciting 
informative prior distributions on model space (Madigan et al., 1994). Eliciting distributions on 
unobservables such as models is difficult (Kadane et al., 1980); our method starts with a uniform prior 
distribution on model space, updates it by using imaginary data provided by the domain expert and 
then uses the updated prior distribution as the prior distribution for the analysis. Laud et al. (1992) 
proposed a somewhat similar approach. The method is simple to implement and, in a challenging graphical 
models application, predictively outperformed its diffuse counterpart. 
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Benedikt M. Potscher (University of Vienna): I would first like to congratulate the author on his 
interesting and stimulating paper. My first comment concerns the so-called S*-approach and its 
relationship to the Bayesian approach suggested by Draper. Both approaches start from a set = fSI, 
. ., SmI of possible structures (in the case of discrete model expansion). In the S *-approach a structure 

S* is selected from , usually by optimizing a criterion like Akaike's information criterion (AIC), 
Schwarz's Bayes information criterion or by applying some kind of testing procedure. Inference is then 
based on the structure S*. In contrast, the Bayesian approach averages over all structures in . Both 
approaches are logically sound as long as in the first approach the inference based on S* acknowledges 
the fact that S* is not fixed a priori but is data dependent. Hence, the problem is not in selecting a 
'best' structure S* from the set 9 but in a naive use of classical inference procedures (which assume 
an a priori fixed structure) thereby treating the data-dependent S* as if it had been chosen before the 
analysis. If the selection process leading to S* is properly taken into account in the inference procedures, 
such a 'non-nalve' S*-approach will result in correct and not in anticonservative inference. For derivations 
of the appropriate distributions and inference procedures in this context see, for example, Sen (1979), 
Kabaila (1995) and Potscher (1991, 1995). Also Judge and Bock (1978) is relevant here. An alternative 
approach is via bootstrapping; see Freedman et al. (1986) and Hjorth (1989). 

The suggestion in Section 5.1 to use a subset of the data to help in specifying the prior probabilities 
p(Si) in a time series context seems to lead to a sample reuse problem that is quite similar to the problem 
that the Bayesian approach discussed in Section 5 tries to avoid in the first place. 

In the context of continuous model expansion an alternative to averaging over the model expansion 
parameter a would be to estimate it jointly with the parameter 0, and to base inference on the (asymptotic) 
distribution of the estimators in the expanded model. 

In time series analysis, parametric models like autoregressive models are sometimes used 
as 'approximate' models, i.e. the actual distribution of the data is not described by a distribution 
derived from any of the parametric models; see, for example, Hannan and Deistler (1988), chapter 7. 
The order of the autoregressive model is then usually determined by the AIC or a similar procedure. 
It would be interesting to see how the Bayesian approach proposed in Draper's paper would handle 
such a situation. 

John W. Pratt (Harvard University, Boston): My intention is to complement and reinforce, not to 
disagree with, the paper. I admire analyses like these, but it would be unfortunate if anyone thought 
them needed to see what Berkson's interocular traumatic test tells you immediately in Fig. 5: unless 
the focus on temperature was very fishy, even if the points really have variance only 6pq, the data reveal 
almost nothing about erosion at 31 ?F except that, assuming monotonicity, it is at least lOWo, say. 

Is there a reason to prefer Bayesian structural choice over continuous model expansion here? The 
latter is more flexible and less extremist; it expresses uncertainty more smoothly and realistically. The 
former, unless repeatedly refined with increasing sample size, concentrates exponentially on the Kullback- 
Leibler closest structure (Berk, 1966). Incidentally, in economics, 'structure' means something about 
causality, beyond mere statistical relationship or 'reduced form'. Here 'structural' uncertainty differs 
from parametric uncertainty only in analytical form, not in kind or principle. 

Some simple and hence underemphasized points have always underlain my thinking about model 
uncertainty. In regression, for each variable, adding quadratic or other terms or choosing a transformation 
from a power or other family buys much realism for just 1 degree of freedom per parameter. This may 
be unimportant for interpolation or routine forecasting but, for extrapolation, acknowledging uncertainty 
is far more important than parsimonious explanation, saving degrees of freedom or reducing standard 
errors of estimates or even predictions (see the last paragraph of Section 4.1). Choosing from an 
oversupply of variables, interactions, lags and so on is where it becomes difficult. It should not be as 
bad as Section 2.1 might suggest in the non-null cases that we usually face. Nevertheless, all-or-nothing 
approaches are inadequate. Shrinkage based on serious judgment is needed. Mosteller and Wallace (1964) 
is an extreme example, with discrete data and thousands of variables, beautifully analysed. Well-judged 
hierarchical models help, as would flexible, easily used software, especially for those of us without the 
skills and perseverance displayed here. 

When statistical uncertainty seems small, we rightly start to look for the real uncertainty. I have some 
worry about acknowledging some but significantly less than all of it. I am also struck by the contingent 
nature of many of the choices to be made. Even for a given data set, no supermodel or mixture of 
models is good for all purposes-interpolation, extrapolation, forecasting, explanation. Causation further 
complicates choices, often requiring the inclusion of variables however much they proxy for one another 



1995] DISCUSSION OF THE PAPER BY DRAPER 87 

and increase standard errors. No recipe, package or expert system will suffice: unbiased professional 
statistical judgment is needed. But will it be obtained? 

Aart F. de Vos (Free University, Amsterdam): This is a nice paper, and the suggestions are useful, 
though not new. But there are better ways to tackle the problems in the two examples. In the oil as 
well as the space shuttle case the main problems are caused by extrapolation, in time and functional 
form respectively. Underestimating uncertainty in these cases is in my view mainly due to the use of 
deterministic models. Using non-stationary time series models for the oil price or for the parameters 
in the models, as is easily done by using the Kalman filter, produces realistically diverging forecast 
intervals. 

For the functional form relating the failure rate of rings to temperature, stochastic functional forms 
may be used, either by using the Kalman filter (Wecker and Ansley, 1983) or 'random direction' schemes 
like Berger and Chen (1993). These models give rise to huge forecast intervals for extrapolations far 
from the sample, even when maximum likelihood estimates of the parameters (instead of Bayesian 
posteriors, leading to even more uncertainty) are used. 

Summarizing, if we have no clear prior ideas about deterministic models, we should best leave the 
idea of determinism altogether, rather than specifying a prior where different deterministic models are 
possible. 

B. J. Worton (University of Essex, Colchester): I would like to comment further on the Fechner 
distribution mentioned by Professor Barnard in his contribution. This is an expansion of the normal 
model that allows for departures of both skewness and kurtosis from the normal distribution by replacing 
the standard normal density function by the density function 

O(u M, ?) = t K exp( - Wu) u 0, 

where M> 0, ae > 1 and 

K-1 21/,( 1 + () l/a) 

Fig. 14 shows the normal probability density function together with some other members of the Fechner 
family. This family can be used to represent a wide variety of unimodal distributional forms by varying 
the shape parameters M and a, and thus can be used to investigate how crucial the assumption of normality 
is for a particular data set. It is straightforward to calculate confidence distributions for the mode 
parameter or the mean parameter for a range of values of M and ae. The former case can be written 
in closed form, and the latter case requires some numerical integration which is easy to program. 

As a simple example consider the data set given by xi = b - I[i/(n + 1)1, i = 1, . . ., n, with n = 10, where 
4 is the distribution function of the standard normal distribution, i.e. the Fechner distribution with 
M= 1 and a = 2. Confidence distributions computed for the mean parameter for this data set are very 
similar for a range of values of M and ae. Thus, for this particular data set, if we inadvertently used 
the wrong model, then we would still obtain reasonably accurate results. However, corresponding 
confidence distributions for the mode parameter calculated for this data set depend on the value of 
M used but are similar over a range of a-values for a given value of M. Generally, it is of interest to 
study the extent to which the model, the data and the parameter of interest affect the stability of the 
inferences to be drawn. 

Professor Arnold Zellner (University of Chicago): I congratulate David Draper for his thoughtful 
and useful paper which prompted the following observations. 

(a) The subject of overfitting and model selection in regression, as are many other topics, is treated 
in Jeffreys (1967), pages 253 and 278, under the title 'selection effects'-see also Zellner and Min 
(1993). Jeffreys provided an explicit correction factor for posterior odds that allows for the 
possibility that one or some models may fit a given data set well just by chance. 

(b) In the work of Geisel (1975) and Reynolds (1980), posterior odds for alternative models were 
formulated and used to combine models thereby allowing for model uncertainty. 
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Fig. 14. Probability density functions of distributions from the Fechner family: (a) M= 1, f= 1.5; (b) M= 1, f= 2, 
normal model; (c) M=01, e=3; (d) M=2, 0e=1.5; (e) M=2, e=2; (.0 M=2, e=3 

(c) In Palm and Zellner (1992), cited by Draper, a major point of the analysis was to allow forecasts 
to be biased by the introduction of bias parameters and then to determine under what conditions 
combining forecasts leads to improved forecasts. Conditions are given under which improvement 
can be realized even though individual forecasts are biased. 

The author replied later in writing, as follows. 

I am grateful to all the discussants for their interesting remarks, not all of which I am able to address 
here. The comments seem to fall into 10 broad classes, which are taken up in no particular order below. 

Discrete versus continuous model expansion 
I agree with Gelman, Meng and Pratt that continuous model expansion is often preferable to the 

discrete approach when both are possible, although situations can exist in which it is difficult to embed 
a structural choice of particular interest continuously in a wider class (e.g. Grieve's example from crossover 
trials, in which, all the same, it is natural to wonder whether something about the problem formulation 
has created the discontinuity at X = O). Spiegelhalter and Pratt both point to the important result by 
Berk (I1966), which implies that in discrete expansion the set _Vof structural possibilities, if viewed as 
a kind of grey scale, needs to include increasingly finer gradations as the sample size increases to keep 
the p(Si lx) from spuriously concentrating on a single structural choice. This also comes up in Lavine's 
example, where the between-model variance goes to O because _Vstays fixed while n increases. Evidently 
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methods, perhaps partially automated, for generating candidate Si to be considered by the analyst for 
possible inclusion in 1/ would be a net gain, and such methods should encourage increased refinement 
of structural alternatives with increasing sample size. 

Tukey makes an important methodological point for anyone attempting a discrete model expansion: 
if Llincludes two (say) models with essentially equivalent predictive consequences and similar plausibilities 
given the data, the result will be to double-count that particular predictive outcome, unless you either 
drop one or go back and give each of them (say) half of the prior structural probability which that 
outcome ought to have had in total. This underscores the desirability in the discrete approach to 'stake 
out the corners in model space' (Section 5.1) in specifying -V. 
Hierarchical modelling and shrinkage 

I can sympathize with the Food and Drug Administration's (FDA's) concern with model uncertainty 
as described by Grieve (in this case, one regression line or many?), if not with the regulatory 'solution' 
to it, which is another version of a preliminary test method (yet another version is Tukey's 
recommendation to compare models with data in such a way that model 'reasonability is a yes-no 
decision'). As noted in Section 4.3, we may expect improvement over what the FDA is doing by 
hierarchically expanding the model in which all lines have the same slope, e.g. 

Yi. = foi + fliXij + eij, 
Oki = fk + Cki, 

where i indexes batch, j indexes time point within batch, k= 0, 1, and the e11 and Cki are, for example, 
drawn from mean-zero Gaussian distributions with variances 2 and 2- respectively. This model (see, 
for example, Draper (1995)) expresses unconditional exchangeability of the regression slopes across 
batches (which seems to be the situation described by Grieve) and deals with uncertainty about the 
closeness of rl to 0 more smoothly than the all-or-nothing FDA testing approach. The shrinkage form 
of the resulting estimates of the f3s is related to Copas's shrunken logits. 

I am not sure that I fully understand Lindley's comments about overfitting, but I shall use the occasion 
of his having brought up the issue of variable selection in regression to remark that this, also, is a matter 
that often ought to be treated smoothly rather than discretely. Many standard methods for variable 
selection (e.g. Efroymson (1960)) involve a series of all-or-nothing judgments about whether or not 
a given coefficient fj exactly equals 0, in spite of the more than 20 years of good empirical Bayes 
research that we now have showing that methods which treat uncertainty about the f31 more smoothly 
outperform such discretized approaches. Expanding the usual regression model Y= Xf + e hierarchically 
with a second-stage regression f3 = Zry + c, in which the matrix Z of prior covariates can be used to bring 
in substantive prior information about the signs and monotonic ordering of the f3j (Greenland, 1993; 
Draper, 1994), yields inferences about f3 and subsequent predictions of new Ys that can be markedly 
superior to those provided by preliminary test methods. Then, following Lindley (1968), we may use 
utility considerations, which weigh such things as parsimony preferences and independent variable data 
collection costs against predictive accuracy, to cause some of the Xj to drop out if they cost too much 
in relation to their predictive performance. 
Science versus policy; statistics 'versus' science 

In response to Copas, yes, the Challenger example involved an alarming extrapolation, but it is 
an interesting and key difference between science and policy that in the former you can pick 
problems to work on that you think will have a reasonable chance of a satisfying solution, whereas 
in the latter the problems, alarming or not, force themselves on you. On this occasion the alarmingness 
of the policy question was set up by a previous failure to have done some basic science: apparently 
there were no sufficiently relevant engineering studies available on the night before the shuttle was 
launched to quantify the decreasing resilience of the rubber 0-rings with falling temperatures in the 
gap between 31 and 53 'F. 

With regard to Box's comments, the point of the paper was not to encourage people to 'reanalyse 
dead data sets' retrospectively, looking for model uncertainty, but to adopt prospectively a viewpoint, 
in their serious collaborative applied work, in which uncertainty in the modelling process was routinely 
better acknowledged. I agree with him whole-heartedly that the discipline of statistics would be in trouble 
if we all sat around in our offices with the door closed deriving optimality results in artificial situations 
of our own devising, and indeed there have been periods in the recent past in which that kind of work 
was valued far too highly. We may hope that the pendulum is swinging back towards serious collaborative 
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efforts leading to new and useful methodologies, in the manner so well exemplified by Fisher in the 
1920s and 1930s. 

When I worked at the public policy institute Rand in California in the 1980s, my colleagues and I 
used to comment on the remarkable fact that the great majority of what statisticians do in the large 
scale collaborative projects at that institute and other places like it-e.g. problem formulation, design 
and analysis of observational studies, causal inference, sampling, reliability and validity of survey 
instruments, fieldwork procedures to maximize data quality, and large database management-receives 
little coverage in typical statistics graduate training, and the part that we are all so carefully trained 
for (e.g. optimal inference given a particular model) often made up considerably less than 10% of the 
overall budget in time and money. At its best statistics, construed broadly, is the study of uncertainty- 
how to measure it and what to do about it. If we tried to put that definition into practice in its full 
scope in our applied work, I believe that Box is right: we would end up playing a broader role in day-to- 
day science and decision-making. 

Accuracy, precision and calibration 
I like the terminology that Gelman and Meng suggest on accuracy, precision and calibration; perhaps 

it would be best to reserve the term 'accuracy' for a retrospective evaluation of the performance of 
a predictive modelling strategy and to use 'precision' to refer to its apparent performance prospectively. 
For example, consider the first part of the paper's equation (1): 

p(y|X, I t ') = p(ylx, M) p(MIx) dM. 

With this new terminology the variance of the first term in the integrand, p(ylx, M), might be said 
to quantify the conditional inherent precision for y arising from model choice M, whereas the second 
term, p(MIx), monitors the plausibility of that particular model choice given the data. The second term 
acts calibratively to force us away from models that yield precise conclusions when such models do 
not fit well, but only if Jt' is sufficiently big to include models rather like what will retrospectively 
be seen to be 'correct'. By choosing _#' sufficiently narrowly-for example by insisting that the data 
follow a single distribution that is highly informative for location, even if they do not-we can produce 
quite accurate looking inferences and predictions that are wholly out of calibration. This becomes more 
difficult to get away with as J6' increases in size; thus there can be a trade-off between greater apparent 
accuracy (precision) in a smaller model and better calibration in an expanded model. 

Technical alternatives 
The Fechner density family mentioned by Barnard and Worton expands the generalized power- 

exponential distribution of Box and Tiao in an interesting way. One question for Barnard, though: 
why should we concentrate on Student's pivotal t in this model, when this is the asymptotically optimal 
summary only for the particular choice (M= 1, a = 2)? Why not use, for example, Markov chain Monte 
Carlo (MCMC) methods (e.g. Gilks et al. (1994)) to obtain the marginal posterior for /, given the data 
and substantively meaningful prior distributions on the parameters? 

Aitkin's model uncertainty reanalysis of the Challenger data is welcome. However, his posterior Bayes 
factor method has been rightfully criticized elsewhere (see the discussion to Aitkin (1991)) for using 
the data twice (although model expansion itself is not immune to this criticism; see below), and he appears 
to have employed raw rather than adjusted (or modified) profile likelihoods, which in both the Bayesian 
and non-Bayesian worlds have been called into question in non-Gaussian problems (e.g. Cox and Reid 
(1987)). In spite of this it is pleasant to note the qualitative agreement between his analysis and mine 
that substantial model uncertainty is present and unaccounted for by conditioning on a single structural 
choice in the Challenger example. 

Inference and prediction 
With respect to the comments by Gelfand and Mallick, I agree that it would be good to replace 0 

by Os (consider for example, logit versus probit on the same data with the same predictors-each X 
will have a 'f3' with both link functions, but they mean quite different things). I do not understand 
much of the rest of what Gelfand and Mallick say, and I do not agree with most of what I do understand. 
It seems for them that parametric inference is the grail, and prediction only comes up in model checking. 
My own view, following de Finetti (1974, 1975), is that prediction of observables is the fundamental 
activity, and that parameters arise as convenient devices for promoting simplifications, such as conditional 
independence, in specifying models M (which are just joint probability distributions for observables). 
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One point of this paper is that it is often helpful in coherently specifying a model to think of it in two 
pieces, M=(S, Os) (or perhaps (S, OIS)), so that uncertainty about structure S is assessed and 
propagated instead of forgotten. When the quantity of interest is a future observable it is always possible 
to view M in this way; when instead the focus is parametric, it is important, in thinking of M as (S, 
Os), that the component(s) of Os of real interest have the same meaning across the entire set of structures 
over which uncertainty is admitted (a kind of identifiability condition; see the last paragraph of Section 
4.1). Perhaps we are misunderstanding each other in some way. 

The identifiability constraint just mentioned often gives rise in practice to another kind of qualitative 
difference between inference and prediction as far as model uncertainty is concerned: forcing the meaning 
of Os to be constant in S for parametric inference tends to restrict sufficiently the class of models over 
which uncertainty may be expressed that the between-model component of variance is often smaller 
in inference (where this component is typically O(n-1)) than in prediction (where the effect of this 
component can be 0(1)). An example of a predictive 0(1) model uncertainty effect arises in linear 
regression using a greedy algorithm for variable selection (such as all-subsets regression) and then making 
predictions based on the same data set used to identify the 'best' predictor subset: with diffuse priors 
on the regression parameters the posterior predictive variance for a future observable y is of the form 
(1 -R 2)s2[ 1+ 0(n -)1, where s2 is the sample variance on the outcome scale and R2 is the usual 
coefficient of determination-i.e. sharply overestimating R2 (as is likely with the S*-approach in this 
case) is an 0(1) mistake. Thus in prediction problems we will rarely be able to enjoy what Barnard 
calls 'serendipity', the situation indicated by Cairns's Fig. 11(b). Of course for small and moderate n 
omitting an O(n- I) variance term can also get you into serious calibrative trouble, so in this case model 
uncertainty can loom large in inference as well. 

Posterior model probabilities 
Kass, Wasserman and Raftery revisit the topic of approximating posterior model probabilities. It 

is clear that we shall have to gain additional empirical experience with the success of 0(1) approximations 
to equation (9), bearing in mind that the eventual goal is often to create composite posterior distributions 
of the form (1) or (6) that exhibit better predictive performance than those obtained with, for example, 
the S*-approach. A recent applied example in which equation (11) sharply outperformed S* is given 
by Hook and Regal (1994) in the context of capture-recapture estimates of population size in epidemiology 
(also see Western (1993) for an application of the methods in Section 5 to macrosociology). I do not 
wish to encourage two wrongs to make a right, but I have seen at least one example in which 
approximation (1 1)'s preference for more complex models over that inherent in BIC led to better predictive 
calibration, because 

(a) more complex models tend to have smaller conditional inherent precision when extrapolation is 
at issue (the situation where propagation of model uncertainty is most urgent) and 

(b) the model class -t' employed in that particular example was (as is often the case) retrospectively 
seen not to be sufficiently rich. 

Time series 
I have not done full justice here to the subject of model uncertainty in time series, which was raised 

by Chatfield, Glendinning, Hjorth and Zellner. Dynamic linear models (DLMs, Section 5), which include 
the Kalman filter as a special case, are well suited to the simultaneous consideration of alternative time 
series structural specifications and the attendant quantification of between-model uncertainty. For 
example, consider sequential updating with a discrete state space DLM on the oil price data of Section 
6.1. As the yearly actual oil prices in Fig. 1 became known one by one, the posterior structural probability 
vector would move away from the values in Table 1, which concentrate on the reference scenario, and 
towards the scenario displayed in Fig. 2 (scenario 10), with an attendant narrowing of the uncertainty 
bands and a shifting of the 1986 z-score for $13 from - 1.1 towards 0. For more on time series model 
uncertainty see, for example, Barnett et al. (1993a, b), who use MCMC methods to approximate the 
posterior distribution on (p, d, q) in the ARIMA(p, d, q) modelling class. 

Elicitation and graphical presentation of uncertainty 
Grieve's comments about graphical displays of the mapping from prior to posterior (Section 7.4) 

are important-such displays will form a key part of the definitive software test-bed for interactive 
Bayesian modelling, which still remains to be written (although BUGS (Gilks et al. (1994)) is a good 
start). With regard to elicitation, I strongly support Madigan's attempts to construct non-diffuse structural 
prior distributions (see the contribution of Glasbey and Gibson). Now that we have a better handle 
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on computational issues, the next 10 years should see attention shift increasingly, in the implementation 
of the Bayesian paradigm, to the underemphasized topic of methodology for elicitation of informative 
priors (e.g. Kadane (1980) and Merkhofer (1987)) and utility functions (e.g. Grayson (1960) and Bernardo 
and Smith (1994)). 

Specifying p(S) diffusely may be a reasonable place to begin (and perhaps even to end) in discrete 
model expansion, but one point that I was trying to make in Section 3 was that this can lead to problems 
in continuous expansion when the space At of all possible models is too big. For instance, I believe 
that Madigan's good results with diffuse p(S) over all of X are because he has restricted himself so 
far to problems in which model uncertainty is finite dimensional. In this regard the example given by 
Diaconis and Freedman (1986) (mentioned in Section 3) is a cautionary tale which in effect posits a 
hierarchical model for location inference of the form 

IID 
a - Cauchy, (FlIa) - symmetrized Dirichlet(a), (ei I F) -F, 0 -N(g, 1), 

xi=0+ei, i=1, I . . n, 

and exhibits a sampling distributionfor the ei and a true value 0* that leads to a posterior for 0 which 
does not converge as n increases to point mass on 0*. Although discussants to Diaconis and Freedman 
(1986) raised various technical objections to the Dirichlet model, the messages that I would emphasize, 
in situations like this where 9V is infinite dimensional, are that 

(a) it is actually quite a strong piece of prior information to claim that p(S) is constant and non-zero 
over a truly large part of X and 

(b) considerable care is required in arriving at prior probability measures on function spaces of which 
we are retrospectively proud. 

Non-Bayesian approaches to model uncertainty 
The example given by Cox provides a nice environment within which to examine the merits of both 

qualitative and quantitative acknowledgement of modelling uncertainty. Fig. 15 from Cox (1988), to 
which he refers, dramatically exhibits the effect of various structural assumptions on the likely size of 
the acquired immune deficiency syndrome (AIDS) epidemic in 1992, when viewed from the perspective 
of 1987. The most reasonable way to treat structural uncertainty in this situation must depend on the 
actions to be taken in response to the epidemic's growth. If, for instance, we have only a finite 
governmental budget to spend on AIDS plus all other pressing problems taken together, so that too 
much spent on AIDS has adverse consequences that are just as real as those resulting from spending 
too little, how would Cox recommend hedging appropriately against the structural uncertainty in Fig. 
15 except by averaging over it, as maximization of expected utility (MEU) requires? If he has some 
other behaviour in mind-such as a minimax strategy of some type (compare Tukey's 'taking the worst 
of what remains')-which he is willing to advocate in this and each of the other governmental problems, 
I would be happy to put up MEU in a head-to-head simulation, with distance from the retrospectively 
optimal way to spend the constrained resources as the aggregate criterion. We already know from standard 
decision theoretic results, frequentist or Bayesian, which method would win: you cannot afford the 
luxury of minimax-or any other non-MEU choice-simultaneously across many separate subproblems, 
when the goal is sensible allocation of constrained resources. 

With regard to bogus quantification, one strategy for producing what might be termed bogus non- 
quantification is for the statistician to present something like Fig. 15 to the scientist or policy analyst 
with whom he or she is collaborating and to say, 'This is as far as statistics can go in helping you to 
figure out what decision to take'. What happens when you do this is that people who must make difficult 
choices in the face of uncertainty are forced to rely on intuition and heuristics, and the results may 
easily not be as good as they would have been had we collaborated all the way to the finishing line 
(see Donnelly's comments). 

Incidentally, I am not suggesting, for example, in Cox's AIDS example that we should use the composite 
(weighted average) predictive distribution for 1992 to decide once and for all, say, the appropriate number 
of new AIDS hospitals to begin to build in 1987. Adaptive hedging strategies are almost always available 
that will dominate such a choice, e.g. beginning in 1987 to build facilities that can be converted from 
AIDS hospitals to some other type of public use structure (and vice versa), and revisiting the situation 
in (say) 1990, when some of the possibilities in Fig. 15 will have demonstrated themselves to be implausible, 
to modify the end use of some of the buildings. 
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Fig. 15. Summary of predictions of numbers of new cases of AIDS diagnosed in England and Wales (? Crown 
copyright) 

Why, by the way, does Cox regard the specification of prior structural probabilities negatively, when 
(like all of us) he must face a similar question, particularly when modelling observational data, about 
his likelihood functions or sampling distributions ('Where do they come from?')? Whatever our statistical 
faith may be, we are all attempting to use the metaphor of probability, often when no one formally 
introduced randomness into the data gathering, to help people to obtain useful answers to difficult 
questions (see Copas's comments). No matter whether the data are experimental or observational in 
character, it is rarely true in problems of realistic complexity that the data collection process fully specifies 
the probability model, so we are often faced with Cox's question, and being non-Bayesian does not 
avoid it. My attitude about prior structural probabilities is that they are an ingredient that arises in 
employing the metaphor in a way that better accounts for model uncertainty, and-when not much 
substantive input is available (see the comments by Glasbey and Gibson)-I have the same kind of 
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engineering pragmatism about this aspect of the modelling process that I would guess Cox has about 
his sampling distributions with observational data: you scratch something down and see whether it 
produces sensible looking answers; if not you change it. In this iterative process (e.g. Box (1980) and 
Rubin (1984)), Bayesian coherence keeps you internally consistent, and predictive calibration-which 
has an inherent relative frequency character-helps to ensure that you are not too far out of step with 
the world. I do not see why prior probabilities continue to be such a stumbling-block for people who 
have not tried to work with them. 

Another related pragmatic tool, used to good effect in frequentist applied work (e.g. the nuclear power 
example in Cox and Snell (1981)) and equally useful here, is sensitivity analysis: in this case, see how 
much varying the prior structural probabilities across plausible ranges affects the final answer you care 
about-if their precise specification does not matter much, fine; if it does, add this new uncertainty 
as a layer in the hierarchy to be averaged over as well. The infinite regress problem hinted at by possibly 
needing to repeat this programme indefinitely turns out not to be much of a hindrance in practice-a 
kind of empirical diminishing returns phenomenon typically causes the effect of the new layers in the 
hierarchy to damp out as their proximity to the final answer decreases. 

Potscher is correct that, from the frequentist point of view, the problem with the S*-approach is 
not with the choice of a single 'best' model but with the failure to acknowledge the search on which 
the choice is based. He is also correct that the suggestion in Section 5.1 to employ the data to help 
to specify p(S) is circular; indeed model expansion itself suffers from the same flaw if it uses the search 
leading to S* as part or all of its inspiration in choosing -V. On this issue we face a dilemma: from 
the Bayesian perspective the ideal is to specify p(S) without looking at the data, but you will then run 
foul of Cromwell's rule (see Section 5.1) if anything crops up in the data that has already been ruled 
impossible by your prior. The frequentist approach does not appear entirely satisfying, either, because 
nobody has yet been able to formalize the full data analytic process, leading to S*-choices in real world 
problems of realistic complexity, sufficiently well to pin down its operating characteristics. Model 
expansion based in part on the search leading to S* uses the data twice, but to a considerably lesser 
extent than the S*-approach itself. The only infallible alternative is omniscience, which outside the world 
of simulations appears to be in short supply. 

Postscript 
I would like to close with a historical analogy. It seems to me that we are in about the same position 

with respect to model uncertainty now as we were in 1910 (say), after Gossett had introduced inference 
based on the t-distribution but before this relatively new machinery had made its way very far into day- 
to-day applied work. In the language of this paper, Gossett had noted that the usual practice before 
1905-of using the data to estimate the population standard deviation (SD) a in the denominator of 
the usual z-ratio, but failing to account for this in the inference-was an instance of the S*-approach, 
and a more recent interpretation of his t-distribution remedy, recalling that the t-family is a scale mixture 
of Gaussian distributions, would be to say that he hierarchically expanded the N(J, a2) model for 
known a by adding a layer of uncertainty about a to the model, and integrated over this new layer 
rather than using point mass on the sample SD. It took people a while to make use of this new technology 
because it required an enhancement of their previous computing methods (in Gossett's case, calculation 
and dissemination of the t-table)-in the same way that it has taken people a while to use Laplace 
approximations and Gibbs sampling in their routine problem solving-but within 10 or 20 years of 
Gossett's advance the new approach was well established. 

It may be objected in this analogy that structural and parametric uncertainty are of two quite different 
types, so that it is not fair to draw a correspondence between the choice of (say) a logistic link-or 
a single AIDS projection in Cox's example-on the one hand and the choice of a particular value of 
a on the other, but as Pratt notes these two types of uncertainty, both in effect about nuisance parameters 
when standard models are expanded hierarchically, do not differ in any basic way. By virtue of recent 
advances in Bayesian computation analogous to the use of t in place of z, we can now make the same 
sort of incremental increase in the realism of our modelling that slowly followed Gossett's breakthrough 
almost a century ago. It is my hope that the next decade will see a parallel advance in more fully accounting 
for model uncertainty. 
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