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A toast and congratulations to the author(s) should be in order whenever a discus-
sant enjoys reading a paper. But often this enjoyment leads to a self-condolence for the
discussant: “Well, there goes another paper that I should have written!” The grapes are
particularly sour when the discussant has been planting similar varieties in a neighbouring
vineyard. In Meng and Xie (2014), which demonstrates that more data do not guarantee
better results, we studied the impact of the sampling frequency, and the related interplay
between data patterns and model assumptions, on estimating the autocorrelation in the
simple AR(1) model. The findings were somewhat intriguing, and I have been wondering
what they would look like for more complex time series models.

Specifically, suppose in principle we can observe any part of an AR(1) series of indefinite
length into the future

Yt = ρYt−1 + εt, εt
i.i.d.
∼ N(0, σ2), t = 0, 1, , . . . , (1)

but in reality we can only afford taking n observations. What is then the sampling frequency
for optimally estimating ρ? Assuming n is sufficiently large to render the adequecy of the
Fisher information approximation, we proved that the optimal spacing (between consecutive
sampling times) is 1 when ρ2 ≤ 1/3, and it is 2 when 1/3 < ρ2 ≤

√
21/20 − 0.5, etc. In

general, the optimal spacing goes up with ρ2 at the rate of [− log ρ2]−1 as ρ2 ↑ 1, so does the
maximal relative gain in efficiency for estimating ρ as compared to using the single spacing.

We also investigated the efficiency gain for estimating ρ from knowing the value of σ2.
When the spacing s = 1, the relative gain in Fisher information is bounded above by
1/(n − 1). However, it can be as high as 50% once s = 2 (achieved when ρ = 0), and it
approaches infinite as ρ2 ↓ 0 when s = 3. From a time-domain perspective, this is due to
the fact that once s > 1, estimating ρ and estimating σ2 become tangled because

Yt+s|Yt ∼ N
(
ρsYt, ks(ρ

2)σ2
)
, where ks(x) =

s−1∑

j=0

xj , (2)

and hence Var(Ys+t|Yt) depends on both ρ and σ2 when s > 1. In other words, the Fisher
information matrix for {ρ, σ2} is diagonal if and only if s = 1.

The authors emphasize the gain of insights from a frequency-domain perspective about
missing observations in a time series. Since every time series can be represented equiva-
lently in frequency domain and in time domain, I’d be very interested in gaining additional
statistical insights from the authors’ perspective about these mathematical findings.
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