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SUMMARY 

The purpose of this short communication is to illustrate the use of conditional maximization (CM) in 
chemometric applications. The CM algorithm is useful in reducing the computational complexity when 
a high-dimensional and complicated maximization problem arises from fitting chemometric models. I t  
can also be efficiently combined with the expectation-maximization (EM) algorithm for handling 
incomplete data, a problem that sometimes arises when only a part of the intended data can be collected. 
Three models from fluorescence spectroscopy are used for illustration. 
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1. PURPOSE 

As in many social and physical sciences, statistical modelling and analysis play an increasingly 
important role in modern chemistry. Often a computational problem arises in these analyses 
when one needs to find maximum likelihood estimates (MLEs) for the parameters of a model 
derived from chemical principles and statistical considerations. A common difficulty for 
computing MLEs is that they usually have no closed-form expressions; this is especially so 
when a model has many parameters. Numerical procedures are then necessary. 

The purpose of this short communication is to illustrate the use of the conditional 
maximization (CM) algorithm for computing MLEs when fitting chemometric models. The 
CM algorithm is an old technique known in the optimization literature as cyclic co-ordinate 
ascent method. I t  has gained revived attention recently in statistical computing because of its 
simplicity and stability, especially when it is combined with the expectation-maximization 
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(EM) algorithm' for handling incomplete data. An illustration of this combination, the 
expectation-conditional maximization (ECM) algorithm, is also presented. 

Below we first give a short review of the algorithms and then illustrate their applications 
using examples from fluorescence spectroscopy. The readers are referred to  the respective 
references for more detailed accounts as well as further applications of these algorithms. 

2. BACKGROUND 

2.1. The CM algorithm 

To illustrate the idea of CM, consider a loglikelihood of only two parameters, L(B1,82 1 Y ) ,  
where Y denotes the data. We need to compute the MLE of 8 = (01, &), but it has no closed- 
form solution. Consider now a simpler problem in which & is assumed known, say 02 = 04')'. 
Given 82, our problem becomes a one-dimensional maximization problem that is typically 
easier to solve, even possibly solvable in closed form. Let O f 1 )  be the solution to this one- 
dimensional problem. With this el') we can in turn maximize L(Of'), 192 I Y )  by treating 02 as 
the only unknown parameter. This again is a one-dimensional problem, maximized at Oil), say. 
Iterating the above cycle yields a sequence 8(") = (0 f"', d i n ' ) .  A key property of CM, which 
is largely responsible for its stability, is that this sequence always increases the loglikelihood 
being maximized, L(8"+" 1 Y )  2 L(8'") I Y ) ,  because each conditional maximization 
increases L .  

The algorithm described above generalizes to problems of any dimension. In general one 
partitions a d-dimensional parameter vector 8 into S ( 2 2 )  subvectors, i.e. 8 = (el, ..., &), 
where 8, is a d,-dimensional vector ( d ,  2 1). Each iteration now consists of S steps of 
conditional maximization; the sth step maximizes L(8 I Y )  with respect to  8, while holding all 
other 8, ( I  # s) fixed at their current values. More complicated CM steps can also be useful in 
practice. 

2.2. Incomplete data and the ECM algorithm 

The problem of incomplete data arises in certain chemometric applications. For example, in 
the spectrum analysis of fluorescent species the signal intensity is often censored at certain 
wavelengths by scattered light, a source of 'noise' unrelated to  the signal spectra, causing a 
'missing signal' at the affected  wavelength^.^ The incompleteness of the data renders the 
standard analysis of such data inapplicable. On the other hand, maximizing the likelihood of 
the observed data is complicated (see Section 3.2). 

A popular tool in statistics for handling such complicated incomplete data maximizations 
is the expectation-maximization (EM) algorithm. The EM algorithm converts a complicated 
incomplete data problem into a sequence of (pseudo) complete data problems. Specifically, at 
each iteration the E-step of the EM 'imputes' the complete data loglikelihood by its conditional 
expectation, conditional on the observed data and the parameter estimates from the previous 
M-step. The M-step then maximizes this imputed complete data loglikelihood to find the next 
iterate of the parameters. This cycle between E- and M-steps is continued until convergence. 
Since the 'imputed' loglikelihood can often be maximized using the same method as for 
maximizing the (true) complete data loglikelihood, the EM algorithm effectively reduces the 
complexity of computation in a diverse range of applications. ' Another reason for its popular 
use is its stability, since, just like CM, each iteration of EM always increases the likelihood.' 
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The simplicity of EM is somewhat lost when its M-step itself requires iteration. The 
expectation-conditional maximization (ECM) algorithm was proposed to deal with such 
situations. By replacing the M-step of EM with one cycle of CM, ECM offers an efficient way 
of combining EM and CM to enhance the simplicity and flexibility of both. This is 
demonstrated by the fluorescence spectroscopy application in Section 3.2. Like EM and CM, 
ECM preserves the monotonicity in increasing the likelihood at each iteration. 

3.  EXAMPLES 

3.1. Non-linear regression 

Consider the non-linear regression model 

y ;  = 01 exp(-t;/rl) + ... + &, exp(-t;/Tp) + c; (1 < i < N )  (1) 

used in fluorometry to describe the exponential decay of the emission intensity from a mixture 
of p fluorescent species following the termination of an exciting pulse.6 The parameters of 
interest, T j ,  represent the j t h  species’ fluorescence lifetime, @ j  is a concentration-dependent 
quantity, y ;  is the measured emission intensity at time t i  (1 < i < N )  and E; - N(0, a’) 
represents the system’s random noise. 

The CM algorithm provides a simpler alternative to the multidimensional non-linear 
procedure for fitting (1). Given 7j = f j ,  j = 1, . . . , p ,  (1) is a multiple regression and the 
conditional MLE of /3 = (PI ,  ..., /3p)T is easily obtained as 

where xi(?)  = [exp(-t;/?;), ..., exp(-t;/fp)l ’. 
Now, conditional on /3 and ?I, I # j ,  the MLE for r j  is given by minimizing 

The above can be easily minimized by any one-dimensional search procedure. We then repeat 
this process in turn for j = 1, . . . , p .  The whole CM cycle thus consists of p + 1 CM steps and 
the desired MLEs of /3 and 7 are obtained by repeating the cycles until convergence. Denoting 
this limit by T* and /3*, we then obtain the MLE of u2 as 

3.2. Constrained multiple regression 

Consider a three-way data array a = ( a i j k ) l x J x K .  We define the rows, columns and layers, 
denoted by a!’), a?) and ai3), as the J X  K ,  Zx K and Zx J matrices from fixing the first, 
second and third indices of the array respectively. For example, the ith row is a matrix whose 
( j ,  k )  element is given by a ; j k .  For a matrix A we denote by Col(A) and Row(A) the spaces 
spanned by its columns and rows respectively. 

Now consider the multiple-regression model 

U ; j k  = /.lijk + E i j k ,  &;jk - N(0, 0’) (1 < i < 1 < j < 1 < k < K )  
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where the unknown parameter vector of interest, p = ( / L j j k ) l x J x K ,  is to be estimated under the 
constraints that the rank of the array ( / L i j k ) l x J x K  is R ( R  < min(Z,J,K)) and 
C01(p13’) = Col(p$!)) and Row(pi3’) = Row(p$?) for 1 < k, k’ < K. In other words, all the 
layers have R-dimensional common column and row spaces. Application of this model in 
fluorescence spectroscopy is discussed in detail, for example, in References 8- 12. 

Given an observed array a = ( a i j k ) l x J x K ,  the loglikelihood is proportional to 

with p subject to  the constraints. The MLE of p is expressed as 

hi3’)* = P U ~ ! ~ ’ P ~  

where PU = UUT and PV = VVT,  and U and V are two I x  R and J x  R matrices with 
orthonormal columns, and found by maximizing 

or equivalently 

over all possible such matrices. 
The simplicity of CM in this example is immediate. Given U, the columns of V that 

maximize the trace (3) are given by the R leading normalized eigenvectors of the matrix 
C$=I (a$3))TP~a$3’; given V,  the columns of U that maximize (4) are given by the R leading 
(normalized) eigenvectors of the matrix Cf=  1 ah3)P~(ai3))T. lo Iterating between these two CM 
steps leads to the constrained MLE of p. This algorithm is also known as alternating least 
squares.8 At the convergence of the algorithm the MLE of u2 is obtained by 

Now consider fitting the same model when some of the a i j k  are censored by scattered light 
as discussed in Section 2. In this case a fluorescent signal is observed (or collected by the 
instrument) only when its magnitude exceeds the level of that of scattered light. Otherwise the 
measured value represents the scattered light. We may express the observed data as 
r;,k = r n a x ( a i , k ,  C j j k ) ,  where a i j k  denotes the fluorescent signal and c i j k  the scattered light. 
Directly maximizing the likelihood based on the observed r is difficult, because the likelihood 
involves terms that integrate a j j k  Over (- a, C i j k ]  for the censored a i j k .  

By viewing the censored a i j k  as missing data, the ECM algorithm provides a very convenient 
approach for this problem. Since the complete data loglikelihood (2) is a linear function of a i j k  

and a&, implementing ECM is the same as above except that for those a i j k  censored by ciJk 

we ‘impute’ a i j k  and a $ j k  by their conditional expectations 



SHORT COMMUNICATION 369 

where q5 and are the density and cumulative distribution functions of a normal variable with 
mean zero and variance one, and t i j k  = (ci,k - /AFCijk)/u and 8 = (i, 6 2 )  are from the previous 
iteration. Note here that the CM cycle has three CM steps, because these conditional 
expectations depend on u, so u has to be iterated simultaneously with U and I/ by computing 
(5)  with p;k being replaced there by i i j k  computed after finding U and V at each cycle. 

3.3. Linearization of a multilinear model 

Consider the multilinear model 
R 

arjk = XfryJrZkr + &rjk, &ilk - N(0,  U 2 )  (1 < i < 4 1 < j < J ;  1 < k < K )  
r =  1 

T with R < min(Z,J,K) and unknown parameter vectors X r =  (Xlr,  XI^)^, yr= (ylr, . . . , y ~ ~ )  
and Zr = (Zlr, ..., ZKr)T satisfying (1 xr 11 = 1 1  yr 1 1  = 1 ,  Xr,Yr, Zr 2 0. This model, known as the 
canonical decomposition (CANDECOMP) or parallel factors (PARAFAC) model, has been 
used to resolve multicomponent fluorescent mixtures in chemometrics. ' - I 3  Under fairly 
general assumptions the model is identifiable up to permutations along the columns of 
X = ( X I ,  . .., X R ) ,  Y = ( y l ,  ..., Y R )  and 2 = (21, .. . , ZR). 

To find the MLE, we note that this model reduces to a standard multiple regression i f  two 
of  the three parameter vectors are held fixed. For example, conditional on X and Y, the model 
is a multiple regression with unknown parameter vector 2. This feature allows an immediate 
application of the CM algorithm, yielding 

X= Q(Y,Z,a"')[P(Y,Z)]-' ,  Y = Q ( X ,  2, a(2)) [ P ( X ,  Z)]  - I ,  

Z = Q ( X ,  Y ,  a(3)) [ P ( X ,  Y ) ]  -' 
Here Q(A,B,a'E') (1 < E < 3) denotes a matrix whose qth row is given by the diagonal 
elements of A Ta,'F'B for 1 < 9 < L f ,  with LE = I ,  J or K depending on whether F = 1, 2 or 3 ,  
and P ( A , B )  is defined as P ( A , B ) =  ( A T A )  * (BTB) ,  with * denoting elementwise 
multiplication between matrices. 

This linearization procedure was first developed in Reference 9. I t  was also observed there 
that the procedure may be sensitive to initial values when the dimensionality of the parameter 
vector ( I x  J x  K )  and R are high. One way to obtain good starting values is to use the 
eigenanalysis procedure discussed in Reference 13. The MLE of u2 is similarly obtained as in 
Section 3.2. Incomplete data arising from censored signals are similarly handled. 

4. A CONCLUDING REMARK 

As illustrated above, the CM, EM and ECM algorithms are intuitively appealing and easy to 
apply in practice. In terms of computer time, these algorithms can be slow, l 4  especially when 
compared with numerically sophisticated algorithms. The latter are more suitable for general 
computer packages, which obviously should be used if they can readily and reliably solve the 
computational problem a researcher is facing. When a researcher has to write his own 
computational program-a quite common practice from our direct and indirect 
experiences-simple and stable methods such as CM and ECM are much more efficient in 
terms of human time. To chemometricians as well us many other scientists, it does not make 
sense spending 5 h to  program and debug a sophisticated algorithm in order to save 5 min of 
computer time, at least when such a program is not going to be used repeatedly. 
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