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Correlation Curves as Local Measures of Variance 
Explained by Regression 

Kjell DOKSUM, Stephen BLYTH, Eric BRADLOW, Xiao-Li MENG, and Hongyu ZHAO* 

We call (a model for) an experiment heterocorrelatious if the strength of the relationship between a response variable Yand a covariate 
X is different in different regions of the covariate space. For such experiments we introduce a correlation curve that measures heter- 
ocorrelaticity in terms of the variance explained by regression locally at each covariate value. More precisely, the squared correlation 
curve is obtained by first expressing the usual linear model "variance explained to total variance" formula in terms of the residual 
variance and the regression slope and then replacing these by the conditional residual variance depending on x and the slope of the 
conditional mean of Y given X = x. The correlation curve p(x) satisfies the invariance properties of correlation, it reduces to the 
Galton-Pearson correlation p in linear models, it is between -1 and 1, it is 0 when X and Y are independent, and it is ? 1 when Y 
is a function of X. We introduce estimates of the correlation curve based on nearest-neighbor estimates of the (conditional) residual 
variance function and the (conditional) regression slope function, as well as on Gasser-Muller kernel estimates of these functions. 
We obtain consistency and asymptotic normality results and give simple asymptotic simultaneous confidence intervals for the correlation 
curve. Real data and simulated data examples are used to illustrate the local correlation procedures. 
KEY WORDS: Heterocorrelaticity; Kernel estimates of regression; Local correlation. 

1. INTRODUCTION 

There is a strong link between regression and correlation 
in linear statistical theory and methodology. The regression 
coefficients measure the relationship between the covariates 
X = (X1, . . . , Xp) and the conditional mean ,u(x) = E(Y IX 
= x) of the response variable Y. More precisely, assuming 
that a linear model is correct, the regression coefficients j1, 

. #p are slopes that give the rates of change of ,i(x) 
= E(YIX = x). That is, the rate of change (a/axi ) A(x) is 
assumed to be a constant, labelled fi, i = 1, . .. , p. In the 
linear model, correlation coefficients measure the strength 
of the relationship between the response variable Y and the 
covariates Xj, j = 1, . .. , p. Moreover, the correlation coef- 
ficients measure variance explained; that is, how much of 
the variability of Y can be explained by the covariates. 

In this article we consider measures of regression slopes, 
strength of relationships, and variance explained in the non- 
linear case principally for the case of one covariate (p = 1). 
These measures will depend on the values of the covariates; 
that is, they will be local in nature. To illustrate, in cases 
where the covariate X represents "level of a symptom" and 
the response variable Y represents "level of a disease," the 
regression slope typically is 0 for small X = x and then grad- 
ually increases as x increases. Moreover, in such examples 
the strength of the relationship and the variance explained 
may also increase with increasing x. We propose to quantify 
this notion of heterocorrelaticity using a notion of local cor- 
relation that we call correlation curves. 

First, we consider possible shapes of joint densities 
f( x, y) of X and Y in such symptom-disease examples. As 
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pointed out by Fisher (1959), the contour plots (i.e., plots 
of (x, y) where f( x, y) is constant) often resemble twisted 
pears (see also Gjerde, Block, and Block 1988). Examples 
of such twisted pear models can be generated by bivariate 
transformation models (see, for instance, Fig. 1). 

The Figure 1 contour plot closely resembles Fisher's. 
twisted pear plot of level of symptom x vs. level of disease 
y and clearly shows how the slope of the regression E( Y I X 
= x) increases with increasing x, as well as how the strength 
of the relationship between X and Yincreases with increasing 
X= x. 

In other examples, the slope of the regression decreases 
with increasing x, and the strength of the relationship be- 
tween X and Y similarly decreases with increasing X = x. 
Hardle (1990) gave an example with X = net income and Y 
= expenditure for food. Figure 2 shows how the strength of 
the relationship between net income and food expenditure 
diminishes with increasing net income. 

A theoretical model that generates data of this type is given 
in the following example. 

Example 1. We suppose that the response variable Y is 
related to the covariate X through the relation 

Y =i(X) + r(X)c, 

where X and e are independent and have respective distri- 
butions N(,ul, a ) and N(O, o2). Now (X, Y) have the joint 
density f(x, y) = f(x)f(y l x), where f(x) is the N( 1, 
a2) density andf( Y I x) is the N( i(x), i-2(X) a2) density (see 
Fig. 3). 

2. MEASURING STRENGTH OF ASSOCIATION. 
THE CORRELATION CURVE 

2.1 Motivation for the Concept and Use of Local 
Correlation 

The original motivation for the concept of local correlation 
came from Jack Block, Department of Psychology, Univer- 
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Figure 1. The Joint Density (a) and Contour Plots (b) for (X, Y) in the 
Transformation Model Where X = U1'3, Y = V, and (U, V) is Bivariate 
Normal N(i,, , &l, &I, SI,p'), With it/ O= = 10, I = 1.55, 2 = 775, 
and p' =.75. 

sity of California, Berkeley, and Per Gjerde, Psychology 
Board, University of California, Santa Cruz. They asked us 
how to analyze association between X and Y for data where 
the scatterplot followed a shape similar to the contour plot 
of Figure 1. Our response was to produce a transformation 
model where the transformed X and Y, say U and V, ap- 
peared to follow (to a close approximation) a linear model. 
Then we proposed the correlation coefficient between U and 
V as a measure of the strength of the relationship between 
X and Y. Block and Gjerde were not pleased, however. The 
interesting phenomena in their study was that the strength 
of the relationship was not the same for different values of 
the covariate X = x. Our transformations to U and V had 
produced a constant strength for the relationship and had 
erased the effect they were trying to capture! Thus in the 
Figure 1 transformation example, the correlation between 
U = X3 and V= Yis .75. But we are interested in a measure 
of the strength of association that quantifies how weak it is 
for small X = x and how strong it is for large X = x. 

Once we quantify local strength of association in terms of 
local correlation, we can develop statistical techniques to 
analyze this correlation. For instance, for specified quantiles 
Xq of the X distribution, we can test whether the local cor- 

relation is significant at these quantiles. We can also test 
whether the correlation is stronger at certain quantiles than 
at other specified quantiles (see Sec. 6). 

The preceding transformation model anecdote does not 
imply that there is no room for transformation models in 
the study of local correlation. In fact, for small to moderate 
sample size n, fitting a transformation model and transform- 
ing back to the original untransformed scales produces a 
parametric correlation curve and is one sensible way of 
studying local correlation, because, even though it may be 
biased, it will have a much smaller variance than nonpara- 
metric estimates. But for moderately large to large sample 
size n, say n > 200, the local correlation estimates based on 
a fitted transformation model have a large mean squared 
error relative to nonparametric methods due to excessive 
bias, unless the transformation model provides a good ap- 
proximation to the true underlying model. In this article we 
consider the properties of nonparametric methods; however, 
we give one example of a correlation curve based on a trans- 
formation model in Section 6. 

2.2 A Formula for Local Correlation 

Note that the naive approach of arguing that if ,i(x) 
= E(Y I X = x) is smooth, then the relationship between X 
and Yis locally linear, and we can use the conditional version 
of the usual correlation, does not provide a formula for local 
correlation. For instance, in the linear model 

Y=a + X+ e; e and Xindependent, (1) 

we find 

corr2(X, YlX= X) =2 var(XIX x) 0 

. :2e 

o. 2000 4000 '*ooo 800 

04% . b 

C~~~~~~~qP 

0 20000 40000 60000 80000 

Figure 2. Food Versus Net Income. Scatterplot of Y = expenditure for 
food versus X = net income (both reported in tenths of pence per week), 
n = 7,125. The data shown are from the year 1973 of the Family Expen- 
diture Survey, 1968-1983 (from Hardle 1990). 
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Figure 3. The Joint Density Plot (a) and Contour Plots (b) for f(x, y) 
= f(x)f(ylx) When f(x) is N(1.2, (1/3)2) and f(ylx) is N(,u(x), o-2 (x)), With 
A(x) = (x/10)exp{5 - (x/2)} and o2(X) = r2(X) = {[1 + (x/2)]/3}2. 
Plot (b) includes a plot of the curve A(x). 

whenever var(Y I X = x) > 0. 
For this reason, we must be careful when constructing our 

measure of association by moving from the linear case to 
the general case. Our approach is to express the linear case 
correlation in terms of the regression slope d and the residual 
variance a42 = var(s). We then replace the linear case slope 
(3by the general case slope 3(x) = (d/dx)E(YIX = x) and 
replace the residual variance a 2 by the general case residual 
variance a 2(x) = var(YIX = x). Thus for the linear model 
(1), we set a = var(X) and write 

2 variance explained by regression 
r total variance 

var (a + OX) _____ 

var(a + OX+ e) a 2f2 + ?2 

This formula shows how in the linear case, the squared 
correlation coefficient measures the strength of the relation- 
ship between X and Y in terms of the regression slope and 
the residual variance. In the general case where the regression 
slope and residual variance depend on x, the same formula 
will still measure the strength of the relationship between X 
and Y, but now it will measure this strength locally at the 

given covariate value x. Thus we define the squared corre- 
lation curve at x as 

p2(x) = (corr. curve)2= 03 2 (x) x+E(S, 

where S, the support of the distribution of X, is defined by 
S = {x: 0 < F(x) < I} and F denotes the distribution 
function of X. Or, because the sign of the correlation is often 
important, 

P(x) 0-Ax) ~ X E S. (2) p() 0{f 20 2(X) + Of 2(X) } 1/2' XES. (2 

Note that this definition makes sense only if F is continuous. 
In fact, we need to assume that 3(x) = (d/dx)E(YIX = x) 
exists. The distribution of Yas well as Y I x can be continuous, 
discrete, or a mixture. 

Note that we can also write 

p2(X) = {1 + [oI3(X)/of(X)]-2} 1. 

This shows that p2(x) is an increasing function of the stan- 
dardized regression slope 1lj0(x)/1o(x). Moreover, p(x) is 
invariant under scale and location changes in X and Y, it 
reduces to the Galton-Pearson correlation coefficient in the 
linear model, it is between -1 and 1, and it equals ? 1 when- 
ever Yis a nonconstant function of X. When Yis a constant, 
:(x) = c(x) = 0, and we define p(x) = 0 in this case. When 
X and Y are independent, p(x) 0. 

Example 1.1 (continued) . Consider the example (Fig. 3) 
where Y = ,u(X) + -r(X)e. In this case, 

d((x) = ,'(x) = (1/10)[1 - (x/2)]exp {5 - (x/2)} 

The resulting curve p(x) is plotted in Figure 4. 
This plot shows how the strength of the relationship, as 

measured by p(x), starts out very strong for x near 0 and 
then drops off and approaches 0 as x approaches 2. 

2.3 Local Independence and the Correlation 
Curve 

We say that Yis locally independent of Xat X = x0 if there 
is a (3> 0 such that for all x E (xo - 6,x0 + ), ?(YIX = x) 
= L (Y I X = x0). Local independence at x0 implies that ,u(x) 
= M(xo) for x E (x0 -6, x0 + (); thus p(xo) = 0, provided 
that o2(xo) > 0. But p(xo) = 0 does not imply that Y is 
locally independent of X at x0. To see this, consider the pre- 
ceding example where p(2) = 0, but ?(YIX = x) # ?(YIX 

o \ ~~~~~~~~~~~~~~~p(x) 

co 

0.0 0.5 1.0 1.5 2.0 

Figure 4. The Correlation Curve p(x) for the Model in Example 1.1 and 
Figure 3. 
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= 2) for all x * 2, so Y is locally dependent of X at X = 2. 
Our concept of local independence is related to the notion 
of local independence discussed by Schweder (1970) and 
Aalen (1987). They defined the time-continuous Markov 
chain Y to be locally independent of the chain X over some 
time interval if the transition intensities for changes in Yare 
independent of the values of X for all times in the interval. 

2.4 The Case of Several Covariates 

Response variables often depend on more than one co- 
variate. Thus consider an experiment where on each of n 
subjects, we can measure a response Y and k covariate values 
XI, .. ., Xk. Again we will consider first the linear model 
and then ask what the natural extension to the nonlinear 
case would be. Our notation for the linear model is 

Y =a + XlT + ee, E(e) = 0, var(e) = 1, 

where = (i1, . . ., Ok) and e is independent of X. The 
covariance matrix 

z = cov(X) 

is assumed to be nonsingular. In this setting the natural mea- 
sure of the strength of the relationship between X and Y is 
the coefficient of determination 

2 variance explained var(X fiT) 

r total variance var(Y) 

Because in the linear model 

var(Y) = var(XT3) + U2 

we can rewrite p2 in terms of the regression coefficient vector 
d and the residual variance a42 as 

+2 T2 (3) 

Next, we turn to the nonlinear case where the regression 
slopes 

fi (X) =-E(YIx) 

and the residual variance a2(x) depend on x. In this case 
we define, in analogy with (3), the local coefficient of deter- 
mination as 

2(X) local variability explained 
p\Xj - 

total variability 

_ f3(X) _ _fT(X) 

:(X) I f3T(X) + o2((X)' 

where d(x) = (3I (x), . .., fk(X)). 

In the case of k = 2 covariates, p2(x) is a correlation surface 
that shows how the strength of the relationship between X 
and Y changes with X = x. In the case of k > 2 covariates, 
p2(x) can not be plotted, but for a subject with known co- 
variate vector x, an estimate of p 2(x) provides a measure of 
the strength of the relationship to the response variable Y. 
An interesting application is the following: Suppose that Y 
is a health variable such as survival time, suppose that xl is 

the level of a treatment, and suppose that x2, x3, etc. are 
health status variables, such as blood pressure and cholesterol 
level. Now for a given subject the values of x2, x3, etc. are 
known; thus for fixed x2, x3, etc., p(x) as a function of xl 
measures the strength of the relationship between treatment 
and survival as a function of treatment level. The case of 
several covariates will be considered further in a future article 
and is not dealt with further here. 

3. NEIGHBORHOOD ESTIMATES OF THE 
CORRELATION CURVE 

3.1 Neighborhood Estimates and Their 
Consistency 

We assume that we have a random sample (X1, Y1),..., 
(Xv, Y,) of independent pairs all having the same distribution 
as (X, Y). We need estimates of a, o2(x) = var(YIX 
= x), and :(x) = '(x)= (d/dx),u(x), where ,(x) 
=E(YIX = x). We use 8j = n-l 2i (X - X)asthe 
estimate of 4 2. Write o2(x) = M2(x) -2 (x), where MAj(x) 
= E( Yi I X = x), j = 1, 2. There are several classes of estimates 
of .j(x), o(x), and 3(x) available (see Hardle 1990, Hastie 
and Tibshirani 1990, Muller 1988, Nadaraya 1989, and 
Wahba 1990 for recent treatments with extensive lists of 
references). Two recent papers that focus on the estimation 
of the average of derivatives of conditional means and other 
functionals are those by Hardle and Stoker (1989) and Sa- 
marov (1993). Hall and Carroll (1990) analyzed the problem 
of estimating both ,(x) and u(x). 

In this section we consider empirical neighborhood esti- 
mates where population means are estimated using neigh- 
borhood averages and population derivatives are estimated 
using empirical neighborhood derivatives. The empirical de- 
rivative estimates are very simple, their properties are trans- 
parent, and their asymptotic properties are comparable to 
those of other proposed estimates. 

We will use methods based on local data pairs (Xi, Yi) 
that correspond to Xi's close to the given covariate value x 
we are interested in. Thus we introduce the nearest-neighbor 
index set Ik(x) as the collection of indices on the kX's among 
X1, ... , X, that are closest to x, but with an equal number 
of X's on either side of x. More precisely, for k even, Ik(X) 
denote the indices on the set of k values of X1, ... , X, that 
have k/2 values to the left of x, have k/2 values to the right 
of x, and are closest to x. For k odd, replace k/2 by 
(k - 1)/2. If x = Xi for some i, then reduce k to k - 1 in 
the aforementioned definition. In all cases let r denote the 
number of xi to the left (right) of x. To break ties, when two 
X's are equally close to x, we choose the smaller index. Now 
natural estimates of ,u(x) and a 2(x) are 

j(x) = k Yi, j= 1, 2, a2(x) = j2(x) - Al(x). 
iEsIk(X) 

Thus fa( x) and a2(x) are the local Ysample moments based 
on {Yi; i E Ik(x)}. Our empirical derivative estimate of 
d(x) is 

:()=r 1 ie4k+(x) Yi - r1 QjeIk-(x) y; 
3x=r1 E2ieIk+(x) Xi - r1 EQeIK-(x) XNj 

where Ikj(x) = {i: i E Ik(X), X, > x} and Ikj(x) = {j:j 
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E Ik(x), Xj < x} are the right and left index sets. It is con- 
venient to write 

Y+(x)- Y-(x) 

where Y+(x)( Y-(x)) is the average of the local Y's corre- 
sponding to the X's to the right (left) of the given x and 
X+(x)(X-(x)) is the average of the local X's to the right 
(left) of x. 

We refer to 

A(X) = [A1(X)]/{[af(X)]2 + &2(X)}1/2 

-+{ 1 + [aifl(X)/a(X)] 2 }-12, 
where ? denotes the sign of ,B(x), as the nearest-neighbor 
(sample) correlation curve. 

In what follows we assume that 12, fl(x), and a 2(x) exist 
and that a2 and o2(x) are positive. Then p(x) will be con- 
sistent when ,B(x) and a2(x) are consistent. We will consider 
consistency properties with k a function of n such that k 

oo and (k/n) -O 0 as n -* oo. 
We consider the conditional model where we condition 

on the X order statistics. In other words (Bhattacharya 1974), 
we consider the covariate values to be the nonrandom values 
xl < ... < x, and assume that YI, . . ., Y, are independent, 
with Yi having mean MA(xi ) and variance a2 (xi ). We assume 
that each xi depends on n and that xl, . .. , x, is a regular 
sequence of covariate values in the sense that if Fn(x) 
= n- [#xi < x], then Fn(x) -* F(x) for some continuous 
strictly increasing distribution function F(x) with support 
(a, b), a < b (a or b could be oo). We give an account of 
the pointwise consistency of p(x) in this model. Throughout, 
x denotes one fixed point in (a, b) where the strength of the 
relationship between Y and X is being estimated. 

In this setting we can justify our definition of d(x) by 
noting that when ,u"(x) exists and is bounded in absolute 
value by A, 3(x) is "nearly" unbiased; that is, 

I E($(x)) -O(x) I I2A 2: (Xi -x) 2/ 2 lxi-xi 2 
iEIk(X) iE IIk(X) 

The variance of d(x) is also easily bounded. Assume that 
var(Yi1) is bounded by B; then 

I ~~~~~~2 
var(f(x)) < 4Bk/{ l xi -xl 

iE-Ik(X) 

These considerations and similar considerations involving 
Ft.( x), j = 1, 2, lead to the following proposition. 

Proposition 3.1. Suppose that ,4' (x) and MA'(x) exist and 
are bounded in absolute value, and assume that var(Y' ), j 
= 1, 2, exist and are bounded; then p(x) converges in prob- 
ability to p(x) provided that 

k1/2/ Ixi -xi 0 (4) 
iE-Ik(X) 

and 

( 
z(xs- X2/ 

l xi -x 5 
{iEIk (x)/ iEIk(X) -l-* 5 

as n -0oo and k oo. 

Remark 3.1. The condition (5) holds provided we as- 
sume that the densityf( x) of F(x) exists and 

Xi = F | n 1 + (n) (6) 

where F-1(u) is differentiable with a continuous positive 
derivative 1/f(x) at the point uo = F(x). In fact, under 
condition (6), the bias of p3(x) is of the order (k/n) and the 
variance of p(x) is of the order (n2/k3). 

If we assume the existence of ,u"(x), j = 1, 2, we can 
reduce the asymptotic bias further. 

Proposition 3.2. Suppose that xi satisfies (6). If we as- 
sume thatf'(x), ju4"I(x), and IA4"(x) exist and are continuous 
at x, then the bias of p(x) is of the order (k/n)2. In fact, 

(n/k)2[E(p(x)) - p(x)] = o-1[1 -p2(X)]3/2 

X [23"(x)f(x) - 3fl'(x)f'(x)]/96f3(x)a(x) + o(1). 
Under the conditions of Proposition 3.2, we similarly find 

that 

(k3/n2)var(3(x)) = 16o12f2(x)[1 - p2(x)]3 + o(1), 

and that the asymptotic mean squared error (AMSE) of 
p(x) is 

AMSE(p(x)) = 2[1 -p2(x)]3 

[F2f"(x)f(x) - 3f'(x)f'(x) ]2 kV4 
96f3(x) U(x) Jk n,) 

+ 16f 2(X) ( } 

Remark 3.2. Note that the AMSE tends to 0 and p(x) 
is consistent provided that (k/n) and (n2/k3) both tend to 
0. If k is ofthe form k = cn', c > 0, then this holds provided 
that 2 < 6 < 1. 

To find the order of the nearest-neighborhood size k that 
minimizes the AMSE, we find the k = cn5 for which the 
squared asymptotic bias and large sample variance have the 
same order. That is, we solve (n2/k3) = (k/n)4 for 6. This 
gives 6 = 6 and k = cn6/17 , and p(x) has an AMSE of the 
order n -4/7. This is the same AMSE order that Gasser and 
Muller (1984) found for the convolution kernel estimate of 
3(x) under the assumption of homoscedasticity and three 
continuous derivatives for ,u(x). The rate n-4/7 is the best 
possible for estimates of 3(x) and p(x) under the conditions 
given (Stone 1980). 

3.2 Asymptotic Normality of p(x): 
Confidence Intervals 

Using a 6-method expansion of p(x) - p(x) in terms of 
a- a, (x) - o(x), and d(x) - d(x), we find that only 
the term involving d3(x) -d1(x) contributes to the asymp- 
totics. Note that :3(x) is a sum of independent variables. 
Thus we can apply the Lindeberg-Feller central limit theo- 
rem. This gives 
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Figure 5. Empirical Contour Plots and Density Plot for the Net Income- 
Food Expenditure Data of Figure 2. 

(nlk 2p() ()-mx N(O, 1), 

where 

m(x) -a1[I - p2(X)]3/2 

X [2#t'(x)fF x) - 3fl'(x)f'(x)]/96f (x)af(x) 

and 

Tn(x) = 4af1[l - p 2(X)]3/2f( x)(n 3Ik7/2) 

This result holds when the ratio of the (kl/n)3 order term 
in the bias expansion of d(x) to the asymptotic standard 
deviation of $(x) tends to 0; that is, when (kl n)3 l(nlk 3/2) 
=(k9/2In 4) Q. When k = cnb, this leads to the condition 

8 

9. 

The r,(x) term is simple and easy to estimate, whereas 

th ()tr i opiaed ecnmdiyorayp 

toist0 lmnt h istemmx yrqiigta h 

raio fte(l)Demi h isepnino ()t h 
asmttcsadr0eito f,()tn o0 hsrqie 

(k712/n3) _* 0, which in the case k = cn' means that we 
select 3 < 6. In view of Remark 3.2, this leads to the restric- 
tion 2< 3< 6. Under this restriction, assuming the Lindeberg 
condition, we find that 

(k312/n)[k(x) - p(x)] N ) p ~ ~~ N(O, 1 ), a(x) 
where a(x) = 4l[ -p2 (X)]3/2f(x). A consistent estimate 
of a(x) is d(x) = 4641[1 - p2(x)J312Cx - J)1(k/2n). 
Thus an asymptotic 100(1 - a)% confidence interval for 
p(x) is 

p(x) = p(x) ? zI - 2 a)2ai [p2(x)]3/2(x+- 

where z(l - 1 a) is the 1- a quantile of the standard 
normal distribution. 

4. KERNEL ESTIMATES 

4.1 Kernel Estimates and Their Consistency 

As we do for nearest-neighbor estimates, we consider the 
covariate values xi < < xn to be fixed and form a regular 
sequence and assume that Yi (i = 1, . . ., n) are indepen- 
dently distributed with mean t(xi) = E(Y I xi) and variance. 
a2(xi )= var(Y I xi). Let w(x) be a bounded integrable func- 
tion with finite support [-r, r] for some T > 0. We also 
assume that 

,fw(t) dt = I and w(r) = w(-T) = 0. 

Such w(x) is often referred to as a kernel (notice that it 
is not restricted to be nonnegative). Its integral, W(x) 

f fx w(t) dt, is called an integrated kernel. 
Let si= (xi + xi+1)/2, i = 1, .. . , n, so= xI, sn = x, and 

let wj, j = 0, 1, 2, be three kernels. Then the Gasser-Miiller 
(1984) kernel estimates forgtI(x)= -,(x), A2(x) = E(y2 Ix), 
and d(x) = t'(x) can be constructed as 

= [(bjn ) (bin ) 

and 

n()b i=1W0 bOn ) 
(b(,n 

where { bjn, n > 1, j- 0, 1, 2} are sequences of bandwidths 
and Wj( x) = fxJL wj( x) dx. The corresponding estimate for 
the correlation curve p(x) is then obtained as 

RX) a[2 -2(X) + a2(X)] 112 
p(XX ) = 2 IW 

where 2(x) = 12(x) -u(x) and a is the sample variance 
of the xis. We will call p(x) the kernel correlation curve (with 
respect to the kernels wj and bandwidth { jn, n > 1}j = 0, 
1, 2). 

Because &`1 O and - is a continuous function of -i 
(j - 1, 2) and A (for fixed x), the pointwise consistency (in 
both the weak and strong sense) of p(x) is guaranteed once 
the pointwise consistency of i( x) (j - 1, 2) and /3(x) is 
established. Under the homoscedastic model 
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Figure 6. The Kernel Estimates j(x), a(x), A(x), and p(x) of the Local (a) Mean, (b) Standard Deviation, (c) Slope, and (d) Correlation for the Net 
Income-Food Expenditure Data of Figure 2. The bands in (c) and (d) are 90% pointwise confidence bands. 

ei - iid, E(ei) = O, O < var(ei) _aC < 00 

and the assumption 

max I si - si- ? (7) 
1 -i-n n 

Gasser and Muller (1984) established some general results 
for kemel estimates (of the aforementioned type) of regres- 
sion functions, as well as for their derivatives. We noticed 
that with little modifications to their proofs, their theorems 
1 and 2 can be extended to the general heteroscedastic model 

Yi = U(Xi) + ci, 

Ci indep., E(ei) = , < var(ei) < o 

as long as 

max var(ei) < B < oo, (8) 
1 i?n 

whe-re B is a constant that does not depend on the sample 
size n. These results then can be used to establish the con- 
sistency of our kemel correlation curve p(x). The regularity 
condition (7) is assumed for all the following propositions. 

Proposition 4.1 (Weak Consistency of p(x)). Suppose 
that 

max E(Y4j xi) < B < oo, (9) 
1 <i<n 

and as n 0o, 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

20000 40000 60000 80000 100000 

Figure 7. The Estimated Correlation Curve p(x) With 90% Simultaneous 
Confidence Intervals at Each of the Quantiles x.1, X.2, . . .Xg for the Net 
Income-Food Expenditure Data of Figure 2. 
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Figure 8. Parametric (Solid Curves) and Nonparametric (Dotted Curves) Estimates for the Net income-Food Expenditure Data. The curves estimated 
are (a) ,u(x), (b) a(x), (c) d(x), and (d) p(x). 

(a) bj, 0 and 

(b) n b 3oc, j =0, 1,2. 
Then p(x) 4 p(x) at any x such that M1j(x) (j = 1, 2) and 

d(x) are continuous. 

Proposition 4.2 (Strong Consistency of p(x)). Suppose 
that 

max E(I YI2pIXi) < B < oo (10) 
I <h5nl 

for some p ? 2 and, in addition to (a) and (b), 

(c) nlpbjn--)-* oo, and 
00 

(d) z exp{ -n 12(1-P-')bjn} < 00, j = 0, 1, 2. 
n=l 

~()as, Then (x)* p(x) at any x such that ,uj(x) (j = 1, 2) and 
d(x) are continuous. 

Remark 4.1. For bandwidth sequences of the form bjn 
= cjn, c > 0, aj > 0, the necessary and sufficient condition 
for bjn to satisfy all (a)-(d) is 

O<a1 <min{- > (1- )} 

For example, when p = 2 (in this case (9) and (10) are equiv- 
alent), we have strong consistency when aj is any value be- 
tween 0 and 4, j = 0, 1, 2. (a) and (b) imply that we need 0 

aj < 4 to have weak consistency. If we compare this with 
Remark 3.2 using the kernel-neighbor connecting formula 
bjn = (k/n)(2f( x))-', we find that 0 < aj < 4 corresponds 
exactly to 2 < 6 < 1 when k = en'. 

4.2 Asymptotic Normality: Confidence Intervals 

As we did in Section 3, we assume that ,"'(x) exists. We 
consider kernels with support [-1, 1]. In this case the optimal 
kernel for the estimation ofuj ( x), j = 1, 2, is the Epanechni- 
kov kernel .75(1 - t2)I[ltl < 1], and the optimal kernel 
for the estimation of ,(x) is the GMM kernel (Gasser, Muller, 
and Mammitzsch 1985) 

wo(t) = 3.75(t3 - t)I[ltl < 1]. 

With these kernels, p(x) has an AMSE of 
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Figure 9. Nearest-Neighbor Estimates With k = 60 Based on n =2,000 Observations From the Twisted Pear Model of Example 1. 1 and Figure 4. 
(a) Scatterplot and True Local Mean (x). (b) True and Estimated Local Mean. (c) True and Estimated Local Residual Variance. (d) True and Estimated 
Local Regression Slope. 

AMSE(p(x)) 

2[.0714fl"(x) ]2 1I 2 
f[1 1-p 2(X) ]1 3([? (x) ( ] ? f(x) n b3nJ 

Moreover, 

2 [ (X)- p(x)]X - rh(x) C N(O 1) 

Tn(X) 

where 

rh(x) = cT[1 - p2(x)]312.07140"(x)/u(x) 

and 

rn(X) = (Jl[ -p'(x)j3/2/[nbO (X)] 1/2 

The mi (x) term in this result can be eliminated by requiring 
7 

C~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

0.8 1.0 1.2 1.4 1.6 

Figure 10. True and k = 60 Nearest-Neighbor Estimated Correlation 
Curves Based on 2,000 observations from the Model of Example 1.1 and 
Figure 3. 
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that (nbon) -O 0. When bOn = cn-, c > 0, a > 0, this means 
that a > 4. In view of Remark 4.1, this leads to the restriction 
7 < a < 3. Under this restriction, assuming Lindeberg's con- 
dition, we find that 

(nb'on) l2[ZI(X) - p(x)x/)b(x) -x N(O, 1), 

where b(x) = T[1 - p2(X)] 3/2/f 1/2(X) 
A consistent estimate of b2(x) is 

b2(X) = ^2[1 - b2(x)13nb3 

i=l [ ( bonS) ( bn )] 

It follows that an asymptotic 100(1 - a)% confidence 
interval for p(x) is 

p(x) = p(x) ? z( 1 - 2 )a[ -b(x). 

5. CHOOSING THE BANDWIDTHS 

The neighborhood size k and the bandwidths bjn should 
be chosen to make the mean squared error of the estimator 
small. There are three ways to try-to accomplish this: cross- 

Table 1. Monte Carlo Bias, Standard Deviation, and Root Mean 
Squared Error of p(x) for 500 Simulations from Model (12) 

Fixed design Random design 

Quantile X.25 X,50 X75 X25 X-50 X75 

Bias -.0057 -.0129 -.0156 -.0042 -.0098 -.0148 
Standard deviation .0081 .0131 .0220 .0121 .0187 .0288 
Root MSE .0098 .0183 .0271 .0128 .0211 .0323 

NOTE: The sample size is n = 2,000. 

validation, the plug-in method, and the reference distribution 
approach. We will use the third method to choose the band- 
widths in Ai (x), A2(x), and d(x). 

The idea behind the reference distribution approach is to 
approximate the joint distribution of (X, Y) by a relatively 
simple parametric model and then use the bandwidth that 
is optimal for this model. The chosen bandwidth will not 
converge to the optimal bandwidth unless the parametric 
model coincides with the true model, but it will have a rel- 
atively small variance. A natural model would be the power 
transformation model 

h(Y; X) = a + Oh(x; y)?+ (1+) 

I 8 '.0 1* . .608101. . . 
0 ~ ~ ~ ~ ~ 0 

(U 

0.8 1.0 1.2 1.4 1.6 0.8 1.0 1.2 1.4 1.6 

(a) (b) 

Ii~~~~~~~~~~~~~~~~~~~~~~c 
.5 

JO~~~~~~~~~~~~~~~~~~~~~~c 

0.8 1.0 12 1.4 1.6 0.8 1.0 1.2 1.4 1.6 

(c) (d) 

Figure 11. The True Curves (Solid Lines) and Kernel Estimates With Data-Based Bandwidths for (a) ,(x), (b) a(X), (C) O(x), and (d) p(x). The 
estimates are based on 2,000 observations from the model of Example 1.1 and Figure 3. 
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where X and c are independent and normally distributed, 
E(e) = 0, var(c) = a2, and 

h(t; X) = , X 0 

= log(t), X = 0. 

The optimal bandwidths for the model ( 11) can be computed 
and will be functions of a, 0, X, and y. Next, a, 0, X, and 
,y are estimated by maximizing the likelihood for the 
model (1 1). 

For the income-food expenditure data of Figure 2, a log- 
log model seemed particularly appropriate; thus we consider 
the model 

log Y = a + 0 log X + c. (12) 

We find, from Muller (1988), that the locally optimal band- 
widths for Aj ( x), j = 1, 2, are 

bjn = {(3/20)oyJ(x)/n(.j)2f(x)[ t'(x)]2} 1/5 j = 1, 2, 
where a (x) = var( YjI x), j = 1, 2. Similarly, the locally 
optimal bandwidth for /3(x) is 

bon = {.75(2.143)oy2(x)/n(.07 14)2f(x) ["'(x)]2 } 1/7 

Note that the locally optimal bandwidths depend on x. Thus 
we write bjn = bjn(X). For the model (12), 

,tj(x) = exp{j(ao + 0 log x) + -(j)2}, j = 1, 2, 2 

and 

oyj(x) = [exp{2j(a + 0 log x) + (ja2) }I] [exp(jo,)2 - 11, 

j = 1,2. 

Thus bjn(X), i = 0, 1, 2, can be readily expressed in terms 
of a, 0, 42, and $2. Finally, a, 0, 42, and o2 are estimated 
using a least squares package on the data (log Xi, logY Y), i 
= 1, . . ., n. For the model (12), this yields the maximum 
likelihood estimates bin of bjn1 j = 0, 1, 2. In the next section 
we use these local bandwidths when illustrating the corre- 
lation curve concept. 

6. REAL DATA ILLUSTRATIONS 

Our methods are useful only if the number of (x, y) pairs 
in the sample is 150 or more. Fortunately, there is an abun- 
dance of such data sets in computer data bases. 

Consider again the data set of Figure 2, which gives the 
scatterplot of x = net income and y = expenditure for food 
for 7,125 households in Great Britain. In Figure 5 we give 
S-produced empirical contour plots and an empirical density 
plot that clearly demonstrate the "pear-shape" aspect of this 
data set. These plots were computed by averaging five S- 
produced histograms based on grids of 25 rectangles in the 
(x, y) plane. This smoothing technique for bivariate densities 
was suggested to us by Steve Marron. 

Next we give the mean function kernel estimate ,i(x) and 
the standard deviation function estimate 5r(x), as well as the 
kernel estimate f3(x) of the local regression coefficient and 
the kernel estimate p(x) of the correlation curve for the net 

income-food expenditure data (Fig. 6). In this plot the 
bandwidth is chosen using the reference distribution ap- 
proach described in Section 5. In particular, the reference 
distribution is determined by (12). We also computed near- 
est-neighbor curves, as described in Section 3. These curves 
produced similar results and are not given here. Note that 
,(x) and a(x) both increase steadily. d(x) decreases fast in 
the region from 25,000 to 55,000, then levels off before re- 
suming its decline around x = 77,000. There is a curious 
increase in A(x) at the low end, which may be due to a 
boundary effect. In fact, the pointwise confidence band shows 
the high uncertainty in this region. The correlation curve 
estimate p(x) shows a steady decline in the strength of the 
relationship between income x and food expenditure; it starts 
at .92 for the low income levels and then drops steadily. But 
there is still some correlation at the higher income levels. In 
fact, the estimated local correlation never dips below .22. 
For this data set, the Galton-Pearson correlation coefficient 
takes the value r = .602. 

Next, in Figure 7 we give the 90% Bonferroni simultaneous 
confidence intervals for p(x) at the quantiles x1, x2, 
x90. Because of the large sample size, simultaneous signifi- 
cance obtains. Not only can we conclude that the correlations 
at these quantiles are significant at the 10% level, we can 
also conclude that the correlation is significantly larger at 
the 10th percentile than at the 60th percentile, significantly 
higher at the 20th percentile than at the 40th percentile, and 
so on. 

Finally, we compare parametric and nonparametric cor- 
relation curves. Thus we compute ,t*(x), T*(x), :*(x), and 
p*(x) for the parametric model (12) with the parameters 
estimated by maximum likelihood. In Figure 8 we see that 
the parametric curves ,t*(x) and T*( x) follow the nonpara- 
metric curves ,u(x) and &(x) well, indicating that the model 
(12) gives a good first-order approximation to the data. But 
f*( x) and p*( x) are quite different from the empirical kernel 
curves d(x) and p(x), indicating that the parametric curves 
are severely biased for functions involving derivatives, be- 
cause simulation studies show that A(x) and p(x) have small 
bias for large sample sizes (see Muller 1988 and Table 1 of 
this article). 

7. SIMULATED DATA 
7.1 Simulations 

We did a number of simulations to determine how close 
our empirical location, slope, and correlation curves fall to 
the true curves for various models. Here we present the results 
for the model Y = ,u(X) + i(X)e as given in Example 1.1 
and Figure 3. X and e are generated independently as X 

N(1.2, (1/3)2) and e N(0, (1/3)2). We use n = 2,000 
and k = 60. Figure 9a shows the scatterplot and the true 
local mean ,u(x), and Figure 9b shows the true curve ,u(x) 
and the estimate ,(x). Similarly, Figures 9c and 9d, shows 
the true and estimated local variance and slope. 

Next, Figure 10 shows the true and estimated correlation 
slopes. Figures 9 and 10 indicate that with neighborhood 
size k = 60, the estimates are somewhat erratic but are, on 
the average, nearly unbiased. By choosing a larger k, we 
would obtain smoother curves with a larger bias. 
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Finally, in Figure 11 we give the kernel estimates of ,u(x), 
o-(x), 3(x), and p(x) for the model of Example 1.1. We use 
the reference distribution approach with the reference model 

log Y = a + OX + e, 

where X and e are independent and normally distributed. 
Note that even with the wrong reference distribution, the 
reference distribution approach yields good results. The es- 
timate of p(x) is very smooth but a bit negatively biased. 
Note that 5r(x) overestimates o-(x) in the region where ,u(x) 
has high curvature (cf. Hall and Carroll 1990). 

7.2 Simulation Results 

We did a simulation study to evaluate the accuracy of the 
kernel estimate with the bandwidth selected using the ref- 
erence distribution approach of Section 5. We considered 
the model 

log Y = a + 3 log X + e, 

with log X and e independent and normally distributed with 
distributions N(10.44, .41) and N(0, .16). The true values 
of a and 3 are 2.05 and .67. This model was chosen because 
it gives a crude approximation to net income-food expen- 
diture data. We obtained the distribution of p(x) in 500 sim- 
ulations from this model for x equal to the 25th, 50th, and 
75th percentiles. We considered both the random design case, 
where X is random with a log normal distribution F, and 
the fixed design case with xi = F- ((i - I)/n), Flognormal 
as before. The results, presented in Table 1, show that the 
kernel estimate of p(x) with the bandwidth chosen by the 
reference method is very accurate at the sample size n 
= 2,000. The bias is small, and absolute bias is much smaller 
than the standard deviation. The root mean squared error 
is smaller near the first quantile x.25, which reflects the fact 
that for our lognormal X distribution, the data are more 
concentrated near this value. 

8. SUMMARY 

We have addressed the question of how to measure the 
strength of the relationship between a regressor x and a re- 
sponse Y in heterocorrelatious experiments, where the 
strength of this relationship depends on the level of x. We 
proposed a correlation curve that measures this relation- 
ship as a ratio p(x) of the local variability o-13(x) ex- 
plained by regression to the total local variability { o-32(x) 
+ o-2(x)} 1/2, where d(x) is the derivative of ,(x), A(x) 
= E(Y Ix), or2(x) = var(Y Ix), and -2l = var(X). 

We considered two classes of estimates of the correlation 
curve p(x). The first is based on nearest-neighbor-type es- 
timates of f(x) and o-2(X), and the second is based on a 
Gasser-Muller-type kernel estimate of d(x) and o-2(x) . We 
gave conditions under which these estimates are consistent 
and asymptotically normal. To choose the bandwidth b in 
the kernel estimates, we fit a power transformation model 
to the data and used the optimal plug-in estimate of b for 
this model. We showed this approach to work well in ex- 
amples and Monte Carlo simulations that give the mean 
squared error of the estimated correlation curve. 

APPENDIX: PROOFS 

Proof of Proposition 3.2 

Use the a method for moments to express E(p(x)) in terms of 
8j2, E(f2(x)), and E(f(x)). Note that in the a method, only the 
term involving E(f(x)) - ((x) contributes to the asymptotic bias 
of p(x), because the terms involving E(&f) _ 2 and E(f2(x)) 
- 2 (x) converge to 0 at a faster rate than do the terms involving 
E(3(x)) - ((x). Now use the Taylor expansion 

A(xi) = 8(X) + z [- xY(X)1j!YXi-X)i + O(Xi -X) 
j=1 

to complete the calculation. 

Proof of Proposition 4.1 

Applying Theorem 1 of Gasser and Muller (1984), we have 
,ul(x) u ALI (x) and :(x) = ,ul(x) , A' (x) = ,B(x). Applying the 
same theorem to the model Y? = E(Y2lx1) + ei = ,u2(xi) + ei, 
we obtain jt2(x) - ,u2(X). Notice that (9) guarantees that (8) is 
satisfied for both ei and e'. 

Proof of Proposition 4.2 

The proof is the same as for Proposition 4.1, except for applying 
theorem 2 of Gasser and Muller ( 1984) instead of theorem 1. Notice 
that (10) is stronger than (9) when p > 2. 

[Received May 1991. Revised July 1993.] 
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