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Abstract. Detection of long-term, linear trends is affected by a number of factors, 
including the size of trend to be detected, the time span of available data, and the 
magnitude of variability and autocorrelation of the noise in the data. The number of years 
of data necessary to detect a trend is strongly dependent on, and increases with, the 
magnitude of variance (o-2•) and autocorrelation coefficient (qb) of the noise. For a typical 
range of values of o-2• and 4> the number of years of data needed to detect a trend of 
5%/decade can vary from -10 to >20 years, implying that in choosing sites to detect 
trends some locations are likely to be more efficient and cost-effective than others. 
Additionally, some environmental variables allow for an earlier detection of trends than 
other variables because of their low variability and autocorrelation. The detection of 
trends can be confounded when sudden changes occur in the data, such as when an 
instrument is changed or a volcano erupts. Sudden level shifts in data sets, whether due to 
artificial sources, such as changes in instrumentation or site location, or natural sources, 
such as volcanic eruptions or local changes to the environment, can strongly impact the 
number of years necessary to detect a given trend, increasing the number of years by as 
much as 50% or more. This paper provides formulae for estimating the number of years 
necessary to detect trends, along with the estimates of the impact of interventions on 
trend detection. The uncertainty associated with these estimates is also explored. The 
results presented are relevant for a variety of practical decisions in managing a monitoring 
station, such as whether to move an instrument, change monitoring protocols in the 
middle of a long-term monitoring program, or try to reduce uncertainty in the 
measurements by improved calibration techniques. The results are also useful for 
establishing reasonable expectations for trend detection and can be helpful in selecting 
sites and environmental variables for the detection of trends. An important implication of 
these results is that it will take several decades of high-quality data to detect the trends 
likely to occur in nature. 

1. Introduction 

The impact of human intervention in a changing environ- 
ment has brought about increased concern for detecting trends 
in various types of environmental data. A variety of studies 

1Cooperative Institute for Research in the Environmental Sciences, 
University of Colorado, Boulder. 

2Department of Statistics, University of Wisconsin, Madison. 
3Graduate School of Business, University of Chicago, Chicago, Illi- 

nois. 

4Department of Statistics, University of Chicago, Chicago, Illinois. 
SNational Center for Atmospheric Research, Boulder, Colorado. 
6NOAA Air Resources Laboratory, Boulder, Colorado. 
7Department of Atmospheric Sciences, University of Illinois, Cham- 

paign. 
8Atmospheric Environment Service, Downsview, Ontario, Canada. 
9NOAA National Weather Service, Washington, D.C. 
IøNOAA Climate Monitoring and Diagnostics Laboratory, Boulder, 

Colorado. 

11Department of Geophysical Sciences, University of Chicago, Chi- 
cago, Illinois. 

Copyright 1998 by the American Geophysical Union. 

Paper number 98JD00995. 
0148-0227/98/98JD-00995509.00 

have attempted to detect long-term trends in geophysical vari- 
ables such as atmospheric ozone [Reinsel et al., 1994; Stolarski 
et al., 1991, 1992], stratospheric temperature [Miller et al., 
1992], and ultraviolet (UV) radiation at the Earth's surface 
[Scotto et al., 1988; Weatherhead et al., 1997]. These studies 
have revealed that detection of trends is difficult and requires 
statistical techniques that take into account some of the real- 
istic problems which frequently occur with the measurement of 
geophysical data. As political decisions and future scientific 
efforts may be based on the results of environmental trend 
studies, achieving the most accurate trend estimates in the 
shortest time period is important to ensuring that appropriate 
actions are taken. Factors affecting the detection of linear 
trends are outlined in this paper, and examples of trend de- 
tection analyses of data are highlighted. The results show that 
for most expected environmental changes, several decades of 
high-quality data will be needed before such changes will be 
detectable. The results also show that certain decisions regard- 
ing site location, instrument maintenance, and calibration can 
influence the accuracy of trend estimation and hence detection 
of trends. 

Statistical criteria for detecting linear trends were presented 
by Tiao et al. [1990], where it was shown that the precision of 
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trend estimates is strongly influenced by the variability and 
autocorrelation of the underlying noise process. The precision 
of a trend estimate in turn directly determines the number of 
years of data required to detect a trend of given magnitude or 
the magnitude of trend that can be detected with a given 
number of years of data. This paper explores more fully, in 
both a theoretical and an applied sense, how various factors 
affect the ability to detect a trend through their influence on 
the precision of the trend estimate. The uncertainty of esti- 
mates for trend detectability is also explored. Section 2 of this 
paper addresses the ability to detect a trend in a single data set 
and how the number of years of data needed to detect a given 
trend is dependent on the magnitude of and autocorrelation in 
the natural variation of the data, as well as how these param- 
eters can vary significantly among environmental parameters 
as well as from location to location. Section 3 addresses the 

impact of sudden interventions on the ability to detect trends. 
Such level shifts have been observed in empirical trend studies 
for a variety of data sets [e.g., Reinsel et al., 1994; Weatherhead 
et al., 1997]. The basic statistical theory used in this paper is 
covered in more detail in standard textbooks on regression and 
time series analysis [e.g., Box et al., 1994]; however, here ap- 
plications and examples are presented with special emphasis 
on the case of linear trend estimation with examples from 
environmental data sets. 

The detectability of a trend can be summarized in several 
ways. Two common ways are through the precision of a trend 
estimate, as measured by its standard deviation, and through 
the number of years of data required to detect a trend of given 
magnitude using the trend estimate. Which summary is em- 
ployed is determined by what data are available or are being 
planned for. If the data have already been collected, generally 
the former is more useful, while if an experiment is being 
planned or a monitoring project started, the latter is often 
more useful. In each of the following sections, the statistical 
modeling approach will be introduced, and the precision of a 
trend estimate will be examined. Then the number of years 
required to detect a given trend will be discussed, followed by 
examples with actual data sets to illustrate the precision of 
trend estimates. While examples will be supplied using atmo- 
spheric data, the results are general and are applicable to data 
from a variety of sources. Details of the statistical approaches 
will be more fully outlined in the Appendix. 

2. Basic Trend Evaluation: Effects 

of autocorrelation and variability 
on trend estimation and detection 

Changes in environmental variables are often statistically 
modeled as being a smooth linear change. While this may 
never be the case, it allows a simple approximation of the 
direction and magnitude of the changes in the data, which may 
be adequate for many practical purposes. More importantly, 
results from the linear trend models are commonly used and 
are familiar to scientists and policy makers; thus it is important 
to examine various issues under such models. The linear trend 

in environmental data is often expressed in percent change per 
decade. There is often a great deal of variation on different 
timescales occurring within the data in addition to the linear 
trend. For independent (uncorrelated) time series data the 
length of time to detect the trend is determined by the mag- 
nitude of variation of the noise. However, environmental data 
are often autocorrelated. For instance, higher than normal 

temperature on one day is often associated with higher than 
normal temperature on the next day. This positive autocorre- 
lation tends to confound with a linear trend and therefore 

increases the length of time required to detect a given trend. 

2.1. Basic Statistical Modeling 

In many statistical trend analyses of monthly time series data 
on a geophysical variable, such as total ozone, stratospheric 
temperature, or UV radiation, a model of the following form 
has frequently been found to be useful. Let Yt be our mea- 
surement on the geophysical variable of interest, either on its 
original scale or after a transformation (most often the log 
transformation, e.g., log UV). Then the linear trend model 
assumes Yt = I• + St + roXt + N t, where /• is a constant 
term, X t = t/12 represents the linear trend function, and ro is the 
magnitude of the trend per year. St is a seasonal component which 
can often be represented as St -- 5;•4-• [/3•,j sin (2•rjt/12) + 
/32,j cos (2•rjt/12)]. While the seasonal component is essen- 
tial in practical modeling of geophysical time series, estimation 
of this component does not have much impact on the statistical 
properties of the estimates of the other terms in the model. 
Hence the seasonal component will not be included in our 
subsequent statistical derivations, for convenience, although it 
will be included in the analyses for the empirical data applica- 
tions. Therefore to investigate the effects of magnitude and 
autocorrelation of noise on trend estimates, we consider a 

simple trend model of the form 

Yt-- ! x + roXt + Nt, t = 1,''', T. (1) 

For the unexplained portion of the data the noise Nt is 
assumed to be autoregressive of the order of 1 [AR(1)]; that is, 
Nt = qbNt-1 + e t, where the e t are independent random 
variables with mean zero and common variance o-•. It will also 
be assumed that -1 < 4> < 1, so the noise process {Nt} is 
stationary. This model allows for the noise to be (auto)corre- 
lated among successive measurements, such that 4> = 
Corr (Nt, Nt_•). The autocorrelation, which is typically pos- 
itive, may be the result of various natural factors which give 
rise to somewhat smoothly varying changes in N t over time. 
Such natural factors may not always be known or measurable, 
and the lagged value N t_ 1 in the model can sometimes be 
regarded as a proxy to represent these natural factors which 
dynamically influence the current noise value N t. It is also 
noted that the variance of the noise N t is directly related to the 
variance • of the white noise process {et} in this model by 
o-} = Var (Nt)= 0-•2/(1 - (•)2). 

2.2. Trend Estimation 

A common situation of trend evaluation is when a given 
number of years of data have been collected and one wants to 
estimate a trend based on the existing data. For such a situa- 
tion, one wants to estimate the trend as well as the precision 
(standard deviation) of the trend estimate. Let •o denote the 
generalized least squares (GLS) estimator of the trend ro in 
model (1), and let o-co = s.d. (•o) denote the corresponding 
standard deviation of •o. The exact form of o'co is derived in the 
Appendix, with •o = Var(•o) given in (A5). In the Appendix it 
is also shown that a useful and quite accurate approximation is 

O'& • (1 -- (•))/•3/2--/•3/2 __ (•) (2) 
where n = T/12 denotes the number of years of data. 
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As seen from approximation (2), the precision of & is di- 
rectly a function of the magnitude of variation and the auto- 
correlation of the noise, as well as the fixed number of years of 
available data. Specifically, data with larger variance and 
higher positive autocorrelation of the noise decrease the pre- 
cision (i.e., increase s.d. (&)) of the trend estimate. Large o- N 
means large noise in the data, making any signal or trend more 
difficult to detect, the standard "signal-to-noise" issue. In- 
creases in positive autocorrelation (r k) tend to increase the 
length of trend-like segments in the data and thus make the 
estimation of the real trend more difficult. 

Consequently, failure in taking into account the proper vari- 
ance and autocorrelation of the noise can lead to a false level 

of precision in the trend estimate, in that the assumed standard 
deviation of the trend estimate will substantially understate the 
actual uncertainty. For instance, a trend result may be obtained 
for typical autocorrelated environmental time series data using 
a statistical model that ignores autocorrelation, for example, 
assuming rk = 0 in model (1). The result obtained might falsely 
indicate a statistically significant trend at the 95% confidence 
level, whereas if the appropriate statistical model were used 
which does not ignore the autocorrelation, the actual precision 
of the trend estimate might be found to be substantially less. 

For any given value of 4>, we see from the approximation in 
(2) that o-&/o-• decreases as n increases at a rate essentially 
proportional to/./-3/2. The standard deviation of & increases 
as rk increases, and with a fixed value of o-•, the standard 
deviation of & for the moderate autocorrelation of rk = 0.5 is 
approximately doubled relative to its value when rk = 0. How- 
ever, it must be noted that AR(1) noise processes {N,} with 
the same o-• - s.d. (et) and different rk values have different 

2 = Var(Nt) = o-•2/(1 - qb2). Hence in variances, since O' N 
terms of o- N the standard deviation of & can be written as o-co = 
O'NV' (1 + rk)/(1 -- rk)n -3/2. Thus if o- N, rather than o-•, is 
fixed, then the standard deviation of & when 4> = 0.5 is in fact 
approximately V'(1 + 0.5)/(1- 0.5) = X/-J • 1.73 times that 
when 4> = 0. 

2.3. Trend Detection 

The issue of key interest in trend detection is to determine 
the number of years of data required to detect a trend of a 
certain magnitude. We shall adopt the commonly used deci- 
sion rule that a real trend is indicated, at the 5% significance 
level or 95% confidence level, when Ico/l > 2. It is then 
established by Tiao et al. [1990] that the number of years n * of 
data required to detect a real trend of specified magnitude 
l01 - I001, with probability 0.90, is 

] 2/3 3.3o-• 

I00( - : , (3) 
where we assume 101 < 1. We note here that this formula 
requires O-•v and •o 0 be on the same scale; that is, if •o 0 is in 
percentage, then O-•v must be converted to percentage as well 
(e.g., dividing the original O-•v by a mean). Also, the value 3.3 
in (3) would be larger (smaller) if we require a higher (lower) 
degree of certainty than 90%. 

From this result we can see the importance of both the 
magnitude of variation and the autocorrelation of the noise on 
the detection of trend. In general, from (3) we find that the 
presence of positive autocorrelation (rk > 0) increases the 
required number of years for trend detection by the factor of 
[(1 + 4>)/(1 - qb)] •/3, approximately, compared to the case of 

no autocorrelation (assuming a common value of the noise 
variance o-2•). For numerical illustration, suppose that one is 
interested in being able to detect a trend of magnitude 5% per 
decade (•o 0 = 0.5% per year). Table 1 (top) shows the number 
of years of data that are needed to detect such a trend given 
data with various values of both the magnitude of variation o- N 
and autocorrelation rk. The results presented show a variety of 
features. First, the number of years to detect a given trend is 
strongly influenced by both the autocorrelation and the vari- 
ance of noise in the data. For example, a month-to-month 
variability of 10% (o- N = 10) and moderate autocorrelation of 
rk = 0.5 results in a situation requiring 23.4 years of data to 
detect a 5% per decade trend. For the same value of o- N but 
with zero autocorrelation, 4> - 0, the required number of years 
will be 16.3, a difference of about 7 years compared to the case 
rk = 0.5. This result also shows the effect of ignoring the 
presence of autocorrelation in the data (e.g., assume 4> = 0 
when in fact rk = 0.5). There would then be a false sense of 
confidence in the ability to detect a trend; that is, the number 
of years to detect a trend would be underestimated by 7 years. 

Note that the results in Table 1 (top) are also presepted in 
terms of the ratio O-•v/C00 and can be used for general values of 
trend (c00). For illustration, if it is desired to detect a trend of 
magnitude •o 0 = 0.25% per year, and the underlying noise 
process has O-•v = 3.0%, then we can obtain the required 
number of years from the row in Table 1 (top) with O-•v/C00 = 
12 (e.g., n* = 16.6 when rk = 0.5). 

For further numerical comparison, Table 1 (bottom) shows 
the number of years n* of data required for detection of a 
trend of magnitude 1% per decade; that is, c00 = 0.1% per year. 
Even for small autocorrelation and low variability, it would 
often require a prohibitively long period of time to detect such 
a small trend. The long times required for trend detection arise 
because of the random variability in the data sets. This vari- 
ability is itself of great scientific interest. For many environ- 
mental parameters, for example, height of sea level, precipita- 
tion, or UV radiation, a year of unusually high levels once in a 
while might be of greater relevance than a small upward trend 
over many years. 

2.4. Uncertainties Due To Unknown Variance 

and Autocorrelation 

The approximation for n * given in (3) not only assumes the 
linear model (1) is adequate but also that we know the true 
values of O-•v and 4>- In practice, even if we assume the ade- 
quacy of model (1), we still do not know O-•v or rk, and thus we 
have to estimate them from available data (and prior informa- 
tion); that is, we will use the estimated values (6-• and •b) in 
place of o-• and 4>, respectively, when we apply (3), resulting in 
an estimated n*, •* Given that n* strongly depends on o-• 
and rk, it is natural to worry about the uncertain•ty in •i*, 
particularly if there is large uncertainty in 6-• or in 4>. In prac- 
tice, only a few years of data are necessary to estimate o-• fairly 
well, and thus it is often acceptable to ignore the uncertainty in 
&• (i.e., we can treat o-• = 6-•); significantly longer time is 
needed to adequately estimate 4>. Consequently, it is importan•t 
to assess the uncertainty in •i* due to the uncertainty in rk, 
considering that the amount of data available for estimating rk 
at the planning stage (i.e., when we need to estimate the 
number of years) is typically not large. 

The following method pr•ovides an approximate 95% confi- 
dence interval for n * when rk is the least squares estimate of qb 
based on M months of data. The derivation is given in the 
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Table 1. Number of Years of Monthly Data Needed to Detect, With Probability 0.90, a 
Trend of 5% Per Decade and 1% Per Decade at a 95% Confidence Level for Selected 

Values of Autocorrelation (q b) and Standard Deviation (rrN) of the Noise 

Value of 4> 

O'•v (O'er/W0) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

Number of Years to Detect a Trend of 5% Per Decade (•o o = 0.5% per year) 
0.25 (0.5) 1.4 1.5 1.6 1.7 1.8 2.0 2.1 2.3 
0.5 (1) 2.2 2.4 2.5 2.7 2.8 3.0 3.3 3.6 4.0 
1 (2) 3.5 3.7 4.0 4.3 4.6 4.9 5.3 5.9 6.7 
2 (4) 5.6 6.0 6.4 6.8 7.3 7.9 8.6 9.6 11.0 
4 (8) 8.9 9.5 10.1 10.8 11.6 12.6 13.8 15.4 17.8 
6 (12) 11.6 12.4 13.3 14.2 15.3 16.6 18.2 20.3 23.5 
8 (16) 14.1 15.0 16.1 17.2 18.6 20.1 22.1 24.7 28.6 

10 (20) 16.3 17.4 18.7 20.0 21.6 23.4 25.7 28.7 33.3 
12 (24) 18.4 19.7 21.1 22.6 24.4 26.4 29.0 32.5 37.7 
15 (30) 21.4 22.9 24.5 26.2 28.3 30.7 33.7 37.8 43.8 
20 (40) 25.9 27.7 29.6 31.8 34.3 37.2 40.9 45.8 53.3 

Number of Years to Detect a Trend of 1% Per Decade (•o o = 0.1% per year) 
0.25 (2.5) 4.1 4.3 4.6 4.9 5.3 5.7 6.2 6.9 7.8 
0.5 (5) 6.5 6.9 7.4 7.9 8.5 9.2 10.0 11.2 12.8 
1 (10) 10.3 11.0 11.7 12.6 13.5 14.7 16.1 18.0 20.7 
2 (20) 16.3 17.4 18.7 20.0 21.6 23.4 25.7 28.7 33.3 
4 (40) 25.9 27.7 29.6 31.8 34.3 37.2 40.9 45.8 53.3 
6 (60) 34.0 36.3 38.8 41.7 44.9 48.8 53.7 60.2 70.0 
8 (80) 41.2 44.0 47.1 50.5 54.5 59.2 65.1 73.0 84.9 

10 (100) 47.8 51.0 54.6 58.6 63.2 68.7 75.6 84.7 98.7 
12 (120) 53.9 57.6 61.7 66.2 71.4 77.6 85.4 95.8 111.5 
15 (150) 62.6 66.9 71.6 76.8 82.9 90.1 99.1 111.2 129.5 
20 (200) 75.8 81.0 86.7 93.1 100.4 109.2 120.1 134.8 157.0 

The standard deviation o- N of the noise is expressed in percent variability in the month-to-month data. 
Table values can also be used for trend detection for general value of •o0, in terms of the ratio crN/•O o. 

Appendix (section A2). First we calculate an estimated uncer- 
tainty factor 

B =3x/• _•' (4) 
Then the 95% confidence interval for the number of years is 
given by (• * e -B, h * eB), where g * is calculated according to 
(3) using 4> and &• for qb and cry, respectively. Note that when 
B _< 0.2, the interval is essentially given by h*(1 _+ B), thus 
B is the percentage of uncertainty relative to the point estimate 
g *. For larger B the interval (• * e - B, •. e B) is not symmetric 
about • * but rather skewed toward large values. 

To illustrate the calculation of this procedure, suppose 6-• = 
3.1%, co o = 0.3% per year and •b = 0.32. These values are 
actually from a total ozone data set collected at Tateno, as 
reported by Tiao et al. [1990], who gave •* • 14 years; the 
value from (3) is 13.6. Now suppose the value •b -- 0.32 was 
computed on the basis of 2 years of data; that is, M = 24. 
Then the B given by (4) is 0.38, and thus an approximate 95% 
interval for the number of years is (13.6e -ø'38, 13.6e ø'38) • 
(9 years, 20 years), which is a rather wide interval. If we have 
5 years of data to estimate 4> (i.e., M = 60), then B = 0.24, 
and the interval becomes (10.8, 17.3), or approximately 14 _+ 3 
years. Having 5 years of data to estimate 4> during the planning 
stage is likely to be unusual in practice. Assuming M varies 
from 24 to 60 months and 4> varies from 0 to 0.5, the relative 
uncertainty from the interval estimate varies approximately 
from 20 to 60%, and thus it is clear that the uncertainty in 
estimating 4> cannot be ignored when estimating the number of 
years. 

2.5. Applications 

The precision of a long-term linear trend estimate has been 
shown in sections 2.1 and 2.2 to be highly dependent on the 
variance (• or rr2N) and autocorrelation (4>) of the noise. 
Realistic estimates of these parameters can allow one to esti- 
mate the number of years necessary to detect a trend of given 
magnitude, or the magnitude of trend that can be detected by 
a fixed number of years of data. Knowledge of these parameter 
values (rr N and 4>) over a variety of different locations can help 
one determine the most likely locations from which a trend 
could first be detected. Such an analysis will allow reasonable 
estimates of the time necessary to detect a given trend. 

To illustrate, UV data from 14 Robertson-Berger (RB) 
meter stations within the United States were examined to as- 

sess the autocorrelation 4> and the magnitude of variability rr N 
for trend detection of UV radiation after seasonal variability 
has been accounted for [see Weatherhead et al., 1997]. Table 2 
lists the 14 stations and gives the estimates of 4> and rr N and the 
corresponding number of years required to detect a trend of 
5% per decade. The results are also graphically illustrated in 
Figure 1, which shows the estimates of 4> and rr N along with 
contour curves indicating the number of years of data needed 
to detect a 5 % per decade trend. The plot shows that the range 
of autocorrelation and variability observed at these stations 
translates into a rather wide range of the number of years to 
detect a given trend. It should be noted that the values of rr N 
and 4> have a latitudinal dependence with lower rr N and higher 
4> observed nearer the equator (see Table 2). 

While such an analysis can be helpful in identifying locations 
likely to detect a given trend earliest, it should be noted that 
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Table 2. Estimated Standard Deviation (&N) and Autocorrelation (•b) of Noise in UV 
Data From 14 Locations Along With the Estimated Number of Years (•*) to Detect Trends 

Site 

Reference g * for g * for 5% 

&N Trend, Reference Trend, 
Latitude •b (in %) % per decade Trend per decade 

Seattle, WA 47.5øN 0.12 13.0 3.1 29 21 
Bismarck, ND 46.8øN 0.24 14.9 2.6 37 24 
Minneapolis, MN 44.9øN 0.13 11.0 3.0 27 19 
Detroit, MI 42.4øN 0.12 11.6 3.2 26 20 
Des Moines, IA 41.6øN 0.29 13.5 2.9 35 24 
Salt Lake City, UT 40.8øN -0.15 10.5 2.3 25 15 
Philadelphia, PA 39.9øN 0.05 12.3 2.9 28 19 
Oakland, CA 37.7øN 0.21 9.3 2.3 30 18 
Albuquerque, NM 35.1øN 0.31 7.7 2.1 30 17 
Fort Worth, TX 32.8øN 0.23 12.4 1.7 45 22 
Tucson, AZ 32.3øN 0.27 7.0 1.9 30 16 
E1 Paso, TX 31.8øN 0.18 7.8 1.7 33 16 
Tallahassee, FL 30.4øN 0.04 9.8 1.8 33 17 
Mauna Loa, HI 19.5øN 0.36 12.0 0.6 97 24 

The uncertainties for the estimated number of years presented in this table are all of the order of 
_+ 10-15% because the number of years of data here range between 10 and 18 years. 

for any given variable, in this case UV radiation, the magnitude 
of the expected trend may vary by location as well. Thus a more 
pointed analysis comparing size of expected trends with the 
ability of a site to detect that trend is of further value. Often a 
realistic expected trend may not exist, but a reference trend 
may be established using the best available information. In 
practice, the estimated number of years to detect a trend is 
highly sensitive to the magnitude of the reference trend. In 
practice, a sensitivity study can show the exact dependence. 
Columns 6 and 7 of Table 2 illustrate the importance of estab- 

Measured Ultraviolet Radiation 

(• 

(• 

10 15 20 

yrs yrs yrs yrs yrs 

0 10 20 30 40 

N 

Figure 1. Magnitude (O'N) and autocorrelation (qb) from 14 
UV monitoring sites within the United States. Lines show 
combinations of o- N and qb required to detect a trend of 5 % per 
decade in the stated number of years. This plot shows that 
some locations appear to be better suited than other locations 
for detecting a given trend. 

lishing expectations for trend detection in evaluating various 
sites for their ability to detect trends. On the basis of past 
ozone trends, UV radiation is not expected to change as much 
in the lower-latitude sites as in the higher-latitude sites. In 
particular, using past ozone data from the total ozone mapping 
spectrometer on the Nimbus 7 satellite as a reference and 
assuming that UV radiation will increase approximately 1.9% 
for each 1% decrease in ozone, we can establish reference 
trends for UV radiation as given in Table 2 (column 5). Cal- 
culating the numbers of years to detect these reference trends, 
shown in column 6 of Table 2, reveals that data from Detroit 
and Minneapolis are likely to identify their reference trends 
several years earlier than Tallahassee, E1 Paso, or Tucson. This 
is in contrast to the results presented in column 7 of Table 2 
which show that data from sites like Tallahassee, E1 Paso, and 
Tucson would be likely to detect a common trend of 5% per 
decade several years sooner than from sites like Detroit or 
Minneapolis. A more complete comparison would include the 
estimate of errors in these numbers. 

In addition to the comparison of detectability at different 
locations, there is another comparison that is of great interest 
which this type of analysis can offer. Anthropogenic influences 
are predicted to create changes in a variety of variables. The 
variable with the largest expected change may be identified as 
a key variable to monitor with respect to global change. How- 
ever, different environmental variables have characteristically 
different noise associated with them, implying that for partic- 
ular variables, despite their low expected signal, it may be 
possible to detect a long-term change relatively early. Figure 2 
shows estimates of o- N in percent of mean value and qb for data 
on six atmospheric variables after seasonal variability has been 
accounted for, with the data for the first four plots obtained 
from the same 14 locations in the United States, as given in 
Table 2. The surface ozone data are from 13 locations inter- 

nationally, as listed in Table 3. The total ozone data are from 
satellite measurements over the same locations, as presented 
in Figure 1 and Table 2. Information on the sources of the data 
may be found in the Appendix (section A1). The lines in Figure 
2 indicate the number of years of data needed to detect a trend 
of 5% per decade. Figure 2 shows that some environmental 
parameters appear to be inherently more variable or more 
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Figure 2. Magnitude (O'N) and autocorrelation (45) from a variety of different monitoring stations. The first 
four plots show data from the same 14 locations with the following key for locations: A, Caribou, Maine; B, 
Bismarck, North Dakota; C, Great Falls, Montana; D, Eugene, Oregon; E, Lander, Wyoming; F, Madison, 
Wisconsin; G, Omaha, Nebraska; H, Sterling, Virginia; I, Albuquerque, New Mexico; J, Phoenix, Arizona; K, 
E1 Paso, Texas; L, Montgomery, Alabama; M, Tallahassee, Florida; N, Brownsville, Texas. (Letter order 
represents decreasing latitude.) The plot of surface ozone represents data from 13 locations internationally. 
The plot of total ozone represents data from satellite which correspond to the 14 locations displayed in Figure 
1. In all six plots, lines show combinations of tr N and & required to detect a trend of 5% per decade in the 
stated number of years. These plots show that some variables appear to be inherently more difficult than 
others for detecting a fixed trend. 

autocorrelated than others. The variables examined for this 

study indicate that some are capable of showing significant 
changes sooner than others. Examination of the first four plots 
which show a number of parameters from the same 14 loca- 

tions shows that while a site, such as Tallahassee, Florida, may 
be a preferred site for detecting a trend in one parameter 
(relative humidity), it may be a less desirable site for detecting 
a trend in another parameter (solar radiation). This analysis 
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Table 3. Estimated Standard Deviation (d-N) and Autocorrelation (/b) of Noise in Surface 
Ozone Data from 13 Locations Along With the Estimated Number of Years (•*) to Detect 
Trends and an Approximate 95% Interval for the Number of Years (in Parenthesis) 

Site M •b % ppb 

h* to Detect h* to Detect 1 

5% per Decade ppb per Decade 
Trend and Its and Its 

Uncertainty Uncertainty 

Barrow, Alaska 270 0.56 22.5 5.77 
Iceland 39 0.64 11.5 4.35 
Ireland 78 0.41 10.7 3.87 

Zugspitze 204 0.61 10.6 4.17 
Niwot 53 0.74 9.2 4.19 
Bermuda 83 0.65 20.7 7.06 

Canary 104 0.68 12.1 5.46 
Mauna Loa 259 0.67 18.5 6.88 

Barbados 53 0.43 13.3 3.68 
Samoa 214 0.65 29.4 4.14 

Cape Point 121 0.79 7.6 1.54 
Cape Grim 154 0.56 3.4 0.85 
South Pole 243 0.75 17.3 5.16 

-42 (36, 50) 50 (43, 59) 
29 (18, 47) 45 (28, 71) 
23 (17, 29) 34 (26, 43) 
27 (22, 33) 43 (35, 52) 
28 (17, 46) 49 (30, 80) 
44 (32, 61) 63 (45, 87) 
32 (23, 43) 55 (40, 75) 
42 (34, 51) 63 (52, 77) 
27 (19, 36) 27 (20, 36) 
56 (45, 69) 44 (36, 54) 
27 (18, 39) 27 (19, 39) 
12(9,15) 14(11,17) 
45 (35, 56) 58 (46, 73) 

Also listed is the length of the data (in month, M) used for estimation. 

shows that in terms of detecting a statistically significant trend, 
there is no single location that is best for all parameters. Again, 
the expected change for a variable needs to be compared to the 
likelihood of detecting a given change in a variable to deter- 
mine the variables most likely to be useful for the detection of 
a trend. In the absence of expected or reference trend values, 
in Figure 2 all sites are being compared on the basis of detect- 
ing a 5% per decade trend. 

The presentation in this section assumes that one is looking 
for a trend of a given percent per decade. Often, the expected 
change is not a percentage change but may be represented as 
an absolute change, such as an increase of surface ozone of 1 
ppb per decade. Table 3 shows some analysis of the surface 
ozone data also presented in Figure 2, where the data were 
shown in terms of detecting a 5% per decade trend. Scientif- 
ically, it may be more appropriate to look for a fixed change in 
concentration of surface ozone. Table 3 therefore shows the 

number of years to detect a 5% per decade trend as well as the 
number of years to detect a 1 ppb change in surface ozone. 
Note that the data from Ireland appear to be more appropriate 
for detecting a 5% per decade trend than the data from Cape 
Point; however, the data from Cape Point are more appropri- 
ate for detecting a trend of 1 ppb per decade than the data 
from Ireland. Realistically, the uncertainty in the estimate for 
the number of years for these two sites are not statistically 
distinguishable. However, this example is only illustrative in 
nature. 

These analyses show the importance of estimating how long 
it will take to detect trends at different locations and in differ- 

ent environmental parameters. Proper analysis of trend detect- 
ability for different locations can help focus existing and future 
monitoring activities. Choosing sites appropriately can allow 
scientific questions relevant to the health of the environment 
to be answered sooner. Efficient monitoring can also save 
considerably in terms of costs to monitor and delays associated 
with waiting for reliable trend results. 

3. Trend Evaluation With Interventions 

Data collection for the detection of trends often requires 
maintenance of stable instruments in representative locations 

for decades. However, often unforeseen problems arise which 
disrupt the measurements in some way that cannot be quanti- 
fied with any certainty. Instruments may break or may be 
modified; sites may change location, maintenance and calibra- 
tion procedures may change, or external events such as volca- 
nic eruptions may occur. A useful statistical model for many of 
these effects is obtained by assuming that at a specified point in 
time the data experience a permanent level shift of unknown 
magnitude [Box and Tiao, 1975]. If the data are analyzed in 
logarithmic form, such a discrete level shift in the logarithms of 
the original data corresponds to a scale factor change in the 
original data that could represent, for instance, the change in 
sensitivity of an instrument. To ignore such events can result in 
artificial trends in the data that are not representative of the 
environmental variable being studied. If the magnitude and 
time of the shift are known, then the data can be adjusted 
before being analyzed for trends. However, often the time of 
the level shift is known but not the magnitude. The presence of 
such a level shift will result in an increase in the variance of a 

trend estimate that properly accounts for the estimated shift 
and hence lengthens the time necessary to detect a given trend. 
The impact of the level shift on trend detection strongly de- 
pends on its relative location in time in the data set. 

3.1. Basic Statistical Modeling 

To investigate, statistically, the effects of intervention level 
shift, in addition to autocorrelation, on trend estimates, we 
consider a trend model of the following form: 

Y, = /• + coX, + 8U, + N,, t = 1, ß -., T, (5) 

where fox t represents a linear trend beginning at time t = 0, 
as before, and BUt is a mean level shift term used to account 
for the possible intervention to the data at the specified time 
t = T O (0 < T O < T); that is, 

0, t< To Ut = 1, t -> To' 

The noise series N t is modeled as an autoregressive [AR(1)] 
process, Nt = &Nt_ •. + e t, as in model (1). We are particu- 
larly interested in the uncertainty or variance of the estimate of 
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the trend in model (5), and the effect of occurrence of the 
intervention mean level shift term (as well as the autocorre- 
lated AR error) on the variance of the estimated trend. 

The statistical treatment of level shifts depends to a certain 
extent on whether the time of the intervention is known and 

whether any additional information is available regarding the 
magnitude of the level shift. For the present we consider the 
case where the time of intervention t - T O in model (5) is 
known. In some cases, although the existence of a (possible) 
intervention within a certain time interval may be expected, the 
exact time T O of the intervention is not known. A variety of 
statistical work has been done to investigate this problem, 
including estimation of the intervention time T O and testing 
the null hypothesis of no intervention. Generally, it is found 
that properties of estimators of the trend and shift coefficients 
(to and/5) in model (5) are not affected much when T O has to 
be estimated. The case of additional information about the 

magnitude of the level shift will be discussed in section 3.3. 
It is important to emphasize that model (5) is not universally 

applicable for all types of interventions. Long-term drifts in 
instrumentation which are periodically adjusted and volcanic 
interventions where the effect of the eruption decays with time 
are examples where model (5) would not be appropriate. How- 
ever, local changes in sites, maintenance procedures, calibra- 
tion techniques, and instrumentation may be adequately de- 
scribed by the model considered here. The use of an 
inappropriate model is likely to result in biased estimates of 
trends as well as other parameters. 

3.2. Trend Estimation 

To describe the impact of interventions on trend estimation, 
let do denote the GLS estimator of the trend to in (5), and let 
trco = s.d. (do) denote the standard deviation of do. The exact 
form of trco is derived in the Appendix, and the expression for 
the variance (•0,) of do is given by (A4). A useful approximation 
for the standard deviation of the trend estimate is given by 

O'dø• (1 -- 4))Ft 3/2 [1 -- 3T(1 -- T)] 1/2 

= n -• - [1 - 3,(1 - ,)],/2, (6) 
where •- - (T o - 1)/T is the fraction of data before the 
intervention. This approximation is accurate for smaller values 
of (k but tends to overstate the true value of trco as (k gets larger; 
also, it becomes more accurate as the number of years of data 
n gets larger. When there is no intervention, •- = 0, the result 
in (6) reduces to that given in (2). The effect of a level shift 
intervention on the standard deviation of the trend estimate 

(trco) is represented by the factor 1/[1 - 3,(1 - ,)]•/2, regard- 
less of the value of (k. From (6) we see that the uncertainty of 
a trend estimate is greatest when the intervention occurs half- 
way through the collection of data (•- -- 1/2); in this case, 
1/[1 - 3,(1 - ,)]•/2 = 2, so the standard deviation trco is 2 times 
the standard deviation obtained in the no-intervention case 

from (2). When •- = 0.25 or 0.75, the standard deviation &,, is 
about 1.5 times the value when no intervention is present. 

While the results above show that including a level shift term 
in the statistical model used will increase the uncertainty of the 
trend estimate, more serious consequences occur if one does 
not include a level shift term when a level shift has taken place. 

If one ignores a potential level shift in the statistical model, the 
resulting trend estimate will be biased. The exact form of the 
bias is presented in the Appendix. As an example, in the case 
of no autocorrelation with 4> = 0, it reduces to a bias in the 
derived trend proportional to the magnitude of the level shift: 
bias in do • 6,(1 - ,)/n 15. In practice, level shifts of 
moderate magnitude can overwhelm and obscure the true 
trend being sought, as shown by Weatherhead et al. [1997] and 
Krzy•cin [1996] in the analysis of UV data. In addition, in 
practice the estimate of the white noise variance • will be 
biased upward when the level shift term is not included in the 
model. 

3.3. Extension When There is Additional Information 

In some situations, additional (prior) information may be 
available on the magnitude of the mean level shift/5 in model 
(5). In practice, when the level shift could be caused by instru- 
ment-related problems, for example, replacement or recalibra- 
tion of instrument, this additional information may come from 
some comparative measurements of the instrument against a 
standard instrument, or other information available from cal- 
ibration procedures, a measurement campaign using two in- 
struments for some overlapping time period surrounding the 
time of intervention. To formalize the nature of information, 
statistically, we assume that for the magnitude of the level shift 
(/5) we have a (prior) estimate /50 with specified variance (a 
measure of the precision of prior estimate) •. Typically, the 
prior estimate /50 and its variance • will be obtained from 
independent analysis of the comparative data, for example, 
simultaneous measurements from two different instruments, 
mentioned above. We also assume that no other information is 

available or incorporated into the analysis concerning the 
other regression parameters/x and to in model (5). 

We denote the ratio • = •/• as a relative measure of the 
extent to which we know the magnitude of the level shift. Then, 
as shown from (A6) in the Appendix, the variance of the 
corresponding trend estimate do is given by the expression in 
(A4) but with h 6 replaced by h 6 q- /(' From this we find that 
the variance of the trend estimate can be decreased substan- 

tially as the amount of additional information increases (i.e., • 
increases). To illustrate, consider a series of length n - 10 
years with the intervention halfway through the time series 
(•- = 0.5), and moderate autocorrelation of 4> = 0.5. When 
• = 0, 1, or 9, the standard deviation of the trend estimate trco 
is about 1.8, 1.6, or 1.2, respectively, times that when no inter- 
vention is present (•- = 0). Thus when additional information is 
available corresponding to a value of • - 9, the standard 
deviation of the trend estimate is substantially reduced over 
the case of no additional information (• = 0) and yields vari- 
ability not too much greater than the case where no interven- 
tion is involved, equivalently, where the magnitude of the in- 
tervention is known with certainty. 

3.4. Trend Detection 

Similar to the no-intervention case considered in section 2.3, 
the number of years n* of data required to detect a trend of 
magnitude to 0 can be determined under the level shift inter- 
vention model (5). This model assumes that no additional 
information on the magnitude of the level shift is available. 
Using the approximation for the standard deviation of the 
trend estimate given in (5), a rough but convenient approxi- 
mation for the number of years for detection is obtained as 
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I 2/3 3.3•r• 

n* = w0 (1 - 4))[1 - 3,(1 - ,)]•/2 

Comparison of this convenient approximation with the approx- 
imation (3) for the no-inte•ention case suggests that the pres- 
ence of a level shift inte•ention in the model increases the 

number of years for trend detection roughly by a factor of 
1/[1 - 3,(1 - Q]l/3. For example, for the worst case, i.e., , = 
1/2, this approximation gives a hctor of 1.59. 

Using the exact expression for the standard deviation of the 
trend estimate given in (A4), the number of years (n*) re- 
quired to detect a 5% per decade trend (w o = 0.5% per year), 
for the case of an inte•ention hal•ay through the data set 
(, = 1/2) are obtained for different values of a• and &. By 
comparing these values with the corresponding values from 
Table i (top), we find that the ratio of the number of years for 
trend detection under the level shift model to that under the 

no-inte•ention model is about 1.55 to 1.59 for smaller values 

of & (& • 0.5), and the ratio becomes slightly smaller for larger 
values of &. This ratio is not ve• sensitive to the value of a• 
unless & is large. Thus the presence of an inte•ention level 
shift hal•ay through the data collection causes roughly a 50% 
increase in the number of years req•red for detection of trends. 

We note that the procedure given in section 2.4 for assessing 
the uncertainW in the estimated number of years, • *, due to 
the uncertainty in estimating & is applicable when • * is calcu- 
lated according to (7). This is because the extra factor 
1/[1 - 3,(1 - ,)]1/3 does no[depend on & and the large-sample 
formula for the variance of & is the same under models (1) and 
(S). 

3.5. Applications 

Consider first the characteristics of UV radiation data col- 

lected from 14 RB meter stations over the period 1974-1991. 
In the trend analysis of these UV data by Weatherhead et al. 
[1997], using models similar to those discussed earlier, it was 
found that the estimates of over 13 of the 14 stations range 
from about zero to 0.35 with a "Wpical" value of about 0.2. 
•so, in units of 100 times the logarithmic data, a "Wpical" 
value for the estimate of a• is about 10. The trend estimate 
using such data can be interpreted roughly as a percentage 
trend per year. Thus, for example, if we speci• that a true 
trend of magnitude w o = 1% per year (as may be expected in 
the •ctic) is to be detected, then with & = 0.2 and • = 10, we 
find from (7) that the required number of years of data for 
detection of trend of the magnitude w o = 1% per year is about 
n* = 11.9 for the case of no inte•ention, = 0, n* = 15.7 
for the cases of,: 0.25 or 0.75, and n* = 18.9 for the case 
of, = 0.5. Hence we see from this illustration that the occur- 

rence of level shift in data results in several additional years 
required for the detection of trend. 

We further illustrate the effect of inte•ention level shifts on 

trend estimates and their precision using total ozone data from 
Huancayo, 100 mbar temperature data from Hao, and UV 
radiation data from •buquerque. The deseasonalized data for 
each time series are shown in Figure 3. In each case, a level 
shift inte•ention seems highly probable, although the cause or 
source is not known for all three cases. For each station, trend 
estimates were obtained for both a no-level shift and a level 

shift model, which also include a seasonal component, and 

estimation results are shown in Table 4. We see that in each 

case there is a substantial difference in trend estimates be- 

tween the no-level shift and the level shift models. 

As discussed in sections 3.1 and 3.2, generally, the inclusion 
of a level shift term has the effect of increasing the standard 
deviation of the trend estimate, when other things are equal. 
However, in practice, if a substantial level shift intervention 
exists but is not accounted for in the statistical modeling, then 
the error variance is unduly inflated. Thus inclusion of the level 
shift term in such prominent cases of intervention will typically 
result in a decrease in the white noise standard deviation es- 

timate 6-•. It may also lead to a reduced estimate •b of the 
AR(i) coefficient, since some of the low-frequency behavior of 
the noise that was actually caused by the level shift is then 
explicitly modeled in the level shift term and hence less low 
frequency autocorrelation is present in the remaining noise 
term. As a result of these possible reductions in 6-• and •b, in 
practice the standard deviation of a trend estimate with a level 
shift term included may not be much larger (or could even be 
smaller) than that obtained from the model without the level 
shift term. For the results shown in Table 4, these features tend 
to be present to some extent. 

However, ideally, if the level shift feature had not been 
present in the data (or could have been "eliminated" in some 
justifiable way), and the data possessed the same 6-• and •b as 
obtained from the above level shift model estimation results, 
then a trend estimate from the no-level shift intervention 

model would have a substantially smaller standard deviation, 
as indicated by the results of section 3.2. These "idealized" 
standard deviation values of the trend estimate under a no- 

level shift model are shown as •r•, in column 8 of Table 4. 
Corresponding values of the estimated number of years •i * for 
detection of trend of magnitude w o are also given in Table 4 for 
the "idealized" no-intervention and intervention cases. A more 

complete comparison would be based on interval estimates for 
n *, which we omit here as we have illustrated such calculations 
before. 

4. Conclusion 

In this paper, the primary statistical considerations in de- 
tecting long-term, linear trends were presented. The two major 
statistical factors governing trend estimation and detection are 
the autocorrelation and variance of the noise. Results pre- 
sented show that the number of years of data required to 
detect a given trend is highly dependent on both of these 
parameters. Examination of environmental data shows that 
these two parameters can vary substantially from site to site 
[e.g., Zerefos et al., 1997] with the result being that one site may 
require many more years of data to detect a given trend than 
another site. Additionally, some variables show higher auto- 
correlation and variability than others, implying that trends are 
more difficult to detect in some environmental parameters 
than in others. 

Examination of a variety of environmental data sets shows 
that level shifts are common in long-term monitoring projects 
as instruments or site locations may change, as well as calibra- 
tion or maintenance techniques. The work in this paper shows 
that the occurrence of level shifts in the data can add signifi- 
cantly to the uncertainty in trend estimates and thereby in- 
crease the number of years necessary to detect a trend by as 
much as 50%. However, the effect of level shifts can be min- 
imized in some situations when additional information is avail- 
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Deseasonalized Geophysical Data With Level Shift Interventions 

Deseasonalized Dobson Total Ozone at Huancayo, Jan. 1978 - Apr. 1992 
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Deseasonalized Rawinsonde 100mb Temperature at Hao, Sep. 1971 - Dec. 1991 
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Deseasonalized UV (100*log) Data at Albuquerque, Jan. 1978 - Sep. 1990 
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Figure 3. Deseasonalized geophysical data with level shift interventions. The plots show data with identi- 
fiable level shifts. Level shifts may indicate an overall change in the parameter measured, a local change not 
indicative of the parameter over a larger area or a problem in instrumentation. 

able in order to estimate the magnitude of the level shift; and 
the effect can essentially be removed if the magnitude of the 
level shift is known to a high degree of certainty. Such addi- 
tional information could come from an overlap or cross cali- 
bration in instrumentation, when changes in instruments are 
made. Estimates are made to show how varying amounts of 
information mitigate the impact of level shifts on trend esti- 
mation. This analysis can be applied to a variety of practical 
decisions such as to determine the optimal number of months 
for satellite overlap or calibration routines. 

The results presented in this paper are relevant to realistic 
planning of monitoring sites established for the detection of 
trends. While there are a variety of other considerations, in- 
cluding the relevance of a site to the scientific question being 
asked and the logistic maintenance of a monitoring site, the 
statistical considerations presented in this paper may be useful 
for determining reasonable expectations for trend detectability 

at different sites. The applications presented also indicate the 
great need of additional explanatory data and focused studies 
to detect environmental change. Small changes of a few per- 
cent per decade will take prohibitively long time periods to 
detect trends, often more than several decades. Further assis- 
tance in the detection of trends may be obtained from the use 
of networks, rather than single monitoring sites. Savings, in 
terms of number of years to detect a trend, depend on the 
location and cross correlation of the data from the different 

sites. To what extent networks and additional explanatory data 
can help to reduce the number of years for detection is a topic 
currently under investigation. 

Determining which environmental variables and locations 
are likely to allow for earlier detectable changes will allow 
current and planned monitoring programs to be more efficient 
in answering scientific questions. Efficient detection of trends 
through focused monitoring activities can allow for scientific 
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Table 4. Illustration of Effect of Intervention Level Shift on Trend Estimate and Its 

Precision, Based on Geophysical Data From Three Stations 

Station Latitude •b b-• • to b'co 

12.1øS Huancayo (ozone in DU) 
Model without shift 

Model with shift 

(Shift at 11/82; r = 0.34) 
Hao (temperature in øC) 
Model without shift 
Model with shift 

(Shift at 4/76; r = 0.23) 
Albuquerque (UV in %) 
Model without shift 

Model with shift 

(Shift at 9/86; r = 0.69) 

18.1øS 

35.1øN 

0.715 3.816 - 1.068 0.237 
0.527 3.574 - 11.260 -0.040 0.228 0.137 

(1.976) •* = 12 g* = 8 

0.637 1.563 -0.164 0.046 
0.552 1.513 -3.132 -0.001 0.052 0.036 

(0.705) n* = 29 n* = 23 

0.277 6.993 -0.854 0.212 

0.193 6.775 -9.328 0.098 0.320 0.189 

(2.546) g* = 18 •* = 13 

Estimates and standard deviations in Dobson units (DU) for total ozone, øC for temperature, and % for 
UV radiation. Notation: •b, estimated autocorrelation; &• estimated standard deviation of the white noise; 
•, estimated level shift (with its estimated standard deviation in the parentheses directly underneath it); 
to, estimated trend; b'co, estimated standard deviation of the estimated trend; ̂  * estimated "idealized" O'&• 

standard deviation of the estimated trend; r, the fraction of data before the intervention. 

questions about changes to the environment to be answered 
more quickly. Efficient monitoring may be used to show that 
trends, which may have been expected, have not occurred. 
Savings from efficient monitoring will include reduced moni- 
toring costs as well as reduction in environmental impact due 
to early detection of changes. 

Appendix 
A1. Data Sources 

The UV data are from the 14 stations from the original 
Robertson-Berger UV monitoring network reported on by 
Weatherhead et al. [1997]. The length of the UV data records 
range from 10 to 18 years. The column ozone data are version 
7 from the total ozone mapping spectrometer on the Nimbus 7 
satellite. The estimates were based on data from 1979 to 1993. 

The 14 locations for total ozone were chosen to coincide with 

the 14 UV monitoring stations. The surface ozone data are 
from a network collected at the NOAA Climate Monitoring 
and Diagnostic Laboratory; some stations are analyzed by Olt- 
mans and Levy [1994]. The length of the data records range 
from 4 to 24 years. Data can be obtained from S. Oltmans. The 
humidity, pressure, and solar radiation data are from the 
National Renewable Energy Laboratory (NREL) data set 
which includes some modeled data not expected to affect the 
results presented here [NREL, 1992]. The data are from years 
1961 to 1991 inclusive. 

A2. Derivation for the Interval Procedure Given 
in Section 2.4 

To derive a 95% confidence interval for n * when qb is esti- 

mated by •b, we first write expli•citly n * = n * (0). Conse- 
quen•tly, when qb is estimated by 0, n* is estimated by g* = 
n*(0). To construct a 95% interval for n*, we will use a 
normal approximation on the log n* scale. The log scale is 
used because it helps to improve the normal approximation as 
well as to maintain the positivity of the resulting (interval) 
estimate. By the well-known 8 method• (i.e., first-order Taylor 
expansion), the variance l/of log n *(0) is given by 

•/-•- xVar(•)= 3(1- 0) M ' 

Since an approximate 95% interval for log n* is given by 
log n* (•b) _+ 2•, an approximate 95% interval for n* is 
given by (•*e -2x/p, g*e2X/v). The B given in (4) is an esti- 
mate of 2•/• by replacing the unknown 0 by •b. (Strictly 
speaking, this replacement introduces additional uncertainty. 
More sophisticated interval estimate based on the so-called 
variance-stabilizing transformation is available, but the for- 
mula is more involved.) 

A3. Variance and Bias Calculations Under Models (5) 
and (1) 

With Y = (Y•., -.., Yr)' as the T X 1 vector of observa- 
tions, the trend model (5) with intervention level shift term 
included may be expressed in matrix form as 

Y: + 

where X is a T x 3 matrix consisting of the constant, trend, 
and intervention terms, • = (/•, to, 8)' represents the vector of 
unknown regression coefficients to be estimated, and N = 
(N•,.", NT)' is the T x 1 vector of noise terms. For the 
model above with AR(1) noise process {Nt}, let e = 
(V'i - 02N•., e2, '", e r) ', which has Cov (e): o-•I. From 
the AR(1) equation N t - c•Nt_•. = e t, it follows that the 
noise vector N satisfies P'N = e, so that N = P'-•-e, where the 
matrix P' is T x T with (1, 1)-element equal to V'i - 0 2, the 
remaining diagonal elements equal to 1, the (i, i - 1)- 
elements equal to -0, and zero elements otherwise. Hence the 
covariance matrix of N has the form Cov (N) =Cov (P'-•e) = 
o-•P'-•-P -•- = o-•V, with V = P'-•-P-•- or V -•- = PP'. Consider 
the transformed equation 

Y*: P'Y = P'X[5 + P'N = X*[5 + •, (A2) 

where X* = P'X, and Cov (e) -- o-•I. The generalized least 
squares (GLS) estimator of [5 in model (A1) is then the ordi- 
nary least squares estimator in the transformed model, • = 
(X*'X*)-•-X*'Y *, with covariance matrix 

Cov (•) = c%2(X*'X*) -•. (A3) 

After some algebra, we have 
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where 

hi h2 h4] X*'X* -- h2 h3 hs , 
h4 hs h 6 

h 1 = (T- 1)(1 - q•)2 q- (1 - q•2), 

h2 • 
1--01 
12 [TT(T- 1)(1 - qb) + T + qb], 

1 1 

h 3 -- 1-•[ • T(T + 1)(2T + 1)(1 - •)2 

+ T2q•(] - q•) + Tqb- q•2], 

h 4: (T- T0)(1 - q•)2 + (1 _ q•), 

h5= 
(T- T0)(1 - 

24 [(T + T0)(1 - qb) + 1 + 

+ &[To- (To- 12 ' 

h 6 = (T- T0)(1 - q•)2 q_ 1. 

Therefore using matrix algebra, Var (&) is obtained as o• times 
the (2, 2)-element of the inverse of the matrix X*'X*, which 
yields the expression 

h6(h lh6 -- h42) 2 

Var (&) = 0-• (h•h6 - h42)(h3h6- hs 2) - (h2h6- h4h5) 2 
_= rr•2h,2(qb, T, To). (A4) 

In the special case of no autocorrelation when qb = 0, expres- 
sion (A4) simplifies to 

Var (&) 

123 
2 

= o-• 2T(r+l)(2T+l)_3(r_ro+l)(r+ro)2_3ro2(ro_l ) . 

A close approximation to the variance for this special 
2123 / r 3 case is Var(&) • rr• { [1 - 3r(1 - r)]} = 

o-•2/{n311 - 3r(1 - r)]}, where n = T/12 is the number of 
years of data, and r = (T O - 1)/T is the fraction of prein- 
tervention data. In a similar way, for a general value of qb, a 
useful approximation for (A4) can be obtained as Var (&) 
o-•2/{ (1 - qb) 2n 3 [ 1 - 3 r(1 - r) ] }, but this approximation is 
not so accurate for larger values of 

The result for model (1) can be obtained as a special case, 
since (1) results from omitting the level shift term BUt from 
(5). Let X = [X•, U] where X• represents the T x 2 matrix of 
regressors for model (1), and [5 = ([5 i, 8)' where [5• = (• •o)'. 
Then the GLS estimator of [5• under model (1) is [5• = 

..•_ , with covariance matrix 

= O.e(Xl X•)-i • 2 1 ø'•h2 h , 

where X• = P'X•. So, for model (1) it follows immediately that 
Var (&) is given by o• times the (2, 2)-element of the inverse of 
the matrix X•'X•, 

hi 
2 • o.•2h 2( Var (&) = o-• h•h3 - h22 ok, T). (AS) 

For the special case of no autocorrelation when qb = 0, the 
2123/{r(r2 1)). A expression simplifies to Var (&) = r% - 

useful, simple approximation for the variance expression in 
2123/{(1 - qb)2r(r 2 1)•, which is (A5) is Var (&) • r% - 

quite accurate when is not close to 1. 
Next, we consider the bias of the GLS estimator • obtained 

by assuming model (1), without intervention term, when the 
true model is (5) with a nonzero level shift intervention term. 
Under model (5), E[Y*] = X•[• + U* 8, so the expected value 
of • is 

= = 1 

+ (X,,X:)_•X, , [hi h:]-•[h4] 1 1 U*8 = [•l + h2 h hs 8. 

Hence we see from this that the expected value of the trend 
estimate obtained from model (1), when the true model is (5) 
with a nonzero level shift, is 

hihs- h2h4 

[ro] = + s. 
In the case of no autocorrelation with qb = 0, this expression 
reduces to 

6(T0- 1)(T- To + 1) 6r(1 - r) 
E[&] = •o + r(r 2 1)/12 8 = •o + 8. 

Now we consider the situation of section 3.2 where it is 

assumed that for 8 in model (5) we have additional information 
in the form of a (prior) estimate 80 with specified variance •. 
Set [•o = (0, 0, 8o)' with 5;•- denoting the 3 x 3 matrix whose 
elements are zero except for the (3, 3)-element which is equal 
to 1/•. Then the efficient estimate of [• in (A1), which incor- 
porates the above prior estimate or additional information, is 
given by • = (X*'X* + •E•-)-•(X*'Y * + o•E•-[•o) with co- 
variance matrix 

•/3 COV (• [•) 2 ,, , O.2•-) - 1 -- - =o-•(X X + . (A6) 

Notation 

Y, time series of environmental data. 
St seasonal mean function. 
Xt linear trend function. 
Nt AR(1) noise. 
et white noise. 
/• mean of data. 

•o o trend to be detected. 
& trend estimate. 

o-•, uncertainty of trend estimate. 
o- N standard deviation of the AR(1) noise. 
&N estimate of rr N. 
o-• standard deviation of the white noise. 
a-• estimate of 
qb autocorrelation of the AR(1) noise. 
qb estimate of 

T O time of intervention or level shift. 
T length of data set in months. 
n length of data set in years. 

n * years to detect a trend. 
g* estimate of n*. 
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