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DISCUSSION ARTICLE 

Discussion 

Xiao-Li MENG 

1. IT'S ALL IN THE NAME! 

Of the several reasons for the popularity of the EM algorithm after the publication 
of Dempster, Laird, and Rubin (1977), one is its name. Almost at the instant of inquir- 
ing what EM stands for, the curious mind is already learning that the algorithm has 
two steps-the expectation step and the maximization step. Incidentally, the substance- 
oriented name also avoids the common distraction governed by Stigler's Law of Eponymy 
(Stigler 1980), and avoids awkward, "noninformative" acronyms such as the FHBSMDLR 
algorithm (for curious minds, see Meng and van Dyk 1997, sec. 1.1). 

Since the authors hope their article will stimulate a nonnegligible amount of research 
activities compared to Dempster et al. (1977), a "sexier" name than optimization transfer 
seems in order, at least for statisticians. May I suggest the SM algorithm? Like EM, it 
immediately identifies that the algorithm has two steps (at iteration t) for maximizing an 
objective function L(O) over 0 E 6: 

1. Surrogate Step: Substitute a surrogate function Q (010(t)) for L(0) such that 

H(0i0(t)) = Q (010t) - L(0), 0 Ec 

attains its maximum at 0 = 0(t); and 
2. Maximization Step: Maximize the surrogate function Q (010(t)) as a function of 

0 to determine the next iterate 0(t+1). 

Also like EM, this is really not an algorithm but rather a general principle (see the 
footnote on p. 6 of Dempster et al. 1977)-in fact, without further instruction on how to 
construct the surrogate function, it is really just a principle. But given that EM is now 
a household name, the new name SM may catch on simply because it rhymes (almost) 
with EM! (A physician once called me: "I heard about this cool stuff called EM. Can 
you tell me about it?" Now I can call him back: "I have this really cool stuff called SM. 
Do you want to hear about it?") 

With this new spice, we can cook another alphabet soup. As a direct counterpart 
of GEM (Dempster et al. 1977), we have GSM (MSG in reverse!), which finds 0(t+l) 
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such that Q(9(t+1)l0(t)) > Q(0(t)l0(t)), but does not necessarily maximize Q (0|0(t)). 
Similarly with the ECM algorithm (Meng and Rubin 1993), we can replace the M step by 
a set of conditional maximization steps, and hence the SCM algorithm. It is sometimes 
beneficial to use L(0) as the surrogate function for itself in some of the CM steps, as in 
the ECME algorithm (Liu and Tubin 1994), which leads to SCME. Or more generally, 
we can have ASCM; that is, we can alternate the surrogate functions with the CM steps, 
as detailed in Meng and van Dyk (1997) in the AECM framework. In addition, in analogy 
to moving from EM to GEM, we can move from AECM to GAECM, which is the most 

general EM-type framework I am aware of. Consequently, we can move from ASCM 
to GASCM, which is likely to be currently the most fruitful framework for statisticians 
to construct intrinsically monotone optimization algorithms (i.e., the monotonicity is not 
"forced" by checking values of the objective function at each iteration). Furthermore, we 
can introduce a working parameter to index a set of surrogate functions for the purpose 
of optimizing speed (as in Meng and van Dyk 1997, 1999), or as in the PXEM algorithm 
(Liu, Rubin, and Wu 1998), we can maximize the working/expanded parameter in the 
SM iteration, and hence PXSM. 

Finally, we may even try the Supplemented SM and SCM algorithms to mimic the 
SEM algorithm (Meng and Rubin 1991) and the SECM algorithm (van Dyk, Meng, and 
Rubin 1995) for computing the asymptotic variances, though these are less straightfor- 
ward than the previous replacements because the rate of convergence of SM and SCM 

may not be directly related to the fraction of missing information. However, when di- 

rectly differentiating the surrogate function Q(010) is feasible with respect to both 0 

and ?, there is generally no need of a numerical algorithm for computing the second 
derivative of L(0); see Section 4. 

2. IS SM JUST EM? 

Of course, the new alphabet soup will not be a really new delight if it is just 
the old soup presented in a new, perhaps larger, bowl. Could it be that SM, though 
apparently more general, is just a disguised or beautified version of EM? The answer is 
not completely obvious, especially if one starts the comparison with the most obvious 
construction of the surrogate function via linear minorizationlmajorization. As in the 
authors' Equation (3.1) (p. 9), assume our log-likelihood function L(0ly) can be written 

as 

L(9ly) = fy()-gy(0), O E C Rc , (2.1) 

where both fy and gy are concave functions and without loss of generality (when 

Igy(0)I < oo) we assume gy(0) = 0 for all y. Now suppose e-9y() is the moment- 

generating function of a conditional density h(zly), namely, 

e-gy() = JeZh(zly)(dz), 0 E 9. (2.2) 

Then if we augment p(yl0) = eL(0ly) to 

p(zy,0)p(y0) - [e0z+9v(0)h(z1y)] [eL(y)] -= efy(0)+zh(zly), (2.3) 
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we have, for the standard EM construction, 

Q (010) =fy(O) +E (Zly,O()) +E [log h(Zly)ly, ()]. (2.4) 

But this is equivalent to the proposed linear minorization surrogate function 

Q (00(t) = fy( _ g' (0(t)) ( - (t)) , (2.5) 

because E(Zy, 0) = -g9(0) from differentiating both sides of (2.2). Incidentally, by 
differentiating both sides of (2.2) twice, we have gy(0) = -V(Zly, 0) < 0, and thus the 

concavity of g(0) is a necessary condition for this EM construction to be possible. (For 
multivariate 0 we can construct the missing data Z with the same dimension and replace 
Oz in (2.2) with oTZ. ) 

Although this EM construction is not always possible (e.g., when e-g(0) may not 
be a moment-generating function), and even when it is possible it requires more brain 

power than the linear minorization method, it nevertheless suggests that a large class of 
SM algorithms based on (2.5) are also EM algorithms with augmentation p(z, yl0) of 
(2.3). 

So the question is, given Q(014) from a particular SM construction, how do we 
know if there is a corresponding EM construction, regardless of how convoluted the 
latter might be? The practical relevance of this theoretically interesting question is that, 
if the EM class is as rich as the SM class, then the value of the new SM formulation 
is in providing a set of new tools for creative EM-type implementation. However, if the 
SM class is richer than the EM class, then it provides hope for solving problems that are 
difficult or even impossible to solve within the entire GAECM framework. 

3. SO WHAT DOES IT TAKE TO BE AN EMer? 

Let us call a surrogate function Q(06\) on E x E an EMer for an objective function 

L(O), 0 E 9 if the following two conditions hold: 

* Condition 1: There exists an augmented objective function L(O; z), where z can 
be of any dimension, such that 

p(zl0) eL(O;z)-L() (3.1) 

is a proper density with respect to some measure ,p for any 0 E E; and 
* Condition 2: The surrogate function Q(0\q) can be expressed as 

Q(0J) = E[L(0; Z)JO] + C() = J L(0; z)p(zJ)(dz) + C(), 

for any (0, q) E e x E, (3.2) 

where C(Q) is a function of b alone. 

This definition is notationally more general than the one given in Dempster et al. (1977), 
because it explicitly allows L(0) and L(O; z) to be arbitrary objective functions as long 
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as p(zlO) of (3.1) is a proper density. A closer examination of the theory provided in 
Dempster et al. (1977) will reveal that it does not require L(0) or L(O;z) to be log- 
likelihood functions, as emphasized in the rejoinder of Meng and van Dyk (1997). Also 
note that in standard EM literature, p(zlO) is expressed as p(zl, y), the conditional 
density of the missing variable Z given the observed data Y = y. 

The following result provides a necessary and sufficient condition for a surrogate 
function Q(010) to be an EMer. 

Lemma 1. A surrogate function Q(01>) is an EMerfor L(0), 0 E E if there exists 
a probability family {p(zl0), 0 E E} with respect to a measure , such that 

H(00[) - H(01I) = flog P(z ) p(z(zl)(dz) = KL(q: 0), (3.3) 

where H(010) = Q(09I) - L(0) and KL(3 : ) is known as the Kullback-Leibler 

information, under family {p(zlO), 0 E e}, in favor of 0 against 0 when (q is true. 

Proof: The necessity follows directly from (3.1) and (3.2), which imply that for 

any (0, ) E e x O, 

H(q1$) - H(010) = E[L(0; Z) - L()1q] 

-E[L(0; Z) - L(0)1>] = log P(z) p(z\)lO)p(dz). (3.4) 
o p (zlO) 

To prove the sufficiency, we note that if (3.4) (ignoring the expression in the middle) 
holds for some {p(zl0), 0 E O}, then 

H(01\) = /logp(zJ0)p(zIJ)kt(dz) + C(q), (3.5) 

where C(0) is a function of q$ only. Letting L(0; z) = logp(z\0) + L(0), which clearly 
satisfies Condition 1, we have from (3.5) that 

Q(010) = H(01>) + L(O) = J L(; z)p(zjI$)t(dz) + C(q), 

for any (0, ) E 6 x E, (3.6) 

which is Condition 2. O 
Lemma 1 says that to demonstrate that the SM class is more general than the EM 

class, all we need to do is to find a function H(0[q) on (0, q) E O x O, where O c Rd, 
such that 

* Requirement 1: H(qI)() - H(0J) > 0 for all (0, 0) E O x O, as required by 
the S-Step; but 

* Requirement 2: H(Q)\) - H(016) cannot be represented as a KL(f : 0), as 

required to leave the class of EMer. 

To my amusement and frustration, this seemingly trivial task has doubled my head- 
ache from the Shanghai flu! The class of functions H(019) that satisfy Requirement 1 is 

enormous, and the class of KL(q: 0) seems much more restrictive especially because of 
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the separation of 4 and 0 inside the integrand, f logp(zl0)p(zlj))p(dz). However, the 
class of missing data densities p(zl0) is also enormous, especially because there is no 
restriction on the dimensionality of z. It is thus very difficult to prove Requirement 2 for 

any given H(091) on a given e x O. Pathological examples do exist when there is no 
restriction on E, for example, by taking O to be the power set of the set of all probability 
functions and let H(0l0) = 6{0=}), an example constructed by my colleague Zhiyi Chi. 

Unfortunately, such examples do not shed much light on how one should proceed when 
O C Rd, situations that are relevant for statistical applications. 

When 0 is a differentiable manifold, an H(010) satisfying Requirement 1 is a yoke 
if H E C??(O x 8), and H(Ol)) - H(01\) - H(q(l?) is a normalized/normed yoke 
(Bardorff-Nielsen 1987; Barndorff-Nielsen and Cox 1994). One of the most important 
yokes in the differential-geometric approach to statistical asymptotics is the expected 
(log-) likelihood yoke, E[logp(zlO) - logp(zl(q)l|], which is exactly the negative of 

KL(0 : 0). So under the differentiability assumption, the mathematical questions that 
have doubled my headache are: 

1. For a given 8, is there a normed yoke on C' (1 x 3) that cannot be represented 
as an expected likelihood yoke? 

2. For a given normed yoke on C??(O x 8), how can one determine if it has an 

expected likelihood yoke representation? 
Question 1 perhaps is not too hard to answer using the representation theory of yokes 

given by Bardorff-Nielsen and Jupp (1997), which is unfortunately too difficult for most 
statisticians even without headache. Question 2 perhaps is a lot harder to answer, but it 
is also a question of theoretical interest only because once a SM algorithm is constructed 
it does not really matter whether or not it is also an EM algorithm since the former 
also guarantees the celebrated monotone convergence property of EM. However, the 
theoretical results in the literature on yokes, especially those on how to generate new 

yokes from a given yoke (e.g., Bamdorff-Nielsen and Jupp 1997), seem to me quite 
relevant for the SM algorithm, because for every yoke H(01q) there is a corresponding 
surrogate function Q(01) = H(01>) + L(O) for the SM implementation, at least in 

theory. Evidently, the more yokes we can choose from, the more likely we can construct 

algorithms that are simple, stable, and fast. 
On the other hand, the formulation of the SM algorithm may call for generalizations 

of the theory of yoke beyond the one suggested in Blaesild (1991); namely, H is only 
required to be continuously differentiable for a finite number of terms. As emphasized by 
the authors, one advantage of the SM algorithm is its ability of transferring the optimiza- 
tion of a nondifferentiable objective function to that of a differentiable surrogate function, 
as demonstrated by the L1 regression problem in Lange, Hunter, and Yang's Example 2 

(p. 4). In such cases, the H(01\() = Q(0l)) - L(O) function is not differentiable, so we 
need to extend the theory of yoke to functions H(0\1) that satisfy Requirement 1 but do 
not necessarily satisfy any differentiability assumption. 

So although my attempt to cure my "EM flu" has not been successful, it is not 
without pleasant consequences (more will be reported in the next section). Furthermore, 
because the article's first author Lange is a leading statistical mathematician who can go 
back and forth between statistics and mathematics with great ease, I am very hopeful 
that he, together with his coauthors, will be able to provide a cure for my "EM flu." 

39 



X.-L. MENG 

4. MEETING AN OLD FRIEND: MR. BARTLETT 

In the search for necessary conditions for a surrogate function to be an EMer, the 
form of H(0\() given in (3.5) initially suggested that I consider the well known Bartlett 
identities for the family {p(z10), 0 E }. Specifically, suppose 0 is univariate and it 
is legitimate to interchange the differential and integration operators as needed. Denote 

DU"F(01,02) = -a9ouF( 2). Then by differentiating the following identity k (> 0) 
times 

D H(010) dlogP(z ) 
p(zl0)t(dz) = 0, for any 0 E (, (4.1) 

and by using the chain rule for differentiating the product of two functions, we obtain 
that for H(01l) of (3.5), 

k k 

(J ) Di+J 
k -H(00) = 0, (4.2) 

j=o0 

or equivalently 

L(k+l)) ()= (k)DJ+k-JQ(0o), (4.3) 
j=o0 

for any k > 0 such that all the derivatives involved exist. 

Identity (4.3) is indeed a necessary condition for Q(01() to be an EMer, but this is 
because it is actually a necessary condition for any surrogate function as defined by the 
S step, under the assumption of suitable differentiability of L(0) and Q(0\4). Given the 

important practical implication of this result (see, e.g., (4.9)), I will list it as a lemma, even 

though it is a direct consequence of H(0l\) satisfying Requirement 1, a requirement that 
defines the surrogate function and is explicitly or implicitly assumed and used through 
out the authors' article. 

Lemma 2. Suppose 0 = (01,..., d). Denote 

Jaz=1K E7 I(J+k.,a)F(0l0) DJ F(0lq) = ... 
oj ... kd (4.4) 

for a function F(0Qf), where J = (jl,..., ,d) and K = (k1,..., kd). Denote 

K kIc kd 

(K) 
= 

(kI) .(d) and Ef(J)= E f(j jd) (4.5) 
J 1 \jl \3d J=O j,=0 jd=0 

where 0 = (0, ..., 0), and let Ei be the row vector with 1 for its ith element and 0 

elsewhere, for i = 1, ..., d. Suppose Q(0\I) is a surrogate function for L(0) such thatfor 
any fixed q E e6, 0 = q is a stationary point of H(0I)) = Q(0l)) - L(0). Then Q(OjI) 
must satisfy 

E (K) DJ+EiK-JQ(OO) = DK+EiL(0) i 1,...d, (4.6) 
j=o v / 
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for any K = (kl,... , kd), where ka 's are non-negative integers, such that all the deriva- 
tives in (4.6) exist. 

Proof: Under the stationary-point assumption, for any 1 < i < d, 

DEiL(O) = DEi,OQ(oo). (4.7) 

Applying the DK = DK,O operator to both sides of (4.7) yields (4.6) via the chain rule 

DKF(O) = E (K)DJK-JF(0 9) (4.8) 
J=0 

for F() - F(o, 0). ? 
An important consequence of Lemma 2 is that the Hessian matrix for L(0) is directly 

available from the second order derivatives of the surrogate function because 

D2L(O) = D20Q(Ie0) + DllQ(00), (4.9) 

using the notation of Dempster et al. (1977) (e.g., D20 = D(2,...,2),(0,..,0)). For the EM 

algorithm, this result was the core of Oakes (1999), where it was proved via the indirect 
route (4.1). The direct approach (4.7)-(4.8) shows that the specific "product form" inside 
the integrand in (4.1) is inconsequential once we have D'OH(0OI) = 0, because the 
chain rule (4.8) has the same form as the chain rule for differentiating the product of 
two functions. Indeed, for general yokes, the indirect approach is not even relevant (see 
Bardorff-Nielsen and Cox 1994, chap. 5). 

When Q(0\3) is an EMer, the set of identities given by (4.6) are equivalent to the set 
of Bartlett identities for p(zl0), typically presented in more compact tensor notation (e.g., 
McCullagh 1987; Mykland 1994). The fact that these identities hold for any surrogate 
function (assuming differentiability) reinforces the authors' key message that, the missing 
data aspect of EM, though responsible for the enormous success of the current EM 

methodology, is actually not at the core of the algorithm. Algorithmically, the core 
is that H(010(t)) achieves the maximum at 0 = 0(t) However, the same fact is also 
indicative of the difficulty in finding necessary conditions that are unique to EMers, or to 
put it differently, it is not indicative of the conjecture that the SM class is more general 
than the EM class. 

5. A BIG S! 

Regardless of the (remote?) mathematical possibility that the SM class is the same 
as the EM class for most practical purposes, the SM formulation provides a new set 
of tools for finding simple and stable algorithms for complicated statistical optimization 
problems. To me, the biggest advantage of SM is that it bypasses the E step, and thus 
it provides a methodological breakthrough in dealing with the fundamental difficulty 
within the GAECM framework, namely, the difficulty with the E step when it is not 
in closed form. Although a Monte Carlo or numerical E step is possible and can be 
very effective (e.g., Wei and Tanner 1990; Meng and Schilling 1996; Booth and Hobert 
1999), any GAECM is less appealing when its E step requires numerical computation or 
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approximation. Replacing E by S signifies this breakthrough, and for that reason I am 

very pleased to attribute a big "S" to the authors for a new ray of Sunshine on the EM 

empire! 
And I definitely see myself indulged in a few SM sessions, once I have my "EM 

flu" cured! 
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