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Warp Bridge Sampling 

Xiao-Li MENG and Stephen SCHILLING 

Bridge sampling, a general formulation of the acceptance ratio method in physics 
for computing free-energy difference, is an effective Monte Carlo method for computing 
normalizing constants of probability models. The method was originally proposed for cases 
where the probability models have overlapping support. Voter proposed the idea of shifting 
physical systems before applying the acceptance ratio method to calculate free-energy 
differences between systems that are highly separated in a configuration space. The purpose 
of this article is to push Voter's idea further by applying more general transformations, 
including stochastic transformations resulting from mixing over transformation groups, to 
the underlying variables before performing bridge sampling. We term such methods warp 
bridge sampling to highlight the fact that in addition to location shifting (i.e., centering) one 
can further reduce the difference/distance between two densities by warping their shapes 
without changing the normalizing constants. Real data-based empirical studies using the 
full information item factor model and a nonlinear mixed model are provided to demonstrate 
the potentially substantial gains in Monte Carlo efficiency by going beyond centering and 
by using efficient bridge sampling estimators. Our general method is also applicable to a 
couple of recent proposals for computing marginal likelihoods and Bayes factors because 
these methods turn out to be covered by the general bridge sampling framework. 

Key Words: Bayes factors; Latent variables; Likelihood ratio; Markov chain Monte Carlo; 
Mixture; Normalizing constants; Orthogonal group; Orthogonal transformation. 

1. INTRODUCTION AND BACKGROUND 

1.1 BRIDGE SAMPLING 

Computing the normalizing constant of a probability model, or more generally a definite 
integration, is a common problem in statistical and scientific studies. It is also a very difficult 
one when the model or integrand is complex and high dimensional, as in genetic linkage 
analysis and in theoretical physics. A brief review of these and other applications can be 

found in Meng and Wong (1996), which is one of a number of recent works in statistical 
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literature concerning the search for effective methods for computing normalizing constants, 
either for specific models or in general (e.g., Chen and Shao 1997a, 1997b; Chib 1995; Chib 
and Jeliazkov 2001; DiCiccio, Kass, Raftery, and Wasserman 1997; Gelfand and Dey 1994; 
Gelman and Meng 1998; Geyer 1994; Johnson, 1999; Meng and Schilling 1996; Newton 
and Raftery 1994; Verdinelli and Wasserman 1995). In most applications, the objective is 
to compute a (log) ratio of two normalizing constants (e.g., a likelihood ratio, a free-energy 
difference) instead of just a single normalizing constant. Even if the interest is on a single 
normalizing constant, it is often beneficial to construct a convenient matching density with 
known normalizing constant and then implement the following method, as in DiCiccio et 
al. (1997) and Chib and Jeliazkov (2001; see Sections 1.2-1.3 for explanation). 

To fix the idea, let pi (w), w E Qi, i = 1, 2, be two densities with respect to a common 
measure ,, with each density known up to a normalizing constant: pi (w) = qi (w) /ci. We 
have draws from each of the densities, and we want to use these available draws to estimate 
r = C/C2 or A = log r. Bridge sampling (Bennett 1976; Meng and Wong 1996) is an 
effective method for addressing this problem. We first assume that the two densities have 
overlapping support; that is, p(Qi n Q2) > 0. It is then trivial to verify that for any a(w) 
such that 

0 < j ea(w)pI(w)p2(w),u(dw) <0o, (1.1) 
QnQ2 

the following identity holds (where Ei denotes the expectation with respect to pi, i = 1, 2): 

Cl = E2[q1(w)ae(w)] 
C2 E1 [q2(w)a(w)]( 

Consequently, for any given a, the corresponding bridge sampling estimate for r is given 
by 

n2 

n2 E ql (w2j)Ce(W2j) 

n (1.3) 

Z q2(W1j)Ce(W1j) 

where {Wil, ... Wini } are (possibly dependent) draws from pi (w), i = 1, 2. 
Under the assumption that all the draws are independent, it has been shown (e.g., 

Bennett 1976; Meng and Wong 1996) that the optimal choice of a in the sense of minimizing 
the asymptotic variance of A. = log r>, or equivalently the asymptotic relative variance 

E(P-0r)2/r2 is 

ao (w)o wEQ1nQ2, (1.4) 
slql + s2rq2 

where si = ni/(nm + n2), i = 1, 2. When draws are not independent, which typically is 
the case in practice, ao (w) of (1.4) is no longer optimal, and it is still an open problem 
to find the optimal choice of a in the general dependent setting. Nevertheless, empirical 
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evidence (e.g., see Meng and Schilling 1996; Servidea 2002) shows that the use of ao (w) 

is still quite good in many situations unless the dependences among the draws are very 
strong and uneven between P1 and P2. A first-order adjustment for the dependence is to 
use the "effective size," such as hi = ni ( - pi )/(1 + pi) with an appropriately estimated 
autocorrelation pi (i = 1, 2) in defining the weight si in (1.4), as in the application of 
Section 4. 

Since ao (w) depends on the unknown r, Meng and Wong (1996) suggested the fol- 
lowing iterative sequence 

I n2 ( 1 

n j=1 S l 2j +s2r%t) ] 
r L _ 0,1,12,.., (1.5) 

0[n i 
~I . II 

J=1 L Sillj+s2'ro 

where lij = ql(wij)/q2(Wij),j 1, ..., ni, i 1 ,2, are calculated before iterating. 
Meng and Wong (1996) showed that this sequence has a unique limit PO and that Ir(- 

rol converges to zero monotonically in t; this convergence is also typically very rapid 
(e.g., less than five iterations), as demonstrated empirically in Meng and Schilling (1996). 
Furthermore, the asymptotic error of AO = log PO is the same as that of the bridge sampling 
estimator using the unknown optimal ao, namely, 

V(OO) = [j ((sP)l + (S2P2)Y1)-<dw] - - _ ? + (1.6) 

1.2 INDIVIDUAL CASES 

Although identity (1.2) is trivial, it covers many individual cases that are either well- 
known or are being made known. The most obvious case, of course, is the much-used 

importance sampling identity (e.g., Ott 1979; Geyer and Thompson 1992) 

[ q2(W)] assuming Q1 C Q2, (1.7) 

which is (1.2) with a = I/q2. Other individual cases, such as geometric bridge with 
a = (q,q2) -/2, were studied and applied by Meng and Wong (1996), Meng and Schilling 
(1996), DiCiccio et al. (1997), Gelman and Meng (1998), Jensen and Kong (1999), among 
others. While in these articles the role of bridge sampling was clear, some recent proposals 
suggest that the generality and power of bridge sampling is yet to be fully recognized. For 

example, Johnson (1999) proposed to estimate r by the value of r that minimizes, in our 
notation 

_2 

F1n2/qfl(W 2j) 12iq(Wj 
min q(w2j) 1 )-iZ min (rI2(w1J)) 1 

n 2 l rq2(W2i) nlq/ ( )(w]j) 

0-E mi ( 2j= 1)- E min(I 71 (j=1 
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This turns out to be the same as taking ce = min (ql ', (rq2)-') in (1.3) and then iterating 

in the same way as with (1.5). In fact, this choice of a is the limiting case of the power 
family of Meng and Wong (1996) as the power approaches zero. 

As another example, Chib and Jeliazkov (2001) proposed the following generalization 

of Chib (1995) for computing a marginal likelihood. Suppose under a model M the sampling 
distribution is f(yI0, M) and the prior on the parameter 0 is 7r(0IM), where both of them 
are assumed to be easy to evaluate as functions of 0. Noting that the posterior of 0 given 
data y is 

wr(0Iy, M) - 
f (yI0, AM)7r(IAM) (1.9) 

m (y IMA) 

Chib and Jeliazkov (2001) suggested to compute the marginal likelihood of model M, 
m(ylM) via 

log m(yIM) = log f(yI0*, M) + log 7r(0* IM) - log 7r(0* Iy, M), (1.10) 

where 0* is some fixed point of 0 (e.g., a mode of 7r(0y,A M)). Suppose we have nm draws 

{011,... , 01n} from 7r(0y,A M) via a Metropolis-Hastings algorithm with the proposal 
density -r(0I0', y), then Chib and Jeliazkov's proposal is to estimate 7r(0* Iy, M) by 

nI 

n] E a(Oij, 0* Iy)-k(0* 101j, y) 

*(0* Y,M) = n2 (1.11) 
I Z a(0*, 02j) 
n2j=1 

where the n2 draws {02j,.. , 02n2} are from -(010*, y), and a(0, 0'Iy) is the Metropolis- 
Hastings accepting probability 

1. f(y 0,fMA)r(0AM) -(010,Y) (1.12) 

Once again it turns out that there is a simpler bridge-sampling derivation of Chib 
and Jeliazkov's (2001) method. Observing from (1.9) that the desired m(yAM) (= cl) is 
simply the normalizing constant of p1 (0) _ 7r(OIy, M) with qi (0) _ f (yI0, M) 7r(0IM) 
as the unnormalized density, we can directly implement the bridge sampling by choosing 

P2(0) --(010*, y) as the matching density. Since p2 is completely known, we have c2 1, 
and thus the ratio of constant r =c/c2 is m(yIM). A little algebra then shows that Chib 
and Jeliazkov's (2001) estimate of m(yIM) is the bridge-sampling estimate (1.3) with (after 
equating 0 with w) 

m f1 =(0*l0,y) f(Yj0*,M)7r(0*AM) 

= miLn f k(0(0,yy), ((*Iy,M) . (1.13) 
m 1 ?r(010* Iy) x r(0 Iy,MA) 

Other variations proposed in Chib and Jeliazkov (2001) are also individual cases of bridge 
sampling, as shown by Mira and Nicholls (2000). 
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1.3 BRIDGE SAMPLING Is NOT JUST FOR RATIOS 

It is sometime said that bridge sampling is useful only for estimating ratios of normal- 
izing constants, not individual constants, and hence methods such as Chib and Jeliazkov's 
(2001) appear to be more general. It is indeed true that any application of bridge sampling 
requires draws from (at least) two densities, and that the resulting estimator is in the form of 
a ratio (or ratios). However, in applying bridge sampling we have great freedom in choos- 
ing the second density P2 = q2/c2. If we choose it in such a way that c2 = 1, then any 
bridge sample estimator will deliver a direct estimator of cl cl / 1. This is exactly what 
underlies Chib and Jeliazkov's (2001) method, because it corresponds to choosing P2 as the 
completely known Metropolis-Hastings proposal density ?r(010*, y), and then choosing the 
bridge function given by (1.12). 

We emphasize this point not to discount the contribution of Chib and Jeliazkov (2001), 
for using Metropolis-Hastings proposal distribution, which includes the full conditionals 
for Gibbs sampler (Chib 1995), as a matching density for implementing bridge sampling 
is a good idea. Indeed, as applied by DiCiccio et al. (1997), when estimating the ratio of 
normalizing constants of two distributions with very different structures (e.g., with different 
dimensions), as often occur is the context of computing Bayes factors, a good strategy is to 
bridge each density with a convenient approximation of itself and then apply bridge sampling 
to estimate each individual normalizing constant separately; a sensible Metropolis-Hastings 
proposal will serve this purpose quite well. This is typically much more effective than to 
artificially bridge the original two densities by, for example, augmenting the dimension of 
the lower one to match the higher one (Chen and Shao 1997b). The benefit of recasting a 
method in the general bridge sampling framework is that not only can we use the general 
identity (1.2) to avoid sometime tedious algebraic derivations with specific cases, but more 
importantly we can use the general bridge sampling theory to guide us in choosing better 
and often also simpler bridge function a (see Section 4.4 for an empirical demonstration). 
As users, we all want methods that are efficient and simple at the same time, but often 
in practice we have to make a compromise. This is one of those happy situations where 
the efficient choice is typically much simpler than many nonefficient choices guided by 
distracting details of individual cases. Furthermore, the bridge sampling perspective also 
implies that any techniques for improving the bridge sampling in general, such as the warping 
transformation methods of this article, are immediately applicable to these individual cases. 

2. WARP BRIDGE SAMPLING 

2.1 BRIDGE SAMPLING AFTER TRANSFORMATIONS 

A cursory examination of (1.1) and (1.6) reveals the intuitive finding that the precision 
of the bridge sampling estimates depends on the overlap of Pi and P2. Specifically, Meng 
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and Wong (1996) found that the Hellinger distance 

H(p1, P2) = [J( (W) - (W)2 

- [2(1 - p I(w)p22(w)iu(dw))] (2.1) 

governs the variance of both AO and geometric bridge sampling estimator AG, because, 
under the independence assumption, asymptotically we have 

SS2n fS2 pd(w)p2(w)t(dw) 
I 

VQ/O) ? V(AG) 

SiS2n ( vplI(w)p2(w) u(dw))2 2 

(2.2) 

In the extreme case when H(pi, P2) reaches its maximum value , that is, when 

,i(Qi n Q2) = 0, no a can satisfy (1.1). There are important applications in statistics and 
other fields where P1 and P2 are completely separated and thus (1.2) is not applicable or 
where the overlap is so small that the resulting bridge sampling estimate with a single bridge 
is too variable to be useful (e.g., Voter 1985; Servidea 2002). One way of addressing this 
problem is to use multiple bridges to link P1 and P2; using infinitely many bridges yields 
what Gelman and Meng (1998) called "path sampling" (see also Bennett 1976 and Neal 
1993, Section 3.2). While such methods are generally quite efficient, they require draws 
other than those from P1 and P2. 

A different method, which uses only the available draws from P1 and P2, was proposed 
by Voter (1985) in the context of estimating free-energy difference for systems whose 
ensembles (i.e., distributions) are highly separated. Voter's method is extremely simple and 
intuitive-if the two densities are far apart, move them together; here "move" means to 
apply a simple location shift to one of the distributions. Specifically, Voter (1985) proposed 
to use the following identity to construct estimators of r: 

E2[q1(w + D)a(w)] (2.3) 
E1 [q2(w - D)a(w - D)]' 

where D is a constant (vector), called "displacement vector" by Voter (1985). Identity (2.3) 
can be obtained by first transforming wi to w(D) = W - D, where w- P1, then applying 
(1.2) with q(D) (W) = q1 (w + D) in place of q1 (w), and finally transforming back to ql, 
that is, the E1 in the denominator of (2.3) is still with respect to the original P1 Hence, no 
new draws are needed for implementing Voter's estimator, once D is chosen. Voter (1985) 
found that using D = ml - m2 worked well in his applications, where mi is the mode of 

qi (i = 1, 2). 
By viewing Voter's location shift method as a special case of a random variable trans- 

formation, we can easily generalize the method further by applying more general transfor- 
mations, aiming to further reduce the Hellinger distance between the two densities. The 
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more general transformations will generally warp the original geometric shapes of the un- 
derlying densities but will not alter the normalizing constants we wish to compute. There 
are two general types of transformations, deterministic transformations, discussed in the 
following, and stochastic transformations, discussed in Section 2.4. 

Suppose Q, and Q2 are two (not necessarily overlapping) subsets of Rd, and T1 and 
T2 are two one-to-one (and thus deterministic) transformations on Rd that aim to warp P1 

and P2 into similar shapes. For wi - pi, let w(T%) Ti (wi), which has density/probability 
function 

P(i (Ti)) 
q (T ( T)) ) (w" ) - T ((Ti) i = 1, 2, (2.4) 

Ci Ci 

where Ti- is the inverse transformation of Ti and Ji (w) is its Jacobian, which is 1 if A is 
a counting measure. Because the Jacobian Ji (w(T')) is known to us (and we assume it is 
easy to compute), we have constructed a new known unnormalized density q(Ti) that has 
the same normalizing constant, ci, as the original qi. Since (1.2) holds with qi q(Ti) and 
{w,Ti) = Ti(wij), j = 1,... ,ni} are draws frompiT%) (i = 1, 2), we can implement (1.3) 
without making any new draws. Namely, we can compute 

n2 

Z , (T11 (T2(w2j))) J1 (T2(w2j)) Ca (T2(w2j)) 

raT ni)= (2.5) 

I - q2 (Tj'(Ti(wlj))) J2 (Ti (w1j)) Ca (Ti (wlij)) 
which maes it clar how 

(T1 ,T2 ) 
which makes it clear how r-ce depends on Ti (i = 1, 2) and the original draws. 

Since the estimate (2.5) is straightforward to implement once Ti (i = 1, 2) are chosen, 
the key issue centers on the choice of the warp transformations Ti (i = 1, 2). The discussions 
given in Section 2.1 make it clear that our goal is to warp the two densities into similar 
shapes. While in principle we may even find T1 and T2 such that the warped densities 
are identical, in practice this is typically neither feasible nor desirable. This is because 
our goal is to improve the efficiency of the original bridge sampling at a computational 
cost that is substantially below the level that would offset the gain in efficiency. In Monte 
Carlo simulation there is almost always a trade-off between computational and statistical 
efficiency. Indeed, Voter's (1985) original location shift method has almost no additional 
cost, but can produce very substantial gains. The next section proposes a more general class 
of deterministic transformations that typically maintain this important property of Voter's 
method. 

2.2 MATCHING CENTER AND SPREAD: WARP-II TRANSFORMATIONS 

Given the success of the location shift approach, one naturally wants to consider the next 
order transformation, namely, scaling and rotation. In fact, we shall empirically demonstrate 
in Sections 3 and 4 that such second-order warping can lead to dramatic gain in efficiency 
over the first-order warping (i.e., Voter's method), without unduly increasing the com- 

putational load. For brevity, we will call any estimator from the second-order warping a 
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Warp-Il estimator; accordingly, with the obvious abuse of the meaning of "warp," we label 
Voter's estimator based on (2.3) Warp-I estimator and the unwarped estimator (1.3) Warp-O 
estimator. The third-order warping, Warp-Ill, will be presented in Section 2.4. 

Specifically, a Warp-II estimator is obtained by using Ti (wi) = -7' (wi-ti), i= 1, 2, 
in (2.5), where pui and Si are, respectively, some measure of the "center" and "spread" of 

pi, i = 1, 2. For given pi and Si (i = 1, 2), the iterative estimator corresponding to (1.5) is 
obtained by iterating (1.5) with lij replaced by 

T - qi (Wlj) 

q2 (S2S; (Wlj - ,tl) + ,2) 

and T = I (SISIj1 (w2j i-t2) + ?tl1) 

q2(w2j) JI2, (2.6) 

where J12 =SI I/S I S21 can be set to 1 in the iterations, as long as we multiply the final limit 
by the correct J12. A computationally convenient way of implementing a warping method, 
especially when several ratios involved, is to first transform all the draws and then use the 
standard bridge sampling estimators with the warped unnormalized densities defined in 
(2.4). 

The warping parameters p-i and Si (i = 1, 2) can be calculated from the known unnor- 
malized density qi or estimated from the available draws. For example, since the calculation 
of a mode and the corresponding curvature (i.e., the observed Fisher information when w 
is viewed as a parameter) does not require the knowledge of the normalizing constant, we 
can use them for pui and Si (i = 1, 2). Such methods, which directly use the knowledge 
of the unnormalized densities, are effective only when the required calculations are easy 
to perform. A more practical approach in general is to use the sample mean and sample 
variance-covariance of {wij, j = 1, . . . , ni}, respectively, for pui and Si, i = 1, 2. If there 
are more sophisticated estimates of p-i and Si available, they can and should be used [see, 
e.g., DiCiccio et al. (1997) for better estimates of S with high dimension], especially when 
the underlying distributions do not possess any moments. For obvious reasons, using draw- 
dependent warping parameters will generally lead to a less, sometimes much less, efficient 
estimate of r compared to using warp parameters that are directly calculated from the 
unnormalized densities. However, compared to Warp-O estimators, Warp-Il (and Warp-I) 
estimators are still superior even with draw-dependent warping parameters. We emphasize 
that precise estimates of the "center" and "spread" of pi (i = 1, 2) are not necessary in 
order to have substantial gains over Warp-O estimators. This is precisely because bridge 
sampling is more effective than common importance sampling estimators [e.g., estimators 
based on (1.7)] when the two densities are not very close to each other, as demonstrated in 
the literature (e.g., Meng and Wong 1996; DiCiccio et al. 1997) and in Sections 3 and 4. 

However, the above methods have their limitations. For example, it is not difficult to 
construct two bivariate distributions (e.g., two mixtures of bivariate normal distributions) 
that essentially have no overlap yet with the same mean zero and covariance matrix I2. 

For such a pair of distributions, the mean-variance matching obviously will not improve 
the efficiency, and a more carefully designed rotation may be needed; for example, by 
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matching a direction of major mass under both distribution. Indeed, we can consider further 
transformations to equalize the skewness in both distributions, as detailed in the next section. 

2.3 ELIMINATING SKEWNESS: WARP-III TRANSFORMATIONS VIA MIXTURE 

Unlike the Voter's (1985) centering transformation, a Warp-IT transformation generally 
alters the physical shape of the underlying distribution, except for special cases (e.g., when 
the original covariance matrix is proportional to the identity matrix). To push this shape- 
warping idea further, consider an extreme case where qp is symmetric about w = 0 but q2 
is highly skewed and in fact has support only on w > 0. This suggests that we should use 
a "symmetrizing" transformation to extend q2 onto the entire real line. This can be done 
easily by letting q2(w) = q2(Iw )/2, w E R1, which clearly has the same normalizing 
constant as q2. Applying bridge sampling to {ql, q2} will substantially improve the Monte 
Carlo efficiency because P1 has significantly more overlap with P2 than with P2-it is easy 
to show that f Sp(W)P2(w)dw V/f pl (w)p2 (w) dw. 

This symmetrizing transformation is a case of Warp-ITT transformation because it 
matches the skewness of the two distributions. It can easily be extended to multidimen- 
sional w, and it should be used in conjunction with a Warp-TI transformation to increase 
the overlap. In our limited exploration, we have found the following general strategy quite 
effective, as in the application of Section 4. After identifying the center ,A and spread S for 
an unnormalized q(w), as in Section 2.3, we can construct the following mixture 

(WIl /-S) = 2 [q(/lt - SWl) + q(/lt + SW)], w e Rd. (2.7) 2 

Clearly, q centers at w = 0 with standard spread Id, and has the same normalizing constant 
as q. More importantly, being a point reflection, q is symmetric about zero in any univariate 
projection ?Tw. This can also be seen by observing that the random variable corresponding 
to q(w 1/, S) can be written as wv = bS-l (w - /,), where b is a Bernoulli variable on { 1, -1 } 
with equal probability and it is independent of w - q(w). That is, the symmetrization 
warping in (2.7) is a case of stochastic transformation. It follows then that for any ? E Rd, 
fTV = b[iTS l (w - ,u)], which is symmetric about zero because b is and it is independent 
of w. 

Implementing (2.7) is trivial because we can regard {wij = S.' (wi3 - ,uj), i 
1,..., nj} and {-Wvij, i = 1,..., nj} as 2nj (stratified) draws from qj(w Iu, S), j = 1, 2. 
In fact, for a (v) depending on wv only through qj (wv I, S), j = 1, 2, as with rO and rG, 
we do not need to consider { -ij, i = 1, . n, rj } as draws because of the symmetry of 

qj (w Lu, S), j = 1, 2. Indeed, because of this symmetry, in computing the the weight sj of 
(1.4), the sample size from qj (wIut, S) should be still counted as nj, not 2nj. 

The mixture (2.7) is the simplest symmetrization warping via mixing over the point- 
reflection group g2 = {Id, -Id}. We can, of course, consider mixing over more sophisti- 
cated groups, such as the 2d-element group g2d, consisting of all reflections with respect 
to the d axis in the Cartesian coordinates as well as all their (distinct) compositions. This 
mixing also leads to symmetry for any linear projection. Furthermore, the Hessian matrix 
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of the log of the mixture density at w = 0 is the diagonal matrix from the Hessian matrix of 
the log of the original density at w = 0 (assuming w = 0 is a mode for the original density). 
This is because for qmix(w) = ERFg q(Rw), where g is a finite orthogonal matrix group, 

02 log qmix(w) 1 02 log q(w) T 

OwOwT o 5 R [ 0wWT R (2.8) 

if w = 0 is a stationary point of q(w). This implies that when mixing over the g2d group 
(d > 1), the mixture renders independence among all components of w locally around 
w = 0, a property that is not shared by mixing over the g2, which leaves the Hessian matrix 
unchanged. However, this does not necessarily imply that the former mixture will produce 
better approximation to N(O, Id) in terms of Hellinger distance. Furthermore, mixing over 
the g2d group is not practical when d is large, while mixing over g2 is essentially trivial 
regardless of the value of d. Indeed, if it is not for practicality, we could even consider 
mixing over all possible orthogonal transformations (with respect to the corresponding Haar 
measure), which would provide a mixture that is invariant under orthogonal transformation, 
a well-known property of N(O, Id). 

2.4 OPTIMIZING WARP TRANSFORMATIONS 

To further increase the overlap of the two underlying distributions, we can consider 
optimizing any of the aforementioned warp transformations over the warping parameters, 
mostly the center ,u and spread S, by minimizing the corresponding Hellinger distance. 
Since this involves additional computation, it is wise to optimize over the more powerful 
Warp-Ill transformations, such as the one given in (2.7), than spending similar effort for 
Warp-I or for Warp-II transformations. 

As a specific but important example, consider optimizing over the choice of p and/or S 
in the q(w Iu, S) of (2.7) by minimizing the Hellinger distance between q(w Iu, S) and the 
standard normal po := N(O, Id)-recall our aim of using (2.7) is to match it with N(O, Id) 

in terms of the first three moments. An important observation is that this minimization does 
not require the knowledge of the unknown normalizing constant of q(w I ,, S), even though 
the Hellinger distance itself does depend on it. This is because, as can be seen clearly 
from (2.1), minimizing the Hellinger distance between p(w IA, S) and po is the same as 
maximizing the overlap measure (known as Bhattacharrya's measure of affinity) 

(9 PO) =oVJ jpo (dw) = Eo (2.9) 

where the expectation is with respect to po, and co can be chosen for convenience (e.g., 
co = 1). Since co/c does not depend on (w, S), we only need to maximize the unnormalized 
overlap measure o(w,S) = E0[q/qo]. This optimization can be done by numerically 
maximizing the exact o((A, S) in simple problems. 

For example, for the univariate example of Section 2.6, po := N(O, 1), and p(w) OC 
we-w/2 1 (w>0), namely, the X4 distribution. A little calculation shows that the unnormalized 
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overlap measure o(,u, S) between N(0, 1) and q(w Iu, S) 0c S[p(,u - Sw) + p4(, + Sw)] is 

given by 

o(,u, S) 0c e4S"2 [je4 (u - y)e2 + (,u + y)e- 2 dy 

+J e- 4S2 (+y)-2dy] (2.10) 

While it is not feasible to analytically maximize o(,u,S), we can use many numerical 
routines, including taking a grid of {,u, S} and using numerical integrations, as we did for 
the illustration in Section 2.6. 

For most real applications, especially the high dimensional ones, numerical evaluation 
of o(,u, S) is out of question. However, it can be estimated by the sample average 

1) 
[ 2 i q( -~, S)1 

Om(i,S)= 1 [ E < ]: (2.11) 

where {w1,.. , wm } are iid draws from po N(0, Id). Because our goal is to match q 
and N(0, Id), with a reasonable initial search area for optimal (A,, S), 0m (At, S) would be 
accurate enough for empirically optimizing o(,u, S) via numerical procedures such as quasi 
Newton-Raphson. We emphasize again that it is not necessary to find the exact optimal A 
and S values in order to have dramatic gain; see Section 4.4 for an illustration. 

2.5 A GRAPHICAL APPETIZER 

Here we present a graphical illustration of Warp-I to Warp-Ill transformations as well as 
their impacts on the root mean square error (RMSE) of three estimators: (1) the importance- 
sampling estimator (1.7), As = log riS; (2) the bridge-sampling estimator with geometric 
bridge, AG = log rG, and (3) the (iterative) optimal bridge-sampling estimator, AO = 

log r0. Consider P1 = N(O, 1) and P2 = X4, as displayed in Panel 1 of Figure 1. Panels 
2-9 display, respectively, the positions of the two distributions after eight different warp 
transformations to X4, in order of (nearly) decreasing Hellinger distance, denoted by H in 
each panel (the RMSE value is from AO). The true value of the estimand A is zero. Panel 0 
plots the RMSE of the three estimators as a function of the log Hellinger distance, where 
the log is used for better visualization. The RMSE is obtained via simulation with 1,000 
replications, each of which makes 250 independent draws, respectively, from N(0, 1) and 

X2 for bridge sampling estimators and 500 independent draws from x2 for the importance 
sampling estimator. This explains the "off-the-chart" value of the RMSE for As under 
Panel 1, because x2 is a terrible choice as a trial density when the target density is N(0, 1). 

The second row of Figure 1 corresponds to Warp-I transformations with mode matching 
(Panel 2) and mean matching (Panel 3). Since the mode and mean of X4 are, respectively, 2 
and 4, this example illustrates the possibility of having very different centering with nearly 
identical bridge-sampling efficiency-note that the two Hellinger distances are almost the 
same. However, the two centerings will have very different impacts on the importance 
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transformations with mode-curvature matching (Panel 4) and with mean-variance matching 

(Panel 5). Although the Hiellinger distance is decreased quite a bit from Warp-I transforma- 
tions to Warp-II transformations, and thus the RMSE of either Ac and Ao is also decreased, 
the RMSE of 5vs is greatly increased, especially for Panel 4, because the curvature (and 
variance) matching has made the left-tl of the transformed 2 much shorter than that of 
N(0, 1). This illustates e fact tat Hellinger distanece is not the right metric for controlling 

the RMSE of an importance sampling estimator. It is well known that pte vriance of an 

importance sabmpling estimator is the x2-distahce between te target and trial density. 
The fourth row displays Warp-HII transformation reflectinlg about the mode followed by 

mode-curvature matching (Panel 6) and followed by mode-variance matching (Panel 7) 
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note that after reflection (i.e., symmetrizing) the mode is the same as mean. These two 
symmetrizing transformations not only help to further reduce the Hellinger distance, but 
also the aforementioned X2-distance and thus the RMSEs for all three estimators are reduced. 
Instead of reflecting around the mode of x2, we can also reflect around zero and then match 
the variance. This further reduces the Hellinger distance, as displayed in Panel 8. Note that 
because of the "deep dip" in the middle of the transformed X2 the X2-distance is actually 
increased by this transformation, which leads to the increase in the RMSE of AS, as seen in 
Panel 0. The last panel, Panel 9, shows the result from the optimal Warp-ITT transformation 
as detailed in Section 2.5, where the optimal reflection point was found to be approximately 

= 0.5, which is closer to the origin than to the mode of x2, and the corresponding optimal 
scaling was approximately S = 4.4. The most interesting finding here is that the best match 
to the unimodal N(0, 1) among the mixture class (2.7) is a tri-mode density, where the 
middle mode is the result of "merging" the two modes in Panel 8, but not all the way as in 
Panel 7. 

Examining Panel 0 of Figure 1, we see that AO and AG outperform As for all transfor- 
mations. Moving from Warp-0 through Warp-ITT estimators causes the RMSE of AO and 
AG to be roughly halved for each successive transformation. The RMSE resulting from the 
optimal Warp-ITT transformation is about 4% of the original RMSE under no transforma- 
tion, and about 10% of the one from Voter's centering transformation. We will see similar 
dramatic gains in efficiency in the next two real-data multivariate applications. 

3. EMPIRICAL STUDY I: THE FULL INFORMATION ITEM 
FACTOR MODEL 

3.1 MODEL AND DATA DESCRIPTION 

Our first empirical study focuses on the problem of computing the log-likelihood ra- 
tio from Bock and Aitken's (1981) full information item factor (FIIF) model. A detailed 
derivation of the model was given by Meng and Schilling (1996), so here we provide only 
a brief description. Suppose there are J test items given to n subjects, and we let uij = 1 
if the ith subject gives the correct answer to the jth item and 0 otherwise. The FIIF model 
hypothesizes that given the ith subject's d latent (ability) factors zi = (zi1, ... .Zid )T, the 
probability of the ith subject's response pattern ui = (uii, ... uji)T is given by 

J 

Pr(ui I zi, 0) = J [i(Ziaj +bj)l [1 -(Ziaj +bj)1 . (3.1) 
j=1 

Here 1 is thecdfofN(0, 1), bj is the item interceptforthejthitem, andaj = (aij,... ,adj)T 

with amj being the item slope for factor m. Let b = (b, ... , bj)T, and let A be a d x J 
matrix whose jth column is aj, j = 1, . .. , J. We then call 0 _{A, b} the set of item 

parameters. Taking the product of (3.1) over i and making the assumption of independence 
between subjects, we obtain the likelihood function of 0 given the observed score matrix 
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U = (u, . . . u1)' and the unobserved latent factors Z = (z , , Zn)T, 

n J 

L(O I Z, U) = 171171 [1(ZTaj +bj)]uij [1 -((ZTaj +bj)]1ui. (3.2) 

i=1 j=1 

The complication in computing the likelihood from a FIIF model arises from the fact that 
Z is unobserved, and thus needs to be integrated out. As a part of the model assumption, 
the FIIF model assumes z1,.. . , Zn are iid Nd (O, I), and thus the actual likelihood from the 
FIIF model is 

L(O I U) = ft Ez fL [D(ZTaj + bj)] uij [1 - (ZTaj + bj)] uil }u , (3.3) 

where Ez is with respect to z Nd(0, I), no (< min{n, 2J}) is the number of the distinct 
response patterns, and si is the number of the subjects who share ui. 

Meng and Schilling (1996) described how to implement Monte Carlo EM (MCEM) 
for finding the MLE of 0 treating Z as missing data, using the Gibbs sampler to carry out 
the E-step. The draws from p(ZIU, 0) = [In-l p(ziIui, 0) are thus available for various 
values of 0, particularly at the MLE. Therefore, because p(zi Iui, 0) = p(zi, ui I0)/p(ui I0), 
we can apply bridge sampling to compute 

Si l1 U) = slogP(UiO1) (3.4) 
=1 P(Ui 102) 

by treating p(ui I0) as the normalizing constant of p(zi Iui, 0), with p(zi, ui I0) as the un- 
normalized density. That is, we compute the desired log-likelihood ratio as a weighted sum 
of the log ratios of normalizing constants. Such likelihood ratios are very useful for moni- 
toring the convergence of MCEM (Meng and Schilling 1996). The simulations we provide 
here use a five-factor model. We choose a response pattern and two sets of item parameters 
to create a "worst case" practical scenario. One set of the item parameters is composed 
of the maximum likelihood estimates from a real dataset, specifically, 25 selected items 
from a 100-item spelling test administered to 660 undergraduate psychology students at 
the University of Kansas in 1987. The other set of item parameters represents a null model 
that might be tested in practice (i.e., with all intercepts zero, and slopes one or zero chosen 
for different items). The response pattern chosen was the pattern with the largest Hellinger 
distance between the two conditional densities corresponding to the two sets of item pa- 
rameters; the resulting Hellinger distance was H = 0.818. The item parameters were also 
constructed so that, conditional on ui and 0, the five factors are mutually independent. 
This independence allows us to simplify the computation of the normalizing constants into 
a series of one-dimensional integrations, which can then be computed accurately through 
the use of numerical integration routines. The aim is to provide an objective gold standard 
against which our simulation results can be checked. The PQUAD program (Wichura 1989) 
was used for computing all requisite one-dimensional integrations to a relative accuracy of 
io-12. 
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3.2 EMPIRICAL COMPARISONS 

As in Section 2.6, three estimators were compared: As, AG, and A0. The Gibbs sampler 
was used to generate 100 draws for each pi, i = 1, 2 corresponding to each set of item 
parameters. To conduct a (nearly) fair comparison, we used 50 of the draws from each 
distribution to compute AO and AG, and the entire 100 draws from P2 to compute As. We 
repeated this process 1,000 times, yielding 1,000 estimates for each method. In addition 
to the unwarped case, we consider four warping transformations: (1) Warp-I using modes, 
(2) Warp-Il using modes and curvatures, (3) Warp-Il using sample means and covariances, 
and (4) Warp-Il using true means and covariances. The last warping is included for the 
purpose of comparison, as it should, with reasonable distributional shapes, yield near optimal 

Warp-Il estimators. We leave Warp-IlI transformations to Section 4, since with the current 

application Warp-II transformations have already produced very accurate estimators for 
practical purposes. 

As Table 1 shows, matching even just the location (i.e., mode) leads to a great increase 
in efficiency for all the estimators. For example, the MSE of AO decreases about 70% 
when the modes of both distributions were matched. Matching both the modes and their 
curvatures leads to the MSE that is just 1.3% of the MSE with only the mode matched. 
The estimator using the sample mean and variance is, as expected, less accurate than one 
that uses the exact modes and their curvatures, but it is still far superior to the original one 

(about 5% MSE) as well as the one that only matches the modes (about 17% MSE). The 
estimate obtained by matching the true mean/variance has a MSE about 2% of that using 
sample mean/variances. This severe loss is expected since we are using only 50 draws and 
thus also face the serious issue of "losing degrees of freedom." Indeed, with very small 
simulation sizes, using sample means and covariances could lead to serious bias-an issue 

that fortunately need not be of much concern as the sample sizes of the simulated data are 

typically under the direct control of the investigator. It is noteworthy that, for the current 

problem, using sample estimates does not induce bias for A0 or AG, but produces relatively 
large bias for As 

The results in Table 1 also illustrate that the performance of AG is nearly the same as 

that of A0, particularly when the two distributions are closely matched. In fact, when two 

distributions are closely matched, any reasonable estimator (e.g., AS) should work well; this 

is evident in the last comparisons (i.e., when matching with the true mean and variances). 
The bridge sampling estimators are designed to handle cases where accurate matching is not 
feasible. It is clear from Table 1 that the relative gains of bridge sampling estimators over 

the importance sampling estimator (i.e., AS) generally increase with the distance between 
the two underlying densities. For the untransformed cases, the MSE of A0 is only about 
16% of the MSE of As, despite the fact that both require essentially the same amount of 

computation. 
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Table 1. Effects of Warping for Three Estimators (true A log r 3.6226) 

AS A0 AG 

Warp-O 
Mean 3.3909 3.6348 3.6238 
Var 0.1935 0.0390 0.0471 
MSE 0.2472 0.0391 0.0471 

Warp-I with Mode 
Mean 3.5779 3.6287 3.6256 
Var 0.0448 0.0112 0.0124 
MSE 0.0468 0.0112 0.0124 

Warp-Il with Mode and Curvature 
Mean 3.6221 3.6225 3.6225 
Var 0.000148 0.000147 0.000150 
MSE 0.000148 0.000147 0.000150 

Warp-Il with Sample Mean and Covariance 
Mean 3.7213 3.6245 3.6238 
Var 0.00402 0.00190 0.00204 
MSE 0.01377 0.00190 0.00204 

Warp-Il with True Mean and Covariance 
Mean 3.6221 3.6225 3.6225 
Var 0.000041 0.000041 0.000042 
MSE 0.000041 0.000041 0.000042 

4. EMPIRICAL STUDY II: 
A NONLINEAR MIXED-EFFECT MODEL 

4.1 MODEL AND DATA DESCRIPTION 

Computing likelihood ratios for nonlinear mixed-effects model is typically a difficult 
problem due to the analytically intractable integrations over the random effects. The illus- 
tration we provide here uses data from the Fort Bragg evaluation project (Bickman et al. 
1995) where three military bases were chosen to participate in a quasi-experiment. The ex- 
perimental treatment, an integrated system of children's mental health services, was offered 
to personnel at Fort Bragg, North Carolina. As experimental control, child outcome data 
were also collected at two other military bases, Fort Campbell, Kentucky, and Fort Stewart, 
Georgia, where typical mental health care services were available. The main hypothesis of 
the study was that patients receiving the experimental treatment would show more improve- 
ment, with a smaller relapse effect. Data were collected at intake, 6 months, 12 months, 
18 months, 36 months, and 48 months for 510 patients at the demonstration site and 379 
patients at the two control sites. However, missing data were common, with many of the 
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Figure 2. Mean CBCL Scores for Demonstration and Control Sites by Time. 

subjects having fewer than the full complement of six observations. The dependent measure 
is the Child Behavioral Check-List (CBCL), a standard parental report psychiatric rating 
scale commonly used in child psychiatric research. Mean values for the six time periods 
for the demonstration site and the comparison site (aggregated over the two control sites) 
are plotted in Figure 2. The change at both sites appears to reasonably follow a pattern of 
exponential decline, followed by a decay of the effects of psychiatric treatment at 36 and 48 
months. For each child, there was generally a relapse effect after the continuous integrated 
treatment, which usually lasts from one to two years, was over. More details of this dataset 
can be found in Schilling (1998). 

A realistic modeling of the data for estimating the treatment effect is rather involved, 
particularly because the relapse onset time is unobserved. For our computational purpose, 
we adopted the following two-level model: 

Level 1 Model: 

Yijk = tYOij + 'yiY1I(Ik > 5) + -y2ij [gij(tik, -Y3ij) - 3ij(-Y3ij)] + 6ijk, Eijk '-' N(O, cr2), 

where g(t,-y) = -y-1exp(-y(t - 1.5)), 3(-y) = k=1 g(tik,-y)/nij, nij is the number of 
observations for subject i at site j, and I(A) is the indicator function of set A. 

Level 2 Model: 

/ 70ij' 

LYiiI nY 
N(1uj, Y). 

'jY2ij) 

'-Y3ij 

Here Yijk is the CBCL measure for the ith child at the jth site (j = 1, 2), and k indexes the 
six time points of data collection. The Level 1 model parameter yij represents a reparam- 
eterized vector parameter describing person-level baseline, relapse effect, treatment effect, 
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and declining rate. The reparameterization was adopted, following a suggestion by Ross 
(1990) to deal with a practical near nonidentifiability problem due to relatively small ex- 
ponential declining rates for some children. It also helps to eliminate unintended adverse 
consequences of the somewhat arbitrary normality assumption in the Level 2 model, since 
our main goal is to compare ,u1 and A2. Using a Bayesian analogy, the ellipsoidal shape of 
the prior (i.e., Level 2 model) would be in serious conflict of the severely banana shaped 
likelihood (i.e., the Level 1 model) with the original parameterization, and thus the nor- 
mality can no longer be treated as a convenient "non-informative" assumption. See Box 
and Tiao (1973, chap. 1) for the closely related idea of "data-translated likelihood" in the 
content of constructing noninformative priors. The more harmonized Level 1 and Level 2 
modeling also makes it easier to construct more reasonably behaved Metropolis algorithms, 
which was important for the simulation study we report here. 

As a common computational task that arises in such problems, we consider the problem 
of computing the log-likelihood ratio for testing jui = ju2, namely, log f (Y 0) -log f (Y I So), 
where 0 and 00 are, respectively, the MLE and the constrained MLE under jut = ju2 for 
O = {jui, ,u2, , o2}. Similar to the case for the FIIF model, that is, (3.3) and (3.4), this 
log-likelihood ratio can be expressed as a sum of 889 log ratios of normalizing constants 
for p(yj YVij, 0) = P(yij, Yij 0)/p(Yij 0), where Yij {Yijk, k 1, ... ni.}. We used a 
Metropolis algorithm to simulate from P(yij IYij, 0) with N(ay(j 1), I1 (Qij)) as the pro- 

posal distribution at the tth iteration, where -y(jt -1) is the output from the previous iteration 
and I(Qij) is the observed Fisher information matrix at the mode i. This yielded draws 
that were highly correlated, with a median lag 1 correlation of 0.86 for -Yoi through m3j. and 
an acceptance rate of 0.23. This high correlation allows us to investigate the performance 
of ro of (1.5) when the assumption of independence, under which rio is asymptotically 
optimal, is seriously violated. Another key feature of this study is that there are 889 log 
ratios to be examined and the Hellinger distances between these 889 pairs of distributions, 
under various warping transformations, cover virtually the entire range of the possible val- 
ues, [0, V"-], thereby providing an ideal setting for examining the performance of the bridge 
sampling estimators with different orders of warping. 

As before, three estimators were compared: As, AG, and AO. The Metropolis sampler 
was used to generate 500 draws for each pi, i = 1, 2 corresponding to each set of Level 2 
parameters, for each of the 889 sets of the Level 1 distributions. To conduct a (nearly) fair 
comparison, we used 250 of the draws from each distribution to compute Ao and AG, and the 
entire 500 draws from P2 to compute As. We start our comparisons among various Warp-I 
and Warp-II estimators in Section 4.2. In Section 4.3, we investigate the performance of 
Chib and Jeliazkov's (2001) method as a case of the bridge sampling. In Section 4.4, we 
demonstrate the use of Warp-Ill transformations to eliminate asymmetry and thus further 
improve upon the best Warp-II estimator found in Sections 4.1-4.2. For each estimator, 
the simulation is repeated 1,000 times to yield 1,000 estimates, which are then compared 
to the exact value of the estimand. The exact values were calculated again using PQUAD 
with relative accuracy of 10-12; only one-dimensional numerical integrations were needed 
because given y3i, the other Level 1 parameters are conditionally linear and can be integrated 
out analytically. 
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Figure 3. The Impact of Different Warping Transformations on Hellinger Distances and LRMSE. 

4.2 EMPIRICAL COMPARISONS FOR WARP-I AND WARP_II ESTIMATORS 

The first two panels of Figure 3 present box plots of the log of the root mean squared 

error (LRMSE) of Ao and As for each of the four warping transformations, while the 
third panel presents box plots of the Hellinger distances, across the 889 subjects. Both 
Ao and As perform poorly under Warp-0 because of the very large Hellinger distances, 
as seen in the third panel corresponding to the label "None." Warp-I with mode has a 
very small effect on the median Hellinger distances, reducing the median from 1.15 to 
1.12. But it dramatically reduces the right skewness in the distance distribution: with no 
warping, 40.6% of the pairs of Level 1 distributions have Hellinger distances greater the 1.3, 
compared to 0.3% after matching the modes. Consequently, Warp-I with mode matching 
produces small but noticeable reductions in the median of LRMSE (from 0.45 to 0.27 for As 
and from -0.69 to -0.95 for AO), but greatly reduces the percentage of large LRMSEs for 
both AO and AS. Applying the second-order warping has a profound effect on the Hellinger 
distances and on LRMSE. For instance, Warp-II using sample means/covariances and using 
modes/curvatures reduce 95% of the Hellinger distances below 0.5 and 0.35, respectively. 
Therefore, the RMSEs were reduced dramatically, as seen from the large reduction on the 
log scale in the first two panels. 
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Figure 4. Performance of Warp-I Estimators with Mode Transformation. 

The fourth panel of Figure 3 plots LRMSE(As)- LRMSE(Ao) for all 889 cases 
across the four warping transformations as functions of the Hellinger distance. It is clear 
that AO dominates As especially with the Warp-II using the easily implemented sample 
mean/covariance matching, with all points are far above the reference line at zero. The 
interesting parabola shape (fitted by lowess) deserves some comment. Intuitively, the im- 
provement of AO over As generally increases with the Hellinger distance. However, when 
the distance is very large, both estimators become dominated by numerical errors because 
of the large instability in computing ratios. The moral is that one should use neither r's nor 

ro when the two densities are far apart-the exact comparison between them is not relevant 
when both are unusable. 

To make more detailed comparisons, Figure 4 and Figure 5 display the scatterplots 
of LRMSE of AO versus that of As and of AG under Warp-I with mode and Warp-Il with 
sample mean and covariance matching, respectively. In both cases the advantage of AO 
compared to As is considerable, with the maximum LRMSE for AO less than the minimum 
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Figure 5. Performance of Warp-II Estimators with Sample Mean/Covariance Transformation. 
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Figure 6. Performance of Warp-IH Estimators with Mode/Curvature Transformation. 

LRMSE for As. The performance of AG is closer to that of AO, more so for Warp-I with 
mode than Warp-IL with sample mean and covariance. 

Figure 6 compares the three estimators when the underlying Hellinger distance is 
small. Thanks to the powerful warping with mode/curvatures nearly all of the 889 pairs 
have Hellinger distances less than 0.4 with more than half less than 0.2. When the two 
densities are this close, As can also work rather well. Nevertheless, the first panel shows a 
small but noticeable advantage for AO compared to As, in that 76.3 percent of the points 
fall below the 45-degree line. The second panel shows that AG is essentially the same as 

AO. The third panel plots the difference in the LRMSE between As and Ao as a function of 
Hellinger distance. It shows that even when the distributions are very close to each other, 
there are a number of instances where AO substantially outperforms As, most noticeably 
for subject 377. On the other hand, we note for subjects 204 and 378, As outperforms 

AO by a good margin. (Three cases consistently produced large differences in additional 
confirmatory simulations.) Examining these three cases more closely, the first three panels 
of Figure 7 compare the box-plots of distributions of the two estimators, obtained from 
the 1,000 replications, for each of the three subjects, respectively. The panel for subject 
377 shows the reason why that the LRMSE of As is much larger than that of AO: the 
existence of a very large outlier, reinforcing the old concern of instability in the tails of 
the importance sampling estimator. Even when distributions are closely matched, they may 
exhibit rather different tail behavior in some extreme tail regions, and thus produce large 
outliers in the importance weights. In contrast, all the weights used by r(t+1) are bounded 
by max{1/si, 1/(s2i(t))}; see (1.5). 

However, it is possible for As to outperform AO when the densities are closely matched 
because the optimality of AO is only guaranteed with independent draws, and when the 
number of draws used for As does not exceed max{n1, n2 }. This is seen in the first two panels 
of Figure 7, where the distributions of AO have larger spread than those of As. To confirm 
that such relatively larger variability was mainly caused by the high autocorrelations, for 
j 0, 1,. . ., 15, we computed AO and As for subject 204, using the same mode/curvature 
warping but with draws obtained by skipping j draws from the Metropolis sampler between 
consecutive draws (i.e., we only use every (j + I)st draw). For each j, labeled Thinning, 
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Figure 7. Three Extreme Cases under Mode/Curvature Warping with an Illustration of the Effect of Thinning. 

500 draws were used for each estimator, and the process was repeated 1,000 times. The 
fourth panel of Figure 7 plots the resulting LRMSE(As) - LRMSE(Ao) as a function of 
thinning. We see that AO outperforms As as soon as j = 1, and the improvement continues 

until it stabilizes at about j = 15, when the draws become essentially uncorrelated. Subject 
204 was chosen because of the unusually high (estimated) lag-I autocorrelations, which 
were respectively 0.89, 0.92, 0.84, and 0.97 for -Yoi through y3i, compared to the median 
lag-I autocorrelation 0.86 for all 889 subjects. To investigate more broadly, we repeated 

the above process at j = 4 for each of the 889 subjects. The median lag-I autocorrelation 
for the 889 cases was reduced to 0.48. The third panel of Figure 8 indicates that there is no 
longer a case where As shows any noticeable advantage over AO, while the fourth panel 

shows that the performance of AG compared to Ao is essentially unchanged. The first two 

panels in Figure 8 again show that when As performs poorly, most noticeably for subject 
36 identified in the third panel, it is because of its tendency to produce more outliers and 
outliers of greater magnitude than those produced by A0. 

4.3 COMPARISON WITH CHIB AND JELIAZKOV'S PROPOSAL 

Because the Metropolis sampler with a normal proposal was used to generate draws 
from the target density pi (i = 1, 2), we can easily implement Chib and Jeliazkov's (CJ) 
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Figure 8. Performance of Warp-IH Estimators with Mode/Curvature Transformation when Thinning = 4. 

proposal of bridging pi with its normal proposal density and then using the a (0) given in 
(1.13), with 0 = -y. As we emphasized and explained in Section 1.3, because the normalizing 
constants of the proposal densities are chosen to be known, we are able to directly estimate 
the normalizing constant ci, i = 1, 2. To compare the performance of CJ's choice of a to 
the three choices we have investigated, we repeated the simulations as described previously, 
except this time we also generated 250 draws from each of the two normal proposal densities. 
Four estimators were thus compared for estimating each of cl and c2: importance sampling 
with the proposal density as the trial density (Cs), geometric (CG), optimal (Co), and CJ 
estimator (Cc). Note that since the proposal distributions were chosen to have the same 
mode and curvature as the pi, i = 1, 2 (see Section 4. 1), these bridge-sampling estimators 
are automatically Warp-IL mode/curvature matched estimators. 

Figure 9 gives the scatterplots, across the 889 individuals, of log RMSEs of four paired 
comparisons for estimating c1; the comparisons for c2 were virtually identical to those for 
c1 and are thus omitted. The first panel shows an order of magnitude advantage of co 
compared to c, which has a relative RMSE 13 times larger than that of co. (The relative 
RMSE is asymptotically the same as the RMSE of the log of the estimator.) The second 
panel shows nearly equivalent performance for log CG and log co, with log co being slightly 
more accurate, as expected. The third panel shows that the simplest importance sampling 
estimator log cs performs really well, in fact slightly outperforming log co. Consequently, 
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Figure 9. A Comparison of the Chib-Jeliazkov and Other Bridge Sampling Estimators. 

log cs is also much better than log 'ac, as clearly seen in the fourth panel. We found that 
altering the choice of the proposal distribution could produce improved performance for 
the the CJ's proposal in specific cases. However, even then co and cs outperformed cc. 

The reason that cs slightly outperforms co is because co is (asymptotically) optimal 
only when the two sets of draws are independent, as we discussed after equation (1.4). In our 
current setting, the draws from the normal proposal density are independent, but the draws 
from the target density are highly correlated. Consequently, in terms of the "effective size" 
as we discussed in Section 1.1, the size from the target density is much smaller than 250. 
This suggests that the equal-weighted co is further from the actual optimal estimator than 
Cs, which puts all weight on the normal proposal density. As we discussed in Section 1. 1, a 
first-order correction is Al = nm (1 - -)/ (1 + p), where - is an estimated lag 1 correlation. 
Figure 10 compares log cs with three correlation-adjusted log cO's. The first - was simply 
set to 0.86, the average lag-I autocorrelation reported in Section 4.1. The second and third p 
values were respectively the sample lag-I autocorrelation of I j and of l/(lIj +r), where l j 
is the one given in (1.5), whose form suggested us to use these two lag-I autocorrelations. 
It is seen that all three co's are essentially equivalent, and they all slightly outperform cs. 

Note that, as we discussed in Section 4.2, even under the assumption of independent draws, 
Co dominates cs only when the size of draws used for cs does not exceed the maximum 
of the two sizes used for co, which may be viewed as an unfair comparison. (Recall in the 
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Figure 10. The Effect of Correlation Adjustments. 

examples of Section 2.6 and Section 3, we have used twice as many draws for computing 

As than for computing AO to make a fair comparison.) However, one must recognize that in 

CJ's setting, the draws from the proposal density (e.g., normal) are essentially free compared 

to that from the target density. Consequently, a more sensible comparison is to include all 

draws that have already made from the target distribution, because the key practical question 

here is how to best utilize these expensive draws. 
From the above comparison, one might conclude that the draws from the target densities 

do not help because the simple cs using draws from the proposal density worked quite well, 

even when compared to the correlation-adjusted co. However, we have to keep in mind that 

this comparison was based on CJ's method which estimates cl and c2 separately and then 

computes the estimate of A via A = log(cl /C2). Let us label the resulting four estimates 

of A by Asp, AGP, Aop, and Acp, corresponding respectively to Cs, CG, Co, and cc (for 

estimating both cl and C2). Here the subscript "P" stands for "proposal," as the key of CJ's 
method is to bridge the target density with the proposal density. The first two panels of 

Figure 11 compare, respectively, the LRMSE of Aop and of Asp with that of Acp, which 

reinforce our previous conclusion that the CJ's choice of a can be quite inefficient. The 

LRMSE of AGP is very similar to that of LRMSE of AOp and thus not shown. The third panel 

compares the LRMSE of the Warp-II mode-curvature matched AO of Section 4.2, with that 
of Acp. The fourth panel compares the LRMSE of A0 with that of AOp, which clearly shows 
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Figure 11. A Comparison of Direct and Indirect Procedures for Estimating A. 

that, in the current application, directly bridging the two target densities (namely, directly 
estimating the ratio) is better than separately estimating the two normalizing constants by 
bridging each target density with its corresponding proposal density and then taking the 
ratio. In other words, those draws from the target densities are indeed useful as it allows us 
to improve upon Asp (which is very similar to AOp for this example). The median RMSE 
for Aop is 1.9 times larger than that for AO. The advantage for AO compared to Acp is 
proportionally greater than before: the median RMSE for Acp is 21 times that of AO. One 
explanation for the advantage of bridging Pi and P2 directly is that the two distribution 
shapes, after Warp-II transformation, are more close to each other than to the symmetrical 
normal proposal distributions. This also suggests that we can use Warp-Ill symmetrizing 
transformations to further improve precision, as in the next section. 

4.4 EMPIRICAL INVESTIGATIONS OF WARP-Ill ESTIMATORS 

The rationale for Warp-Ill transformations can be best understood by looking at their 
effects on the shape of the individual target distributions. Their effects on P1 (correspond- 
ing to the unconstrained MLE) for subject 36 are illustrated in the contour plots given in 
Figure 12 and Figure 13. The three columns of these figures present the two-dimensional 
marginal distributions respectively of -yo, -Yl, and -Y2 with -y3: -y3 being chosen because that 



578 X.-L. MENG AND S. SCHILLING 

is the dimension exhibiting the greatest amount of skewness. The first row of Figure 12 
presents the original marginal distributions, where the H value is the Hellinger distance 
between the corresponding four-dimensional joint density (with mode recentered to the 
origin) and N(O, I4). The second row of Figure 12 displays the results after the Warp-Ill 
transformation with mode reflection (and recentering to the origin). The third row is the 
same as the second row except the reflection point is the estimated optimal ,u obtained by 
maximizing (2.11) over both ju and S using 1,000,000 draws from qo := Nl(0, I4). The final 
row presents the results of the optimal ,u reflection followed by the optimal S rescaling. 

Original - H = 1.212 
4-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~. 

-0.5 -0.2 0.1 0.4 -0.5 -0.2 0.1 0.4 -0.5 -0.2 0.1 0.4 

73 73 73 

Mode Reflection - H = 1.203 

9-~~~~~~~~4 

01' 0 

-0.4 -0.2 0.0 0.2 0.4 -0.4 -0.2 0.0 0.2 0.4 -0.4 -0.2 0.0 0.2 0.4 

Optimal pt Reflection - H =1.202 

-0.4 -0.2 0.0 0.2 0.4 -0.4 -0.2 0.0 0.2 0.4 -0.4 -0.2 0.0 0.2 0.4 

Optimal p Reflection / Optimal s Rescaling - H = 0.153 

d1~~~~~~~~~~~~~~~~~~~~~~~~~2~~~~~~~1 

-2 0 2 -2 0 2 -2 0 2 

Figure 12. The Effect of Optimal Warping on Posterior Distributions. 
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The Warp-IlI transformation about the mode symmetrizes the originally very skewed 

distributions, but the resulting distributions exhibit varying degrees of heavy tails. Warping 
about the optimal it reduces the tails, but leaves the distributions with a flatter center with pos- 
sible multiple modes. Because the resulting distributions still differ greatly from N(O, 14) 
in terms of spread, neither warping achieves useful reduction of the H value. However, 
Warp-III using both the optimal (,u, S) dramatically reduces H value to 0.15, with the three 
bivariate marginal distributions much closer in appearance to a N(O, I2). We emphasize here 
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Figure 13. The Effect of Alternative Warp II and Warp III Transformnations on Posterior Distributions. 
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Table 2. Comparison of Warping Transformations for Subject 36 

RMSE STD 

Transformation H log bS log CG log bO log bS log CG log cO 

Warp-Il Mode/Curvature 0.485 0.269 0.252 0.213 0.251 0.252 0.213 
Warp-l1l Mode/Curvature 0.422 0.241 0.231 0.200 0.223 0.230 0.200 
Warp-Il MeanNariance 0.331 0.063 0.075 0.046 0.063 0.075 0.046 
Warp-l1l ModeNariance 0.241 0.051 0.071 0.039 0.051 0.071 0.039 
Warp-l1l Sample Optimal 0.282 0.227 0.084 0.156 0.191 0.069 0.050 
Warp-lIl Optimal 0.153 0.051 0.040 0.031 0.051 0.040 0.031 

that it is not necessary to use optimal (1u, S) in (2.11) in order for a Warp-Ill transformation 
to produce noticeable reductions in Hellinger distance over Warp-Il transformation. As an 
example, the first two rows of Figure 13 present the effects of Warp-Il transformations 
with mode/curvature matched and mode/variance matched, respectively. The next two rows 
presents the corresponding results under the Warp-III transformations using the same t (i.e., 
mode) and scaling matrices, which resulted in, respectively, 13% and 28% reductions in the 
H value. The avoidance of optimizing (2.11) over t and especially over S is particularly 
appealing for large dimensional problems. 

To examine the effects of Warp-III transformations for computing ratio estimates be- 
tween skewed distributions and symmetric distributions, we repeated the simulations de- 
scribed in Section 4.3 using 250 draws from each of p, and N(0, 14) for subject 36. This 
process was repeated 1,000 times for each of the warp transformations illustrated in the 
previous two figures, as well as for a Warp-III sample optimal estimator, which uses the 
optimal p and S estimated via maximizing (2.11) based on the 250 draws already made 
from N(0, 14) (in contrast to the Warp-Ill optimal estimator, where the optimal values of 
{,u, S} were estimated based on 1,000,000 draws external to our simulation study). The cO 
estimator was adjusted for auto-correlation p with p set at 0.86, the median lag-I correlation 
reported in Section 4.1. The simulation results are summarized in Table 2 and plotted in 
the first row of Figure 14. It is seen that Warp-Ill transformations dominate the Warp-Il 
transformations with the same scaling matrix. Except for the Warp-Ill sample optimal trans- 
formation, both RMSE and the standard deviations (STD) increase as the Hellinger distance 
increases, and the RMSE's and STD's for log co dominate those for log cs and log CG. 

The performance of the Warp-IlI sample optimal transformation deserves some com- 
ments. First, since the estimated optimal value [u and S vary with the sample, the reported 
Hellinger distance is the median of the Hellinger distances over the 1,000 replications. The 
Hellinger distances for those 1,000 replications ranged from 0.152 to 0.487, with 98% of 
them less than 0.422, the Hellinger distance for the Warp-IlI mode/curvature transformation. 
Thus, we would expect the RMSE's and the STD's to be smaller than those under Warp- 
III model/curvature transformation, but larger than expected given the median Hellinger 
distance. As expected, the STD's of log co is less than that for both log cs and log CG. 

Second, while all other transformations led to essentially unbiased estimators, Warp-III 
sample optimal transformation results in relatively large biases for all three estimators, with 
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Figure 14. A Detailed Comparison of Warp II and Warp III Estimators. 

log CG having smaller bias than that of log co. A possible explanation for this interesting 
phenomenon that C-G outperforms c-o may lie in the estimating equation underlying CG: 

E (4.1) 

The numerator of (4.1) is proportional to the quantity (2.1 1) attempts to estimate. It is thus 
possible that log CG exhibits the smallest RMSE because the sample optimization is "tuned" 
for that estimator. This finding might have important practical consequences, because AG iS 
(slightly) easier to implement and generally has practically comparable RMSE compared 
to AO with a fixed warp transformation. It may be preferred if it generally outperforms A0 
under the sample optimization procedure, a possibility for further investigation, 

Even without optimization, the Warp-IlI mode-reflection/curvature-rescaling can pro- 
duce significant reductions in RMSE for both cl and r estimates. To demonstrate the range 
of reductions that can be achieved, we repeated the simulations described in Sections 4.1 
and 4.3 for the Warp-IlI mode/curvature transformation. The resulting comparisons on log 
of RMSE for log co and A0 across all 889 subjects, are presented in the second row of Fig- 
ure 14. The Warp-Ill transformation is clearly superior with a median reduction in RMSE 
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for log co about 40% and an interquartile range from 27% to 56%. Similar results are ob- 
served for Ao, with a median reduction about 39% and an interquartile range from 28% to 
51%. 

5. LIMITATIONS, POSSIBLE REMEDIES, 
AND CONCLUDING REMARKS 

5.1 DEALING WITH MULTIMODALITY: STOCHASTIC WARPING 

It should be clear that all the transformations we discussed so far work best when 
the underlying distributions have only one (major) mode. (In fact, it is easy to construct 
multi-mode examples where a Warp-I or Warp-II transformation can actually increase the 
Hellinger distance.) As is well known, the problem of multimodality generally poses diffi- 
culties for MCMC and related problems. The most fundamental difficulty, of course, is to 
identify the (major) modes as well as their curvatures-a task that needs to be completed 
before one can produce trustworthy draws from Pi. Without such trustworthy draws, any 
method based on draws from Pi is fundamentally problematic. But if the modes and their 
curvatures are approximately known, then one can construct pi as a mixture of normal or t 
distributions for example (e.g., West 1993), and then bridging Pi with PI, as with the uni- 
modal cases. We emphasize that, thanks to the use of the bridge density, it is not crucial if 
we have missed a few modes when constructing Pi, as long as these modes are not too dom- 
inant. Indeed, even if we have missed some major modes when constructing Pi, the bridge 
sampling estimators are still generally more efficient than the corresponding importance 
sampling estimator using draws only from PI or Pl. With some complicated system/model 

Pl, such as those in theoretical physics, convenient theoretical approximations of p, are not 
available. On the other hand, one can make draws from various systems that are of interest 

(e.g., PI, P2, and some "in-between" systems; see Voter 1985). In such cases, Voter (1985) 
suggested the use of the following extension of (2.3) 

r_ f E2[qi (w + D)oa(w)]ir(dD) (5.1) 
f E1 [q2(w- D)a(w- D)]ir(dD) ( 

where 7r(dD) should be chosen to effectively address the issue of multimodality. This is, 
in some sense, in the spirit of path sampling (e.g., Gelman and Meng 1998), for it attempts 
to create a "path," indexed by D, to link P1 to P2. (Indeed, the warping idea is also useful 
for path sampling.) 

Estimator (5.1) is a case of stochastic warping, as it mixes the location shift parameter 
D over a distribution 7r, possibly continuous. Therefore, this is also in the spirit of the Warp- 
III warping transformations described in Section 2.4, where we discussed the possibility of 
mixing over all possible orthogonal transformations. However, the practicality of any such 
method should not be assumed without careful investigation, especially given our desire to 
achieve better Monte Carlo efficiency without unduly increasing the computational load. 
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5.2 DEALING WITH DISCRETE DISTRIBUTIONS: SWAPPING AND PERMUTATION 

Another limitation of the warp transformations discussed so far is that they are not 
effective, even if possible to implement, when the underlying distributions are discrete, 
or more generally when they have "loose" neighborhood structures (i.e., not concentrated 
around a few modes). For discrete distributions, a different kind of warping transformations 
may be more effective. 

For example, suppose both q (w) and q2(w) are discrete and have the same support 
Q. Suppose we know that q1 (a) > q, (b) for two states a, b C Q, and the order is reversed 
for q2. Then by picturing the two densities having opposite bump and dip at these two 
locations, we immediately see that we should swap the two probabilities for, say, q2, in 
order to make the two distributions more similar. Mathematically, we can define a new 
unnormalized density q2 such that q2(a) = q2(b), q2(b) = q2(a), and q2(w) = q2(W) for 
w c Q \ {a, b}. Clearly, q2 and q2 have the same normalizing constant. We thus can apply 
bridge sampling to {ql, q2} to compute the same ratio r; in the notation of (2.5), this is the 
same as using T1 (w) - w and T2 the swap transformation between w - a and w = b. 
However, the Monte Carlo efficiency of bridge sampling is improved because q, has more 
overlap with q2 than with q2. For example, simple algebra shows for the Hellinger distance 
critical for (2.2), H(pIi P2) < H(pIi P2). It can also be directly verified that the asymptotic 
optimal relative error given in (1.6) is reduced by the swapping transformation. 

Of course, in practice swapping a single pair of states may not produce significant 
improvement unless pi (a) and P2(b) represent a major portion of the probability mass, 
respectively, for P1 and P2. One may need to use a more general permutation transformation 
to achieve significant improvement in practical applications, and the exact permutation will 
depend on our knowledge of the two underlying distributions (e.g., we may need to swap two 
clusters of equal size)-in general, specific knowledge of the underlying densities are most 
important for finding helpful transformations. Finding effective warping transformations 
for discrete distributions is an important problem in genetic linkage analysis, as discussed 
in Meng (1999). 

5.3 CONCLUDING REMARKS 

The development of the bridge sampling was a direct consequence of our ability to 
simulate from densities with analytically intractable normalizing constants, a key advantage 
of MCMC. In other words, the gain in efficiency of the bridge sampling estimators, compared 
to commonly used importance sampling estimators based on a trial density, is an inherent 
byproduct of the efforts that we have already made in producing reliable MCMC draws. 
Once these draws are made, constructing efficient estimators for normalizing constants 
becomes an inference problem, that is, how to extract the most efficiency from the available 
data and information for inferring the "unknown" normalizing constants. 

From an inferential point of view, this is a fascinating problem because there are many 
ways of linking the estimand with the simulated data, depending on how much shape infor- 
mation of the unnormalized densities we allow ourselves to use. This article demonstrates 
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that, with more and more sophisticated warping transformations, we can achieve better and 
better estimation efficiency based on the same set of draws, and it seems there is no lower 
bound on the Monte Carlo error. This should not come as a surprise, nor is a contradic- 
tion to the well-known efficiency lower bounds such as the Cramer-Rao lower bound or 
Fisher information, because the problem of estimating the normalizing constant given an 
unnormalized density is not a usual inference problem. Indeed, if it were not for the com- 
putational limitation, there would be no inference problem to speak of as the normalizing 
constant is completely determined by the unnormalized density. Thus, as emphasized in 
the rejoinder of van Dyk and Meng (2000), in the context of analyzing simulated data, 
the issue of model selection is not which model is (approximately) true, but rather which 
model represents a more sensible compromise among human efforts, computational load 
and statistical efficiency. 

Like any statistical or computational method, the applicability and advantages of the 
bridge sampling method, with or without warping, depends on particular applications. Nev- 
ertheless, there has been much empirical as well as theoretical evidence, in and outside the 
statistical literature, that demonstrate the effectiveness of bridge sampling for a variety of 
problems (e.g., Bennett 1976; Voter 1985; Meng and Wong 1996; Meng and Schilling 1996; 
DiCiccio et al. 1997; Jensen and Kong 1999; Servidea 2002). After comparing various the- 
oretical approximations and simulation methods for computing Bayes factors (which are 
ratios of normalizing constants), DiCiccio et al. (1997) recommended the use of bridge sam- 
pling because it often achieves an order of magnitude improvement in accuracy compared 
to other methods they have investigated. We further recommend the use of warp bridge 
sampling estimators, particularly Warp-Ill estimators, whenever feasible and appropriate, 
because they can lead to an additional order of magnitude improvement in accuracy without 
unduly increasing the computational load. 
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