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ABSTRACT
Although the Metropolis algorithm is simple to implement, it often has difficulties exploring multimodal
distributions. We propose the repelling–attracting Metropolis (RAM) algorithm that maintains the simple-
to-implement nature of the Metropolis algorithm, but is more likely to jump between modes. The RAM
algorithm is aMetropolis-Hastings algorithmwith aproposal that consists of a downhillmove indensity that
aims to make local modes repelling, followed by an uphill move in density that aims to make local modes
attracting. The downhill move is achieved via a reciprocal Metropolis ratio so that the algorithm prefers
downwardmovement. Theuphillmovedoes the opposite using the standardMetropolis ratiowhichprefers
upward movement. This down-up movement in density increases the probability of a proposed move to a
different mode. Because the acceptance probability of the proposal involves a ratio of intractable integrals,
we introduce an auxiliary variable which creates a term in the acceptance probability that cancels with the
intractable ratio. Using several examples, we demonstrate the potential for the RAM algorithm to explore a
multimodal distributionmore efficiently than aMetropolis algorithmandwith less tuning than is commonly
required by tempering-based methods. Supplementary materials are available online.

1. Introduction and Overview

Multimodal distributions are common in statistical applications.
However, theMetropolis algorithm (Metropolis et al. 1953), one
of the most widely used Markov chain Monte Carlo (MCMC)
methods, tends to produce Markov chains that do not read-
ily jump between local modes. A popular MCMC strategy for
dealing with multimodality is tempering such as parallel tem-
pering (Geyer 1991), simulated tempering (Geyer and Thomp-
son 1995), tempered transitions (Neal 1996), and equi-energy
sampler (Kou, Zhou, and Wong 2006). Though powerful, these
methods typically require extensive tuning.

Building on Metropolis, we construct an alternative mul-
timodal sampler called the repelling-attracting Metropolis
(RAM) algorithm, which is essentially as easy to implement as
the original Metropolis algorithm. RAM encourages a Markov
chain to jump between modes more frequently than Metropo-
lis, and with less tuning requirements than tempering meth-
ods. Since RAM is more likely to jump between modes than
Metropolis, the proportions of its iterations that are associated
with each mode are more reliable estimates of their relative
masses.

RAM generates a proposal via forced downhill and forced
uphill Metropolis transitions. The term forced emphasizes that
neitherMetropolis transition is allowed to stay at its current state
because we repeatedlymake proposals until one is accepted. The
forced downhill Metropolis transition uses a reciprocal ratio of
the target densities in its acceptance probability. This encour-
ages the intermediate proposal to prefer downward moves since
a lower density state has a higher chance of being accepted,

CONTACT Hyungsuk Tak hyungsuk.tak@gmail.com Statistical and Applied Mathematical Sciences Institute.
Supplementary materials for this article are available online. Please go towww.tandfonline.com/r/JCGS.

hence local modes become repelling. The subsequent forced
uphill Metropolis transition generates a final proposal with a
standard Metropolis ratio that makes local modes attracting.
Together the downhill and uphill transitions form a proposal for
aMetropolis-Hastings (MH) sampler (Hastings 1970), as shown
in Figure 1; a final accept–reject step preserves the stationary
distribution.

As with other MH samplers, the normalizing constant of the
target density need not be known, but the scale of the (symmet-
ric) jumping rules used within the downhill and uphill tran-
sitions needs to be tuned. In principle, RAM is designed to
improve Metropolis’ ability to jump between modes using the
same jumping rule as Metropolis where this jumping rule is
tuned to optimize the underlying Metropolis sampler for the
multimodal target. One could do still better with additional tun-
ing of RAM, but in our experience even with no additional tun-
ing, RAM can perform better than its underlying Metropolis
sampler.

Although we can draw a sample using the down-up jump-
ing rule, the overall acceptance probability contains a ratio of
intractable integrals.We can avoid evaluating this ratio by intro-
ducing an auxiliary variable (Møller et al. 2006). This preserves
the target marginal distribution and requires another forced
downhill Metropolis transition for the auxiliary variable. Thus,
RAM generates a proposal via three forced Metropolis transi-
tions but accepts the proposal with an easy-to-compute accep-
tance probability.

RAM is related to a number of existing algorithms. The
down-up proposal of RAM may be viewed as a simpler version

©  American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America
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Figure . A repelling-attractingMetropolis algorithm is aMetropolis-Hastings algo-
rithm that generates a proposal x∗ given the current state x(i) bymaking a down-up
movement in density, that is, repelling–attracting to local modes, via forced down-
hill and uphillMetropolis transitions. The proposal x∗ has a higher chance to be near
a mode other than the one of the current state, and it is then accepted or rejected
in the usual way to preserve the stationary distribution.

of a mode-jumping proposal (Tjelmeland and Hegstad 2001),
whose uphill movement is achieved by a deterministic opti-
mizer. Also, the forced Metropolis transition of RAM is sim-
ilar to the delayed rejection method (Tierney and Mira 1999;
Trias, Vecchio, and Veitch 2009) in that both generate proposals
repeatedly until one is accepted. RAM’s forced transition is a spe-
cial case of the delayed rejection method in that RAM uses the
same jumping rule throughout, while delayed rejection allows
different jumping rules.

In a series of four numerical examples, we compare RAM’s
performance to Metropolis and commonly used tempering-
basedmethods such as the equi-energy sampler, parallel temper-
ing, and tempered transitions. We adjust for the required num-
ber of evaluations of the target density or the overall CPU time
required by each sampler. Our examples range from relatively
simple and high dimensional Gaussian mixtures (Examples 1
and 2) to lower dimensional, butmore complex targets that arise
as posterior distributions in scientific problems (Examples 3 and
4). We compare RAM with standard Metropolis, implementing
both samplers with a common jumping rule that is tuned to
improve the mixing ofMetropolis for the particular multimodal
target distribution. These comparisons suggest that replacing
Metropolis with RAMwhen targeting amultimodal distribution
can be an efficient strategy, in terms of user’s effort.

In our comparisons with tempering-based samplers, we find
that in moderate dimensions RAM performs as well as or better
than tempering-based methods, without the subtle tuning that
these methods require. Even with a higher dimensional target
distribution in Example 3, we show howRAM can be embedded
within a Gibbs sampler to obtain results as good as tempering-
based methods, again without the tuning they require. Because
RAM is able to jump between modes relatively often, it provides
good estimates of the relative size of the modes. In our exam-
ples, RAMobtainsmore reliable estimates of themode sizes than
Metropolis and is easier to directly implement than tempering-
based methods.

2. A Repelling–AttractingMetropolis Algorithm

2.1. A Down-up Proposal

We briefly review MH. A transition kernel on Rd , denoted by
P(B | x), is the conditional probability distribution of a tran-
sition from x ∈ Rd to a point in a Borel set B in Rd . Hence,
P(Rd | x) = 1 and P({x} | x) need not be zero (Chib andGreen-
berg 1995). A jumping density given the current state x(i) is
the conditional density with respect to Lebesgue measure that
generates a proposal x∗, denoted by q(x∗ | x(i)). With a target

density denoted by π , either normalized or unnormalized, the
transition kernel of MH is

P
(
dx∗ | x(i)) = q

(
x∗ | x(i))α(x∗ | x(i))dx∗

+ δx(i) (dx∗){1 − A(x(i))}, (1)

where the Dirac measure δx(i) (dx∗) is one if x(i) ∈ dx∗ and zero
otherwise andα(x∗ | x(i)) is the probability of accepting the pro-
posal and setting x(i+1) = x∗, that is,

α(x∗ | x(i)) = min
{
1,

π(x∗)q(x(i) | x∗)
π(x(i))q(x∗ | x(i))

}
.

Here, 1 − A(x(i)) is the probability of staying at x(i), that is, of
setting x(i+1) = x(i), and thusA(x(i)) is the probability ofmoving
away from x(i):

A(x(i)) =
∫

q(x∗ | x(i))α(x∗ | x(i))dx∗.

If the jumping density is symmetric, that is, q(a | b) = q(b | a),
MH reduces to Metropolis with

α(x∗ | x(i)) = min
{
1,

π(x∗)
π(x(i))

}
. (2)

We assume that q is symmetric hereafter because RAM is cur-
rently feasible only with a symmetric q, that is, RAM can replace
any Metropolis but not the more general MH algorithm.

Metropolis is one of the most commonly usedMCMCmeth-
ods, but it often has difficulties exploring multimodal distribu-
tions. Alternative tempering methods usually require more tun-
ing, which can be restrictive to practitioners. RAM maintains
the simple-to-implement nature ofMetropolis, but ismore likely
to jump between modes. The key to RAM is a down-up jump-
ing density that generates a proposal x∗ after making a down-
upmovement in density. Because the corresponding acceptance
probability is intractable, we generate an auxiliary variable z∗

given x∗ in such a way that the acceptance probability becomes
computable. Thus, RAM is an MH algorithm with a unique
joint jumping density qDU(x∗ | x(i))qD(z∗ | x∗) and an easy-to-
compute acceptance probability αJ(x∗, z∗ | x(i), z(i)) that pre-
serves the target marginal distribution π(x). Next, we describe
qDU, qD, and αJ.

The down-up jumping density, qDU(x∗ | x(i)), first generates
an intermediate downhill proposal x′ given the current state x(i)

and then an uphill proposal x∗ given x′, that is,

qDU(x∗ | x(i)) =
∫

qD(x′ | x(i))qU(x∗ | x′)dx′,

where qD and qU can be any conditional density functions that
prefer lower and higher density states than the given states,
respectively. Our choice for qD is a forced downhill Metropolis
kernel density defined as

qD(x′ | x(i)) = q(x′ | x(i))αD
ε (x′ | x(i))

AD(x(i))
, (3)

where

αD
ε (x′ | x(i)) = min

{
1,

π(x(i)) + ε

π(x′) + ε

}
(4)



JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 481

is the probability of accepting an intermediate proposal x′ drawn
from q(x′ | x(i)) and AD(x(i)) = ∫

q(x′ | x(i))αD
ε (x′ | x(i))dx′

is the normalizing constant1. We use the term forced because
this Metropolis transition kernel repeatedly generates inter-
mediate proposals (like rejection sampling) until one is
accepted. Also, we use the term downhill because the recip-
rocal of the ratio of the target densities in (4) makes local
modes repelling rather than attracting: If the density of x′

is smaller than that of x(i), x′ is accepted with probabil-
ity one. The appearance of ε in αD

ε (x′ | x(i)) is discussed
below.

Similarly, we set qU to a forced uphill Metropolis transition
kernel density defined as

qU(x∗ | x′) = q(x∗ | x′)αU
ε (x∗ | x′)

AU(x′)
,

where

αU
ε (x∗ | x′) = min

{
1,

π(x∗) + ε

π(x′) + ε

}
(5)

is the probability of accepting a proposal x∗ generated from
q(x∗ | x′) and AU(x′) = ∫

q(x∗ | x′)αU
ε (x∗ | x′)dx∗ is the nor-

malizing constant. This kernel restores the attractiveness of local
modes because αU

ε (x∗ | x′) is a typical Metropolis acceptance
probability except that ε is added for numerical stability; both
π(x′) and π(x∗) can be nearly zero when both x′ and x∗ are in a
valley betweenmodes. The value of ε may affect the convergence
rate. Tominimize its impact on the acceptance probability in (5),
we choose ε to be small with a default choice of ε = 10−308, the
smallest power of ten that R (R Core Team 2016) treats as posi-
tive. For symmetry, we use ε in the same way in the acceptance
probability of the downhill transition in (4). Consequently, our
choices for qD and qU satisfy

∫
qDU(x∗ | x(i))dx∗ = 1.

Without forced transitions, the final proposal x∗ could be
the same as the current state x(i) after consecutive rejections in
both the downhill and uphill Metropolis transitions, or x∗ could
be generated via only one of the downhill and uphill transi-
tions if the other were rejected. This would not be helpful for
our purposes because it would not induce a down-up move-
ment. Moreover, a forced transition kernel is mathematically
simpler than that of Metropolis in that it eliminates the term,
δx(i) (dx∗){1 − A(x(i))} in (1).

The MH acceptance probability with the down-up jumping
density qDU simplifies to

αDU(x∗ | x(i)) = min
{
1,

π(x∗)qDU(x(i) | x∗)
π(x(i))qDU(x∗ | x(i))

}

= min
{
1,

π(x∗)AD(x(i))

π (x(i))AD(x∗)

}
, (6)

where the last equality holds because

qDU(x∗ | x(i))AD(x(i))

=
∫

q(x′ | x(i))αD
ε (x′ | x(i))

q(x∗ | x′)αU
ε (x∗ | x′)

AU(x′)
dx′

 This normalizing constantAD(x(i) ) is finite if q is a proper density, that is,
∫
q(x′ |

x(i) )dx′ < ∞, because αD
ε (x′ | x(i) ) is bounded between  and . Similarly,

AU(x′) appearing later is also finite if q is proper.

=
∫

q(x(i) | x′)αU
ε (x(i) | x′)

q(x′ | x∗)αD
ε (x′ | x∗)

AU(x′)
dx′

= qDU(x(i) | x∗)AD(x∗),

and thus

qDU(x(i) | x∗)
qDU(x∗ | x(i))

= AD(x(i))

AD(x∗)
. (7)

2.2. An Auxiliary Variable Approach

Since the ratio of the normalizing constants in (7) is intractable,
we use an auxiliary variable approach (Møller et al. 2006) to
avoid its evaluation in (6). We form a joint Markov chain for
x and an auxiliary variable z so that the target marginal den-
sity for x is still π , yet the resulting joint MH algorithm has an
easily computable acceptance ratio. Specifically, after generating
x∗ via qDU, we generate z∗ given x∗ using the forced downhill
Metropolis kernel density qD in (3), which typically requires one
evaluation of the target density on average. We set the joint tar-
get density π(x, z) = π(x)q(z | x), which then leads to, as we
shall prove shortly, the acceptance probability of the joint jump-
ing density qDU(x∗ | x(i))qD(z∗ | x∗) as

αJ(x∗, z∗ | x(i), z(i)) = min

⎧⎨
⎩1,

π(x∗)min{1, π(x(i) )+ε

π(z(i) )+ε
}

π(x(i))min{1, π(x∗)+ε

π(z∗)+ε
}

⎫⎬
⎭ .

(8)
Consequently, introducing z results in the easy-to-compute
acceptance probability in (8). RAM accepts the joint proposal
(x∗, z∗) as (x(i+1), z(i+1)) with the probability in (8) and sets
(x(i+1), z(i+1)) to (x(i), z(i)) otherwise. Since RAM is an MH
algorithm, it automatically satisfies the detailed balance condi-
tion. We notice that in (8), π(z(i)) is likely to be smaller than
π(x(i)) because z(i) is generated by the forced downhill transi-
tion. Similarly, π(z∗) is likely to be smaller than π(x∗). When
z(i) and z∗ have lower target densities than x(i) and x∗, respec-
tively (likely, but not required), the acceptance probability in (8)
reduces to the acceptance probability of Metropolis in (2).

We obtained (8) by considering a joint target distribution
π(x, z) = π(x)πC(z | x), with a joint jumping density in the
form of

qJ(x∗, z∗ | x(i), z(i)) = q1(x∗ | x(i), z(i))q2(z∗ | x∗, x(i), z(i))

= q1(x∗ | x(i))q2(z∗ | x∗). (9)

The MH acceptance probability for the joint proposal then is

αJ(x∗, z∗ | x(i), z(i))

= min
{
1,

π(x∗)πC(z∗ | x∗)q1(x(i) | x∗)q2(z(i) | x(i))

π (x(i))πC(z(i) | x(i))q1(x∗ | x(i))q2(z∗ | x∗)

}
,(10)

which recalls the pseudo-marginal approach (Beaumont 2003;
Andrieu and Roberts 2009) that uses an unbiased estimator of
an intractable target density. In this setting, however, it is the
jumping density that is intractable. Somewhat surprisingly, there
does not seem to be an easy way to modify the pseudo-marginal
argument, other than directly following the more general auxil-
iary variable approach in Møller et al. (2006).

Specifically, suppose we are able to sample from q1 in (9) but
are not able to evaluate q1. We can find a function f such that
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q1(x(i) | x∗)/q1(x∗ | x(i)) = f (x(i))/ f (x∗) because the ratio of
two (compatible) conditional densities equals the correspond-
ing ratio of marginal densities, where f itself may or may not
be computable. If we can find a function q2 in (9) whose nor-
malizing constant is proportional to f , then the joint acceptance
probability in (10) becomes free of the intractable quantities.

For RAM, we set q1(x∗ | x(i)) = qDU(x∗ | x(i)), and thus
f (x(i)) = AD(x(i)). To eliminate this intractable normalizing
constant, we choose q2(z∗ | x∗) = qD(z∗ | x∗). Since Møller
et al. (2006) suggested choosing πC similar to q2, we choose
πC(z∗ | x∗) = q(z∗ | x∗). With these choices, the acceptance
probability in (10) reduces to (8) because

αJ(x∗, z∗ | x(i), z(i) )

= min
{
1,

π (x∗)q(z∗ | x∗)qDU(x(i) | x∗)qD(z(i) | x(i) )

π (x(i) )q(z(i) | x(i) )qDU(x∗ | x(i) )qD(z∗ | x∗)

}

= min
{
1,

π (x∗)q(z∗ | x∗)AD(x(i) )q(z(i) | x(i) )αD
ε (z(i) | x(i) )/AD(x(i) )

π (x(i) )q(z(i) | x(i) )AD(x∗)q(z∗ | x∗)αD
ε (z∗ | x∗)/AD(x∗)

}

= min
{
1,

π (x∗)αD
ε (z(i) | x(i) )

π (x(i) )αD
ε (z∗ | x∗)

}

= min

⎧⎨
⎩1,

π (x∗)min{1, π(x(i) )+ε

π(z(i) )+ε
}

π(x(i) )min{1, π(x∗ )+ε

π(z∗ )+ε
}

⎫⎬
⎭ ,

where the second equality follows from (3) and (7), and the last
equality follows from (4).

2.3. Implementation of the RAMAlgorithm

Each RAM iteration is composed of the four steps in Table 1.
The first three generate a joint proposal, (x∗, z∗), via three con-
secutive forced transitions; Step 1 is the downward proposal x′

given x(i), Step 2 is the upward proposal x∗ given x′, and Step 3
is the downward proposal z∗ given x∗. Finally, Step 4 determines
if the joint proposal is accepted. In our numerical examples, the
downhill proposals in Steps 1 and 3 are usually accepted on the
first try. However, the number of proposals needed for the uphill
move in Step 2 varies. As the dimension increases, for instance,
generating a higher density proposal becomes challenging, and
the uphill transition in Step 2 requires more proposals.

Some density values used by RAM do not need to be calcu-
lated repeatedly. For example, since the density of the previous
value π(x(i)) is used in both Steps 1 and 4, it is better to evaluate
and cache this value before Step 1. Also, π(x′) in Step 2 is eval-
uated during the final forced downhill step in Step 1, and can be

Table . A repelling–attracting Metropolis algorithm.

Set initial values x(0) and z(0) (= x(0) ). For i = 0, 1, . . .

Step : (↘) Repeatedly sample x′ ∼ q(x′ | x(i) ) and u1 ∼ Uniform(0, 1)
until u1 < min

{
1, π(x(i) )+ε

π(x′ )+ε

}
.

Step : (↗) Repeatedly sample x∗ ∼ q(x∗ | x′) and u2 ∼ Uniform(0, 1)
until u2 < min

{
1, π(x∗ )+ε

π(x′ )+ε

}
.

Step : (↘) Repeatedly sample z∗ ∼ q(z∗ | x∗) and u3 ∼ Uniform(0, 1)

until u3 < min
{
1, π(x∗ )+ε

π(z∗ )+ε

}
.

Step : Set (x(i+1), z(i+1) ) = (x∗, z∗)

if u4 < min
{
1, π(x∗ )min{1,(π(x(i) )+ε)/(π(z(i) )+ε)}

π(x(i) )min{1,(π(x∗ )+ε)/(π(z∗ )+ε)}
}
,

where u4 ∼ Uniform(0, 1), and set (x(i+1), z(i+1) ) = (x(i), z(i) ) otherwise.

cached and reused in Step 2. Similarly, we can cache the values
of π(x∗) and π(z∗) in Steps 2 and 3, respectively. The cached
values can also be used to compute the acceptance probability
in Step 4. In our numerical illustrations, we use an equivalent
caching policy for other algorithms. For example, an MH tran-
sition can be efficiently coded to evaluate the target density once
at each iteration (only for the density of a proposal) by caching
the density of the current state.

RAM can replace a Metropolis kernel within a Gibbs sam-
pler. Suppose we have a Gibbs sampler that iteratively samples
π1(x | y) and π2(y | x), and a Metropolis kernel that is invari-
ant to π1(x | y) is used within the Gibbs sampler. To replace
Metropolis with RAM, we keep track of the auxiliary variable
z during the run. For example, once we sample x(i) and z(i) at
iteration i via a RAM kernel that is (marginally) invariant to
π1(x | y(i−1)), only x(i) is used to sample π2(y | x(i)), but z(i) is
used to sample x(i+1) in the next iteration.

For simplicity, we use Gaussian jumping rules, though any
symmetric density can be used. Specifically, we consider a
d-dimensional Gaussian density with covariance matrix � as
q in Table 1; both RAM and Metropolis share the same tun-
ing parameter �. RAM is designed to improve the ability of
Metropolis to jump between modes using a jumping rule that is
tuned to optimizeMetropolis for themultimodal target. In prac-
tice, this means a large jumping scale for unknown mode loca-
tions or a properly adjusted jumping scale for knownmode loca-
tions. One could do still better with additional tuning of RAM.
For example, if � is tuned to optimize Metropolis for a multi-
modal target, we can simply set the covariance matrix of q for
RAM to �/2 because RAM’s down-up proposal is generated by
two (down-up) Metropolis transitions. In our numerical illus-
trations, we show that RAM can improve on Metropolis even
without additional tuning. We introduce several useful strate-
gies for tuning �, but their effectiveness may vary in different
settings.

3. Numerical Illustrations

3.1. Example 1: AMixture of Twenty Bivariate Gaussian
Densities

To compare RAM with tempering methods, our first numerical
illustration targets a mixture of 20 bivariate Gaussian distribu-
tions given by Kou, Zhou, and Wong (2006):

π(x) ∝
20∑
j=1

w j

τ 2
j
exp

(
− 1
2τ 2

j
(x − μ j)


(x − μ j)

)
,

where x = (x1, x2)
. The 20 mean vectors, {μ1, . . . , μ20}, are
specified in Kou, Zhou, andWong (2006) and plotted in the first
panel of Figure 2. Following Kou, Zhou, and Wong (2006), we
consider two cases; in case (a), the modes are equally weighted
and have equal variances, w j = 1/20 and τ 2

j = 1/100, and
in case (b) both weights and variances are unequal, that is,
w j = 1/‖μ j − (5, 5)
‖ and τ 2

j = ‖μ j − (5, 5)
‖/20. In
case (b), modes near (5, 5) have higher weight and smaller
variances. Contour plots of the target distributions in cases (a)
and (b) appear in Figure 2.
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Figure . The first panel exhibits the contour plot of the target density in Example ,
case (a) and the second panel shows that of the target density in Example , case (b).
The plotted contours outline regions with probability %, %, %, and % under
π(x).

Kou, Zhou, and Wong (2006) used this target distribution to
compare the equi-energy sampler (EE) and parallel tempering
(PT). We follow their simulation configurations by running
RAM for 75,000 iterations for both cases, initializing the chain
at random values of x(0) and z(0) in the unit square. Although
Kou, Zhou, and Wong (2006) did not specify the burn-in size,
we discard the first 25,000 iterations because they consistently
use one-third of the iterations as burn-in in the other examples.
We set q to be Gaussian with covariance matrix σ 2I2, where
I2 is the identity matrix. To tune σ , we initialize ten indepen-
dent chains with 10 different values of σ ∈ {3.0, 3.5, . . . , 7.5}.
Following Kou, Zhou, and Wong (2006), we set σ to the
value that leads to the best autocorrelation function among
those that visit all modes. This is 4.0 in case (a) and 3.5 in
case (b). The acceptance rate is 0.048 for case (a) and 0.228 for
case (b).

Figure 3 gives bivariate scatterplots of the Monte Carlo sam-
ple of size 50,000 obtained with RAM for the two cases, bivariate
trace plots of the last 2000 iterations for case (a) and the last 1000
iterations for case (b), and autocorrelation plots for x1. Figure 3
can be compared to Figure 3 and Figure 4 of Kou, Zhou, and
Wong (2006), which summarize the performance of EE and PT
for cases (a) and (b), respectively.

To compare the accuracy of the moment estimates obtained
with the algorithms, we again follow Kou, Zhou, and Wong
(2006) and run 20 independent chains using RAM. Table 2 sum-
marizes the comparisons, where the ratios of the mean squared
error (MSE) of both EE and PT to that of RAM are all greater
than one. The improvement is particularly striking for case (b).
These indicate that RAM leads to a more reliable proportion of
iterations that are associated with each mode across the 20 runs.

Finally, we compare the average evaluation cost of each algo-
rithm by reporting the expected total number of evaluations of
the target density π needed to obtain the final sample, includ-
ing burn-in, divided by the final sample size; we denote this
quantity by NX

π , where “X” specifies the algorithm. As detailed
in Appendix A,NEE

π = 16.0 andNPT
π = 5.8. For RAM,NRAM

π =
7.1 in case (a) and NRAM

π = 5.0 in case (b)2. More evaluations
are needed for case (a) because the area of near zero density is
much larger than that in case (b), see Figure 2, and a forced uphill

 The average number of proposals required by the forced downhill transition is .
in case (a) and . in case (b), that of the uphill proposals is . in case (a) and
. in case (b), and that of the downhill auxiliary variables is . in case (a) and
. in case (b).

transition thus requires more proposals (and thus more evalu-
ations). Nonetheless, the number of target density evaluations
(and thus CPU time) required by RAM indicates that the gain
of using RAM in terms of MSE is competitive.

3.2. Example 2: High-Dimensional Multimodal
Distributions

Consider an equal mixture of eight d-dimensional Gaussian
distributions:

π(x) ∝
8∑
j=1

exp
(

−1
2
(x − μ j)


(x − μ j)

)
, (11)

where x = (x1, x2, . . . , xd )
 and the eight mean vectors are
defined by setting their first three coordinates to the eight ver-
tices of a cube of edge length 10 situated with its corner at the
origin and their remaining coordinates are filled with (10, 0) or
(0, 10) repeatedly:

μ1 = (10, 10, 10, 0, 10, 0, 10, . . . , 0, 10),
μ2 = (0, 0, 0, 10, 0, 10, 0, . . . , 10, 0),
μ3 = (10, 0, 10, 0, 10, 0, 10, . . . , 0, 10),
μ4 = (0, 10, 10, 0, 10, 0, 10, . . . , 0, 10),
μ5 = (0, 0, 10, 0, 10, 0, 10, . . . , 0, 10),
μ6 = (0, 10, 0, 10, 0, 10, 0, . . . , 10, 0),
μ7 = (10, 0, 0, 10, 0, 10, 0, . . . , 10, 0),
μ8 = (10, 10, 0, 10, 0, 10, 0, . . . , 10, 0).

Suppose that the first twomodes,μ1 andμ2, are known, perhaps
from an initial search, while the other six modes are unknown.
Here, we investigate RAM’s ability to explore a high-dimensional
distribution by using it to sample (11) with the five values of
d ∈ {3, 5, 7, 9, 11}. We also compare RAM to both Metropolis
and PT, taking into account their average evaluation cost, NX

π , as
defined in Section 3.1

We set q to be a d-dimensional Gaussian density with covari-
ance matrix �. To achieve a reasonable acceptance rate, we first
run twoMetropolis chains each of length 5000, initialized at the
two known mode locations and using a Gaussian jumping rule
with covariance matrix (2.382/d) × Id , where Id is the identity
matrix. We then set � to the sample covariance matrix of the
combined sample from the two chains. To improve Metropo-
lis’ ability to jump between modes, we reset � to the sample
covariance matrix of the burn-in sample. This one-time adap-
tation does not affect the validity of the resulting chain.

For each d, we run RAM ten times to obtain ten chains each
of length 500,000, discarding the first 200,000 iterations of each
chain as burn-in. RAM’s average evaluation cost NRAM

π is 6.54
for d = 3, 7.54 for d = 5, 8.45 for d = 7, 9.58 for d = 9, and
10.77 for d = 11. As d increases, RAM requires more evalua-
tions because it is more difficult to find a proposal that increases
the density in the forced uphill transition.

For each d, we also obtain ten chains each using both
Metropolis and PT with the same Gaussian jumping rule used
by RAM. PT runs five parallel chains under five temperature lev-
els, 2k for k = 0, 1, . . . , 4, each of which uses Metropolis tran-
sitions. PT always proposes a single swap between a randomly
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Figure . Results of the RAM algorithm. The first column displays bivariate scatterplots for , samples, the middle column displays the bivariate trace plots for the last
 samples for case (a) and the last  samples for case (b), and the last column displays the autocorrelation functions for , samples of x1 .

Table . Moment estimates for cases (a) and (b) based on  independent chains, each of length ,, generated with RAM, EE (equi-energy sampler), and PT (parallel
tempering). The results for EE and PT are from Kou, Zhou, and Wong (), and presented in their original format: Sample average (sample standard deviation) over the
 replications.

MSE ratio MSE ratio
Case (a) Truth RAM EE PT (EE/RAM) (PT/RAM)

E(x1) . . (.) . (.) . (.) . .
E(x2) . . (0.101) . (0.139) . (0.283) . .
E(x21 ) . . (0.900) . (1.098) . (1.713) . .
E(x22 ) . . (1.100) . (1.373) . (2.867) . .

MSE ratio MSE ratio
Case (b) Truth RAM EE PT (EE/RAM) (PT/RAM)

E(x1) . . (0.026) . (0.072) . (0.116) . .
E(x2) . . (0.035) . (0.086) . (0.134) . .
E(x21 ) . . (0.263) . (0.739) . (1.122) . .
E(x22 ) . . (0.334) . (0.839) . (1.186) . .

chosen pair of chains under adjoining temperature levels at the
end of each iteration.We determine the length of each chain and
the burn-in size for Metropolis and PT by taking into account
their average evaluation cost, denoted by NM

π and NPT
π , respec-

tively3. For example, the length of each chain for Metropolis is
500,000×NRAM

π /NM
π and that for PT is 500,000×NRAM

π /NPT
π so

that the (expected) total number of target density evaluations
is the same for each algorithm. We need to adjust the burn-in
size by the average evaluation cost for a fair comparison because
a large burn-in size improves the effectiveness of the one-time
adaptation.

We use two numerical measures to evaluate each algorithm.
The first is the average number of the unknown modes that are
discovered by each chain; we denote this byNdis (≤ 6). The sec-
ond is the average frequency error rate (Kou, Zhou, and Wong
2006), denoted by Ferr = ∑10

i=1
∑8

j=1 |Fi, j − 1/8|/80, where Fi, j
is the proportion of iterations in chain i whose nearest mode
measured by the Euclidean distance is μ j .

 With a caching strategy, PT evaluates the target once for a Metropolis transition
under each of five temperature levels and evaluates it twice for a swap at the end
of each iteration.

Table 3 summarizes the results, and shows that using the
same jumping rule, RAM is never worse than Metropolis in
terms ofNdis and Ferr regardless of dimension, and the improve-
ment on Ferr can be substantial. It also shows that RAM’s Ferr
starts off smaller than that of PT but deteriorates faster than
PT’s once d > 5, and that PT discovers all six modes for every d.
This demonstrates the value of fine tuning particularly in higher
dimensions for PT, including the number of parallel chains, tem-
perature and proposal scale at each chain, and the number and
rate of swaps at each iteration. Therefore, if one can afford the
tuning cost, then PT has much to recommend it, especially in
high dimensions.

3.3. Example 3: Sensor Network Localization

For high-dimensional sampling, a blocked Gibbs sampler
(Geman and Geman 1984) is sometimes more convenient and
intuitive than direct Metropolis sampling. Here, we consider a
realistic example from Ihler et al. (2005): searching for unknown
sensor locations within a network using the noisy distance data.
This is called sensor network localization (Ihler et al. 2005; Lan,
Streets, and Shahbaba 2014). This problem is known to produce
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Table . The sampling results include the length of each chain before discarding burn-in; the number of burn-in iterations; N
π

= the average number of target density
evaluations at each iteration; Nd = the average number of downhill proposals for RAM; Nu = the average number of uphill proposals for RAM; Nz = the average number
of downhill proposals for the auxiliary variable for RAM; acceptance rate; Ndis = the average number of the unknown modes that are discovered by each chain; and

Ferr = ∑10
i=1
∑8

j=1 |Fi, j − 1/8|/80, where Fi, j is the proportion of iterations in chain i whose nearest mode isμ j .

Length of a chain N
π

Acceptance
d Kernel (burn-in size) (Nd , Nu , Nz) rate Ndis Ferr

 Metropolis ,, (,,)  . . .
PT , (,)  . . .
RAM , (,) . . . .

(., ., .)
 Metropolis ,, (,,)  . . .

PT , (,)  . . .
RAM , (,) . . . .

(., ., .)
 Metropolis ,, (,,)  . . .

PT , (,)  . . .
RAM , (,) . . . .

(., ., .)
 Metropolis ,, (,,)  . . .

PT , (,)  . . .
RAM , (,) . . . .

(., ., .)
 Metropolis ,, (,,)  . . .

PT , (,)  . . .
RAM , (,) . . . .

(., ., .)

a high-dimensional, banana-shaped, and multimodal joint pos-
terior distribution.

Modifying Lan, Streets, and Shahbaba (2014)’s simulation
setting4, we suppose there are six stationary sensors scattered
on a two dimensional space, and let x


k = (xk1, xk2) denote the
two-dimensional coordinates of the location of sensor k for
k = 1, 2, . . . , 6. We assume that the locations of the last two
sensors, x5 and x6, are known and the locations of the other
sensors, x1, x2, x3, and x4, are unknown parameters of interest.
The Euclidean distance between two sensors, xi and x j, denoted
by yi j (= y ji), is observed with a distance-dependent proba-
bility and Gaussian measurement error for i = 1, 2, . . . , 5 and
j = i + 1, . . . , 6. The probability distributions for the observed
data are

wi j | x1, . . . , x4 ∼ Bernoulli
(
exp

(
−‖xi − x j‖2

2 × 0.32

))

and

yi j | (wi j = 1), x1, . . . , x4 ∼ N1
(‖xi − x j‖, 0.022

)
,

where wi j (= w ji) is an indicator variable that equals one if the
distance between xi and x j is observed. Simulated distances yi j
are displayed in Figure 4, where wi j = 1 if yi j is specified and
zero otherwise. For each unknown location, we assume a dif-
fuse bivariate Gaussian prior distribution with mean (0, 0) and
covariance matrix 102 × I2. The eight-dimensional likelihood
function is thus

L(x1, x2, x3, x4) ∝
∏
j>i

[
exp

(
− (yi j − ‖xi − x j‖)2

2 × 0.022

)

× exp
(

−wi j × ‖xi − x j‖2
2 × 0.32

)

 We remove some locations and adjust observed distances to make a simpler
model, yet the resulting posterior distributions have more complicated shapes.

×
(
1 − exp

(
−‖xi − x j‖2

2 × 0.32

))1−wi j
]

and the full posterior distribution is

π(x1, x2, x3, x4 | y,w) ∝ L(x1, x2, x3, x4)

× exp

(
−
∑4

k=1 x


k xk

2 × 102

)
, (12)

where y = {yi j, i > j} and w = {wi j, i > j}. This model may
suffer from nonidentifiability when the number of observed

Figure . The simulated distances yi j (= y ji) among the six stationary sensor loca-
tions, x1, x2, . . . , x6 , are displayed if observed. The observation indicator wi j (=
w ji) is one if yi j is specified and is zero otherwise. The locations of the sensors are
x1 = (0.57, 0.91), x2 = (0.10, 0.37), x3 = (0.26, 0.14), x4 = (0.85, 0.04), x5 =
(0.50, 0.30), and x6 = (0.30, 0.70), where the first four locations, x1 , x2 , x3 , and
x4 , are assumed to be unknown.
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distances is small because unknown locations appear in the
likelihood only through distances; if yi j is observed between
an unknown xi and a known x j, the posterior distribution of xi
may form a circle around x j without further observations.

We sample (12) using a Gibbs sampler by iteratively sam-
pling the four bivariate conditionals denoted by πi(xi | x j, j =
i, y,w) for i = 1, 2, 3, 4. Since none of these is a standard
distribution, we use Metropolis, RAM, or tempered transi-
tion (TT) (Neal 1996) kernels that are invariant with respect
to each conditional distribution; see Appendix B for details
of TT, jumping rules, and initial values. To sample xk from
a RAM kernel that is marginally invariant to πk, we must
keep track of the auxiliary variable during the run, that is,
{z(i)

k , i = 0, 1, 2, . . .}. At iteration i, we sequentially draw x′
k ∼

qD(x′
k | x(i−1)

k ), x∗
k ∼ qU(x∗

k | x′
k), and z∗

k ∼ qD(z∗
k | x∗

k ). We set
(x(i)

k , z(i)
k ) to (x∗

k, z
∗
k ) with probability αJ(x∗

k, z
∗
k | x(i−1)

k , z(i−1)
k )

given in (8), and set (x(i)
k , z(i)

k ) to (x(i−1)
k , z(i−1)

k ) otherwise.
Because {z(i)

k , i = 0, 1, 2, . . .} are introduced solely to enable
sampling xk from a RAM kernel, only x(i)

k is used to sample the
other locations, and z(i)

k is used to draw x(i+1)
k at the next itera-

tion.
For a fair comparison, we set the length of each chain to

have the same average number of evaluations of πi’s per itera-
tion. As before, we use NX

π to denote the average evaluation cost.
We first implement RAM within a Gibbs sampler for 220,000
iterations with the first 20,000 as burn-in, resulting in NRAM

π =
36.13, that is, about nine density evaluations are required to
sample each of theπi’s (with caching). SinceNM

π = 4 andNTT
π =

24 (with caching), we set the length of each Metropolis chain
and TT chain respectively to 220,000 ×NRAM

π /NM
π and 220,000

Table . The sampling results summarize the length of each chain (including the
, burn-in iterations); N

π
= the average number of evaluating π1 , π2 , π3 , and

π4 at each iteration; details of Nπ
for each location; and the acceptance rates.

Kernel
Length of
a chain N

π

Details of N
π

(Nd , Nu , Nz)
Acceptance

rate

Metropolis ,, NM
π

= 4  for each of x1, . . . , x4 . for x1
. for x2
. for x3
. for x4

Tempered , NTT
π

= 24  for each of x1, . . . , x4 . for x1
transitions . for x2

. for x3
. for x4

RAM , NRAM
π

= 36.13 . for x1 (, ., .) . for x1
. for x2 (, ., .) . for x2
. for x3 (, ., .) . for x3
. for x4 (, ., .) . for x4

×NRAM
π /NTT

π . However, unlike the previous example where
there is a one-time adaption and hence it is important to adjust
for the burn-in length as well, here we discard the first 20,000
iterations as burn-in for all three algorithms. This burn-in size
is sufficient to remove the effect of random initial values of the
algorithms.

Table 4 summarizes the configurations of the samplers and
their acceptance rates. RAM improves the acceptance rate of
Metropolis by a factor at least of 5.5 given the same jumping rule
without additional tuning. TT improves the acceptance rates
even further by a factor of at least 6.3 (relative to Metropolis),
but it requires additional tuning of the number of temperature
levels, temperature, and jumping scale at each temperature level.

Figure 5 gives scatterplots of the posterior samples of each
unknown sensor location (rows) obtained by the three samplers

Figure . Scatterplots of the posterior sample of each location (rows) obtained by different samplers (column). The coordinates of the unknown sensors are denoted by
dashed lines.
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Figure . Histograms of the posterior sample of each first coordinate (rows) obtained by different kernels (columns). In each histogram, the marginal posterior density
based on  million posterior samples obtained with each sampler is superimposed. The vertical dashed lines indicate the true sensor locations.

(columns), where the dashed lines indicate the coordinates of
the true location. The RAM sample is more dispersed than that
of Metropolis, especially for x1, x2, and x4, with the same jump-
ing rule and is as dispersed as that of TT without subtle tuning
that TT requires. The posterior samples of both Metropolis and
TT, however, are denser than that of RAMbecause of their larger
sample sizes.

Figure 6 compares the relative sizes of modes for the first
coordinate of each unknown location (rows) obtained by each
sampler (columns). In each histogram, we superimpose the
marginal posterior density based on twenty million posterior
draws obtained from each sampler after confirming that the
shapes of the posterior densities obtained in this manner are
almost identical for the three algorithms. The vertical dashed
lines indicate the true sensor locations. RAM represents all four
distributions better than Metropolis does, and it does as well as
TT, but without the tuning requirement of the latter.

3.4. Example 4: Strong Lens TimeDelay Estimation

Our final numerical illustration targets a multimodal distribu-
tion, where one mode is extremely distant from the others. This
multimodal distribution arises from the applied astrophysical
problem that originally motivated the development of RAM; see
Tak et al. (2017) for details. Here, we review the problem and
discuss a new efficient algorithm.

When there is a massive galaxy between a highly luminous
quasar and the Earth, the gravitational field of the galaxy may

act as a lens, bending the light emitted by the quasar. This may
produce two (or more) slightly offset images of the quasar, an
effect known as strong gravitational lensing (Schneider, Wamb-
sganss, and Kochanek 2006). Theremay be a time delay between
the images in that their light follows different paths with differ-
ent travel times. Thus, temporal features in time series of the
brightness of each image appear shifted in time. The time delay
is, for example, used to calculate the current expansion rate of
the Universe, that is, the Hubble constant (Refsdal 1964).

Figure 7 displays two irregularlyobserved time series of the
brightness of the doublylensed quasar Q0957 + 561 (Hainline
et al. 2012); the two time series are labeled A and B. Bright-
ness is reported on a magnitude scale where smaller values
correspond to brighter images. Let x ≡ {x1, . . . , xn} and y ≡
{y1, . . . , yn} denote the n magnitudes irregularly observed at

Figure . Two observed time series of doublylensed quasar Q+ (Hainline
et al. ). Time series A is denoted by squares and time series B is denoted by cir-
cles. Magnitude is an astronomical measure of brightness. Both time series are plot-
ted with an offset (constant) in magnitude, but this does not affect the time delay
estimation.
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time t ≡ {t1, . . . , tn} in time seriesA and B, respectively. Let δ ≡
{δ1, . . . , δn} and η ≡ {η1, . . . , ηn} represent the n known mea-
surement standard deviations for x and y, respectively. There are
57 observations in each time series, that is, n = 57.

We assume that for each observed time series there
is an unobserved underlying brightness curve. Let X (t ) ≡
{X (t1), . . . ,X (tn)} denote the latent magnitudes for time
series A and Y (t ) ≡ {Y (t1), . . . ,Y (tn)} denote those for time
series B. We further assume that one of the latent brightness
curves is a shifted version of the other, that is,

Y (t j) = X (t j − 
) + β0, (13)

where
 is the unknown time delay and β0 is an unknownmag-
nitude offset.

The observed magnitudes given the latent magnitudes are
assumed to be independent Gaussian variables:

x j | X (t j) ∼ N1
(
X (t j), δ2j

)
and y j | Y (t j) ∼ N1

(
Y (t j), η2

j
)
.

(14)
Using (13), we can express the model for y in (14) as

y j | X (t j − 
), 
, β0 ∼ N1
(
X (t j − 
) + β0, η2

j
)
. (15)

We assume X (·) follows an Ornstein–Uhlenbeck process
(Kelly, Bechtold, and Siemiginowska 2009). Solving the result-
ing stochastic differential equation yields the sampling distribu-
tion ofX (t
), where t
 ≡ (t
1 , . . . , t
2n)
 contains the sorted 2n
times among the n observation times, t , and the n time-delay-
shifted observation times, t − 
. Specifically,

X
(
t
1
) | 
, θ ∼ N1

(
μ,

τφ2

2

)
, and for j = 2, 3, . . . , 2n,

X
(
t
j
)

| X (t
j−1),
, θ ∼ N1

(
μ + a j

(
X (t
j−1) − μ

)
,
τφ2

2

(
1 − a2j

))
,

(16)

where θ ≡ (μ, φ2, τ )
 and a j = exp(−(t
j − t
j−1)/τ ).
Following Tak et al. (2017), we set independent priors for the

model parameters:


 ∼ Uniform[−1178.939, 1178.939],
β0 ∼ Uniform[−60, 60],
μ ∼ Uniform[−30, 30], φ2 ∼ inverse-Gamma(1, 2/107),
τ ∼ inverse-Gamma(1, 1). (17)

The resulting joint posterior density function is

π(X (t
),
, β0, θ | x, y)

∝
⎡
⎣ n∏

j=1

f1
(
x j | X (t j)

)× f2
(
y j | X (t j − 
),
, β

)⎤⎦

× g
(
X
(
t
1
) | 
, θ

)×
⎡
⎣ 2n∏

j=2

g
(
X
(
t
j
)

| X
(
t
j−1

)
, 
, θ

)⎤⎦
× h(
, β0, θ ),

(18)

where the density functions, f1, f2, g, and h are defined by
(14)–(17), respectively.

To sample from (18), we adopt an MH within Gibbs sampler
(Tierney 1994) composed of the three steps shown in Table 5;

see Appendices A–C of Tak et al. (2017) for details. We suppress
conditioning on x and y here and elsewhere. Because we cannot
directly sample π11(
 | β0, θ ) in Step 1 and the marginal poste-
rior distribution of
 is often multimodal, we draw
 using one
of four algorithms: (i)Metropolis, (ii)Metropolis with amixture
jumping rule, (iii) RAM, or (iv) TT. The mixture jumping rule
generates a proposal from the Gaussian jumping rule used by
Metropolis with probability 0.5 and from the prior distribu-
tion of 
 otherwise. To sample 
 using the RAM kernel, we
additionally keep track of the auxiliary variable during the run,
that is, {z(i), i = 0, 1, 2, . . .}. At iteration i, we sequentially draw

′ ∼ qD(
′|
(i−1)), 
∗ ∼ qU(
∗|
′), and z∗ ∼ qD(z∗|
∗).
We set (
(i), z(i)) to (
∗, z∗) with acceptance probability
αJ(
∗, z∗ | 
(i−1), z(i−1)) given in (8), and set (
(i), z(i)) to
(
(i−1), z(i−1)) otherwise. Because {z(i), i = 0, 1, 2, . . .} are
introduced solely to enable sampling 
 from the RAM kernel,
only 
(i) is used to sample X (t
), β0, and θ in the other steps
in Table 5, and z(i) is used to draw 
(i+1) at the next iteration.

Specifically, we fit the time delay model using the MH
within Gibbs sampler equipped with TT for 
 first, initiat-
ing a single long chain of length 5,050,000 at the center of the
entire range of 
, that is, 
(0) = 0. We set the initial values
of the other parameters as follows: β(0)

0 = ∑n
j=1{y j − x j}/n =

−0.113, μ(0) = ∑n
j=1 x j/n = 2.658, φ(0) = 0.01, τ (0) = 200,

and X (0)(t
(0)
) is a vector of x and y − β

(0)
0 that are sorted

in time, t for x and t − 
 for y − β
(0)
0 . Multiple initial values

spread across the entire range result in nearly identical poste-
rior distributions. We discard the first 50,000 draws as burn-in.
For the tuning parameters of TT, we set five temperature lev-
els, Tj = 4 j for j = 1, . . . , 5, and corresponding jumping scales
for Metropolis updates, σ j = 500 × 1.2 j−1, so that σ5 (= 1037)
is about a half of the length of the range of 
. Using the same
initial values (z(0) = 
(0) for RAM), we obtain an additional
chain using each of theMHwithinGibbs sampler equippedwith
Metropolis, RAM, and Metropolis with a mixture jumping rule.
In all these cases, we set q to be Gaussian with σ = 700, that
is, about one-third length of the entire range and similar to the
jumping scale of TT at the middle temperature level (σ3 = 720).
This value of σ should be advantageous toMetropolis because it
roughly equals the distance between the modes. SinceMetropo-
lis, RAM, and Metropolis with a mixture jumping rule take less
CPU time than TT, we run longer chains of the three algorithms
to match the CPU time, discarding the first 50,000 iterations of
each as burn-in; see Appendix C for details of the average num-
ber of π11 evaluations.

Table 6 summarizes the results from running each algorithm
for nearly the sameCPU time (28,352 s). Overall, given the same
jumping rule and without additional tuning, RAM improves

Table . AMetropolis-Hastings within Gibbs sampler for the time delay model. We
draw
 from a kernel that is invariant to π11 and draw X (t
) from π12 if
 is newly
updated.

Set initial values
(0), X (0)(t

(0)

), β(0)
0 , and θ (0). For i = 1, 2, . . . ,

Step : Draw (X (i)(t

(i)

), 
(i) ) ∼ π1(X (t
), 
 | β
(i−1)
0 , θ (i−1) )

= π11(
 | β
(i−1)
0 , θ (i−1) )π12(X (t
) | 
, β

(i−1)
0 , θ (i−1) ).

Step : Draw β
(i)
0 ∼ π2(β0 | θ (i−1), X (i)(t


(i)
), 
(i) ).

Step : Draw θ (i) ∼ π3(θ | X (i)(t

(i)

), 
(i), β
(i)
0 ).



JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 489

Figure . Results of running the algorithms for nearly the same CPU time. The rows represent the four samplers. The first column displays the histograms based on the
posterior sample of
 and the second column focuses on themode near  days. In the second column, we superimpose the posterior density of
 obtained by an oracle
sampler (assuming the mode locations are known) to check the reliability of the relative sizes of the modes.

Table . The length of a chain including burn-in; acceptance rate for 
; and
Njumps = the total number of jumps between the two distant modes during the
post burn-in run.

Length of Acceptance Njumps
a chain rate

(i) Metropolis ,, . 
(ii) Metropolis with mixture jumping rule ,, . 
(iii) RAM ,, . 
(iv) Tempered transitions ,, . 

upon both versions of Metropolis; the total number of jumps
between the two distant modes in the post burn-in sample,
denoted by Njumps, is at least 1.7 times higher for RAM, and
RAM’s acceptance rate is at least 3.4 times higher. With addi-
tional tuning of the number of rungs, temperature, and jumping
scale, TT performs no better than RAM in terms of Njumps but
its acceptance rate is about 5.9 times higher than Metropolis.

The first column of Figure 8 displays histograms of the pos-
terior sample of 
 obtained using the four different kernels.
The size of the mode near 423 days, which is of great scientific
interest, differs substantially among the samplers. In the second
column of Figure 8, we magnify this mode, superimposing a
curve that represents the marginal posterior density of 
 based
on twenty million posterior samples obtained with an oracle
sampler5 constructed with knowledge of both mode locations.
The size and shape of the mode near 423 days obtained with

 We use an MH within Gibbs sampler equipped with an independent Metropolis
kernel (Tierney ) that is invariant to π11 . The jumping rule for this kernel is
Uniform[, ]withprobability . and fromUniform[, .] otherwise.
We emphasize that this algorithmwould not be feasible without prior knowledge
of the size and location of the two posterior modes.

RAMmatch the oracle sampler better than the other algorithms,
which is an algorithmic confirmation of the reliability of RAM.

4. Concluding Remarks

We propose RAM both as an alternative to deal with multi-
modality, and as a newer strategy of forming acceptance prob-
abilities. It can also be viewed as using negative temperature in
annealing type of strategies, as Professor Art Owen recognized
in his comments on an early version of our article.

More work is needed to extend RAM’s applicability. In par-
ticular, we plan to compare the theoretical convergence rate of
our algorithm to others, but this is difficult partially owing to the
intractable down-up jumping density, qDU. Also, a better set of
strategies for tuning RAM in various multimodal cases needs to
be investigated. Different ways to encourage a down-up move-
ment in density may exist, for example, mixing anti-Langevin
and Langevin algorithms or tempering with negative and posi-
tive temperature levels, both of which were suggested in a per-
sonal blog of Professor Christian P. Robert6. Another avenue for
further improvement is to apply the ideas of the mode-jumping
proposal and the delayed rejection method to RAM, e.g., allow-
ing an asymmetric density function q so that the downhill move
encourages longer jumps than the uphill move does. Using this
down-up idea to construct a global optimizer is another possible
extension as the tempering idea is used for a statistical anneal-
ing. We invite interested readers to explore these possibilities.

 https://xianblog.wordpress.com////love-hate-metropolis-algorithm/

https://xianblog.wordpress.com/2016/01/28/love-hate-metropolis-algorithm/
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SupplementaryMaterials

Appendices: Appendices A, B, and C as cited in the article
(Appendices.pdf).

R code and data: All the R code and data used in this article
(RAM.zip).
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