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Missing Data: Dial M for ??? 
Xiao-Li MENG 

The question mark is common notation for the miss- 
ing data that occur in most applied statistical analyses. 
Over the past century, statisticians and other scientists not 
only have invented numerous methods for handling miss- 
ing/incomplete data, but also have invented many forms of 
missing data, including data augmentation, hidden states, 
latent variables, potential outcome, and auxiliary variables. 
Purposely constructing unobserved/unobservable variables 
offers an extraordinarily flexible and powerful framework 
for both scientific modeling and computation and is one 
of the central statistical contributions to natural, engineer- 
ing, and social sciences. In parallel, much research has been 
devoted to better understanding and modeling of real-life 
missing-data mechanisms; that is, the unintended data se- 
lection process that prevents us from observing our intended 
data. This article is a very brief and personal tour of these 
developments, and thus necessarily has much missing his- 
tory and citations. The tour consists of a number of M's, 
starting with a historic story of the mysterious method of 
McKendrick for analyzing an epidemic study and its link to 
the EM algorithm, the most popular and powerful method 
of the twentieth century for fitting models involving missing 
data and latent variables. The remaining M's touch on the- 
oretical, methodological, and practical aspects of missing- 
data problems, highlighted with some common applications 
in social, computational, biological, medical, and physical 
sciences. 

1. McKENDRICK, A MYSTERY, AND EM 

Table 1, adopted from Meng (1997), tells a fascinating 
story of missing data from the early part of the twenti- 
eth century. The first two rows describe an epidemic of 
cholera in an Indian village, where x represents the num- 
ber of cholera cases within a household and nx is the cor- 
responding observed number of such households. Prior to 
presenting this example, McKendrick (1926) derived a Pois- 
son model for such data. However, the direct Poisson fit, 
reported in the third row, is so poor that any goodness-of- 
fit method that fails to reject the Poisson model must itself 
be rejected. 

Had McKendrick (1926) settled for the simple Poisson 
model, it would not have been the earliest citation in the 
seminal paper on the EM algorithm by Dempster, Laird, and 
Rubin (1977), nor would it have been reprinted in Break- 
throughs in Statistics, Vol. III (Kotz and Johnson 1997). 
McKendrick's approach seems rather mysterious, especially 
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because he did not provide a derivation. He first calculated 
s=E xnx = 86, s2 = Ex x2nx = 166, and 

2 

n - sl = 92.45. (1) 
S2 -1 

Next, he treated n 93 as the Poisson sample size, and thus 
estimated the Poisson mean by A- sl/ = .93. The fitted 
counts were then calculated via fLAx exp(-A)/x!, as given 
in the fourth row of Table 1. The fit is evidently very good 
for x > 1, but exhibits an astonishingly large discrepancy 
for x = 0. 

This large discrepancy gives a clue to McKendrick's 
approach-there were too many 0's for the simple Poisson 
model to fit. Earlier a lieutenant-colonel in the Indian Med- 
ical Service and then a curator of the College of Physicians 
at Edinburgh, McKendrick had astute insight into the excess 
0's, as he wrote that "[T]his suggests that the disease was 
probably water borne, that there were a number of wells, 
and that the inhabitants of 93 out of 223 houses drank from 
one well which was infected." In other words, a household 
can have no cases of cholera either because it was never 
exposed to cholera or because it was exposed but no mem- 
ber of it was infected. The existence of these unexposed 
households complicates the analysis, for without external 
information, one cannot distinguish an unexposed from an 
exposed but uninfected household. To a modern statistician, 
this immediately suggests using the binomial/Poisson mix- 
ture model, also known as the zero-inflated Poisson (ZIP) 
model (see, e.g., B6hning, Dietz, and Schlattmann 1999), 
which models a binomial indicator for the exposure status 
and, conditional on being exposed, a Poisson variable as be- 
fore. Although McKendrick (1926) was not explicit, he fit 
a zero-truncated Poisson (ZTP) model; that is, he ignored 
the observed no = 168 zero-class count and used remain- 
ing data under the Poisson model to imnpute the unobserved 
zero-class count from the exposed population. Once he had 
the imputed total, the rest is history. The ingenious part of 
McKendrick's approach is his imputation of the total Pois- 
son size n via (1), which equates the sample variance with 
the sample mean. Neither si nor 82 is affected by the ac- 
tual value of no, yet 1im,O nt/n = A2/(A2 + A - A) = 1, 
and thus n is a consistent imputation/estimate of the true 
Poisson sample size n. The mystery is then unfolded. 

The key ingredients of McKendrick's approach are to 
first identify a missing data structure, perhaps constructed, 
then impute the missing data, and finally analyze the com- 
pleted data set as if there were no missing data. This proce- 
dure is a predecessor of many modern missing-data meth- 
ods. A key advance of modern methods, thanks to enor- 
mously improved computing power, is iterative repetition 
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Table 1. Data and Fitted Values For McKendrick's Problem 

x 0 1 2 3 4 >5 Total 

nx 168 32 16 6 1 0 223 
Direct Poisson fit 151.64 58.48 11.28 1.45 0.00 .01 223 
McKendrick's fit 36.89 34.11 15.77 4.86 1.12 .24 93 
MLE fit 33.46 32.53 15.81 5.12 1.25 .29 88.46 

of such types of processes, as in the EM algorithm, or 
multiple repetitions, as with multiple imputation (Rubin 
1987). The need for this iteration/repetition was recog- 
nized by Irwin (1963), who noted that once an estima- 
tor of A was obtained via McKendrick's approach, n can 
be reimputed by n(t?+) = n(t) exp(-A(t)) + nobs, where 
nobs = EX> nx and t indexes iteration, and in turn A 
can be reestimated via A(t?l) = sj/m(t+1). Irwin's method, 
though not a special case, resembles the two-step EM al- 
gorithm. In the Expectation step, the complete-data log- 
likelihood l(OIYcom) is imputed by its conditional expec- 
tation Q(010(t)) = E[l(OjYcom)j0(t),Yobs], where Yobs is 
the observed data. In the Maximization step, Q(010(t)) is 
maximized as a function of 0 to determine 0(t+1). For 
the ZTP model, 0 = A, and the M step is the same as 
McKendrick's or Irwin's; that is, A(t?l) = s1/m(t+1). The 
E step is an improved version of Irwin's imputation; that 
is, m(t+1) nObs/(l - exp(-A(t))). Combining the E and 
M steps yields (t+l) = (s1/nobs)(1 - exp(-A(t))), which, 
like Irwin's method, converges to the maximum likelihood 
estimate, A = .972, as long as A(?) > 0. The fifth row of 
Table 1 gives the corresponding fit. 

McKendrick's problem also highlights the celebrated 
idea of data augmentation when one adopts the bino- 
mial/Poisson mixture model. Because a complete sample 
is available from this model, there are no missing data in 
the traditional sense. Nonetheless, we can view the mix- 
ture/exposure indicator as missing data and construct the 
corresponding EM algorithm (Meng 1997). Purposely con- 
structing missing data, such as mixture indicators, random 
effects, and latent factors, is a key contribution of Demp- 
ster et al. (1977) and has seen an enormous number of ap- 
plications in statistical and scientific studies, as illustrated 
in Sections 4-6. This, along with a large number of recent 
improvements and extensions of EM (see Liu, Rubin, and 
Wu 1998; McLaughlan and Krishnan 1997; Meng and van 
Dyk 1997; and the references therein) have served to sub- 
stantially increase the applicability and speed of EM-type 
algorithms. 

2. MISSING-DATA MECHANISM 
A profound difficulty in dealing with real-life missing- 

data problems is to reasonably understand and model the 
missing-data mechanism (MDM), namely the process that 
prevents us from observing our intended data. This pro- 
cess is a data selection process, like a sampling process, 
yet because it is typically not controlled by or even un- 
known to the data collector, it can be subject to all kinds of 
(hidden) biases, known collectively as nonresponse bias. Al- 
though the general theoretical foundation of sampling pro- 
cesses existed in the early part of the twentieth century (e.g., 

Neyman 1934) and the impact of selection bias (e.g., from 
a purposive selection) has long been understood, the cor- 
responding foundation for MDM was not formally devel- 
oped until much later, starting with Rubin (1976a). Two key 
mechanisms introduced by Rubin, namely missing at ran- 
dom (MAR) and missing completely at random (MCAR), 
now appear in most statistical articles that contain analy- 
ses of incomplete data, often even without citation. These 
concepts have also been extended (see, e.g., Heitjan 1997, 
1999; Heitjan and Rubin 1991). 

Assuming MCAR basically means that we believe the ob- 
served data are a random subsample of the intended sample, 
and thus we can analyze it just as we analyze the intended 
sample, only with reduced size. Because this assumption is 
generally very far from the truth, common convenient ap- 
proaches such as ignoring any case with missing values can 
be strongly biased (see, e.g., Little and Rubin 1987). MAR 
is a much weaker assumption, which allows the MDM to 
depend on observed quantities, but not on unobserved quan- 
tities. Under MAR, we can ignore the MDM in a likelihood 
inference based on the observed data without inducing non- 
response bias (but possibly inducing inefficiency when there 
is a priori dependence between the estimand and param- 
eters governing the MDM, i.e., when the parameter dis- 
tinctness assumption of Rubin (1976a) is violated; see Shih 
1994). However, for sampling-based inference, it generally 
requires MCAR to ignore the MDM (see Heitjan and Basu 
(1996) for illustrations.) 

When the MDM is not MAR (and thus not MCAR), the 
probability of missingness depends on the unobserved val- 
ues themselves. The MDM is then generally not ignorable, 
meaning that the validity of our inference depends crucially 
on the particular model of the MDM we adopt. Because ig- 
norability is fundamentally untestable from the observed 
data alone, one must exercise great caution when drawing 
substantive conclusions from any inference under a nonig- 
norable model. Sensitivity analysis to the specification of an 
MDM model is a necessity, and subjective knowledge can 
play a critical role, as illustrated by Molenberghs, Goet- 
ghebeur, Lipsitz, and Kenward (1999). Modeling nonignor- 
able MDMs is currently a very active research area with 
many open problems (see, e.g., Heitjan 1999; Ibrahim, Lip- 
sitz, and Chen 1999; Mohlenberghs, Kenward, and Lesaffre 
1997; Scharfstein, Rotnitzky, and Robins 1999). 

3. MULTIPLE IMPUTATION AND UNCONGENIALITY 

The common usage of nonresponse bias for general bi- 
ases induced by an MDM reflects the historical fact that 
nonresponse in sample surveys is the most visible missing- 
data problem in general practice, especially in social sci- 
ences. Thanks to the efforts made by many statisticians and 
social scientists throughout the twentieth century, we are 
seeing fewer and fewer articles using convenient missing- 
data "methods" such as mean imputation and complete- 
case analyses without acknowledging their potential serious 
flaws. On the other hand, the simplicity of these "methods" 
is so attractive that preventing practitioners from being se- 
duced requires scientifically and statistically more defensi- 
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ble methods with comparable simplicity. Multiple imputa- 
tion (Rubin 1987) was motivated by this need. In the context 
of public-use or shared databases, the first step of Rubin's 
multiple imputation is to have the data collector build a sen- 
sible imputation model given available data and knowledge 
about the MDM, which are typically far more comprehen- 
sive than what could possibly be available to an average 
user (e.g., Barnard and Meng 1999; Meng 1994a; Rubin 
1996). The data collector then draws M (e.g., 5-10) inde- 
pendent samples of all the missing values, as a set, from the 
imputation model, thereby creating M completed-data sets 
and thus permitting general users to directly assess and ac- 
count for the increased variability/uncertainties due to non- 
response. For a user, analyzing a multiply imputed dataset 
means conducting M separate complete-data analyses, one 
for each of the M completed-data sets, and then combin- 
ing these M completed-data analysis outputs using a few 
general rules. Readers are referred to Schafer (1999) for an 
updated tutorial; Gelman, King, and Liu (1998) for a recent 
application in public opinion polls; and Schafer (1997) for 
a comprehensive treatment of the practical implementation 
of Rubin's multiple imputation, including software. 

In the context of public-use data files, there is a crucial 
separation between the data collector/imputer and general 
users. The two parties typically have different goals, data, 
information, and assessments and thus often adopt differ- 
ent models or even different modes of inference. Conse- 
quently, the imputation model is usually uncongenial to the 
user's analysis procedure; that is, the latter cannot be em- 
bedded into a (Bayesian) model that is compatible with the 
imputation model (Meng 1994a). One way to reduce this 
uncongeniality, of course, is to encourage more informa- 
tion exchange, such as having the imputer provide addi- 
tional imputation quantities beyond the imputed datasets 
(e.g., Meng 1994a; Robins and Wang 2000; Schafer and 
Schenker 2000). Although this is clearly a direction for 
more research, the practical constraints (e.g., confidential- 
ity, a user's choice of inferential mode) ensure the issue of 
uncongeniality will always remain. Consequently, much re- 
search is needed to establish a more flexible "multiparty" 
paradigm for comparing and evaluating statistical proce- 
dures, a paradigm that promotes most effective procedures 
given resource and practical constraints, rather than those 
that are misguided by impossible idealizations (see Rubin 
1996), even if such idealizations are sensible in a congenial 
environment. 

4. MCMC AND PERFECT SIMULATION 

Constructing unobserved variables-namely, the method 
of data augmentation (e.g., Tanner and Wong 1987) or of 
auxiliary variables (e.g., Besag and Green 1993; Edwards 
and Sokal 1988)-has played a critical role in the devel- 
opment of efficient Markov chain Monte Carlo (MCMC) 
algorithms. Some recent findings (e.g., Liu and Wu 1999; 
Meng and van Dyk 1999; van Dyk and Meng 2000) demon- 
strate the seemingly limitless potential of this method. Here 
I briefly describe one of its uses for perfect simulation, 
a rapidly growing area of MCMC-the list of references 
in http://dimacs. rutgers.edu/cdbwilson/exact is updated 

constantly. 
Perfect simulation, or exact sampling, refers to a class 

of MCMC algorithms that in finite time provide genuine 
and independent draws from the limiting (i.e., stationary) 
distribution of a Markov chain. This seemingly impossible 
task was made possible by the backward coupling method 
of Propp and Wilson (1996) which, in a very rough sense, is 
a clever stochastic counterpart of the deterministic method 
for finding the optimizer by comparing the value of the 
objective function at each point. Consequently, this class of 
methods is most effective with finite-state chains, though 
they are by no means restricted to such chains (e.g., Green 
and Murdoch 1999; Murdoch 2000; Murdoch and Green 
1998). 

Indeed, data augmentation can help us to transform a 
continuous state-space problem into a finite one. For exam- 
ple, suppose that we are interested in simulating from p(X) 
and we can augment this model to p(X, Y) such that both 
p(XIY) and p(YIX) are easy to sample and the augmented 
variable Y is discrete. We can then implement a two-step 
Gibbs sampler, which induces a marginal Markov chain on 
Y. Because Y has a finite state space, in some cases we can 
directly implement the backward coupling method with this 
discrete chain to obtain iid draws from p(Y). The desired 
iid draws from p(X) are then obtained easily by drawing 
from p(XIY) given the draws of Y's. If the state space of Y 
is too large for the direct backward coupling method, then 
one can try multistage backward coupling (Meng 2000). 
An immediate application of this approach is to Bayesian 
finite mixtures (joint work with D. Murdoch), where Y is 
the subpopulation indicator. Readers are referred to M0ller 
and Nicholls (1999) and the references therein for other 
methods of using discrete hidden variables to make perfect 
simulation effective for routine applications in statistics. 

5. MENDELIAN LIKELIHOODS AND 
RELATIVE INFORMATION 

It was exactly one century ago when Mendel's basic the- 
ory of heredity was rediscovered and gained general recog- 
nition (e.g., McPeek 1996; Thompson 1996), marking the 
real birth of modern genetics. The theory of Mendel (1866) 
provides general principles for probabilistic modeling of the 
inheritance of genes from parents to offspring. However, in 
common pedigree analyses, we typically miss some data 
on genotype information (e.g., allele types at some genetic 
markers), on the genealogical tree (e.g., whether an allele 
was from the paternal side or the maternal side), and even 
on phenotype (e.g., a disease status of an ancestor). Conse- 
quently, Mendelian modeling and the associated computa- 
tion are intrinsically problems of missing data, typically of 
very high dimension with exceedingly complex structures. 
Monte Carlo simulation is an effective general approach for 
such problems, but its efficiency depends on the choice of 
underlying data augmentation scheme. Two common, and 
sometime competing, choices are genotypes and inheritance 
vectors/meiosis indicators, which indicate whether the ori- 
gin of the gene is grandpaternal or grandmaternal (see Lan- 
der and Green 1987; Thompson 1994, 2000). Once we ob- 
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tain draws of the missing data Y,i, from P(YmislYobs,0) 
(e.g., via MCMC), the computation of the observed-data 
Mendelian likelihood ratio L(01 IYobs)/L(02 Yobs) can be 
dealt with effectively via bridge sampling (Bennett 1976; 
Jensen and Kong 1999; Meng and Wong 1996) and the 
reweighted mixture method of Geyer (1991). A currently 
challenging problem is to make such methods more ac- 
curate for computing the likelihood ratio when 01 and 02 
belong to different marker regions (Thompson 2000), and 
the warp bridge sampling method (Meng 1999; Meng and 
Schilling 1999) is a possible direction to explore, because it 
increases efficiency by increasing the overlaps of the under- 
lying densities by warping their shapes. The use of bridge 
sampling for assessing the convergence of Monte Carlo EM 
(Wei and Tanner 1990), which is useful for genetic linkage 
analysis (Guo and Thompson 1992), was detailed by Meng 
and Schilling (1996). 

Another important missing-data problem in genetic link- 
age analysis is estimating the amount of information in the 
observed data relative to the total amount of information 
that would have been available had there been no missing 
data. The statistical literature on the fraction of missing in- 
formation has been largely focused on its theoretical proper- 
ties (e.g., Dempster et al. 1977; Liu 1994; Meng 1994b) and 
methodological uses (e.g., Meng and Rubin 1991) in com- 
putation and estimation. However, the focus here is more 
on design, with the aim of directly guiding follow-up strate- 
gies; for example, using more genetic markers with existing 
DNA samples versus collecting DNA samples from addi- 
tional families, by assessing how much more information 
could be obtained if, say, we add more markers. An ad- 
ditional difference is that, because hypothesis testing is a 
useful screening tool for linkage studies (e.g., Thompson 
1996), we need to measure the relative information in the 
context of hypothesis testing. This requires considering the 
roles of both the null hypothesis (i.e., no linkage) and the 
alternative hypothesis (as specified by a trait model). Al- 
though this issue does not arise in the estimation context, 
the basic identities given by Dempster et al. (1977) are fun- 
damental for establishing a general theoretical framework 
for studying relative information in the context of hypothe- 
sis testing; details will be given elsewhere (as a joint paper 
with A. Kong and D. Nicolae). 

6. MAPPING THE BRAIN AND THE UNIVERSE 

Image reconstruction, a critical component in many med- 
ical and physical studies, is fundamentally another class 
of missing data problems. In the medical imaging context, 
perhaps the best-known example to statisticians is positron 
emission tomography (PET), for which the use of the EM 
algorithm signifies statisticians' direct involvement in the 
developing stage of the technique (e.g., Lange and Carson 
1984; Shepp and Vardi 1982). The overview given by Vardi, 
Shepp, and Kaufman (1985), using brain mapping as an ex- 
ample, showed the intrinsic missing-data nature of PEiT, 
for we cannot directly observe the count of photons emit- 
ted from each pixel (i.e., a location in the brain). In ad- 
dition, we face missing-data problems such as attenuation 

by the body's tissues and the escape of photons that travel 
along lines that do not intersect with any detector. As with 
linkage analysis, the choice of data augmentation schemes, 
or hidden-data spaces, has a direct impact on the speed 
of computation. As an example, Fessler and Hero (1995) 
discussed clever choices of hidden-data spaces that have 
made EM-type reconstructions more practical, overcoming 
the slowness of early EM reconstructions that use individ- 
ual pixel counts as hidden states. An algorithmic analysis 
of the method of Fessler and Hero was given by Meng and 
van Dyk (1997) in the framework of the AECM algorithm. 

Similar imaging techniques also play an important role 
in astrophysics, where the use of EM-type algorithms, such 
as the Richardson-Lucy algorithm (Lucy 1974; Richardson 
1972), predates the publication of Dempster et al. (1977), 
though the development of fast EM and related Bayesian 
imaging algorithms has just begun (e.g., van Dyk 1999; van 
Dyk, Connors, Kashyap, and Siemiginowska 2001). The 
Poisson spectral imaging model, designed to analyze data 
from the Chandra observatory (lunched on the space shut- 
tle Columbia, July 1999) and other upcoming detectors, is 
an example of needing efficient methodologies for handling 
data from the new generation of high-resolution satellite 
telescopes. The Poisson model here is designed to sum- 
marize the relative frequency of photon energies (x-ray or 
-y-ray), collected as counts in a number of bins, arriving at a 
detector. The detected photons originate from many sources 
(e.g., a "continuum" and a number of "line profiles") and 
have been subject to background contamination, instrument 
response, and stochastic absorption. Each of these distor- 
tions requires a layer of modeling (e.g., Poisson, multino- 
mial), forming an overall multilevel hierarchical model for 
the observed binned energies, a typical situation with real- 
data latent-variable modeling. Each of these levels, as well 
as any combination or function of them, is a candidate for 
data augmentation in fitting the model. An efficient choice 
can substantially improve the computational speed; van Dyk 
(1999) and van Dyk and Meng (1999) gave details and em- 
pirical evidences. 

7. MILLENNIUM WISHES 

The topic of missing data is as old and as extensive as 
statistics itself-after all, statistics is about knowing the 
unknowns. It is thus impossible in a few pages to discuss 
all of the main areas of past and present research. Areas 
not discussed here include, among many others, noniterative 
methods (e.g., Baker, Rosenberger, and DerSimonian 1992; 
Rubin 1976b), direct maximization of observed-data likeli- 
hoods (e.g., Molenberghs and Goetghebeur 1997), pattern- 
mixture models (e.g., Little 1993), bootstrap methods (e.g., 
Efron 1994), estimating equation approaches (e.g., Heyde 
and Morton 1996; Robins, Rotnitzky, and Zhao 1994; Lip- 
sitz, Ibrahim and Zhao 1999), and potential outcome in 
causal inferences (e.g., Barnard, Du, Hill, and Rubin 1998; 
Rubin 1978). Consequently, the 82 references listed in this 
article are really just the tip of the iceberg-even with many 
missing articles, Meng and Pedlow (1992) found more than 
1,000 EM-related articles, about 85% of which were in non- 
statistical journals. The number must have doubled by now. 
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Much remains to be done, however. The most pressing 
task, in my opinion, is placing further emphasis on the gen- 
eral recognition and understanding, at a conceptual level, 
of the necessity of properly dealing with the missing-data 
mechanism, as part of our ongoing emphasis on the im- 
portance of the data collection process in any meaningful 
statistical analysis. The missing-data mechanism is in the 
blood of statistics, and it is the nastiest and the most de- 
ceptive cell, especially for nonstatisticians-why on earth 
should anyone be concerned with data that one does not 
even have? I conclude with an excerpt from a referee's re- 
port of Tu, Meng, and Pagano (1994), to make one of my 
wishes for the new millennium. Reports like this will soon 
be of great value, but only on auction. 

The statement, "The naive approach of ignoring the miss- 
ing data and using only the observed portion could provide 
very misleading conclusions" is nonsense to me (and I think 
the authors should also recognize it as nonsense in the real 
world). Similarly, what does it mean, "When analyzing such 
missing data, . . ."; if the data are missing, you can't analyze 
them. Except for old, rigid, demanding, clunky data treat- 
ment methods like the Yates algorithm (and except for the 
ridge problems discussed), it is unlikely that ". . . the analysis 
could still be very complicated due to the unbalanced struc- 
ture of the observed data .. ." (page 4). Does any chemome- 
trician every (sic) worry about making "it possible to utilize 
computer routines already developed for complete-data max- 
imization"? I don't think any chemomnetricians every (sic) use 
data-specific data-treatment methods. 

(To purchase a copy of this referee report, please dial M 
for Meng!) 
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