
Interface Foundation of America

On the Orderings and Groupings of Conditional Maximizations within ECM-Type Algorithms
Author(s): David A. van Dyk and Xiao-Li Meng
Source: Journal of Computational and Graphical Statistics, Vol. 6, No. 2 (Jun., 1997), pp. 202-
223
Published by: American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation
of America
Stable URL: http://www.jstor.org/stable/1390931 .
Accessed: 08/03/2011 11:15

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at .
http://www.jstor.org/action/showPublisher?publisherCode=astata. .

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of America are
collaborating with JSTOR to digitize, preserve and extend access to Journal of Computational and Graphical
Statistics.

http://www.jstor.org

http://www.jstor.org/action/showPublisher?publisherCode=astata
http://www.jstor.org/action/showPublisher?publisherCode=ims
http://www.jstor.org/action/showPublisher?publisherCode=interface
http://www.jstor.org/action/showPublisher?publisherCode=interface
http://www.jstor.org/stable/1390931?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=astata

On the Orderings and Groupings of
Conditional Maximizations Within

ECM-Type Algorithms

David A. VAN DYK and Xiao-Li MENG

The ECM and ECME algorithms are generalizations of the EM algorithm in which
the maximization (M) step is replaced by several conditional maximization (CM) steps.
The order that the CM-steps are performed is trivial to change and generally affects how
fast the algorithm converges. Moreover, the same order of CM-steps need not be used
at each iteration and in some applications it is feasible to group two or more CM-steps
into one larger CM-step. These issues also arise when implementing the Gibbs sampler,
and in this article we study them in the context of fitting log-linear and random-effects
models with ECM-type algorithms. We find that some standard theoretical measures of
the rate of convergence can be of little use in comparing the computational time required,
and that common strategies such as using a random ordering may not provide the desired
effects. We also develop two algorithms for fitting random-effects models to illustrate
that with careful selection of CM-steps, ECM-type algorithms can be substantially faster
than the standard EM algorithm.

Key Words: Contingency table; Convergence rate; Data augmentation; Gibbs sampler;
EM algorithm; Incomplete data; IPF; Missing data; Model reduction; Random-effects
models.

1. INTRODUCTION AND T'HEORETICAL BACKGROUND

1.1 CONDITIONAL MAXIMIZATIONS AND FLEXIBLE DATA AUGMENTATION

The EM algorithm (Dempster, Laird, and Rubin 1977) is a popular data-augmentation
method for calculating maximum likelihood estimates (and posterior modes) in problems
with incomplete data or problems that can be formulated as such (e.g., mixture models).
The ECM algorithm (Meng and Rubin 1993) extends the EM algorithm by replacing
the maximization (M) step of EM with several conditional maximization (CM) steps.
The rationale behind this replacement is that for many common statistical models, direct

maximization of the likelihood function is complicated even without missing data, but

conditional maximizations of the likelihood function over constrained parameter spaces

David A. van Dyk is Assistant Professor, Department of Statistics, Harvard University, Cambridge, MA 02138;
e-mail: vandyk@stat.harvard.edu. Xiao-Li Meng is Associate Professor, Department of Statistics, University
of Chicago, Chicago, IL 60615.

)1997 American Statistical Association, Institute of Mathematical Statistics,
and Interface Foundation of North America

Journal of Computational and Graphical Statistics, Volume 6, Number 2, Pages 202-223

202

CONDITIONAL MAXIMIZATIONS

can be much easier; this is in the spirit of the Gauss-Seidel method. Although this strategy
of using conditional maximizations was motivated by the simplicity and stability (e.g.,
monotone convergence in likelihood) of the resulting algorithms, it turns out that it is
also of fundamental importance in speeding up EM-type algorithms because it allows
for much more flexible data-augmentation schemes than does the original EM algorithm
(see Meng and van Dyk (in press) for a detailed discussion).

Specifically, let L(0OYaug) be the log-likelihood function based on the augmented
data, Yaug, where 0 = (01,... , d) is a d-dimensional model parameter with domain 0.

The objective here is to maximize the observed-data log-likelihood, L(0lYobs), where the
observed data, Yobs, is a function of Yaug. Let G = {g(0), s = 1,..., S} be a set of
S > 1 preselected (vector) constraint functions that are "space filling" (Meng and Rubin
1993), in the sense of allowing maximization over the full space 0. Starting with an
initial value 0(0) e 0, the expectation (E) step of ECM is the same as in EM: find the
conditional expectation of L(0OYaug) given 0 = 0(t) and Yobs

Q(010(t)) = E[L(0OYaug) (t), Yobs]. (1.1)

The sth (s = 1,..., S) CM-step of the (t + 1)st iteration of ECM determines 0(t+s/S) by
maximizing Q(010(t)) under the constraint gs(0) = gs(O(t+(s-)/S)); that is, by finding
0(t+s/S) such that

Q(O(t+s/s)o0(t)) > Q(010(t)), for all 0 c {0 CE : g9(0) = 9g(0(t+(-)/))}.

(1.2)
The output for the (t + l)st iteration is defined as 0(+I) = 0(t+S/S), which can then be
used to recompute (1.1) and the algorithm iterates until convergence. The original EM

algorithm is a special case of ECM with S - 1 and g\ (0) equal to a constant (i.e., no
constraint).

The ECM algorithm thus generalizes EM by incorporating model reduction (i.e.,
breaking a big model into several smaller ones) into the M-step in order to regain the

simplicity of EM in cases where the maximization of Q(010(t)) over) is difficult. As

expected, replacing the M-step by a sequence of CM-steps generally slows down con-

vergence in terms of the rate of convergence (defined in Section 1.3; surprisingly, this
is not universally true; see the counter-example provided by Meng 1994). The expec-
tation/conditional maximization either (ECME) algorithm (Liu and Rubin 1994) uses a
creative data-augmentation scheme to improve the speed of convergence. Liu and Rubin
(1994) recognized that in some applications of the ECM algorithm the implementa-
tion of some CM-steps requires similar computations for maximizing the conditional
observed-data likelihood and the conditional augmented-data likelihood, and thus, it can
be computationally more efficient to directly maximize the former. Specifically, in ECME
the first So CM-steps are the same as in (1.2) but the rest of the CM-steps are replaced
by finding 0(t+s/s) such that

L(O(t+s/S)IYobs) > L(0IYobs), for all 0 E {0 e O : gs(0) = g,((t+(s-l)/S))}.
(1.3)

The idea of using different data-augmentation schemes at different CM-steps was
also explored independently by Fessler and Hero (1994, 1995), who proposed a space-
alternating generalized EM (SAGE) algorithm that allows Q to vary from CM-step to

203

D.A. VAN DYK AND X.-L. MENG

CM-step. Combining the flexible model-reduction scheme of ECM and the flexible data-

augmentation scheme of SAGE, Meng and van Dyk (in press) proposed a general frame-
work called the alternating expectation/conditional maximization (AECM) algorithm for

constructing simple, stable, and fast ECM-type algorithms for practical implementation.
They also introduced the idea of a "working parameter" in order to facilitate the search
for efficient data-augmentation schemes. The fast algorithms developed in this article for

fitting (univariate response) random-effects models are built upon these ideas.

1.2 THE ISSUES OF ORDERING AND GROUPING

In both ECM and ECME (and more generally SAGE and AECM), the CM-steps
maximize the objective function over a different subspace of E, so that the "space filling"
condition is required to guarantee that the whole parameter space 0 will be searched after
we perform all S CM-steps, but there is flexibility in the order we choose to perform
them. On the other hand, the order of the CM-steps can sometimes significantly affect
the number of iterations required for convergence. Taking an extreme example, when the
ECM algorithm was used to fit a log-linear model to a certain sparse contingency table
with partially classified counts, the ECM algorithm with one order of CM-steps required
10 times as many iterations (i.e., CPU time) as another order. A question of practical
interest naturally arises: is there any way that we can take advantage of efficient orderings
or at least avoid the bad orderings in cases where order has a substantial effect?

A second question of interest in practice involves groupings of CM-steps. In many
problems the CM-steps are defined by breaking the parameter into several pieces, 0 =

(01, ..., Ots), and optimizing the objective function over each 9s in sequence, conditional
on the rest of 0 (i.e., g,(O) = (,i,..., s-1,d+1,... , 5) for s = 1,...,S). In such

problems, it is sometimes possible to construct algorithms by grouping the components
of 0 in different ways. Although intuitively it seems that the bigger these groups are the
more efficient the algorithms will be, this is not always true because we can sometimes
use more efficient data-augmentation when the parameter is broken into smaller pieces
(e.g., as with the ECME algorithm). Both the issue of ordering and the issue of grouping
also arise naturally when implementing the Gibbs sampler, which can be viewed as a
stochastic counterpart of ECM-type algorithms (see the discussion in Meng and Rubin

1992; Meng and van Dyk in press). Indeed, some of the strategies we investigate in this
article were motivated by similar strategies for implementing the Gibbs sampler (e.g.,
Amit and Grenander 1991; Liu, Wong, and Kong 1994, 1995).

Our presentation is organized as follows. After we introduce the necessary back-

ground in Section 1.3, we will begin in Section 2 by using the common contingency
table problem to illustrate the impact of changing orderings on the actual number of

steps required for convergence. In Section 3 we investigate the effect of the ordering
and grouping of CM-steps on the computation time required for convergence by several
ECME algorithms used to fit random-effects models. We will also show that by careful
construction of the CM-steps we can provide an implementation that is not only sim-

ple and stable but can also be much faster than the standard EM implementation for
random-effects models. In Section 4 we provide concluding remarks.

204

CONDITIONAL MAXIMIZATIONS

1.3 SOME THEORETICAL BACKGROUND

Here we discuss the theoretical background of the ECM algorithm. Some of this
discussion is also applicable to the more general AECM algorithm, but Theorem 1 only
applies to ECM. Like any deterministic iterative algorithm, the ECM algorithm implicitly
defines a mapping MECM : 0(t) (t+l) = MECM(0(t)) from the parameter space 8 to
itself. Let 0* be the limit of {0(): t > 0}. Suppose that MECM(0) is differentiable in
a neighborhood of 0*, then a Taylor's series argument shows that for large t, ECM can
be approximated by a linear iteration with iteration matrix DMECM(0*), the Jacobian of
the mapping MECM(o) evaluated at 0*; thus DMECM(o*) is called the (matrix) rate of

convergence of ECM (e.g., Meng 1994).
The spectral radius of DMECM(o*) is of particular interest because it is equal to

the so called root convergence factor p = limsup /lj 0(t) - 0*1 (e.g., see Ortega and
Rheinboldt 1970, sec. 10.1.4). For computational purposes, we will use the empirical root

convergence factort = [l=2 where ri = _0 t(i-l)I/I(i-l) _0(i-2),

i > 2. It is worth noting that if DMECM has a spectral decomposition after a similarity
transformation (as is always the case with the EM mapping (see Meng and Rubin 1994)),
then r = limt,o rt exists and is equal to the spectral radius of DMECM. Thus, in the
EM literature r is used instead of p to assess the rate of convergence of the algorithm.
This will not suffice in the ECM case as limt,o r t may not exist and lim supt,o rt
can be greater than the spectral radius; an example of this was given by van Dyk and

Meng (1995).
In practice, one quantity of real interest is the actual number of iterations an algorithm

requires for convergence. If pt can be well approximated by p, then the number of
iterations required for convergence, N, is related to p via

N o -1 (1.4)
log(p)'

where the constant of proportionality depends only on the starting value and the conver-

gence criterion. We therefore would like to study how p varies with different orderings
of CM-steps. Let Iobs and laug be the observed and augmented information matrices:

Lb02L(O{Yobs) 02L(0(Yaug) ,
Iobs = 00 90 s, aug = E - 0obs E obs 0 _0 00* - 0=0*

Meng (1994) showed that, suppressing the dependency on 0 = 0*,

[I - DMECM] = [I- DMEM[I- DMCM] (1.5)

where I is the identity matrix, DEM = I -
obsIaug and

IT Ii _ EET] T a 2 VgS (*)_ DMCM =- Iug {A1 ... As}I aug with A,- [] 1T and = Iaug Vg(0*).
(1.6)

In the previous expressions, DMEM and DMCM denote the matrix rate of convergence
of the EM and CM (i.e., ECM with no missing data) algorithms respectively. From (1.5)-
(1.6), we see that DMECM, and thus p, depends on the order through DMCM where the

product of A.'s is calculated in the order that the CM-steps are performed.

205

D.A. VAN DYK AND X.-L. MENG

Consider the two ECM algorithms, ECM(,. ,s) with steps ordered: E -+ CM1 ->

* -- CMs, and ECM(^,...,1) with steps ordered: E -- CMs -* ... - CM1. In

general, we will use the notation ECM,, to denote the ECM algorithm with CM-steps
ordered as in the ordered set a (e.g., a = (1,2,4, 3)). The following theorem states that

reversing the order of the CM-steps does not change the eigenvalues of DMECM, a result
that is not intuitively clear.

Theorem 1. For ECM, reversing the CM-steps has no effect on the eigenvalues of
DMECM.

Proof: From (1.5)-(1.6),

[I- DMECM(..] = obs[I - I (A ... As)au]. (1.7) [I
- D I ugs agauI g

Because transposition does not change eigenvalues, (1.7) has the same eigenvalues as

AT2I T1 -1

{Iobs[Iaug -I a (A1 ... As)I uau} = { -2au (A... Al)Iaug obs, (1.8) lbaug [aug I(Al .. A) lau

which in turn has the same eigenvalues as

I I

Iobs[Iaug Iaug2 (As... Al) Iau] = [I- DMEM][I- DMCM(s -)] = I DMECM(s

2. INVESTIGATING STEP ORDERINGS
USING LOG-LINEAR MODELS

2.1 REVERSING THE ORDER OF CM-STEPS

From the discussion in Section 1.3, Theorem 1 tells us that reversing CM-steps
within the ECM algorithm does not affect p and thus by (1.4) it should not affect the
number of iterations. We must recall, however, that although ECM tends to be linear
near 0*, little is known about its behavior away from 0*. Moreover, it may take many
iterations before pt converges to p.

To judge the usefulness of Theorem 1, a set of simulations was performed. The ECM
algorithm was used to fit a log-linear model to data from a particular partially classified
2 x 2 x 2 contingency table. The model we fitted is a no-three-way-interaction model:

log(Oijk) - UO + (-l)i-ul + (--1)iU2 + (-1)k U3

+(-l1)i+U12 + (--1)j+kU23 + (-1)i+kU13, (2.1)

where Oijk is the cell probability for cell (i, j, k). Meng and Rubin (1991, 1993) described
an ECM algorithm with three CM-steps for this problem. Specifically, because the log-
likelihood is linear in the cell counts, Y = {Yijk}, the E-step simply involves imputing
the missing data:

o(t) O(t) 0(t)
(t) -(a) ~(b) ijk , -(c) ij k

Y yjk
=

Yijk + Yi
>

y (t) /+ k (t()
Ljk Oijrk Yik i(jk

t
ijk

206

CONDITIONAL MAXIMIZATIONS

Table 1. Simulation Sample Sizes

Sim n nc n 1 n2 n3

1 100 25 25 25 25
2 1000 100 300 300 300
3 100 40 20 20 20

where y() are the cell counts for the completely classified observations, and (b), (c) 9ij k CU7 IICI 1 rll ~VUIILJ IVII1~ ~VIIIYICCll r C?IIJIII~U VUJ~IVQIVIIJ) (Il1U yi
and (d) are the one-way marginal counts. The CM-steps make use of iterated proportional

fitting. Given the current estimated cell probabilities {0(^)}, the three CM-steps are

(t+) o(tYij+ M i (t+) _ (t+) yi+k CM /j =t
2(i)jk CMi 0 (k) Y i CM2: 3 = 3 -, CM3: 0 = 3 = Y3 CMi: O 3 ,Mijk ivkijk i(j)k n ' 3nnjk ij(3ik) i

where n is the total count, 0ij(k) = Oijk/ Ck Oijk is the conditional probability of the
third factor given the first two, and yij+ = Zk Yijk, etc. It is easy to see that CM1

maximizes L(O0Y) subject to Oij(1) = 0(t1) for each i and j, so that the constraint
function gi(O) = ({ij(1)}; likewise g2(0) = {0i(1)k} and 93(0) = {O(1)jk}.

For each simulation 2,000 data sets of size n were generated, of which nc were

completely classified and ni were classified only according to margin i (i = 1,2,3).
Three simulations were run and the sample sizes for each appear in Table 1. Each data
set was generated from model (2.1). The log-linear parameters were randomly selected for
each data set from ul ~ N(O, 1), and ulm N(0, .25), independently for 1, m = 1,2, 3,
and uo is then chosen so that the cell probabilities sum to one.

For each data set the model in (2.1) was fitted using a starting value of 0(?) = 8, with ijk =
each of the six ECM algorithms resulting from the six possible orderings of the CM-steps.
Convergence of the algorithm was decided when the standard step-length convergence
criterion was met: 0(t) - (t-1)ll < 10-9. The algorithm was allowed to run at most

9,999 iterations. In very sparse data sets (i.e., more than four zero cells), the likelihood
surface can be very ill-behaved, in which case ECM may not converge properly. This is
of little practical concern because one would not fit model (2.1) with such sparse tables,
and has negligible impact on our study since it occurred only 16 times among the 30,000

contingency tables we simulated.

Suppose Nij (i = 1,2; j = 1,2, 3) are the number of steps required for convergence
of the six algorithms listed in Table 2, where i and j index the rows and columns

respectively. Consider the quantity,

R Z(N -N2 ' (2.2)
Ei, (Nj3- A..)2

which is the proportion of the total variation among the Nij that can be accounted for by

Table 2. ECM Algorithms Used to Fit (2.1) to a 2x2x2 Table

Cyclic permutations

Reversals of ECM (123) ECM (231) 7 ECM (312)
CM steps ECM (321) ECM (132) ECM (213)

207

D.A. VAN DYK AND X.-L. MENG

Histogram of R squared

........... Cs ". ! . : :'::' :.'

0.0 0.2 0.4 0.6 0.8 1.0

R2

Figure I. A Histogram of the 4,910 Values of R2 Observed in the Three Simulations Described in Table 1.
Notice that R2 tends to be larger than expected under the independence assumption (solid line) or according to
Theorem I (R2 - 0).

reversing the CM-steps. If Theorem 1 also implies that reversing the order of CM-steps
does not affect the actual number of steps required for convergence, R2 should be near
zero. Figure 1 shows the histogram of the 4,910 simulated values of R2 for which the
denominator of (2.2) was greater than zero. We see that the histogram is actually more
skewed to the right than the Beta(3, 1) density (solid curve) of R2 under the assumption
that the Nij's are iid normals; this assumption, suggested by a referee, already represents
a serious contradiction to Theorem 1. This indicates that the standard comparison of
EM-type algorithms using p can be quite misleading, which is not too surprising because
p only describes the behavior of an EM-type algorithm near convergence.

To explore this further, Figure 2 shows estimated densities for the complement
of the possible gain in efficiency due to (a) step reversals (dotted line: min(Nlj, N2j)/
max(Nlj, N2j)) and (b) general permutations (solid line: mini,j(Nij)/maxi,j(Nij)). No-
tice that although the effect of general permutations is slightly greater than that of step
reversals, the latter account for the majority of the gain. This implies that when we con-
sider the effect of permutation of CM-steps on the number of iterations or on CPU time,
we must consider all S! possible orderings.

2.2 FACTORS AFFECTING RELATIVE GAIN

In Figure 2 we see that the relative reduction in the number of steps required by
choosing the optimal order is typically less than 20%. But there is a nontrivial portion

208

CONDITIONAL MAXIMIZATIONS

1-Maximum effect of Steps
Reversals and Permutations

c-

0 -

-

oo -

cm -

0 -

I I I I I

0.0 0.2 0.4 0.6 0.8 1.0

Nmin/Nmax
Figure 2. Comparing Step Reversals With General Permutations. Thefigure shows the density of the effect on it-
erations required of (a) step reversals: [min(Nlj,N2j)/max(Nlj,N2j)] (dotted line); and (b) general permutation:
[min(Nij)/max(Nij)] (solid line).

of cases where the relative gain is more substantial. In practice, we would like to know

what factors will make large improvements likely. One obvious factor is the number of

CM-steps-the more steps the more likely that the order will matter; a simulation that

confirms this intuition was reported by van Dyk and Meng (1995). In the following we

investigate two less obvious factors: the sparseness of the data relative to the number of

model parameters and the relative number of incomplete cases.

Using the 2 x 2 x 2 table described in Section 2.1, ten additional simulations were

run and are described in Table 3. Simulations 4-8 are designed to look at the effect of

sparseness (i.e., ts - (number of parameters)/n) and thus the amount of incomplete
data was fixed at - 1 - n,r/n = 60% for each of them. The CDF of Nmin/Nmax for

Table 3. Simulation Sample Sizes and the Resulting Values of the Index of Sparseness, Ls, and the
Index of the Number of Incomplete Cases, tL

Sim n nc n n2 n3 100x s 1i

4
5
6
7
8
9

10
11
12
13

40
75

150
500

10000
100
100
100
100
100

16
30
60

200
4000

16
31
46
61
76

8
15
30

100
2000

28
23
18
13
8

8
15
30

100
2000

28
23
18
13
8

8
15
30

100
2000

28
23
18
13
8

15.00
8.00
4.00
1.20
.06

6.00
6.00
6.00
6.00
6.00

.60

.60

.60

.60

.60

.84

.69

.54

.39

.24

209

D.A. VAN DYK AND X.-L. MENG

each of these simulations appears in the first panel of Figure 3-simulation 4 is on the

top and simulation 8 is on the bottom. The effect of sparseness is clear-permutations
make more difference in tables with less data. This can be attributed to the fact that in

sparse tables the MLE approaches the boundary of the parameter space. As we shall see

in Section 3 this pattern persists when random-effects models are fit, in that when the

MLE of 0 is near the boundary of 9, the effect of the order of CM-steps is greater.
It is reasonable to expect that order is more important when the iterates approach the

boundary of the space, and it is in such cases that substantial reduction in the number of

iterations is of particular interest as it is known that EM-type algorithms can be painfully
slow in such cases (e.g., with a random effects model when the random effects variance

is close to zero). This finding suggests that it is more important to study the issue of

ordering when the MLE is near the boundary of 0.

Simulations 9-13 investigate the effect of the number of incomplete cases when

the sparseness was fixed at ts = .06. The corresponding CDFs of Nmin/Nmax appear in

the second panel of Figure 3. When the data are more incomplete, the CDFs tend to

be smoother because ECM requires more steps to converge and thus the integer divi-

sion in Nmin/Nmax results in less of a step function. That is, although the CDFs in the

bottom panel are shaped rather differently, this seems to be primarily due to the integer

Effect of Sparseness of the Data

z.. ^ --- /,t-0.1500
Z,0 L - =0.0800

Z ?
-

s- (,-0.0120

L s =0 0006

mln(N)/max(N)

Effect of the Number of Incomplete Observations

^
0 00,-0.G9

x L/t =0.54
ro -r-L- - =0.39
e L:=0 241

c>
o

080 0.5 0.90 0.95 1.00

min(N)/max(N)

Figure 3. CDFs of Nmin/Nmax for the Simulations Described in Table 3. The CDFs demonstrate the effect of
the sparseness of the data and of the number of incomplete observations.

210

CONDITIONAL MAXIMIZATIONS

Table 4. Comparing the Number of Iterations Required for the Cycled ECM Algorithm (Nc) and the
Fixed Order ECM Algorithm (Nf) Based on the 6,000 Data Sets Generated in the Simulations
Described in Table 1

Sim. Nf > Nc Nf = Nc Nf < Nc

1 .340 .141 .512
2 .447 .095 .459
3 .325 .207 .468

division. The CDFs corresponding to smaller values of ti are essentially step-function
approximations of the CDF corresponding to ti = .84. For example, for 39% of the
cases Nmin = Nma with ti = .24, while for only 7% of the cases did Nmin = Nmax with

Li = .84, but the percent of cases for which .95 < Nmin/Nmax is roughly 40% for both

Li = .24 and ti = .84. The relative decrease in steps required does not seem to change
on average as ti increases. It should be noted, however, that when there is more missing
information the ECM algorithm is slower so that even with similar relative increase in

efficiency, the absolute increase in efficiency (i.e., absolute time saved) will increase
with Li.

2.3 THE CYCLED AND RANDOM ECM ALGORITHMS

If changing the order of CM-steps noticeably affects the rate of convergence of

ECM, as is the case when the MLE is near the boundary of the parameter space, we
could lose efficiency by making the wrong choice of how to order the CM-steps. Lacking
a method for choosing a good order, we might hope to decrease the risk of a badly
inefficient algorithm by somehow averaging the orderings. One strategy a practitioner
might employ is the "cycled" ECM algorithm described in the following.

Given an ECM algorithm with S CM-step, let {ECM,, i 1,...,S!} be the

algorithms resulting from all the possible permutations of the CM-steps. The cycled ECM

algorithm runs one iteration from each of these algorithms in an arbitrary order, and then
continues to cycle through them until convergence. As will be described in Section 4.1
this can create instability in the step size 0(t) - (t-)ll, and care must be taken when

evaluating convergence of the algorithm. In the simulation, we ran the algorithms until
the difference between consecutive log-likelihood values, L(O(t+) lYobs) -L((t) Yobs),
was within a prespecified threshold. Because this requires the evaluation of the actual
likelihood, it may not always be feasible in practice, although it is always desirable, since
it allows us to check whether the likelihood is increasing at each iteration, a necessary

Table 5. Comparing the Number of Iterations Required for the Random Order ECM Algorithm (Nr)
and the Fixed Order ECM Algorithm (Nf) Based on the 6,000 Data Sets Generated in the
Simulations Described in Table 1.

Sim. Nf > Nr Nf = Nr Nf < Nr

1 .330 .144 .527
2 .445 .095 .460
3 .323 .218 .460

211

D.A. VAN DYK AND X.-L. MENG

feature of ECM when it is implemented correctly.
The rationale behind the cycled ECM algorithm is the hope that although it will not

be as fast as the fastest ordering of CM-steps, it also should not be as slow as the slowest.
It turns out that neither of these is true. The cycled ECM algorithm that incorporated
the six ECM algorithms was run on the data generated in the simulations described in
Table 1. There were cases in this simulation in which cycled ECM was the fastest, but
also cases in which cycled ECM was the slowest. A useful comparison is to compare
cycled ECM with a fixed order ECM algorithm. That is, on the outset of running the ECM

algorithm, an order for the CM-steps is chosen at random and fixed until convergence (this
strategy corresponds to the systematic scan that Liu, Wong, and Kong (1995) studied for

implementing the Gibbs sampler). Let the number of iterations required for convergence
of the resulting ECM be Nf. This is compared with Nc, the number of iterations required
for cycled ECM. For a fair comparison, we define an iteration to be one E-step followed

by the three CM-steps for both algorithms (regardless of the order of CM-steps). The
results for the three simulations in Table 1 appear in Table 4, and make it clear that on

average cycled ECM offers no advantage over haphazard selection of a fixed order of

CM-steps, at least in this example.
In what has been described previously, the order in which we cycle through the ECM

algorithms is chosen in advance. Instead of doing this, however, we could randomly select
an order at each iteration, which corresponds to Liu, Wong, and Kong's (1995) random
scan for the Gibbs sampler and was recommended by Amit and Grenander (1991).
Given the similarity between ECM and the Gibbs sampler, we hypothesized that random

orderings would outperform fixed orderings on average with the ECM algorithm as well.
To check our hypothesis we turned to the simulations described in Table 1. We compared
the number of iterations required by the algorithm that randomly selects an order at each
iteration, Nr, and the algorithm that randomly selects a fixed order on the outset, Nf.
The comparison appears in Table 5 and is very similar to Table 4, and thus we have
not obtained evidence for the advantage of using these "averaging" strategies instead
of simply fixing an arbitrary ordering at the outset. Minimally, our simulation shows
that such an advantage, even if it exists, cannot be universal. However, it is possible
that more sophisticated strategies, such as selecting different CM-steps with different

probabilities, may outperform the fixed-order strategy. We have not investigated these
more sophisticated methods, partly because we want to maintain the simplicity of the

ECM-type algorithm when we search for faster versions.

3. INVESTIGATING STEP ORDERINGS AND GROUPINGS
USING RANDOM-EFFECTS MODELS

3.1 THE ECME IMPLEMENTATIONS

As we mentioned in Section 1.1, in some applications, even though the standard
EM algorithm can be easily implemented, the introduction of CM-steps is still useful
because the conditional maximizations allow less data augmentation, which can speed
up the algorithm. The savings in computational time will depend on the trade-off between
using multiple CM-steps, which tends to slow down the algorithm, and using less data-

212

CONDITIONAL MAXIMIZATIONS

augmentation, which speeds it up. Furthermore, the efficiency of the algorithm depends
on the computations required for each iteration under different implementations. For

example, less data augmentation may result in an algorithm that requires fewer iterations,
but if each iteration requires iterative computation (e.g., Newton-Raphson) the overall

computational time required may be greater. Moreover, even when we have decided how
to group the parameters into CM-steps, just as in the contingency-table setting, we still
must choose the order in which to run the CM-steps.

All of these issues arise when EM-type algorithms are used to fit random-effects
models. In this setting a choice of model-reduction schemes in conjunction with a variety
of data-augmentation schemes leads to a multitude of diverse algorithms (e.g., Laird and
Ware 1982; Laird, Lange, and Stram 1987; Liu and Rubin 1994; Meng and van Dyk
1997). Here we assume, for illustrative purposes,

Yi = X/3 + ZTbi -+ ei, bi Nq(O, T), ei N(O, (2), bi L ei, (3.1)

for i = 1,... , n, where Xi (p x 1) and Zi (q x 1) are known covariates (Zi are such that
the model is identifiable); and 3 are the (p x 1) fixed effects; bi = (bil,..., biq)T are the

(q x 1) random effects. (Since the yi are univariate, (3.1) is essentially a heteroscedastic
residuals model; for more general-and more common-mixed-effects models, see Meng
and van Dyk (1997).) Although there is no general closed-form solution for the maximum
likelihood estimate 0* = (3*, a2*, T*) of 0 = (3, 02, T) given Yobs = (Y, . . ., Yn), EM-

type algorithms provide simple and stable fitting algorithms. For example, Liu and Rubin
(1994) presented an ECME algorithm that sets Q(010(t)) = E[L(01Yaug)\Yobs, H(t)], where

Yaug {(Yi, bT),i = 1,...,n}. The parameter T was updated with the constrained
maximizer of Q(010(t)), while ,3 and o2 were updated with the constrained maximizer
of L(0 Yobs) (as in (1.3)). Specifically, at the (t + l)st iteration,

ECME 1: given (t) = (/(t), [u2]() ,T(t))

E-step: Calculate for i = 1,..., n:

(t+l) a
)

T(t)Zi(yi -XTB(t)
bi E(bi Yobs, 0 j 7(t))

+ 1)= 10 2](t) +) TT(t)Zi

(t+) A T I7Yobs (t) (t+l) F(t+l) + T(t) ZiZ+T(t)
bibiyobs, 0

=
b [biJ + T(t) -[2](t) ZT(t)Z

i= l
CM-step 2: Calculate: T(t+l) ?ZTt)

n

CM-step 2: Calculate:

/3(t+l) - {Z E I I { [xiy

i= -) [a2] (t+) +Z T(t+I)Zi) Z +zJ i-i i~~~~~~1=1 I + ZTT(t+ uZ

213

D.A. VAN DYK AND X.-L. MENG

CM-step 3: Calculate [a2] (t+?) as the maximizer of the constrained actual log-likelihood

1 1 n T (t+l))2
2 Elog(T2 + ZTT(t+l)Z) - 1 (yi - X (t+l)2 2 " 1og(a2 + zr (t+l)zi) -2 0 r2 + ZTT(t+)Zi' i=1 i=1

Liu and Rubin (1994) broke up the M-step in this algorithm to increase efficiency,
not simplicity. Indeed the global maximizer of Q(091(t)) formulated with the data-

augmentation used in ECME 1 has a simple closed-form expression (Laird and Ware
1982; Laird et al. 1985). Breaking up the M-step, however, results in an algorithm that

requires fewer iterations for convergence (although each iteration is computationally more

expensive) because CM-steps 2 and 3 do not use data augmentation.
Meng and van Dyk (1997) suggested an alternative data-augmentation scheme when

they developed an EM algorithm in this setting. Let T = AUAT, where A is a lower

triangular (q x q) matrix with all diagonal elements equal to one and U is a diagonal
matrix, and set Ya {(Y cT),i = 1,..., n}, where ci = U- A-lbi. Model (3.1) can
be reexpressed using this data augmentation as

q q

Yi = Xi 3 + C
E cijzik6kjuj + ei X f3 + Xi + ei, (3.2)

j=l k=j

where ci = (cil,..., ciq)T, Zi = (zl,..., Ziq)T, {6jk, 1 < j < k < q} are the nonzero

elements of A; {uj, j = 1,..., q} are the diagonal elements of U;

Xi = (Ci1Z/ 1CZil, .., Ci2i, Ci . . ,Ci2Ziq, . , CiqZ)iq), (3.3)

and

= (611U1,... ,6qlUl, 622U2, ..., 6q2U2, ...,6qqUq)T . (3.4)

Notice that this data augmentation "transforms" part of the parameter of interest, T,
into the missing data, c. This idea plays a key role in Meng and van Dyk's (1997,
in press) "working parameter" approach for constructing efficient data-augmentation
schemes. They provide both theoretical and empirical evidence to show that using

ug {(yi, cT),i 1,... n} instead of Yag =- {(i, b),i = 1,...n} can lead to
substantial savings in computational time when o2 is not too small compared with the

average of the variances of ZiTbi. Here we combine this idea with ECME-that is, we

replace (ag) with Yaug when implementing CM-step 1 which leads to

ECME 2: given 0(t) = (3(t), [2] (t), U(t),A(t))

E-step: Calculate for i = 1,..., n:

,,(+i) A (Y [u t 2-(Tj ci [2 Ylobs,) - [2](t) + ZAU(t)U(t)[^(t)]Tzi [[

T

[u(] [U
i 2

Zi T[U] (t) ZiT
+1

[J2](t) + ZTA(t)UJ(t) [A(t)] zi

214

CONDITIONAL MAXIMIZATIONS

CM-step 1: Calculate:

B(t+i) = B(t+l) X(it+ l)(y - XT:(t),

=1 i-=1

where (t+l) = E [Xi Yobs,0(t)] and B,() = E [XX Yobs, (t)] are simple
linear transformations of c(l) and BIt. In particular, they can be calculated

using (3.3),

E [cijZik Yobs, O) =[i] Zik,

and

E [CijZikCilzim Yobs, 0()]= [(t]J ZikZim

where [(t)] is the jth component of the vector (t) and [B(t)] is the (j,)th
element^of a(t+B)i j j

element of B^ t+). Using the fact that the diagonal terms of A are ones, A(t+l)
and U(t+l) can easily be calculated from (t+l) via the relationship given in

(3.4). Computationally, the matrix inversion in this CM-step can be avoided by
the SWEEP operator (Beaton 1964), as discussed in Little and Rubin (1987, pp.
153-57).

CM-step 2: Calculate P(t+l) as in CM-step 2 of ECME 1 by replacing T(t+l) with
A(t+l)U(t+l) [A(t+I)]T;

CM-step 3: Calculate [r2] (t+l) as in CM-step 3 of ECME 1 using the same replacement
as in CM-step 2.

We note that the SWEEP operator used to update T in ECME 2 produces, as a

byproduct, the value of a2 that maximizes Q(010(t)) conditional on 3. If we use this
value to update a2, we can avoid the iterative CM-step 3 used by ECME 2 and produce
an algorithm with a faster ECME iteration. Because we maximize Q(00(t)) instead of

L(OIYobs) as a function of o2, however, more iterations will be required for convergence.
The resulting algorithm follows.

ECME 3: given 0(t) = (3(t), [a2](t), (t), A(t))

E-step: This is the same as the E-step of ECME 2;

CM-step 1: Calculate /(t+l) and thus T(t+l) = A(t+)U(t+l) [A(t+l)]T as in CM-step
1 of ECME 2 and then calculate

2] (t+) (= xT(, 1[t+,] T (t+l) 7
i=l1

[(]+tr (i +1) Xi [ySB
- X

][;)

215

D.A. VAN DYK AND X.-L. MENG

CM-step 2: Calculate 3(t+l) as in CM-step 2 of ECME 2.

ECME 3 groups CM-steps 1 and 3 of ECME 2 into a single CM-step. If we group
all the CM-steps into one M-step, maximizing Q(010()) to update the entire parameter,
the resulting algorithm is an EM implementation that was introduced by Meng and van

Dyk (1997):

EM: given 0(t) (Q(t), [o2] (t) ;/(t))

E-step: This is the same as the E-step of ECME 2.

M-step: Calculate

tx ix XTX nXi [Xt+
I X y,

I?(t+l) 1) n n n / E(t+ll X) E B(t+l) E (t+)

i Z=l =l =l

n=1 (y - l
2 -

+tr (/+) [- +
))(t+l)) [c2]_(t+l) p

+tr(B (/3(t+')[/t+')]TM (t+J k()Jt+,)[(t+))

Again, the matrix inversion can be avoided by using the SWEEP operator. Note that this

EM implementation is often substantially faster than the standard EM implementation
based on yug, as demonstrated by Meng and van Dyk (1997).

The four previous algorithms vary in their data-augmentation schemes, how they

group the parameters into CM-steps, and the amount of nested iteration that they require.
Each of these factors, as well as the order in which the CM-steps are performed, affect

the computational time required for convergence. In the following two sections, we will

investigate these factors through a series of simulations; note that some of the factors

are confounded in our simulation studies due to the nature of these algorithms.

3.2 STEP ORDERINGS

In the original presentation of the ECME algorithm, Liu and Rubin (1994) suggested
that the CM-steps of ECME, like those of ECM, could be performed in any order. Meng
and van Dyk (in press), however, noticed that Liu and Rubin's (1994) proof for the

convergence results (e.g., monotone convergence in likelihood) for ECME is valid only
when the CM-steps that act on Q(010(t)) are performed before those that act on L(OlYobs).

Thus, to be sure that the convergence results hold for the ECME algorithms presented in

Section 3.1, CM-step 1 must be performed first. Nevertheless, in simulation studies we

can implement the algorithm with other orderings to investigate the convergence behavior,

including whether the algorithm converges properly when a theoretical guarantee has yet
to be established.

216

CONDITIONAL MAXIMIZATIONS

sigma=2 sigma=4 sigma=6

. K 0

L .

N ' a Nmir Smax Nr,in'Nmax

': :'5 - .-' . - -3 - il 0 4 C .O 6 0 7 C08 0.9 '.D 0.4 05 G 5 O 28 0.9 1.0

,--.:. N. ,--am Nm ax Nrax N inN% ax

Figure 4. The Effect of Step Permutation on the Number of Iterations Requiredfor Convergence by ECME I
and ECME 2 for Each of the Three Values of o. Note that the effect of permutation is more pronouncedfor both
small values of cr andfor ECME 2.

We conducted a series of simulations, each with data generated from the model

Yi Xil31 + Xi2/2 + zilbil + zi2bi2 + ei, (3.5)

where xil = 1, Xi2 = i, Zij were generated independently from N(0, 1) at each repli-

:cation, 31 := 2 = 1, 0 4
9 and e0 i O N(0,a 2), with bi and ei

independent. The simulation was repeated for a2 - 4,16 and 36. For each of these

values, we generated 100 observations from (3.5). The starting values3(o) and [o2]
(0)

were obtained by fitting (3.5), ignoring the variance components, and T?0) was set to

(s1).We ran each of the four algorithms presented in Section 3.1 with each of

the possible orderings of CM-steps and recorded the number of iterations as well as the

computational time required by each algorithm before the log-likelihood convergence cri-
terion L(d(t)eYobs) - L((t-p) IYobs) <10e-7, was reached. The simulation was repeated
200 times, for each of the three o2 values.

In all we ran three ECME algorithms o n each of 600 data sets. For the first two
ECME algorithms there were six possible step orderings and for the third there were two

possible orderings. In all cases each algorithm converged to the same point regardless
of CM-step orderings. Thus, at least in this setting, we can use all of the possible step
orderings despite the lack of theoretical results for some orderings. Figure 4 compares
the six possible orderings for the first two ECME algorithms. Let Nij be the number of
iterations required for convergence by ECME 1 and ECME 2, where i = 1,2 indexes
the algorithm and j = 1,...,6 indexes the order of the CM-steps. Figure 4 displays

217

D.A. VAN DYK AND X.-L. MENG

no nested iterations nested iterations

ECME 3 < EM < ECME 2 < ECME 1

y(C) y(b)
aug aug

Figure 5. Four ECM-Type Algorithms for Fitting Random-Effects Models. The algorithms differ in their data-

augmentation and model-reduction schemes, as well as the need for nested iterations. The inequalities refer to

computational time (see Fig. 6).

histograms of minj(Nij)/maxj(Nij) for ECME 1 and ECME 2 where the data were

generated with each of the three values of cr2. Note that the effect of permutation is much
more pronounced with ECME 2 than with ECME 1 and that as with the contingency
table example, the effect of permutation dampens when the parameters are further from
the boundary of the parameter space (i.e., as a grows). Also, as in the contingency
table example, the empirical distribution (not shown) of R2 defined in (2.2) was skewed
toward 1, so again reversals of CM-steps affected the number of iterations required for

convergence (for ECME, Theorem 1 is not applicable).
Of the six CM-step ordering in each of ECME 1 and ECME 2, for two we are

assured of monotone convergence in likelihood. For both ECME 1 and ECME 2, these
two algorithms were virtually indistinguishable from each other in terms of computational
time in this simulation. Moreover, for ECME 1 these two algorithms are generally the
fastest to converge; for 73% of the simulated data sets, they were the fastest. Although
this pattern did not persist for ECME 2, we still recommend implementing CM-steps
that act on Q(010(t)) before those that act on L(0[Yobs) because these orderings are

theoretically superior and empirically performed about the same as the other orderings
in our ECME 2 simulations.

3.3 CM-STEP GROUPINGS

As we mentioned, more CM-steps will typically result in slower convergence, es-

pecially when some of the CM-steps require an iterative solution. On the other hand,
more CM-steps allow more flexible augmentation which can result in faster EM-type
algorithms. This is the difference between ECME 3 and EM and between ECME 2 and
ECME 3 as illustrated in Figure 5. Simulation studies can help us see which of these two
forces is stronger. In this section we continue with the simulation described in Section 3.2
and compare the computational time (in seconds) required by each of the three ECME

algorithms, which we shall denote r, T2, and T3, respectively, and that required by EM,
ETEM. We must compare computation time rather than simply the number of iterations

required for convergence because the iterations of the four algorithms require different

computations. To choose the CM-step ordering for the ECME algorithms, we followed
the recommendations of the previous section.

The results of this comparison appear in Figures 6 and 7. Figure 6 compares the
time required (log10 scale) by the four algorithms (a SUN Sparc 10 was used for the

218

CONDITIONAL MAXIMIZATIONS

I- ---- --

j i I __1__
I * I I * I
.__1___. __1__ _

ECME 3 EM ECME 2 ECME 1

Figure 6. Box Plots for loglo of the Time in Seconds Required by the Four Algorithms Described in Section 3.1
for the Simulations Described in Section 3.2.

sigma=4 sigma=6

N

c.

0

o

o

o

-3 -2 -1 0 1

ECME 2 relative to ECME 1

-3 -2 -1 0 1

ECME 2 relative to ECME 1

-3 -2 -1 0 1

ECME 2 relative to ECME 1

to -C a
O _
c\i t -

CO -

EM relative to ECME 2 EM relative to ECME 2 EM relative to ECME 2

_u .

o f0ro - -

-3 -2 -1 0 1 -3 -2 -1 0 1 -3 -2 -1 0 1

ECME 3 relative to EM ECME 3 relative to EM ECME 3 relative to EM

in -

? - 00
0o

i .ain .5 L ? ..nfllll n 0? 111 In
0o o

-3 -2 -1 0 1 -3 -2 -1 0 1

ECME 3 relative to ECME 1 ECME 3 relative to ECME 1

cM

co o

o

o o 0

-3 -2 -1 0 1

ECME 3 relative to ECME 1

Figure 7. Pairwise Comparisons of the Computation Time Required by the Algorithms Described in Section 3.1.
The figure shows histograms of loglo(T2/7T), loglo(TEM/Tr), loglO(T3/TEM), and loglo(73/Tl) in each of
the rows respectively. The columns correspond to the three values of a used for generating the data.

219

UI

'so

0
Un
9

sigma=2

o

o

o

0>

0

o

0 0

D.A. VAN DYK AND X.-L. MENG

computations). It shows that ECME 1, which uses Yag, is clearly slower than the al-

gorithms that use Ya(g. It is also clear that trading reduction in data augmentation for
nested iterations as in ECME 1 and ECME 2 is not always a useful strategy, but reducing
the model in order to reduce the data augmentation can yield efficient algorithms (i.e.,
ECME 3 is faster than EM). The relationships between the algorithms are more clearly
depicted in Figure 7 which displays pairwise comparisons of the algorithms. The first
row compares ECME 2 with ECME 1 (i.e., log10(r2/Tr)) and shows that Meng and van

Dyk's (1997) data-augmentation scheme improves the algorithms significantly, reducing
computation time by a factor of about ten, especially for large a2. The second row com-

pares EM and ECME 2 and the third compares ECME 3 with EM. The final row shows
the dramatic overall improvement of ECME 3 over ECME 1-computational time is
often reduced by a factor of more than 100, especially when a2 is large. Moreover, be-
cause ECME 3 does not require nested iterations, it is generally easier to implement than
either ECME 1 or 2. Thus, for the random-effects model, among these algorithms we
recommend ECME 3 with steps ordered as presented in Section 3.1, to ensure monotone

convergence in likelihood.
One modification of ECME 3 may be useful when the residual variance is suspected

to be very small relative to the variance of the random effects. In this case using Yaug)
often results in less data augmentation than using Yag) and hence a faster algorithm.
This can generally be detected in the first few iterations of the algorithm and the data-

augmentation scheme switched as described by Meng and van Dyk (1997) in the EM

setting.

4. SOME CONCLUDING NOTES

4.1 A REMARK ON A STANDARD CONVERGENCE CRITERION

In all the simulations in Sections 2.1 and 2.2, we used the standard step length
criterion: I0(t) - (t-) 11, which was useful for our purposes both because of its popularity
and because it underlies (1.4) which relates the number of steps required for convergence
to the spectral radius. In the context of cycled ECM (Section 2.3), however, this criterion
can lead to difficulties. If each iteration of cycled ECM is defined as one E-step followed

by S CM-steps, then the resulting sequence {0(t) : t > 0} is not a simple linear iteration
even at convergence since the mapping that maps 0(t) to 0(t+l) changes with t. The

difficulty with this is demonstrated in Figure 8, which is a representation of the mapping
induced on a subspace of e by three ECM algorithms each with a fixed ordering (the
smooth curves) and by the cycled ECM algorithm that combines them (the jagged curve).
The three ECM algorithms are listed in the first row of Table 2. This is again an example
of fitting a log-linear model to a partially classified 2 x 2 x 2 contingency table. The

points represent the iteration sequences and show that the cycled ECM algorithm tends to
have larger steps. In fact, using the standard convergence criterion, 0(t+1) - 0(t) l < 6,
this cycled ECM algorithm took 50 times longer to converge than any of the three ECM

algorithms. This is in spite of the fact that all the algorithms increased the log-likelihood at
about the same rate (cycled ECM is the solid line in the right figure of Figure 8). Because
the log-likelihood is increased at each iteration, an alternative convergence criterion is

220

CONDITIONAL MAXIMIZATIONS

Comparing the Mappings Tracking the Likelihood

/C

co

, / \

0.12 0.14 0.16 0.18 0.20 0.22 0 50 100 150 200

theta 1 iteration

Figure 8. The Cycled ECM Algorithm. The left figure shows the mapping induced on the parameter space (cell
probabilities) by three ECM algorithms (dotted lines) and the composite cycle algorithm (solid line). The second
figure shows how the four algorithms increase the log-likelihood. The three fixed-order ECM algorithms (upper
dashed lines) are indistinguishable and increase the log-likelihood somewhat faster than the cycled algorithm
(lower solid line).

L(O(t+l) IYobs-L((t) IYobs) < 6, which is sensible in the context of likelihood inference

(or more generally posterior inference) as discussed in Section 2.3, and thus should

always be monitored whenever feasible.

4.2 RECOMMENDATIONS

Our general purpose for investigating the effect of the ordering and grouping of CM-

steps is to see if there is a "free and better lunch," not a "better but expensive lunch" in
terms of human and computational effort. Given the diversity of ECM-type applications
and their diverse model-reduction and data-augmentation schemes, it is impossible to find
an "optimal" order-choosing or group-choosing rule that will be universally applicable.
Even if such a rule could be found, it has no practical value unless the savings it

provides outweigh the cost of implementing it. On the other hand, a practitioner may
be interested in knowing about strategies that will lead to relatively efficient algorithms
in common implementations of ECM-type algorithms, or at least those that will avoid a

very inefficient implementation.
For contingency tables, our investigation shows that it is quite difficult to find a

"free and better lunch." Interestingly, however, our investigation reveals some lessons
that may have general implications. We not only find that comparing algorithms using
the standard theoretical rate of convergence can be quite misleading, but also find that
intuitive strategies (e.g., using a random ordering) may yield disappointing results. The
recommendation then is simple-do not adopt a strategy that has not been validated by

:S C5~~~

recommendation then is simple--do not adopt a strategy that has not been validated by

221

D.A. VAN DYK AND X.-L. MENG

any realistic empirical evaluation.
For random-effects models, our investigation provides a clear-cut strategy for effi-

cient implementation. Among the algorithms investigated in Section 3, we recommend
the ECME 3 algorithm, with CM-steps ordered as in Section 3.1. This algorithm is a
blend of efficient model reduction (i.e., few CM-steps, each of which does not require
nested iteration) and efficient data augmentation (i.e., small augmented information rela-
tive to observed information) and its derivation models how data augmentation and model
reduction can be combined to create simple, stable, and fast ECM-type algorithms.

ACKNOWLEDGMENTS
This manuscript was prepared using computer facilities supported in part by NSF Grants DMS 89-05292,

DMS 87-05292, and DMS 86-01732 awarded to the Department of Statistics at the University of Chicago; by
The University of Chicago Block Fund; and by a MacArthur Fellowship granted to van Dyk by Kalamazoo
College. The research was supported in part by NSF Grants DMS 92-04504 and DMS 95-05043. It was also
supported in part by the U.S. Census Bureau through a contract with the National Opinion Research Center
at the University of Chicago. Meng's research was also supported in part by NSA Grant MDA904-96-1-0007.
We thank Y. Amit and J. Fessler for helpful conversations, and a reviewer for comments that led to a much
improved presentation.

[Received November 1994. Revised June 1996.]

REFERENCES
Amit, Y., and Grenander, U. (1991), "Comparing Sweep Strategies for Stochastic Relaxation," Journal of

Multivariate Analysis, 37, 197-222.

Beaton, A. E. (1964), "The Use of Special Matrix Operations in Statistical Calculus," Education Testing Service
Research Bulletin, RB-64-51.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977), "Maximum Likelihood Estimation from Incomplete-
Data via the EM Algorithm" (with discussion), Journal of the Royal Statistical Society, Ser. B, 39, 1-38.

Fessler, J. A., and Hero, A. 0. (1994), "Space-Alternating Generalized Expectation-Maximization Algorithm,"
IEEE Transactions on Signal Processing, 42, 2664-2677.

(1995), "Penalized Maximum-Likelihood Image Reconstruction using Space-Alternating Generalized
EM Algorithms," IEEE Transactions on Image Processing, 4, 1417-1438.

Laird, N., Lange, N., and Stram, D. (1987), "Maximum Likelihood Computations With Repeated Measures:
Applications of the EM Algorithm," Journal of the American Statistical Association, 82, 97-105.

Laird, N. M., and Ware, J. H. (1982), "Random Effects Models for Longitudinal Data," Biometrics, 38, 967-974.

Little, R. J. A., and Rubin, D. B. (1987), Statistical Analysis With Missing Data, New York: John Wiley &
Sons.

Liu, C., and Rubin, D. B. (1994), "The ECME Algorithm: A Simple Extension of ECM With Fast Monotone
Convergence," Biometrika, 81, 633-648.

Liu, J. S., Wong, W. H., and Kong A. (1994), "Covariance Structures of the Gibbs Sampler With Applications
to the Comparisons of Estimators and Augmentation Schemes," Biometrika, 81, 27-40.

(1995), "Covariance Structure and Convergence Rate of the Gibbs Sampler With Various Scans,"
Journal of the Royal Statistical Society, Ser. B, 57 157-169.

Meng, X. L. (1994), "On the Rate of Convergence of the ECM Algorithm," The Annals Statistics, 22, 326-339.

Meng, X. L., and Rubin, D. B. (1991), "IPF for Contingency Tables With Missing Data Via the ECM Algo-
rithm," Proceedings of the Statistics Computing Section, Alexandria. VA: American Statistical Association,
pp. 244-247.

222

CONDITIONAL MAXIMIZATIONS 223

(1992), "Recent Extensions to the EM Algorithm" (with discussion), in Bayesian Statistics 4, eds. J.
M. Berardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, New York: Oxford University Press, pp.
307-320.

- (1993), "Maximum Likelihood Estimation via the ECM Algorithm: A General Framework," Biometrika,
80, 267-278.

(1994), "On the Global and Componentwise Rates of Convergence of the EM Algorithm," Linear

Algebra and its Applications (special issue honoring Ingram Olkin), 199, 413-425.

Meng, X. L., and van Dyk, D. A. (1997), "Fast EM-Type Implementations for Mixed-Effects Models," revised
for Journal of the Royal Statistical Society, Ser. B.

(in press), "The EM Algorithm-An Old Folk Song Sung to a Fast New Tune" (with discussion),
Journal of the Royal Statistical Society, Ser. B, 59.

Ortega, J. M., and Rheinboldt, W. C. (1970), Iterative Solutions of Nonlinear Equations in Several Variables,
New York: Academic Press.

van Dyk, D. A., and Meng, X. L. (1995), "Some Findings on the Orderings and Groupings of Conditional Max-
imizations Within ECM-type Algorithms," technical report No. 397, University of Chicago, Department
of Statistics.

	Article Contents
	p. 202
	p. 203
	p. 204
	p. 205
	p. 206
	p. 207
	p. 208
	p. 209
	p. 210
	p. 211
	p. 212
	p. 213
	p. 214
	p. 215
	p. 216
	p. 217
	p. 218
	p. 219
	p. 220
	p. 221
	p. 222
	p. 223

	Issue Table of Contents
	Journal of Computational and Graphical Statistics, Vol. 6, No. 2 (Jun., 1997), pp. 143-250
	Front Matter
	The Filtered Mode Tree [pp. 143 - 159]
	Graphical Explanation in Belief Networks [pp. 160 - 181]
	A Subpixel Image Restoration Algorithm [pp. 182 - 201]
	On the Orderings and Groupings of Conditional Maximizations within ECM-Type Algorithms [pp. 202 - 223]
	Spatial Regression Models, Response Surfaces, and Process Optimization [pp. 224 - 241]
	Short Communications
	Robustness of Tube Formula Based Confidence Bands [pp. 242 - 250]

	Back Matter

