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Fitting Full-Information Item Factor Models and an 
Empirical Investigation of Bridge Sampling 

Xiao-Li MENG and Stephen SCHILLING 

Based on item response theory, Bock and Aitken introduced a method of item factor analysis, termed full-information item 
factor (FIIF) analysis by Bartholomew because it uses all distinct item response vectors as data. But a limitation of their fitting 
algorithm is its reliance on fixed-point Gauss-Hermite quadrature, which can produce appreciable numerical errors, especially in 
high-dimension problems. The first purpose of this article is to offer more reliable methods by using recent advances in statistical 
computation. Specifically, we illustrate two ways of implementing Monte Carlo Expectation Maximization (EM) algorithm to fit 
a FIIF model, using the Gibbs sampler to carry out the computation for the E steps. We also show how to use bridge sampling to 
simulate the likelihood ratios for monitoring the convergence of a Monte Carlo EM, a strategy that is useful in general. Simulations 
demonstrate substantial improvement over Bock and Aitken's algorithm in recovering known factor loadings in high dimensions. 
To test our methods, we also apply them to data from LSAT and from a survey on quality of American life, and compare the 
results to those from the fixed-point approach. Using the FIIF model as a working example, the second purpose of this article is 
to provide an empirical investigation of the theoretical development of Meng and Wong on bridge sampling, an efficient method 
for computing normalizing constants. In contrast to importance sampling, which uses draws from one density, bridge sampling 
uses draws from two (or more) densities and then introduces intermediate densities to "bridge" them. Our empirical investigation 
confirms the results of Meng and Wong and echoes the empirical evidences documented in computational physics; that is, bridge 
sampling can reduce simulation errors by orders of magnitude when compared to importance sampling with the same simulation 
sizes. 

KEY WORDS: Factor analysis; Gibbs sampler; Item response theory; Latent variables; Monte Carlo Expectation Maximization 
algorithm; Normalizing constants; Probit model. 

1. INTRODUCTION 

Questionnaires and tests purporting to measure attitudes, 
constructs, and abilities constitute a large part of the data 
obtained in social survey, educational, and psychological re- 
search. Often a subject's responses to a questionnaire or test 
items are dichotomous and are hypothesized to be intrinsi- 
cally determined by a small number of underlying latent 
factors. Within such a theoretical framework, an effective 
method for exploring underlying factor structures is cru- 
cial. Of the various methods that have been proposed, item 
factor analysis seems to be most researched and used in re- 
lated fields (e.g., psychology, educational testing). In these 
fields, common methods of item factor analysis fall into 
two categories: those based on phi or tetrachoric correla- 
tion matrices (e.g., Cristofferson 1975; Muthen 1978) and 
those fitting latent probit or logit models (e.g., Bartholomew 
1987). The full-information item factor (FIIF) approach of 
Bock and Aitken (1981) belongs to- the latter category. In 
its probit form, the probability of a correct response for 
a single item under a FIIF model is a normal-ogive func- 
tion of the subjects score on the hypothetical latent factors. 
The model is thus a multidimensional normal-ogive item 
response model or, alternatively, a multivariate latent pro- 
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bit regression model, with the hypothetical latent factors 
serving as regressors. 

The strategies adopted by Bock and Aitken (1981) for fit- 
ting a FIIF model were to treat the latent factors as missing 
data, and then to apply the Expectation Maximization (EM) 
algorithm (Dempster, Laird, and Rubin 1977), with the E 
step implemented by numerical integrations via fixed-point 
Gauss-Hermite quadrature. This turns out to be a prob- 
lematic approach, especially in high-dimensional problems. 
First, their data augmentation scheme (i.e., augment to in- 
clude the latent factors) is not ideal for implementing EM, 
because the corresponding complete-data model is not from 
an exponential family; thus the numerical inaccuracy in im- 
plementing the E step is more likely to create artificial 
modes for the objective function to be maximized by the 
M step, a generally not well-recognized problem of using 
EM with a nonexponential complete-data model (see Meng 
and Rubin 1992). Second, their M step still needs numerical 
iterations, as is typical when using EM with a nonexponen- 
tial complete-data model. Third, the numerical quadrature 
method used for the E step can be unreliable, especially for 
high-dimensional integrations. As a result, their algorithm 
can produce estimates with numerical errors that are large 
enough to alter the grouping of test items, as we illustrate 
in Section 3. 

The first purpose of this article is to demonstrate how 
recent advances in computational tools in statistics can of- 
fer more reliable algorithms for fitting the FIIF model in 
multiple dimensions. (For the one-dimensional problem, see 
Albert 1992.) Specifically, we discuss two applications of 
the Monte Carlo EM (MCEM) algorithm (see, e.g., Wei and 
Tanner 1990) with its E step implemented via the Gibbs 
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sampler (see, e.g., Geman and Geman 1984) to compute 
the maximum likelihood estimators (MLE's) for the FIIF 
model; the second application avoids all three problems 
discussed in the previous paragraph. Moreover, we demon- 
strate how the method of bridge sampling (see, e.g., Meng 
and Wong 1996) can be used to determine the convergence 
of MCEM, a problem encountered in other applications, 
such as fitting genetic models with MCEM (see, e.g., Guo 
and Thompson 1992 and Irwin 1994). 

EM-type algorithms, including MCEM, and the Gibbs 
sampler (or, more generally, the iterative simulation) have 
been the focus of much attention in recent literature (see, 
e.g., Gelfand and Smith 1990; Little and Rubin 1987; Liu 
and Rubin 1994; Liu, Wong, and Kong 1994a,b; Meng 
1994a; Meng and Pedlow 1992; Meng and Rubin 1991, 
1992, 1993, 1994; Tanner 1991; Tanner and Wong 1987; 
Weeks and Lange 1989; Wei and Tanner 1990; the discus- 
sion papers in Statistical Science (Nov. 1992) and in Jour- 
nal of the Royal Statistical Society, Ser. B (No. 1, 1993), the 
papers in the special theme topic on "EM and Related Al- 
gorithms" in Statistica Sinica (No. 1, 1995), and many other 
references cited in these papers). Therefore, in this article 
we list only implementational steps that are directly related 
to our problem and refer interested readers to the aforemen- 
tioned literature for general descriptions and discussions of 
these methods. However, the technique of bridge sampling, 
which can be viewed as a general formulation of the accep- 
tance ratio method in physics for computing free-energy 
differences (see, e.g., Bennett 1976 and Voter 1985), is rel- 
atively new to statistical researchers, and its general prop- 
erties have essentially been investigated only theoretically 
(see, e.g., Gelman and Meng 1994 and Meng and Wong 
1996). Therefore, the second purpose of this article is to 
investigate the performance of bridge sampling in the con- 
text of computing likelihood ratios from a FIIF model. Our 
empirical investigation follows the theoretical development 
provided by Meng and Wong (1996) and supports their re- 
sults and predictions, especially on the potential of bridge 
sampling for substantial reduction of Monte Carlo errors 
(e.g., by a factor of 5 to 30 in the examples of this arti- 
cle) when compared to importance sampling with the same 
simulation sizes. 

A few disclaimers are in order before we proceed. Re- 
cent advances in statistical computation make it easier to 
fit complicated models, but could also encourage abusive 
analyses-fitting a complicated model simply because one 
has the computational ability to do so. We must all make 
good effort to avoid and discourage such analyses, but that 
does not imply that we should "hide" powerful computa- 
tional tools from general practitioners and let them use in- 
ferior techniques to fit "wrong" models. Introducing nu- 
merical errors into problematic modeling cannot produce 
more meaningful results but can only make model evalua- 
tion and criticism difficult or even impossible. That is why 
we feel the need to reduce the numerical errors in fitting 
FIIF models, especially in high dimensions. Like any sta- 
tistical method, factor analysis can be useful and can be 
abused (see Maxwell 1983 and citations therein). Our pur- 

poses here are purely computational; besides showing how 
to fit a FIIF model more accurately, we also use this model, 
as it is simple enough to describe but complicated enough 
to require these strategies, to illustrate some computational 
methods that are useful in general (e.g., monitoring conver- 
gence of MCEM). 

We also do not claim that the fitting algorithms presented 
here are the best possible ones. Such a claim usually is not 
very meaningful, because the effectiveness of an algorithm 
as a tool depends on who is using it. In the hands of a nu- 
merically sophisticated analyst, the Gauss-Hermite quadra- 
ture method can be made very accurate; in fact the whole 
EM formulation is not necessarily needed if the analyst 
has a sophisticated optimization program to directly max- 
imize the intended likelihood function. The methods that 
we present here, especially the second MCEM, are easier 
for many users who are not numerically sophisticated and 
whose goal is not computation. 

Finally, although we discuss only point estimates to keep 
our presentation within a suitable length and to make direct 
comparisons with work of Bock and Aitken (1981), we do 
not imply that point estimates are the end of our analysis. In 
fact, the methods here (e.g., the Gibbs sampler) can be easily 
modified to obtain the posterior distributions of the param- 
eters of interests (as in Albert and Chib 1993). Moreover, 
one can use these simulation methods to perform model di- 
agnoses using the posterior predictive check, as discussed 
by Rubin (1984) and implemented by Gelman, Meng, and 
Stern (1996) (also see Meng 1994b). We generally feel that 
using iterative simulation for just computing point estima- 
tors is a bit wasteful. We do recognize, however, that there 
is some reluctance or even resistance to using full Bayesian 
methods, especially in fields outside of statistics. We feel 
that it is healthy for the evolution of our ability to deal with 
real-life problems to be receptive to different perspectives, 
and thus we have no objection if anyone (including our- 
selves) is willing to use such "overkill" methods, as long 
as they indeed solve a statistically relevant computational 
problem. 

2. FITTING A FULL-INFORMATION ITEM 
FACTOR MODEL 

2.1 Model Description 

In a FIIF model, subjects' latent factors are tied to 
the probabilities of correct response for items through the 
normal-ogive functions. The model can be derived by as- 
suming that Thurstone's d-factor model (Thurstone 1947) 

T ) 
M3 =-- A 1ZzI + * + adJZ2d + E6j Z_ a3 + 1 (1) 

describes an unobservable "response process," y,2 instead 
of an empirically manifest variable. The process yields a 
correct response for person i to item j when y,j equals or 
exceeds a threshold parameter aj. Assuming that E,j follow 
a N(O, o') distribution, the probability of an item score, 
uiX = 1, indicating a correct response from person i with 
(unobserved) factor zi (z21 , ..., z2d)T is given by 

Pr(Szt2 1 lz2,(aJ,oJ7) 

-Pr{y2}?y >>z2,a,uX}z{(zla~+by), (2) 
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where 1 is the cdf of N(O,1),aj = (aij,...,adj)T with 
amj = cxmj/uj (m = 1,...,d) and bj = -'yj/ J. Here 

bj is called the item intercept for item j,-yj is called the 
item difficulty, amj is called the item slope for factor m, 
and camj is called the item factor loading for factor m. No- 
tationally, we let b = (bi,... bj)T, where J(> d) is the 
number of items, and let A be a d x J matrix whose jth 
column is aj,j = 1,...,J. We then call 0 {A,b} the 
set of item parameters. Thus a d-factor FIIF model with J 
items has J(d + 1) parameters, and only these parameters 
are estimable from the observed score matrix U = (uij); 
for example, bj = -yjo/rj is estimable but o%j is not. 

Given the link function in (2), the FIIF model also as- 
sumes that, conditional on a person's (vector) factor z 
and model parameter 0, responses to different items are 
independent of each other. Consequently, given zi and 
0, the probability of a particular response pattern ui = 

(ui, ... ., Uij)T from the ith person is 

Pr (ui Izi, 0) 

J 
17 [4b(ZTaj + bj)]uij [1- _)(ZiTaj + bj)]-ui3 
j=1 

Assuming independence between persons, the likelihood 
function of 0 given responses and latent factors from all 
n persons then is 

n J 

L(0JZ, U) = f J1 [4(zTaj + bj)]Ui3 

i=1 j=1 

X [I _ 4D(ziTaj + bj )] _13- (3) 

where Z = (z,.. , zn )T is the n x d (latent) factor matrix. 
Because Z = (Z.... , znj)T is not observable, the FIIF 

model assumes z 1, . . Zn are independently and identically 
distributed according to the standard d-variate normal dis- 
tribution, Nd(0,I). Integrating over zi's in (3) yields the 
actual likelihood from the FIIF model given U, 

n J 

L(0tU) = flEz{ J [4b(ZTaj + bj)]U,3 
i=1 j=1 

X [1 -_ (zTaj + bj)]1U },3 (4) 

where the expectation, Ez, is with respect to z - Nd (0,I). 
From (4), we see that subjects with the same response pat- 
tern, ui, contribute equally to the likelihood, and thus (4) 
can be simplified to 

no J 

L(0JU) = | XEz fl[4b(zTaj + bj)]U%3 
=1 - j=1 

where, for notational simplicity, i now indexes distinct re- 
sponse pattern, si is the number of the subjects who share 
ui, and no(< min{n, 2J}) denotes the number of the dis- 
tinct response patterns. The importance of reexpressing (4) 
as (5) is to recognize that the FIIF model cannot distin- 
guish subjects with the same response pattern, allowing us 
to assign one latent variable z to all subjects that share a re- 
sponse pattern and thus increase computational efficiency. 
Therefore, U is subsequently (notationally) reduced to a 
no x J score matrix corresponding to the distinct response 
patterns, and Z is reduced accordingly. Maximizing L(OJU) 
in (5)-that is, finding the MLE of 0 for a given U-is the 
first objective of this article. 

2.2 Two EM Implementations for Estimating 
the Item Parameters 

Bock and Aitken (1981) originally proposed estimating 0 
via the EM algorithm by treating {U, Z} as the "complete" 
data and the latent variable Z as the "missing" data. Treat- 
ing latent variables as missing data is a common strategy 
in the EM literature (see, e.g., Meng and Rubin 1996 and 
Rubin and Thayer 1982), and the usefulness of such a strat- 
egy lies in whether the ML estimation given the complete 
data would be easier. In the current setting, if both U and Z 
were observed, then maximizing the complete-data likeli- 
hood, given by (3), is equivalent to maximizing J separate 
functions, each involving only d + 1 parameters, namely 
{aj, b}, j = 1, ... J. In contrast, directly maximizing the 

L(0IU) of (5) requires handling all J(d + 1) parameters si- 
multaneously. In typical FIIF applications, J can range from 
10 to 1,000, yielding up to thousands of item parameters 
even with only a few factors (e.g., 4). Implementing stan- 
dard numerical procedures, such as the Newton-Raphson 
algorithm, for very high-dimensional problems is computa- 
tionally intractable. Thus Bock and Aitken's EM formula- 
tion simplifies the task for maximization. 

Unfortunately, in this setting the simplicity of the M step 
comes partially at the expense of the computation of the E 
step. The E step requires taking the conditional expectation 
of L(0IZ,U) over Z given U and the parameter estimate 
from the previous M step, 0(t), where t indexes iteration. 
Using the notation of Dempster et al. (1977), the E step 
must compute 

Q(00(t) ) 

J no 

- , {tE, si{uijE[log D(ziTaj + b 
j=1 i=1 

+ (1 - uij)E[1og(1 - 4b(ZiTaj + bj))lui, 0(t)]}} 

(6) 

where the expectations are with respect to f(ziIui, 0(t)), i 

1,...,nO. Bock and Aitken (1981) proposed using fixed- 
point Gauss-Ilermite quadrature to compute these d- 
dimensional expectations (integrations). But even with mod- 
erate d (e.g., 5) this approach becomes unwieldy, as the 
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number of quadrature points required increases exponen- 
tially with the number of factors. Furthermore, as is well 
known, the accuracy of numerical integrations diminishes 
rapidly with the dimension (see Sec. 3). On the other hand, 
Monte Carlo simulations are relatively stable in high di- 
mensions, which leads to the idea of implementing the E 
step via Monte Carlo. 

Before we discuss implementing the E step via simu- 
lation, we point out that there is a different-in fact, more 
ideal-way of implementing EM for this problem. The idea 
here is to further augment {U, Z} to {U, Z, X}, where the 
new "data" X = (xij) are assumed to have independent 
(with respect to both i and j) conditional normal distribu- 
tions given Z: 

xij i,i aj, bj, -N(ziTaj + bj, ) 

This data augmentation scheme is inspired by (2), where 
we have 

Pr(uij = |zi, ajtbj) 

Pr{xij > ?lzi, aj, bj}I = 4(z Taj + bj). 

In other words, we define xij such that uij = 
l(X'3>)1 

where 1A is the indicator function of a set A. Such a data- 
augmentation scheme has been used for handling similar 
probit models (see, e.g., Albert and Chib 1993 and Mc- 
Culloch and Rossi 1991). Implementing the M step in this 
setting is almost trivial. If both X and Z were observed, 
then the MLE's of A and b can be obtained via J separate 
linear regressions, because 

R. Iaj, bj, Z ,9Nn (Zaj + bjl1, I), 
independently for j = 1, ... .I J 

where xj (Xlj,.... ,Xn0j)T and 1 is a vector of Is. 
Furthermore, here the E step involves computing only 
the conditional expectations of the complete-data sufficient 
statistics, {ZTZ, ZTX, lTX, lTZ}, given U and 0(t). Con- 
sequently, the current EM is less vulnerable to numerical 
instability. 

To facilitate the computation, we let xT be the ith row 
of X,i 1,... no, and V (I +AATA Then, under 
our model specification for {X, Z}, we have 

xilO , iid Nj(b, I + ATA) (7) 

and 

zijxi,0 , ind. Nd(VA(xi-b),V), i = 1,...no. (8) 

We further let e(ui I0) = E[ (xi-b) ui, b, A] and D(ui I0) 
= E[(xi - b)(xi - b)TIui,b, A]. Then it is easy to verify 
from (7) and (8) (recall that si is the number of subjects 
who share ui) that 

no 

E[1TXIU,0] Z si[eT(uio)?+ bT], (9) 

E[1TZlU,O 0]= sieT(ui|O)1ATVT, (10) 

i=l1 

and 

nO 

E[ZTZIU, 0] = V + VA E sjD(uj 0) ATVT. (12) 
Li=l _ 

Computing e(uI0) and D(uj0) is equivalent to computing 
the first two moments of a truncated multivariate normal 
with general covariance structures, because uij = i(x,j>o?. 
This is known to be a difficult task, especially when the 
dimension is high, and has been often carried out via Monte 
Carlo simulations (see, e.g., Stein 1992); the Gibbs sampler 
described in Section 2.3 is an easy approach to conducting 
such a simulation. 

For general users, we recommend the second EM, be- 
cause its M step is trivial to implement and its E step is 
also simpler and more stable. It is particularly attractive if 
a user has access to subroutines that compute (accurately) 
the moments of a truncated multivariate normal as functions 
of the truncating points; the recurrence relations given by 
Gupta and Tracy (1976) can be useful for establishing such 
subroutines. The disadvantage of the second EM is that it 
converges slower, because it has a higher fraction of missing 
information (Dempster et al. 1977; Meng and Rubin 1991). 
For the examples in Section 3, we implemented both EM 
algorithms (using the Gibbs sampler of Sec. 2.3 to perform 
the E steps) and found that the second EM takes about 
twice as many iterations to converge as the first EM. But 
compared to the effort and care one must take to implement 
the first EM, the trade-off is well worthwhile. However, to 
compare fairly with Bock and Aitken's (1981) approach, all. 
of the numerical results presented in Section 3 are based on 
the first EM; the results from the second EM are the same 
to the extent allowed by the Monte Carlo errors introduced 
at the E steps. 

2.3 Implementing the E Step via the Gibbs Sampler 

To implement a Monte Carlo E step, which simulates the 
expected complete-data log-likelihood function (e.g., (6)), 
we need draws from f(ZIU, 0) for the first EM and from 
f (X, Z I U, 0) (or only from f (Xl U, 0)) for the second EM. 
Directly making draws from these conditional distributions 
is difficult, but making draws from f(ZIX, U, 0) is trivial, 
because f(ZIX, U, 0) f(ZIX,0), which is given by (8). 
On the other hand, drawing from f(XIZ, U, 0) is the same 
as drawing from no x J univariate truncated normal dis- 
tributions, because given Z, U, and 0, xij's are independent 
N(zTaj + bj, 1) truncated at the left by zero if uij 1 
and at the right by zero if uij 0. This immediately sug- 
gests using the Gibbs sampler to iterate between draws from 
f(Z IX, U, 0) and from f(X IZ, U, 0) until the equilibrium 
distribution f(X, ZIU, 0) is reached. In our implementa- 
tions, this Gibbs sampler mixed very fast, with autocorrela- 
tions typically decaying to near zero after three iterations. 
In the examples in Section 3, we discarded the first ten iter- 
ations, and then chose every fifth iteration afterward until 
the required number of draws, K (e.g., 25), was reached. We 
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used every fifth draw to produce approximately K indepen- 
dent draws from the desired joint density f(X, Z IU, 0). It 
is not necessary to achieve independence to have consistent 
Gibbs sampler estimates, but we did so because the Gibbs 
sampler here is cheap compared to the subsequent function 
evaluations, especially for the first EM. 

Once we have K draws, {X t), Z t), k = 1, ... , K}, from 
f(X, Z U, 0(t)), where 0(t) - {A(t), b(t)} is from the tth M 
step, we use them to form Monte Carlo estimates for the 
expected complete-data log-likelihood function or, equiv- 
alently, the expected complete-data sufficient statistics for 
the second EM. Specifically, for the first EM, we replace 
(6) by 

QK(O0 ) 

J nO K 

= E S i4 E log.([Z(0]T a, +b3) 

+ K 
K 

+ I' E log[l-_.b([Z(0]T a, + bj)]}, 
k=1 i 

where Zkj (Z (t,... ., Z )T. The next M step then max- 
imizes this estimated log-likelihood function to obtain the 
next iterate 0(t+?); in our examples we use a Newton- 
Raphson subroutine to maximize each of the J terms sum- 
ming up to QK(010(t)). 

For the second EM, there are two ways of using the 
draws, {Xt), Z(t) k = 1,..., K}, for implementing the 
E step. The first way is simply to replace the complete- 
data sufficient statistics, {ZTZ, ZTX, jTX, 1TZ}, by 
their corresponding sample averages from {Xt) Z(t) k = 
1,.. ., K}. The second way is to use only {X(t), k 
1,..., K} to compute 

e(u0(t)) - + E3 [xi k- 

D(uiJ(t)) + E [x(t) - b(t)][x(t) -b(t)T, 
k=l 

and substitute them for e(ui 0) and D(ui,0) in (9)-(12), 
where b, A, and V are also replaced by their counterparts 
from 0(t). We recommend the second method; whenever 
possible, one should use "Rao-Blackwellization". The only 
disadvantage of the second approach is the requirement of 
inverting a d x d matrix to produce V. But in typical appli- 
cations, the number of factors, d, is well within, say, 10 (the 
point of FIIF is to identify a few key factors), and inverting 
matrices of such sizes is an easy task now. 

We point out that if one has access to a subroutine that 
can make draws directly from a truncated multivariate nor- 
mal distribution with arbitrary mean and covariance ma- 
trix, then one should replace the foregoing Gibbs sampler 
scheme by a noniterative simulation scheme (although the 
subroutine itself may be based on an iterative scheme). 
Specifically, one can first use such a subroutine to draw 

from f(X U, 0), a truncated multivariate normal as im- 
plied by (7), and then, given the drawn X, draw Z from 
f(Z IX, U, 0) according to (8). However, drawing directly 
from a truncated multivariate normal distribution with ar- 
bitrary mean and covariance matrix is not as easy as one 
might first think, especially when the truncated region is 
small and/or the dimension is high, both of which occur 
for the FIIF applications. In contrast, when conditioning on 
both Z and U, all elements of X are mutually independent, 
and the problem then becomes to simulate from many uni- 
variate truncated normal distributions. In our implementa- 
tion we used an adaptive rejection method for drawing from 
an univariate truncated normal. When the truncated region 
was large, we used straightforward rejection, and when the 
truncated part was in a small tail, we used an exponential 
envelope. Thus the Gibbs sampler allows us to transform a 
high-dimensional problem to many one-dimensional prob- 
lems. In fact, the Gibbs sampler approach described here 
provides an efficient way (because it mixes fast) to simu- 
late from a truncated multivariate normal distribution with 
covariance matrix in the form of I + BTB; see (7). 

2.4 Determining Convergence of MCEM 
via Bridge Sampling 

Because of the simulation variability introduced at its E 
step, an MCEM sequence typically exhibits random fluc- 
tuation around a stationary point 0*, even on convergence. 
Thus, unlike standard implementations of EM, it is gen- 
erally difficult to terminate an MCEM iteration according 
to the criteria that the (relative) differences between con- 
secutive iterates are within a desired level. Wei and Tan- 
ner (1990) recommended plotting 0(t) against t, terminat- 
ing the EM iterations when the plot exhibits fluctuation 
around some line 0 = 0*. But hundreds or even thousands of 
item parameters are common in FIIF applications, making 
plotting individual components of 0(t) impractical. A more 
practical graphical approach is to plot some functions of 0(t) 

or of both 0(t) and 0(t+?). For instance, in our examples we 
plot 8(t) = max,{ b(tI+) - b(t) } and 6(t) = max,{ la(t+l) 

a(t) } against t for m = 1, d (see Figs. 2 and 4). Another 
function is the log-likelihood value or the difference of the 
consecutive log-likelihood values. For inference purposes, 
it is always desirable to evaluate the likelihood. Further- 
more, the celebrated feature of EM-namely, the monotonic 
convergence in likelihood-allows us to detect implemen- 
tational errors and/or numerical inaccuracy if a likelihood 
plot violates the monotonicity. 

For MCEM, monitoring the likelihood values is not a 
trivial task. First, even without implementation or numeri- 
cal errors, the log-likelihood can still "zigzag" along the it- 
erates (although it should show an increasing trend) and can 
fluctuate around an asymptote, to the extent allowed by sim- 
ulation variability. Second, the fact that we must use sim- 
ulation to implement the E step generally implies that we 
cannot evaluate the actual likelihood analytically and thus 
must numerically compute the log-likelihood values needed 
for plotting. The second problem is particularly problem- 
atic, because if we cannot compute those likelihood values 
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with good accuracy, then we will not be able to tell from the 
log-likelihood plot whether any large fluctuation is due to 
nonconvergence of MCEM, to implementation errors, or to 
large numerical errors in computing the likelihood values. 
We previously had faced such a problem when we used the 
conventional importance sampling approach to estimate the 
likelihood values, whose large variabilities made it impos- 
sible to detect the convergence of an MCEM (e.g., Fig. 5). 
The bridge sampling approach presented here enabled us 
to resolve this problem. Because this approach is relatively 
new and can be applied to monitor convergence of MCEM 
in general, we give a general description and treat the ap- 
plication to FIIF as a special case. 

Let Y ={Yobs, Ymis} be the complete data under an 
EM setting, where Yobs is the actual observed data and 
Ymis is the missing data (or latent variable). In a typi- 
cal MCEM setting, the complete-data likelihood function 
L(OIY) = f(YIO) is easy to evaluate, but the observed- 
data likelihood L(OlYobs) = f(YobsIO) is not. In addi- 
tion, we can make draws from the conditional density 
f(Ymis Yobs, 0), as required by the Monte Carlo E step. 
Now the simple identity 

f(YO) -L(OIY) (3 
f(YmisIYobs,0) f (Yb ) L(0 (13) 

indicates that computing L(tYyobs) is equivalent to com- 
puting the normalizing constant of the conditional density 
of f(YmisIYobs, 0), by viewing L(0IY) as an unnormalized 
density for Ymis* Because in monitoring the convergence 
of a likelihood only the changes in likelihood values are 
of interest, this is a setting where we want to evaluate ra- 
tios of normalizing constants of densities from which we 
have draws. This setting appears in a variety of problems, 
as discussed by Meng and Wong (1996). 

Common methods for such a problem are to use the fol- 
lowing identity (e.g., Geyer and Thompson 1992): 

=2 ElU2aJ (14) [l -2(w)j 
ci 1 q (w) (4 

where P1(w) qi(w)jIcl, e Ql,l = 1,2 are two densi- 
ties; qi(w),l 1,2 are easy to evaluate; and cl,i = 1,2 
are unknown normalizing constants. In (14) the expecta- 
tion is with respect to the first density, P1, and with draws 
{twi, ., Wlnl } from P1, we can use the sample average of 
{q2(Wlj)jql(W13), j = 1,. . I nI} to estimate the desired ra- 
tio, r = c2jcI. Because this is a special case of importance 
sampling, the variance of the estimator increases rapidly 
with the chi-squared distance between P2 and P1 

In standard importance sampling applications, we often 
have draws from only one trial density, and thus the afore- 
mentioned problem is inevitable once the trial density is 
chosen. In the current setting, however, it is often equally 
easy to make draws from qi as from q2. For the FIIF model, 
making adraw from f(X, ZiU, 0) at 0 01 and at 0 02 
requires the same amount of computation. Motivated by this 
observation, Meng anld Wong (1996) suggested constructing 

estimators of r based on the identity 

C2 El[q2(w) a(w)j (15) 
cl E2[qj(w)a(w)] 

where a is an arbitrary function satisfying 0 < 
$(w)pI(w)p2(w)dw\ < oc. Identity (15) allows us to use 
draws from both P1 and P2 and to use the a function as 
a link to "bridge" the two densities, thus achieving better 
precision compared to estimators based on (14); see Section 
4 for further discussion. 

For reasons discussed later, we chose a = (vq- q2)-1 for 
our FIIF applications. To be specific, consider the first EM. 
We first notice from (5) that an actual likelihood ratio can 
be expressed as 

L(021U) 
no ?2 L(02Iui)- 18 

L(01 U) LO [L j(102) (16) 

Now viewing f(zIu2,O1) as P1 and L(01Iu2) as c,l 1,2, 
we can apply bridge sampling to estimate each individual 
ratio in (16) by using (see (3)) 

J 
L(01 Iz, ui) 171 (ZTka(l) + b(l) )]zU' A 

J=1 

X [1 _ (zTa() a+ b,))11-uj (17) 

as the unnormalized densities, ql, where the superscripts of 
aj and b, correspond to the subscript of 0. Now suppose 
that we have K draws from each of f (zI u, Of), denoted by 

z(), k = K}. Then a bridge sampling estimate for 
the ith ratio, L(02 ju,)/L(0iju2), using a = (qq2) -1, is 
given by 

ZK~1 [L(O2iZK U?)1 1/2 

K L(02 Z 1 U /) Ek=1 L(02 lz( ,u,) j 

where L(0lz, u?) is from (17). The estimate for the log of 
the ratio of (16) is then 

9K(O2,01) = siogr2(02, 01) (19) 
il 1 

In determining the convergence of a MCEM, we plot 
gK(0(t?), 0(t)) against t, the index for iteration. If the 
plot shows a curve converging from above to zero (be- 
cause EM should increase the likelihood), with a fluctua- 
tion that can be expected from the simulation sizes, then 
this is an indication that an approximate convergence has 
been achieved (see the examples in Sec. 3). We emphasize 
that with MCEM, approximate convergence is all we can 
obtain. Fortunately, this is almost always enough for the 
purpose of statistical inference. 
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Table 1. Estimates and True Values for Example 1 

Factor 1 Factor 2 

Item GHEM MCEM True GHEM MCEM True 

1 -.543 -.519 -.52 -.274 -.321 -.34 
2 -.595 -.567 -.52 -.339 -.388 -.34 
3 -.545 -.583 -.52 -.265 -.290 -.34 
4 -.520 -.556 -.52 -.318 -.354 -.34 
5 -.526 -.559 -.52 -.272 -.307 -.34 
6 -.530 -.565 -.52 -.334 -.368 -.34 
7 -.526 -.554 -.52 -.344 -.376 -.34 
8 -.497 -.530 -.52 -.361 -.391 -.34 
9 -.404 -.513 -.52 .409 .388 .34 

10 -.397 -.482 -.52 .348 .327 .34 
11 -.409 -.510 -.52 .388 .364 .34 
12 -.502 -.602 -.52 .406 .359 .34 
13 -.386 -.492 -.52 .377 .341 .34 
14 -.350 -.451 -.52 .435 .400 .34 
15 -.371 -.476 -.52 .334 .321 .34 
16 -.385 -.488 -.52 .406 .380 .34 
17 .391 .476 .52 -.334 -.299 -.34 
18 .455 .557 .52 -.416 -.369 -.34 
19 .462 .569 .52 -.361 -.348 -.34 
20 .446 .549 .52 -.377 -.350 -.34 
21 .445 .554 .52 -.384 -.366 -.34 
22 .404 .508 .52 -.373 -.346 -.34 
23 .407 .497 .52 -.436 -.419 -.34 
24 .425 .530 .52 -.311 -.295 -.34 
25 .524 .565 .52 .253 .284 .34 
26 .491 .521 .52 .308 .330 .34 
27 .498 .533 .52 .298 .326 .34 
28 .447 .479 .52 .285 .300 .34 
29 .476 .509 .52 .308 .327 .34 
30 .475 .504 .52 .373 .394 .34 
31 .507 .545 .52 .281 .316 .34 
32 .510 .534 .52 .321 .356 .34 

ASE .0068 .0013 .0026 .0013 

3. SIMULATION STUDIES AND 
REAL-DATA ILLUSTRATIONS 

3.1 Example 1: A Two-Factor Simulation 

In our first simulation study, 1,000 response patterns 
for a 32-item test were simulated according to the FIIF 
specification with u3 = 1, all item difficulties zero, and 
true factor loadings provided in Table 1. These factor load- 
ings represent an orthogonal factor pattern derived from a 
Hadamard matrix, with one dominating factor. This choice 
was made because such a regular pattern of item factor 
loadings and difficulties should be most favorable for Bock 
and Aitken's Gauss-Hermite EM (GHEM). For the sim- 
ulated data, GHEM was implemented with 25 quadrature 
points and MCEM was applied with 25 (Gibbs sampler) 
samples at each E step; such choices roughly equate the 
computational load in our experiences, and hereafter we re- 
fer to the sizes of the samples from the Gibbs sampler also 
as "points" to indicate the equivalence. As Table 1 shows, 
MCEM more accurately reproduces the true factor load- 
ings than GHEM. As a simple overall numerical measure 
of the performance of each method, we take the average 
over items of the sum of squared residuals from the true 
factor loadings. The MCEM produces average squared er- 
rors (ASE's) 1/5 and 1/2 of those of GHEM for the first 
factor and the second factor. The errors from the two meth- 
ods would have been identical had there been no simula- 

tion variability (for MCEM) or numerical inaccuracy (for 
GHEM), because both methods intend to compute the same 
MLE; converging to two different modes is very unlikely 
here, as we used the same EM formulation and started with 
the same initial value-the MINRES factor loadings (e.g., 
Harman 1976) obtained from the smoothed tetrachoric cor- 
relation matrix. 

From Table 1, we also notice that the first factor loading 
from MCEM is always greater (in magnitude) than the sec- 
ond for all items, consistent with the true factor loadings. 
In contrast, items 14, 16, and 23 show a higher loading on 
the second factor from GHEM estimates. These reversals of 
order in factor loadings often have greater practical import 
than mere inaccuracy, because they can lead to different 
grouping of the items under study (see, e.g., Example 4). 
Of course, in real applications one should take into account 
the inherent variabilities in estimates when comparing the 
magnitude of factor loadings (but inaccurate calculations 
of MLE's can also lead to incorrect variance-covariance 
calculations), but the reversals that we see here are clearly 
due to the defect of a computation method and thus must be 
eliminated before one can reach any meaningful conclusion. 

It is possible in low dimensions and with a moderate num- 
ber of items to achieve comparable computational accuracy 
for GHEM by increasing the number of quadrature points. 
In this example, increasing the number of Gauss-Hermite 
quadrature points to 100 resulted in ASE's of 1.5 x 10-3 
for the first factor and 1.3 x 10-3 for the second factor. 
More importantly, the results from the 100-point quadra- 
ture showed no reversals of the first and second factors. 
However, as discussed earlier, increasing the number of 
items leads to greater inaccuracy for GHEM. For exam- 
ple, increasing the number of items in the simulation using 
a sixfold repetition (i.e., 192 items) of the true factor load- 
ings provided in Table 1 leads to ASE's of 1.5 x 10-2 and 
2.1 X 10-3 for the first two factors from GHEM, compared 
to 1.1 x 10-3 and 1.3 x 10-3 from MCEM; both methods 
used 100 points. 

3.2 Example 2: A Five-Factor Simulation 

Increasing the number of quadrature points in GHEM 
can yield fairly accurate results in low dimensions with 
moderate numbers of items. However, achieving the nec- 
essary accuracy in higher dimensions by increasing the 
number of points quickly becomes impractical, because the 
number of points increases exponentially with the dimen- 
sion. To illustrate the comparative accuracy of the meth- 
ods in higher dimensions, we repeat the foregoing simu- 
lation but with a five-factor model using the true factor 
loadings provided in Table 2, and again set all item dif- 
ficulties to zero. We applied MCEM and GHEM with 25 
and 243 points, which should favor GHEM. But as Table 2 
shows, the ASE's from MCEM are nearly an order of mag- 
nitude smaller for the first two factors and are substantially 
smaller for the remaining factors. Moreover, the MCEM 
estimates for the first factor are always greater in magni- 
tude (with equality for item 23) than the second. In contrast, 
the GHEM estimates showed 11 reversals. Reversals of the 
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Table 2. Estimates and True Values for Example 2 

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 

Item GHEM MCEM True GHEM MCEM True GHEM MCEM True GHEM MCEM True GHEM MCEM True 

1 .58 .49 .50 -.37 -.40 -.37 .34 .36 .34 .12 .31 .31 -.23 -.15 -.27 
2 .60 .50 .50 -.36 -.41 -.37 .32 .37 .34 .07 .25 .31 -.23 -.17 -.27 
3 .45 .44 .50 -.52 -.43 -.37 .22 .22 .34 .27 .32 .31 .19 .32 .27 
4 .49 .49 .50 -.46 -.36 -.37 .24 .24 .34 .29 .30 .31 .25 .36 .27 
5 .62 .46 .50 -.26 -.44 -.37 .15 .32 .34 -.30 -.15 -.31 -.20 -.26 -.27 
6 .59 .47 .50 -.20 -.41 -.37 .14 .38 .34 -.41 -.28 -.31 -.14 -.21 -.27 
7 .49 .45 .50 -.28 -.36 -.37 .17 .33 .34 -.21 -.24 -.31 .31 .31 .27 
8 .54 .48 .50 -.32 -.41 -.37 .15 .32 .34 -.20 -.24 -.31 .35 .34 .27 
9 .44 .54 .50 -.18 -.32 -.37 -.35 -.36 -.34 .24 .29 .31 -.35 -.27 -.27 

10 .43 .51 .50 -.18 -.35 -.37 -.33 -.34 -.34 .17 .24 .31 -.36 -.30 -.27 
11 .38 .50 .50 -.29 -.32 -.37 -.36 -.42 -.34 .38 .25 .31 .14 .28 .27 
12 .42 .53 .50 -.26 -.31 -.37 -.32 -.37 -.34 .38 .26 .31 .07 .19 .27 
13 .54 .55 .50 -.08 -.37 -.37 -.45 -.29 -.34 -.34 -.38 -.31 -.16 -.30 -.27 
14 .51 .55 .50 -.05 -.32 -.37 -.40 -.25 -.34 -.34 -.33 -.31 -.21 -.32 -.27 
15 .51 .58 .50 -.18 -.33 -.37 -.45 -.31 -.34 -.16 -.37 -.31 .33 .28 .27 
16 .50 .58 .50 -.15 -.32 -.37 -.45 -.33 -.34 -.07 -.26 -.31 .31 .27 .27 
17 .35 .47 .50 .29 .33 .37 .40 .34 .34 .24 .38 .31 -.24 -.20 -.27 
18 .39 .46 .50 .25 .27 .37 .43 .39 .34 .17 .35 .31 -.34 -.31 -.27 
19 .27 .40 .50 .23 .38 .37 .43 .30 .34 .38 .36 .31 .17 .27 .27 
20 .31 .47 .50 .20 .37 .37 .36 .24 .34 .40 .37 .31 .20 .31 .27 
21 .44 .48 .50 .44 .32 .37 .33 .48 .34 -.36 -.31 -.31 -.11 -.26 -.27 
22 .45 .49 .50 .40 .31 .37 .35 .49 .34 -.31 -.25 -.31 -.09 -.26 -.27 
23 .31 .39 .50 .38 .39 .37 .36 .44 .34 -.18 -.33 -.31 .43 .34 .27 
24 .33 .44 .50 .37 .41 .37 .27 .30 .34 -.09 -.22 -.31 .43 .35 .27 
25 .30 .53 .50 .43 .39 .37 -.10 -.23 -.34 .33 .30 .31 -.34 -.30 -.27 
26 .35 .57 .50 .46 .33 .37 -.12 -.20 -.34 .26 .26 .31 -.37 -.34 -.27 
27 .23 .50 .50 .38 .42 .37 -.21 -.37 -.34 .44 .23 .31 .13 .17 .27 
28 .24 .52 .50 .36 .41 .37 -.23 -.40 -.34 .52 .25 .31 .22 .29 .27 
29 .35 .53 .50 .53 .38 .37 -.19 -.14 -.34 -.19 -.25 -.31 -.16 -.32 -.27 
30 .39 .58 .50 .52 .39 .37 -.24 -.18 -.34 -.18 -.30 -.31 -.05 -.19 -.27 
31 .31 .55 .50 .52 .44 .37 -.31 -.30 -.34 -.02 -.31 -.31 .29 .16 .27 
32 .26 .47 .50 .52 .44 .37 -.30 -.29 -.34 -.09 -.36 -.31 .31 .19 .27 

ASE .019 .002 .02 .002 .012 .007 .018 .003 .011 .004 

second through fifth factors were more common due to the 
closeness of the true loadings. But, although the differences 
between GHEM and MCEM estimates in numbers of these 
reversals were not substantial (39 reversals from GHEM 
and 32 from MCEM), the magnitude of the reversals were 
more substantial from GHEM. For example, items 13 and 
14 exhibited loadings of -.08 and -.05 on the second fac- 
tor and - .45 and -.40 on the third factor from the GHEM 
estimates. None of the reversals for MCEM were of com- 
parable magnitude. (As an indication of the computational 
load of MCEM, this problem takes about 6 minutes on a 
Gateway P5-lOOXL under OS2, with 20 EM iterations.) 

3.3 Example 3: LSAT Section 7 Data 

As a check of the performance of MCEM in practice, 
we fitted a two-factor FIIF model to the data from Section 
7 of the Law School Admissions Test (LSAT) first used by 
Bock and Lieberman (1970), who fitted a one-dimensional 
model to it. Bock and Aitken (1981) later found that more 
than one factor was necessary and fitted a two-factor model 
using their EM method. Because this was the first empirical 
application of the FIIF model, this data set has become 
a canonical example and was later reproduced by Bock, 
Gibbons, and Muraki (1988). 

Convergence of MCEM with 100 points was determined 
from Figures 1 and 2. As Figure 1 shows, the logs of the 

likelihood ratios, estimated by (19) and plotted as dots (the 
circles are discussed in Sec. 4.2), appears to have stabilized 
after about six iterations. Similarly, the largest changes in 
the parameters (Fig. 2) appear to stabilize after six EM cy- 
cles. To be conservative, we take results after 10 iterations 
as our MCEM estimates, which are given in Table 3 along 
with those from GHEM and the MINRES solution used 
as the initial values. In Example 2, we saw that GHEM 
achieved comparable accuracy with MCEM for the 2-factor, 
32-item simulation by using 100 quadrature points. This is 
also the case for these real data. The parameter estimates 
are essentially identical; indeed, both methods show little 
change from the initial values from MINRES. This provides 
additional evidence, albeit in a roundabout way, for the ac- 
curacy of MCEM, including our convergence monitoring 
scheme, because the Gauss-Hermite approach is accurate 
in such a low-dimensional problem. 

3.4 Example 4: The 1978 Quality of American 
Life Survey 

To compare MCEM to GHEM in high-dimension real- 
data problems, we chose to examine the quality of life 
survey (Campbell and Converse 1980; Campbell, Converse, 
and Rodgers 1976) administered to a nationwide probabil- 
ity sample of all U.S. residents age 18 and older in both 
1974 and 1978. Bock et al. (1988) applied the FIIF model 
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Figure 1. Example 3: Log-Likelihood Ratio Versus EM Iteration Using 
rG (denoted by .) and ?O (denoted by o). 

to the 1974 survey using GHEM. For reasons of data ac- 
cessibility, we chose a subsample 2,159 heads of household 
from the 1978 survey to fit a five-factor FIIF model using 
both GHEM and MCEM. In the survey, the subjects were 
asked to rate their satisfaction, on a 7-point scale, with 14 
aspects of their life: satisfaction with community, neighbor- 
hood, house, life in the United States, education, health, job, 
leisure, friends, family, standard of living, savings, life in 
general, and self. Following Bock et al. (1988), these ratings 
were dichotomized at the neutral category. 

Convergence of MCEM was determined from Figures 3 
and 4. Figure 3 shows that the logs of the likelihood ratios, 
estimated from (19), decrease to zero after nine iterations. 
Likewise, the largest parameter changes also stabilize after 
nine iterations (Fig. 4). Again, to be conservative, the con- 
verged estimates were obtained after 15 iterations and are 
presented along with the corresponding GHEM estimates 
in Table 4, which shows considerable differences, particu- 
larly for the higher-order factors. To see the impact of such 
differences on the grouping of the items (i.e., aspects), a 
standard part of factor analysis, we examined the rotated 
factor loadings. Varimax rotated factor loadings (see, e.g., 
Kaiser 1958) from MCEM and GHEM estimates are pre- 
sented in Table 5. 

The loadings from MCEM estimates lead to the follow- 
ing exploratory grouping: factor 1-leisure, friends, family, 
life, and self; factor 2-community, neighborhood, house, 
and life in the U.S.; factor 3-standard of living and sav- 
ings; factor 4 education; and factor 5-health and job. 
In contrast, the GHEM varimax factor loadings reveal job 
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Figure 2. Example 3: Largest Parameter Changes Versus EM Itera- 
tion. Key: 1 -slope 1; 2- slope 2; I- Intercept. 

loading essentially equally on factors 1-3, with the last 
factor ill-determined by any group of items. Whether the 
groups from the MCEM results have substantive meaning is 
an issue requiring external knowledge and assessment (e.g., 
one may argue that the fifth factor is meaningful because 
it reflects the importance of employer-provided health in- 
surance to both job and health satisfaction, but one perhaps 
can come up with an equally or more plausible argument for 
grouping job with standard of living), but it is clear that one 
cannot rely on numerical errors for meaningful grouping. 

4. EMPIRICAL INVESTIGATION OF BRIDGE 
SAMPLING USING FIIF MODEL 

4.1 Choosing the Bridge 

In Section 2.4 we discussed the use of bridge sampling 
for simulating likelihood ratios to monitor the convergence 
of MCEM. To better understand the key identity (15) under- 
lying the bridge sampling, we reexpress a = qo/(qiq2) in 
terms of a new function qo. Suppose that qo is a nonnegative 
function and can be normalized into a density po = qo/co. 
Then (15) becomes 

C2 CO/Cl _ El [q(u)21 CO/C2 - . (20) 

Comparing this to (14), we immediately see why bridge 
sampling can provide more efficient estimators than the 
importance sampling estimators based on (14). Intuitively, 
with (14), we use draws from Pi to go all the way to reach 
P2, whereas with (20) we use draws from P1 and P2 each 
to go "halfway" and use qo as a connecting "bridge" and 

Table 3. Estimates for Example 3 

Intercept Slope 1 Slope 2 

Item Init GHEM MCEM Init GHEM MCEM Init GHEM MCEM 

1 1.15 1.15 1.15 .62 .62 .62 .31 .31 .31 
2 .67 .67 .67 1.08 1.08 1.08 -.73 -.73 -.73 
3 .97 .96 .96 .82 .82 .80 -.05 -.05 -.06 
4 .30 .30 .30 .47 .48 .48 .14 .18 .16 
5 1.18 1.13 1.15 .49 .44 .45 .38 .27 .30 
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Figure 3. Example 4: Log-Likelihood Ratio Versus EM Iteration Us- 
ing rG. 

thus shorten the distances between the densities, which are 
responsible for the variabilities of the estimators. This in- 
tuition was used by Gelman and Meng (1994) to construct 
multibridge extensions and even the "continuous" bridge 
extension-the path sampling. 

For given a, the corresponding bridge sampling estimator 
is 

ni + =1 q2(Wlj )a(wlj) (21) 
2 ,n-1 ql(W2j)a(W2j) 

where Wil. , Win, are (possibly dependent) draws from 
pi (w), i = 1, 2. The question of interest then is how to 
choose a good "bridge," or the a function. Under the as- 
sumption that all draws are independent, it can be shown 
(e.g., see Meng and Wong 1996) that the asymptotically op- 
timal choice of a, in the sense of minimizing the relative 
MSE E(i, - r)2/r2, is given by 

C 
aOo(w) = C for any c $8 0, (22) 

slrql + S2q2 

where si = ni/(n, + n2), i = 1, 2. Because ao depends 
on r, Meng and Wong (1996) constructed an iterative se- 
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Figure 4. Example 4: Largest Parameter Changes Versus EM Itera- 
tion. Key: k -slope k, k = 1,..5; I-Intercept. 

quence that monotonically (in terms of absolute differences 
between iterates and the limit) converges to a unique limit 
that achieves the optimal error. Their iterative sequence is 

1 nl F q2(w1) 1 
A(t+1) _ _n _ _j=_ LSrQ(t)q1y(1j) + S2q2(l3)J 

rI 1 n2 F ql (w23) 

n2 Ei=1 Lsii,(t)qi(W2j) + S2q2(U2j) 

1 IZnl F j 1 
n_ j=_ LSir(t) + S2113] ()O (2 

- ~ Z~i + S2l2] ' r > >u, (23) 1 In211 

n2 -j=1 
S5 

r(t) + S212 - 

where li = q2(wij)lql(wij)Ij = 1, ... ,ni,i = 1,2 need be 
evaluated only once at the beginning of the iteration. The 
limit of p$t) is denoted by 'o, which can also be derived 
as a "profile maximum likelihood estimator" if one treats 
the problem of computing r as an estimation problem, as 
discussed by Geyer (1994). 

Meng and Wong (1996) compared (23) to a similar 
iterative estimator based on importance sampling using 
a mixture. Specifically, considering the pooled sample 
{Wli ... i vgn}{wij,j = 1,...,ni ,i = 1,2} as a sample 
from the mixture SlPl + s2p2, the iterative estimator based 
on the updating of this mixture is given by 

+ =1 [S P(t) + S ) >] (24) 

Z'=1 [slr(t) + S213] 

where ij = q2(wj)/ql (wj), j = 1, . .., n. Meng and Wong 
(1996) showed that this sequence has the same monotonic 
convergence behavior and in fact always converges to the 
same limit, rM = ro. The difference is that (23) yields 
a consistent estimate for r at each iteration, whereas (24) 
yields a consistent estimate only on convergence. For this 
reason, Meng and Wong (1996) conjectured that i(t) should 
converge more rapidly than rM). Checking this conjecture 
is the first objective of our empirical investigation. 

Meng and Wong (1996) also considered a number of non- 
iterative choices for a, including geometric a = ( q/q2)-1, 
yielding 

rc (O (25) 
E2 Eq2 

and constant a = 1, yielding 

rc = El (q2) (26) 

The importance sampling formula (14) is also a special case 
of (15) with al = , 

rs Ei [q2(] , (27) 
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Table 4. Estimates for Example 4 

Intercept Slope 1 Slope 2 Slope 3 Slope 4 Slope 5 

Item GHEM MCEM GHEM MCEM GHEM MCEM GHEM MCEM GHEM MCEM GHEM MCEM 

1 -1.10 -1.09 .93 .92 .64 .64 .41 .41 -.01 -.02 -.1 1 -.12 
2 -1.49 -1.50 1.28 1.29 .97 .98 .44 .46 .01 .04 .00 .01 
3 -1.04 -1.04 .77 .75 .44 .47 -.06 -.07 -.08 -.09 .08 .07 
4 -1.05 -1.03 .68 .67 .10 .08 .23 .24 .02 .01 .00 .01 
5 -.03 .07 .91 .90 .04 .04 -.27 -.27 -1.10 1.11 .38 .38 
6 -.93 -1.64 .38 1.03 -.07 -.83 .19 .66 -.30 -.36 -.31 -.93 
7 -1.07 -.09 .75 .51 .16 -.24 .06 .32 -.14 .09 -.46 -.28 
8 -1.05 -1.00 .90 1.08 -.09 -.30 .22 .00 -.51 .06 -.54 .07 
9 -1.24 -1.15 .56 .75 .04 -.17 .31 .10 -.40 .09 -.45 .06 

1 0 -1.15 -1.08 .66 .70 -.16 -.20 .20 .07 -.09 .23 -.35 .12 
1 1 -.87 -.91 1.30 1.62 .35 .15 -.54 -.70 -.32 .21 -.80 -.41 
12 .22 .19 1.08 1.22 .41 .17 -.80 -.91 -.26 .02 -.80 -.44 
13 -1.79 -1.80 1.66 1.92 -.69 -.59 .22 .01 -.31 .55 -.86 .26 
14 -1.45 -1.50 .89 1.20 -.39 -.54 .23 -.02 -.56 .08 -.51 .35 

where the subscript S emphasizes that it is based on draws 
from a single density. This choice of a corresponds to 
qo = q2 in (20), which makes it clear that it does not 
take the advantage of the "bridge" formulation. Comparing 
rG, 'c,r s, and ro is the second objective of our investiga- 
tions. 

Our final objective is to investigate estimating h = 

f VP1 (W)P2 (w) dw via the simple identity 

El(12) N/ E (a (28) 

This is of interest here because the Hellinger distance be- 
tween P1 and P2 is a simple function of h, 

~~ r l~~~/2 
H(pl,P2) [ J P2)2 dw]/ = [2(1 - h)]1/2, 

which was found by Meng and Wong (1996) to essentially 
govern the variances of bridge-sampling estimators with 
optimal or near-optimal choices of the bridge. Thus the 
Hellinger distance is a relevant "control variable" in design- 
ing investigations for comparing performance of bridge- 

sampling estimators. Furthermore, Meng and Wong (1996) 
proposed using H as a distance to decide the next density in 
an adaptive application of bridge sampling when we are in- 
terested in computing the ratios for a continuous range (e.g., 
the likelihood over a range). For this reason, they proposed 
using (28) to estimate h, which uses draws from only one 
(i.e., the previous) density. Thus the estimator h will suffer 
the same problem as estimators based on (14); but Meng 
and Wong (1996) showed that the square-root operation in 
(28) helps reduce the variance of h. They also conjectured 
that h would underestimate h in general due to the larger 
ratios of q2/ql in the denominator in (28), and thus one 
would overestimate H, which is desirable for constructing 
their adaptive estimators. 

4.2 Empirical Comparisons of Various 
Bridge-Sampling Estimators 

Our empirical study was based on fitting a one-factor 
FIIF model for 25 selected items from a 100-item spelling 
test administered to 660 undergraduate psychology students 
at the University of Kansas in 1987. We chose the simple 
one-factor model so that all relevant "golden standards" 
(i.e., the exact values that our simulation results will be 
checked against) can be obtained accurately using numer- 

Table 5. Varimax Rotated Factor Loadings for Example 4 

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 

Item GHEM MCEM GHEM MCEM GHEM MCEM GHEM MCEM GHEM MCEM 

COMMUN .26 .16 .71 .72 .15 .13 .04 .07 .07 .18 
NEIGHHD .19 .21 .81 .81 .18 .16 .09 .08 .05 .08 
HOUSE .10 .20 .55 .53 .28 .29 .23 .21 -.06 -.03 
LIFE IN US .30 .34 .47 .41 .07 .08 .09 .10 -.17 .21 
EDUCATION .26 .18 .19 .20 .17 .17 .75 .77 .00 .05 
HEALTH .48 .25 .12 .07 .10 .10 .10 .12 .08 .82 
JOB .45 .29 .35 .17 .36 .05 .03 -.06 .00 .47 
LEISURE .66 .60 .24 .21 .24 .25 .19 .18 .03 .25 
FRIENDS .57 .50 .24 .23 .14 .15 .10 .10 .16 .21 
FAMILY .54 .55 .23 .19 .17 .14 .01 .01 -.14 .15 
STAN OF LIV .40 .40 .31 .32 .68 .69 .16 .10 -.03 .15 
SAVINGS .27 .25 .22 .20 .77 .76 .14 .16 .00 .08 
LIFE .77 .80 .20 .23 .29 .28 .09 .05 -.28 .22 
SELF .72 .72 .11 .12 .18 .17 .22 .22 -.07 .18 
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Table 6. Comparison of r() and ?(t) 

t = 0 t= 1 t = 2 t = oo No. Iter 

H=.28, r=.08078 

?(t) 0 
Mean .13863 .08180 .08085 .08086 7.20 
Var 4.43002 .00012 .00002 .00002 1.69 

?(t) M 
Mean .13863 .07949 .08074 .08086 10.38 
Var 4.43002 .00007 .00002 .00002 .95 

H =.77, r =.56647 

?(t) 0 
Mean .61321 .59120 .58086 .58201 10.76 
Var 5.93885 .02016 .01652 .01665 8.31 

?(t) 
M 

Mean .61321 .52757 .54946 .58201 32.62 
Var 5.93885 .09351 .02263 .01665 14.49 

H= 1.11, r=46.87 

?(t) 0 
Mean 51.37 54.82 51.75 52.34 14.80 
Var 100,166 650.20 417.97 433.97 28.35 

?(t) M 
Mean 51.37 43.38 42.27 52.34 96.77 
Var 100,166 16,454.4 4,552.70 433.97 55.12 

ical integrations. We used the PQUAD program (Wichura 
1989) for computing all requisite one-dimensional integra- 
tions, with relative accuracy of 10-12. We chose two sets 
of item parameters to be used as 01 and 02: 01, consisting 
of the MLE's obtained by MCEM; and 02, consisting of 
all slopes equal to 1 and all intercepts equal to zero (i.e., 
we were computing the likelihood ratio needed for testing 
0 = 02). 

As we have seen in (16), the overall likelihood ratio is 
the product of individual likelihood ratios based on each re- 
sponse patterns. To vary the Hellinger distances between Pi 
and P2, we selected three response patterns, ui, i = 1, 2, 3, 
such that the H distance between P1 = f(zIui, 01) and 
P2 = f (ZIui, 02) are small, medium, and large (H = 
.28,.77,1.11). For each selected response pattern, we used 
the Gibbs sampler described in Section 2.3 to make 100 

Table 7. Comparison of Four Estimators 

rs rG rO 

H =.28, r=.08078, h=.96 

Mean .080600 .081590 .080730 .080860 .961400 
Var .000137 .000063 .000022 .000020 .000900 
MSE .000137 .000063 .000022 .000020 .000912 

H = .77, r = .56647, h = .71 

Mean .53733 .58586 .57963 .58201 .75833 
Var .11621 .01831 .02034 .01665 .00607 
MSE .11695 .01867 .02049 .01687 .00882 

H = 1.11, r = 46.87, h= .38 

Mean 32.32 55.49 54.60 52.34 .60990 
Var 13,017.54 691.13 709.20 433.97 .01500 
MSE 13,216.20 764.82 768.35 463.47 .06610 

oO 

oC 

00 

~JCZ 

6) 

CMA 

C:)~~~~~ 6 110 
EM Iteration 

Figure 5. Example 3: Log-Likelihood Ratio Versus EM Iteration Using 
is (denoted by S) and rc (denoted by C). 

draws from each of Pk, k = 1, 2. To make a fair comparison 
with the importance sampling using draws from one den- 
sity, we used the first 50 draws from each distribution to 
compute ro, rM, rG, and rc and used the entire 100 draws 
from P1 to compute rs (and h). We repeated this process 
1,000 times, yielding 1,000 estimates for each method and 
each response pattern. 

We first compare the two iterative procedures, r(t) and 
At). We constructed the starting value for both itera- 
tions, r (?), from the (formal) identity 

El [qj1 () 
r E=[q - ( )] (29) 

which corresponds to choose (formally) a = [qi (w)q2()] -1 

in (15). These types of estimators have been discussed in 
the literature (see, e.g., Gelfand and Day 1994 and New- 
ton and Raftery 1994). This starting value was chosen be- 
cause it is an extremely variable and in fact inconsistent 
estimator unless the support of Pk (k = 1, 2) has finite 
Lebesgue measure, which is not the case for the current 
setting. We purposely chose such a poor starting value to 
illustrate the remarkable robustness of the iteration r(t) to 
the starting value. The convergence criterion of both itera- 
tions is 10-12, but to prevent idiosyncratic cases in simula- 
tion, we terminated an iteration process if it exceeded 100 
iterations, which happened only for (t). 

The results of this comparison are presented in Table 
6, where the means and variances are computed over the 
1,000 simulations. As Table 6 shows, r(t) and r(t) performed 
nearly as well when the distance between the distributions 
was small (i.e., H = .28). However, as Meng and Wong 
(1996) predicted, r(t) converged much more rapidly than 
r(t) as the distances between the distributions increased. For 
example, when H = 1.11, the variance of r(t) decreased 
from more than 100,000 at iteration zero to 650 at itera- 
tion 1 and to 418 at iteration 2. In contrast, by iteration 1 
the variance of r(t decreased only to 16,454, and by iter- 
ation 2 the variance still exceeded 4,500. Accordingly and 
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moreover, r(t) takes much longer to converge, nearly seven 
times slower on average, without taking into account that 
the maximum number of iteration allowed was 100. 

The next comparison is among rs, rc, rG, and rO; the re- 
sults are presented in Table 7. The results closely parallel 
those of Meng and Wong's (1996) theoretical example with 
P1 = N(u, 1) and P2 = N(O, 1). As expected, ?o dominated 
all of the other estimators in all cases, even when the draws 
from the Gibbs sampler were only approximately indepen- 
dent, and thus Meng and Wong's (1996) theoretical results 
can be taken only as a guideline. Also, rs is dominated by 
all other three estimators. In addition, ?G performed nearly 
as well as ?o when H = .28, and rc and ?G are quite sim- 
ilar when H = .77 and H = 1.11. A difference from Meng 
and Wong's normal example is that rc is closer to rG than 
to i0, whereas in their example rc is closer to ?o. 

Another difference from Meng and Wong (1996) is that 
h overestimates h, especially when h is small. For exam- 
ple, from Table 7, when H = 1.11 (h = .3838), the mean 
of h is 1.6 times the true value. This seems to be due to, 
at least partially, the small number of the Gibbs sampler 
draws (i.e., 100) relative to the large H distance, a problem 
that could also explain the large biases in %s. These prob- 
lems are worth further investigation but do not affect our 
current FIIF applications, which are based on ?G and ?o, 
whose performances are much more satisfactory as judged 
by the MSE's given in Table 7. Compared to the importance 
sampling estimator ?s, ?G and ?o exhibited anywhere from 
5 to 30 times less MSE. 

As a final illustration and comparison, we compare Figure 
1 and Figure 5. Figure 1 uses both ?G (dots) and ?o (circles) 
to monitor the convergence of MCEM for the LSAT exam- 
ple of Section 3.3. The plots are virtually indistinguishable 
and allow us to reasonably access convergence after about 
eight iterations. In contrast, plots in Figure 5 using rs or 
rc are much more problematic-the variations around the 
eighth iteration are as large as those at the beginning of the 
iteration. 

In summary, based on all of the theoretic and empirical 
evidences obtained so far, we recommend using io in prac- 
tice, with iG as the starting value for iterating r(t). This it- 
eration requires minimum computation and converges very 
fast; but if iteration is not desirable (e.g., within a large 
simulation), then we recommend using rG, or, with a little 
extra computation, r(2), as the estimator. 

5. CONCLUDING REMARKS 

Bock and Aitken's original method for fitting the FIIF 
model, although reliable for small numbers of items, be- 
comes less reliable as the number of items increases. This 
is mainly because the predictive distributions for the indi- 
vidual latent abilities become more peaked as the number 
of items increases, leading to a "lumpy" observed-data like- 
lihood for the model parameters, but the reliability of the 
fixed-point Gauss-Hermite quadrature method relies on the 
smoothness of the integrand. In contrast, because the Monte 
Carlo E step directly simulates from these individual pre- 
dictive distributions, the MCEM adapts much better to the 

"lumpy" observed-data likelihood. However, Monte Carlo 
implementation is certainly not the only method for adapt- 
ing to the predictive distributions. For instance, Gauss- 
Hermite quadrature could also be made adaptive but would 
require more computational effort, especially in high dimen- 
sions (e.g., needing many more quadrature points). As em- 
phasized in Section 1, the advantages of Monte Carlo sim- 
ulation are not restricted merely to point estimation; with a 
little extra effort, we can obtain uncertainty estimates (e.g., 
Meng and Rubin 1991; van Dyk, Meng, and Rubin 1995) 
or even a full Bayesian analysis. 

Up to now, a main obstacle to effective implementation 
of MCEM in the FIIF model and in general has been the 
lack of a reliable method for determining the convergence 
of MCEM. This article has demonstrated how this obsta- 
cle can be effectively tackled by using bridge sampling, 
along the way empirically validating Meng and Wong's 
(1996) theoretical findings. Moreover, bridge sampling can 
be applied to simulate the values of the observed-data like- 
lihoods by coupling the predictive distributions for missing 
data or latent variables with appropriately matched densities 
with known normalizing constants (e.g., a convenient im- 
portance sampling trial density). As demonstrated by Meng 
and Wong (1996) and here, due to the effective reduction 
in distance between the two densities, the likelihood values 
obtained from bridge sampling are often substantially more 
accurate than those obtained from the standard importance 
sampling using draws from one density. 

[Received January 1995. Revised November 1995.] 
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