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The AIDS Epidemic: Estimating Survival 
After AIDS Diagnosis From Surveillance Data 

XIN MING TU, XIAO-LI MENG, and MARCELLO PAGANO* 

Survival analysis based on reported acquired immune deficiency syndrome (AIDS) cases from the surveillance data maintained by 
the Centers for Disease Control (CDC) leads to severe bias because of a sizable fraction of unreported deaths. One approach to this 
problem is to condition the analysis on reported deaths, but this approach presents several difficulties. First, only the individuals who 
die within a chronologic time interval defined by the analysis may be observed. Second, this right-truncated sampling process is 
complicated by the delay in reporting death to the surveillance system, and as a result, only a proportion of those who die within the 
defined time interval are reported. Third, the time each death is reported to the surveillance system, which is essential for the 
construction of a joint likelihood of survival and reporting delay, may not be available. Fourth, deaths that occurred before 1984 all 
had unknown times of death. As a consequence, the direct implementation of the joint likelihood approach appears to be complicated 
and difficult. On the other hand, this data set is worth analyzing; it is the only data base that comes close to covering the entire AIDS 
population and thus provides invaluable information to assess the current and predict the future AIDS epidemic. In this article we 
apply several missing-data techniques to deal with these difficulties. In particular, we discuss how to estimate the delay and survival 
distributions separately, and then combine the two sources of information to make valid inferences for the survival distributions 
using multiple imputation. The EM algorithm is used to facilitate computations. The methodology developed here can also be applied 
to other studies that share similar data structures, such as data from local and other national surveillance systems. Analysis of the 
CDC surveillance data as of March 1991, for some high-risk groups considered, indicates that there has been a steady and notable 
increase in survival after an AIDS diagnosis over chronologic time, especially for those who had Pneumocystis carinii pneumonia 
(PCP) as one of the AIDS-defining diagnoses. 

KEY WORDS: Acquired immune deficiency syndrome; Censoring; Expectation-maximization algorithm; Incomplete data; Missing 
data; Multiple imputation; Proportional hazards model; Supplemented-expectation-maximization algorithm; 
Truncation. 

Information about survival after a diagnosis of acquired 
immune deficiency syndrome (AIDS) is important for clin- 
ical research, health services, and policy planning. Research 
findings from some follow-up studies, such as those con- 
ducted by the AIDS Clinical Trials Group (Volberding et al. 
1990), are extremely important but may be more useful for 
medical and clinical research than for health care planning, 
because patients enrolled in these studies receive state-of- 
the-art health care and tend to have longer survival times 
(Pagano et al. 1992). For health departments, what is of vital 
concern are the estimates of mortality for the general AIDS 
population residing in the United States as well as those re- 
siding in the areas serviced by the local health departments, 
which provide an indispensable source of information for 
assessing current health care needs as well as for future plan- 
ning. The national surveillance system set up by the Centers 
for Disease Control (CDC) (CDC 1991) and systems main- 
tained by the local health departments provide natural and 
better data sources for these estimates, because they are col- 
lected from these populations. 

Analysis of survival time based on the reported AIDS cases 
from the CDC surveillance system (and local surveillance 
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systems as well) is complicated by the fact that not all deaths 
are reported; of the diagnosed AIDS cases reported to the 
surveillance system, a proportion will never have their death 
reported. Survival estimates will be biased upward if cases 
without reported death certificates are simply censored at 
the time defined by the analysis (see Section 4). It is impos- 
sible to remove this bias unless we have knowledge from 
sources other than the CDC surveillance data to identify this 
confounding group of individuals. In this article, however, 
we focus on statistical methods for survival analysis without 
the help of such external sources. 

One way to avoid the confounding problem is to estimate 
survival using only the reported deaths from the surveillance 
system. These reported deaths, which can be viewed as re- 
alizations of a sampling process that is right-truncated by a 
chronologic time x* defined by the analysis, constitute only 
a portion of the sample: those who were diagnosed with 
AIDS, died, and were reported to the surveillance system by 
the time x*. On the one hand, given the time of an AIDS 
diagnosis, times of death, and reporting of death, a joint 
likelihood may be constructed for simultaneously estimating 
the survival and the reporting delay distributions. However, 
the direct implementation of such an approach for analyzing 
the CDC data is very complicated because the time of re- 
porting of death is not available for each reported death. On 
the other hand, a simplified analysis without adjustment for 
the reporting delay will be biased toward those whose death 
reporting is more likely to be complete, such as those who 
were diagnosed and died earlier in the epidemic and those 
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who were residents in the geographic locations that had better 
health surveillance systems. 

In this article we apply several missing-data techniques to 
develop methods for survival analysis of surveillance data 
that may suffer from these problems. We develop and illus- 
trate the methods by focusing on the CDC AIDS surveillance 
data, but the proposed methodology can be applied to data 
from some other surveillance systems, particularly those 
maintained by the local health departments. In Section 1, 
we first describe a discrete-time regression model for survival 
analysis of surveillance data and then apply the EM algorithm 
(Dempster, Laird, and Rubin 1977) to fit a general discrete- 
time regression model to data that can be censored as well 
as truncated in arbitrary intervals under no reporting delay. 
In Section 2 we discuss how to estimate the reporting delay 
distributions and to incorporate this information into esti- 
mation and inference of survival distributions using multiple 
imputation (Rubin 1987a). In Section 3 we present and dis- 
cuss results from the analysis of the CDC surveillance data 
as of March 1991 for several high-risk groups. In Section 4 
we provide some further discussions on the analysis and 
comparison of the proposed methodology with the standard 
alternative. 

1. SURVIVAL DISTRIBUTION IN THE ABSENCE OF 
REPORTING DELAY 

1.1 A Discrete Proportional Hazards Model 

The observed deaths in the surveillance data consist of 
those who were diagnosed with AIDS, died, and were re- 
ported by some chronological time x* defined by the analysis. 
Even if there were no reporting delay, these observations 
would still constitute only a portion of the sample observable 
in the time interval [0, x* ], where 0 is chosen to be the time 
of the earliest reported death (s) in the surveillance data base. 
For the CDC data, a further complication occurs when the 
death times were also missing for deaths that occurred before 
1984. (These relatively few cases, which may be excluded 
without affecting the main conclusions, were included to 
illustrate how to handle censoring as well as truncation, a 
problem that may arise in other studies.) Inclusion of these 
individuals in the analysis results in left-censored observa- 
tions. Nonparametric estimation with no covariates of such 
truncated and censored data may be accomplished using the 
methods proposed by Turnbull (1976), Wang, Jewell, and 
Tsai (1986), and Wang (1992). But our main interest is to 
study the effect of covariates on survival. Of particular interest 
is to see how this survival distribution is changing with the 
time of diagnosis, an objective that cannot be achieved using 
these methods. 

In this section we discuss a regression model and an as- 
sociated fitting algorithm for data that are censored as well 
as truncated in intervals or unions of disjoint intervals. 
Methods for right-truncated data alone have been developed 
in the analysis of AIDS incidence and latency distributions 
(Brookmeyer and Liao 1990; Harris 1l990a; Kalbfleisch and 
Lawless 1989, 1991; Finkelstein, Moore, and Schoenfeld, in 
press). 

Let X be the calendar time of an AIDS diagnosis and let 
S be the time from diagnosis to death. Let F(s I z) andf(s I z) 
denote the cumulative distribution function (cdf) and prob- 
ability density function (pdf) of the random variable S, con- 
ditional on a covariate vector z. Also let F(s) and f(s) be 
the baseline cdf and pdf of S obtained when covariates are 
set to zero. The density for an individual observed in the 
absence of reporting delay is expressed as 

f(sIz,X= x,X+ S<X*) = F( 
s I z) 

In general we can only model and estimate the conditional 
distribution F(slz)/F(s*Iz), where s* is the longest ob- 
served survival time. For F(s I z) to be fully identifiable for 
s < s*, it is necessary that F(s* I z) be known. Estimating 
the unconditional survival distribution as well as other un- 
conditional quantities, such as the survival median, depends 
on the assumption F( s*I z) = 1, which is a reasonable ap- 
proximation for our application (Sec. 4). 

Let Ai denote the region in which the ith individual is 
censored and let Bi denote the truncation region associated 
with the ith individual. Note that Ai reduces to a single point 
if the ith individual is not censored, and in our context Bi 
= [0, x* - xi], where xi is the time the ith individual is 
diagnosed of AIDS. The log-likelihood based on a sample 
of size N is 

N S p* 
L = z {log IA,f(SIZi) ds 

- log[f IBif(S I) dS]i}W (1) 

where zi denotes the value of the covariate vector for the ith 
individual and Ic denotes the indicator having value 1 if s 
E C and 0 otherwise. 

To estimate F(s I z), consider the case where time is dis- 
crete and S has masses only at so sl, . . ., sJ (sJ = S*). This 
discrete formulation is reasonable for the CDC surveillance 
data, as events are recorded in units such as a month or a 
quarter of a year, and would give better estimates when used 
to analyze such data where ties are numerous (Kalbfleisch 
and Lawless 1991). Because the time unit in our analysis is 
a quarter of a year, we let sj = j (O ? j < J) with so denoting 
the mass point for death occurring during the same quarter 
as AIDS diagnosis, though this simplification is not necessary 
for the following development. 

Let ijj = 1 if j E Ai and 0 otherwise, and let iij = 1 if j 
E Bi and 0 otherwise. The log-likelihood (1) then has the 
form 

N { 
' 

log f(i jzi)] z log[ m ijf(jlzi)]}. (2) 

Note that if there is no censoring or truncation in the data, 
this expression reduces to 

N J 

L = z E1111og f(jjlz), (3) 
i=1 j=O 
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where Iij = 1 if the ith individual fails at time s =j and 0 
otherwise. 

We have chosen a discrete analog of the proportional haz- 
ards model (Cox 1972; Prentice and Gloeckler 1978) to 
model the dependence of survival on covariates. Specifically, 
we consider the model 

f(il Z) = (po .* * )exp{Z 
p}( x pxp{zT6}) 

if O< j?J- 1 
= (Po 

. . 
.p*J1 ) exp { zT} ifj = J, (4) 

where pj = Pr(S > j + 1 1 S > j) (O j c J- 1) are conditional 
baseline probabilities, which also correspond to z = 0 in our 
model. Note that to facilitate computation, the range restric- 
tion on pj is often removed by a reparameterization: a1 
= log[-log(pj)] for 1 < j c J - 1. This model implies that 
the hazard function h(s I z) is approximately 

h(jIz) exp{aj + zTj}. (5) 

To facilitate the discussion, we let a = (ao, . . ., aj-1) and 
O = (a, ,l) and explicitly write f(s I z, 0) for the dependence 
of fon D. 

With this model possible temporal trends in survival over 
the time of diagnosis, x, is investigated by allowing z to in- 
corporate x. If this dependence is linear, then the distribution 
is stationary if the component of the regression coefficient 
vector # corresponding to x is not significantly different from 
0, with an increase or decrease in survival suggested by 
whether that component carries a negative or a positive sign. 
This model is also applied to estimating the reporting delay 
distribution (Sec. 2), where z includes covariates such as re- 
gions of residence to explore the possible heterogeneity in 
reporting delays. 

1.2 Parameter Estimation Via the EM Algorithm 

Under the discrete proportional hazards model, estimation 
can proceed by maximizing the log-likelihood (2) with respect 
to the vector 0. Such an estimation can be simplified by 
using the EM algorithm (Dempster et al. 1977). The algo- 
rithm we describe, which is an application of their general 
approach, can also be viewed as an extension of Turnbull's 
algorithm (Turnbull 1976) for regression analysis of censored 
and truncated data. This algorithm in essence converts a 
difficult incomplete-data problem (resulting from censoring 
and truncation in our setting) into a sequence of pseudo- 
complete-data problems (involving no censoring and trun- 
cation). In the current context this approach is especially 
attractive, because it not only simplifies programming but 
also permits the use of existing software packages to estimate 
the model parameters. 

Under the framework of incomplete-data analysis, cen- 
soring can be viewed as a type of incomplete data in the 
sense that the failure time for a censored subject is not ob- 
served at a mass point, but instead is only known to lie in 
an interval or a union of disjoint intervals of mass points. 
When truncation occurs, only a portion of the sample is 
observed, and the unobserved portion owing to truncation 
constitutes the missing observations. Because the complete- 

data log-likelihood (3) is linear in the data, the E step of the 
EM algorithm amounts to imputing the unobserved portion 
of the sample as well as the failure times for these and the 
censored individuals, using the observed data and estimates 
of model parameters from the previous M step. The model 
parameters are reestimated in the M step by maximizing the 
complete-data log-likelihood, treating the imputed data as 
though they were observed. We now describe the details. 

Let Iij = 1 if the ith individual fails at time s = j and 0 
otherwise, and let Jij be the number of individuals who have 
covariate zi and failure time at s = j. Given some initial 
estimate for D, the algorithm at the (k + 1)st cycle of iteration 
proceeds as follows: 

1. E step: For each censored individual, the value of Iij 
is not known. But its expectation, conditional on the previous 
estimate 0 (k) and all the observed data, denoted Yobs, is given 
by 

(k) _ _ _ _ _ __k_ _f_j_I _ _ _ _ _ __k _ 
C ij E( Iij | yobs, Xi 62 j E Jo( (rlz 

k)) 

for 1 < i < N and 0 < j < J. Note that with an observed 
failure at timej, c aland I 0 for all I#=j. Similarly, 
because of truncation the value of Jii may not be known. 
To calculate the conditional expectation of Jii, suppose that 

r=o (1 - ?ir)Jir follows a negative-binomial distribution 

NB[m Ini, P(zi)] = 
- 1 [ -p(Z)]p(Zi, 

m 

where P(zi )= J=O 77irf( r I zi, 0 (k)) and ni = Z J=o 7irJir. The 
conditional expectation of Jii is then given by 

g(k) aE(JII Yobs, 0 (k)) = j- )f(jIzi, (k)) 

forl <i<NandO<j<J. 
2. M step: This step updates the parameter estimate by 

maximizing the expected complete-data log-likelihood 

L *( | Yobs, C11 i gay ) 

N J 

= , z [ciJ + g9 7]log f( JI zi, 0). (6) 
i=1 J=O 

Denote the solution by 0 (k+ 1). 

The estimate of the parameter vector 0 = (a, /8) is obtained 
by cycling between the two steps until convergence. Note 
that the negative-binomial distribution in the E step, as de- 
scribed in Dempster et al. (1977, pp. 13-15), is a part of the 
complete-data formulation for applying the EM algorithm. 

The expected complete-data log-likelihood (6) in the M 
step of the algorithm is in the same form as that of the log- 
likelihood (3). As for computation, this expected log-likeli- 
hood can be regarded as that of (3) under the pseudo-com- 
plete-data { c(ik + g(J) } 1?ij,N,I.j,j?J. The only difference is that 
the contribution to the expected log-likelihood for the 
pseudo-complete-data is c11 + giJ rather than just 1 or 0 as in 
(3). Thus, the algorithm can simplify programming and use 
routines developed for complete-data analysis. For example, 
we obtained the estimates of our analysis (Sec. 3) using this 
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algorithm in conjunction with a computer routine for im- 
plementing the discrete proportional hazards model with 
observed failure times written in SAS IML (SAS Institute 
1985). Because the discrete proportional hazards model is 
equivalent to the complementary log-log model, other pack- 
ages developed for categorical data analysis such as GLIM 
(McCullach and Nelder 1989) may also be used. 

Although the EM algorithm is not sensitive to starting 
values, the number of iterations required to convergence can 
be reduced by a sensible choice of initial values. For the 
proportional hazards model, the vector , can be set to 0, 
but for a we discuss two approaches. One is to use the starting 
values 1 /J for eachf( j) (0? j c J), as in Turnbull (1976). 
Given f( j), we can solve the set of equations 

(Po ...P,-l)(1 -)pi) = f(j) (0 <j < J - 1) 

and 

Po... PJ- =f(J) 

for pj (0 c j c J - 1) in closed form. The initial estimate for 
a is obtained by setting aj = log[-log(pj)] for 0 < j<J- 1. 
Alternatively, when the data are only right-truncated, a 
closed-form solution forf( j) can be easily obtained by re- 
stricting attention to the noncensored portion of the data 
(Lagakos, Baraj, and DeGruttola 1988; Wang et al. 1986). 
If the amount of censoring is moderate, this approach would 
yield an initial estimate for a close to the MLE. The latter 
approach is used in our application, because there is a small 
proportion of deaths that occurred before 1984. The same 
approach is used for obtaining the initial values for estimating 
the reporting delay distributions (Sec. 2.1). 

1.3 Calculation of the Asymptotic Variance 
Estimate 

Hypotheses testing for the parameter vector, especially for 
regression coefficients, can be based either on the log-like- 
lihood ratio test or on the Wald x2 test. The latter approach, 
as well as the method of multiple imputation (Sec. 2.2), re- 
quires an access to the observed information matrix, Lobs. 
This matrix, of course, can be obtained by inverting the neg- 
ative of the second-order derivative of the observed log-like- 
lihood (2). A more efficient way, however, is to use the quan- 
tities calculated from the EM algorithm. An approach given 
in Louis (1982) is to correct the information matrix from 
the pseudo-complete-data log-likelihood, I, for the addi- 
tional variation due to missing data. It is readily shown that 
this approach leads to the following formula: 

N 

Iobs(O*) = IM(O* ) -2 var[S(sIzi, 0*)IIA, = 1] 
i=l 

N 

+ z var[S(slzi, O*)IIB, = 1] 
i=1 

N E[S(sIz1, O*)ST(slzi, O*)] 

where 0* = (a*, ,8*) denotes the MLE of 0 = (a, ,8) 
based on the observed data Yobs, S(sIz1, 0*) = (0/00) 

X logf(s I zi, 0*), and var(* I IA = 1) denotes the variance- 
covariance matrix conditional on IA = 1. Note that in case 
of no truncation, (7) reduces to the formula given by Louis 
(1982) for a multinomial distribution with missing cell 
counts. The use of the formula avoids the calculation of the 
second-order derivatives of the log-likelihood (2), because 
the quantity S(s I zi, 0) is the score vector corresponding to 
an individual with covariate zi and failure time s. 

Alternatively, we can apply the SEM algorithm (Meng 
and Rubin 1991) to compute lobs and completely avoid the 
analytical calculation of derivatives except for those required 
by the computation of I. The key idea is to use the matrix 
of the rate of convergence of the EM algorithm, DM(0*), 
which equals the matrix of fractions of missing information, 
to deflate the complete-data information matrix 

Iobs(O*) = [I - DM(0*)]Ic(0*). 

The DM(0* ) matrix is obtained by numerical differentiation, 
which only requires the code for the EM algorithm because 
the mapping function 0(k+1) = M(0(k)), used in evaluating 
the numerical differentiation, is implicitly defined by the E 
and M steps. In the present context the SEM algorithm may 
be preferable if the EM algorithm is implemented using 
standard packages, because the formula in (7) requires the 
use of the score vector S(s I zi, 0* ), which may not be readily 
available as standard output from these packages. 

2. SURVIVAL DISTRIBUTION IN THE PRESENCE 
OF REPORTING DELAY 

2.1 Estimating the Delay Distribution 
of Reporting Death 

Given the lag time of reporting of death, r, and a covariate 
vector z that may include the time of death, t, estimation of 
the delay distribution can proceed using the methods de- 
scribed in Section 1. Following the notation in Section 1, 
the delay density is given by: 

6(rlz) = (Po . Pr-I)xp{Z }( r pexp{ZT,}) 

if O r?R- 1 

= (PO. pR-I )exp{zT.} if r = R, 

where R is the maximal observed delay. To facilitate the 
following discussion, we denote this density by 3(rlz, 4I), 
where if = (ao, ... , aR- , A) with ar = log[-log(pr)]. 

The lag information needed for estimating the delay dis- 
tribution was available for deaths that occurred after Sep- 
tember 1987 when their reporting times (in calendar quarters) 
were recently added to the CDC Public Use data base as of 
July 1991. The data containing the lag information are also 
right-truncated, because only deaths with reporting delays 
less than x* - t are in the data base, where t is the calendar 
time of death. As a result of right truncation, the reporting 
delay distribution is identifiable only if 

Pr [maximal observed delay ? x*] = 1. (8) 

If we restrict to the deaths with known times of reporting, 
this maximal observed delay is about 4 years. To increase 
the maximal delay, we also included deaths that occurred 
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before October 1987 but after January 1986, with their un- 
known times of reporting treated as left-censored. This al- 
lowed us to obtain a delay distribution conditional on deaths 
reported within about 5 years. Comparison of the number 
of reported deaths between the data set as of October 1988 
and that as of July 1991 shows almost no change in the 
number of deaths that occurred before 1986. It is, therefore, 
quite likely that deaths not reported within 5 years will rarely 
or never be reported. Expression (8) thus approximately 
holds. 

2.2 Accommodating the Delay Distribution Via 
Multiple Imputation 

To correct for the bias caused by the reporting delay, we 
can use the information contained in the reporting delay 
distribution to impute the unreported deaths (missing ob- 
servations) and thus to incorporate them into the survival 
distributions. Given the delay distribution 3 (r I z, '1), ni ob- 
served deaths with failures at time ti and covariate zi, we 
can impute the unreported deaths using the expected number 
of such cases under the assumption that the number of un- 
reported deaths follows a negative-binomial distribution; that 
is 

E [m I ni, P(ti, Zi, I) - P(ti(',,') ni, (9) 1 P(ti, zi, 'I) 

where m denotes the number of unreported deaths and 
x*-t 

P(t, z, I) = 6(rjz, 0). 
r=O 

Although this mean-imputation process produces reasonable 
estimates for the survival distribution under the model as- 
sumption, the inference based on such imputation system- 
atically underestimates the sampling variability, because the 
imputed observations are treated as if they were actually ob- 
served. In addition, because the model parameter vector ,6 
can be only estimated, the variation in the estimator itself 
should also be reflected with a proper imputation scheme. 

Multiple imputation (Rubin 1987a) provides a natural tool 
for accommodating variability. (For a review of multiple im- 
putation in health-care studies, see Rubin and Schenker 
199 1.) The idea underlying multiple imputation, in contrast 
to single imputation, is to let the variability in the missing 
data be manifested in a number of completed-data sets and 
then to combine the data analyses from these completed- 
data sets to reach valid inferences. In our analysis, the im- 
putation task is accomplished by independent draws from 
the posterior predictive distribution of the missing data, un- 
der the assumption that the missing data are missing at ran- 
dom (Little and Rubin 1987; Rubin 1976). 

To describe the details for implementing multiple impu- 
tation in our context, let ,6 and Ql be the MLE and the inverse 
of the observed information matrix for the reporting delay 
distribution obtained by applying the methods in Section 
2.1. Under a noninformative prior for ,6, the standard large- 
sample asymptotic theory implies that the posterior distri- 
bution of ,6 can be approximated by the multivariate normal 
distribution N( ,6, Q). (The method of importance sampling 
[see, for example, Rubin 1987b] may be used to improve 

the approximation in case of a relatively small sample size.) 
The conditional distribution of the number of unreported 
deaths given ni reported deaths with failures at time ti and 
covariate zi and the parameter vector 4 under our assump- 
tion is a negative-binomial: 

NB(m Ini, P(ti, zi, 0)) 

= m+n -1 
m= 

i 
[I -p(ti, Zi, 0/)],p(t,' Zi, 0)nj, 

m 

where P( ti, zi, I1) = x 6 ( r I zi, 41). Thus the independent 
draws from the posterior predictive distribution required by 
multiple imputation can be obtained as follows. 

To obtain M completed-data sets by multiple imputation, 
we perform, for each 1 (1 ? / ? M), the following steps with 
independent draws for all the random variables at each pass: 

1. Draw a random sample 41, from N(4, Q). 
2. Given 41', for each observed ni with death time ti and 

covariate zi, draw a random sample m(l) from the negative- 
binomial distribution NB [m I ni, P(ti, zi, 411)]- 

3. For each observed ni with death time ti and covariate 
Zi, impute the unreported deaths by m(l) to form the lth 
completed-data set Y*,, which now contains { ni + mY) } 
number of deaths. 

Note that because the maximum delay is about 5 years, only 
the unreported deaths with an AIDS diagnosis after January 
1986 need to be imputed, in which case exact death times 
(in quarters) are available for the reported ones. 

2.3 Analyzing the Multiply Imputed Data Sets 

Applying the methods in Section 1 to each of the com- 
pleted-data sets yields a set of ML estimates { Oi = (,1, .8i); 
1 < / ? M}, as well as a set of the inverses of the observed 
information matrices { Xi; 1 < / < M} for the survival dis- 
tribution. Following Rubin (1987a), the multiple imputation 
estimate of 0 is given by averaging over the estimates from 
the M imputations; that is, 

M 
OM=M-1 61. 

1= 1 

The average of X, denoted by XM, however, underestimates 
the variability associated with OM, because it does not take 
into account the variability due to the missing data. The 
appropriate estimate that measures the total variability of 
OM is given by 

TM = XM + (1 + M1)BM, 

where 
M 

BM = (M - f1) 
I 

(01 - OM)(01 - OM) 
1= 1 

measures the "between-imputation variability." Hypothesis 
testing for CO = 0, where C is a k X d matrix and d (>k) is 
the dimensionality of 0, can be accomplished by refemrng a 
modified Wald statistic, 

DM( CM)T( CXMCT) COM 
DM = k(1+ rM) 
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to an Fk,W distribution, where 

rM = (1 + M1)trace[CBMCT(C2MCT)Y]/k 

and w is given by (Li, Raghunathan, and Rubin 1991): 

w= w(rM) = 4 +(v-4)[1 + ( 1-2)rM?ij2 

ifv=k(M- 1)>4 

=2(i + )(I +ryj)2, otherwise. (10) 

Alternatively, a recently proposed modified likelihood ra- 
tio test (Meng and Rubin 1992) can also be used to provide 
a p value for the null hypothesis CO = 0. This approach is 
asymptotically equivalent to the previously described ap- 
proach for any number of multiple imputations, but avoids 
the computation of the variance-covariance matrices 
CX1CT for 1 < l c M, which could take up a lot of computing 
storage when k is large. Using this approach, the complete- 
data log-likelihood ratio 

R(00, 0) = -2 log[~~1,7 
[ L ( 11Y) ] 

is first computed as a function of the ML estimates 00 and 
0 for each of the completed-data sets under the null model 
and full models to obtain d1 = R(60, 1 I Y*I) for 1 < 1 c M. 
The log-likelihood ratio is then computed again for the av- 
eraged ML estimates, 

M M 

OOM =M M1 z Om = M-M b 8 
1=1 1=1 

under each of the completed-data sets to obtain d4 
= R (OMo, 0M I Y*i). Note that for our survival analysis, the 
appropriate complete-data log-likelihood function for com- 
puting these likelihood ratios is from expression (2), not from 
(3) or (6). Let dM and dM be the averages of d1 and d4. Then 
the p value for CO = 0 is Pr(Fk,w(rL) > DL), where 

_M+_ ____ 

rL k(M ) (dM- dm) DL k(1 + rL) 

and the function w(r) is given by (10). 

3. RESULTS 

3.1 Risk Groups Considered and Variations in 
Reporting Delays 

As of July 1991, 142,605 AIDS cases were reported to the 
CDC. Of these, 120,553 were men (excluding pediatric and 
transfusion-related AIDS cases), who constitute about 85% 
of the reported AIDS population in the United States. 
Knowledge of variation in survival among these patients, 
which still forms a driving force for the current AIDS epi- 
demic, would be of great help in assessing the current health 
care needs and for health policy planning. 

The analysis was based on the 82,239 reported deaths with 
an AIDS diagnosis between the first quarter Of 1983 and the 
first quarter of 1991. Note that deaths with AIDS diagnosed 
in the second quarter of 199 1, the most recent quarter at the 

time of our analysis, were not used because of the severe 
underreporting. To study the difference in survival among 
the different risk groups as well as the difference resulting 
from manifestations of AIDS, we divided this subpopulation 
into four major risk groups on the basis of their sexual be- 
havior and injecting drug (ID) use status: men who have sex 
with men (including bisexual contact) with ID use (6,329 
deaths) and non-ID use (60,530), denoted IDMSM and 
MSM; and heterosexual men with ID use (14,533) and non- 
ID use (847), denoted IDMSW and MSW. Within each risk 
group we also defined three diagnosis strata in order: (1) 
Pneumocystis carinii pneumonia (PCP) (either definitively 
or presumptively diagnosed), (2) disease manifestations other 
than PCP and Kaposi's sarcoma (OTH), and (3) Kaposi's 
sarcoma (KS) (either definitively or presumptively diag- 
nosed). (A similar classification scheme was used by Lemp 
et al. 1990.) Individuals with multiple diagnoses were clas- 
sified according to the highest-ranked stratum. For example, 
individuals diagnosed with PCP and other opportunistic in- 
fection(s) were classified into the PCP category, those diag- 
nosed with other opportunistic infection(s) and KS were 
classified into the OTH category, and so on. Thus under this 
classification scheme, classifying a patient PCP only indicates 
that the patient had PCP as a diagnosis, not necessarily the 
first diagnosis. Note that to minimize the influence of the 
change of definition in 1987 on survival, patients with a 
disease added to the case definition in 1987 (basically wasting, 
dementia, and disseminated TB; see CDC 1991) were ex- 
cluded from the analysis. 

Because of the underreporting of deaths resulting from 
delays in reporting, the total number of deaths that would 
have been reported within 5 years were estimated using the 
methods discussed in Section 2. Because time trends in delays 
of reporting AIDS incidence as well as variations among the 
five geographic regions consisting of metropolitan statistical 
areas with population at least 1 million (Northeast, Central, 
West, South, Mid-Atlantic) and a residual category consisting 
of areas with population less than 1 million, have been re- 
ported (Brookmeyer and Liao 1990; Harris 1990a; Zeger, 
See, and Diggle 1989), suspicion of the same phenomenon 
led us to model for the delay distributions the variation 
among the risk groups and a time trend for each of the six 
regions. The variation among the risk groups is modeled by 
coding an indicator for each group with IDMSM serving as 
a reference group; the time trend, by a covariate with values 
from 1 to 6 designating the year of death between 1986 and 
1991. Shown in Table 1 are the estimates of the regression 
parameters for the discrete proportional hazards model when 
fitted to each region. All the regions show a decreasing delay 
in reporting except for the Northeast, which shows an in- 
creasing trend. Plotted in Figure 1 are the medians of the 
delay distributions for each of the regions, obtained by com- 
bining the risk groups. The Northeast region has the longest 
delay and is the only region in which the delay has increased 
between 1986 and 1991. 

Plotted in Figure 2 are the CDF's of the delay distributions 
for the four risk groups, obtained under the stationarity as- 
sumption by combining the regions. It seems that the delays 
in reporting death are similar for all the risk groups except 
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Table 1. Regression Coefficients (Standard Errors) for the Discrete Proportional Hazards Model 
When Fitted to Each Region for Modeling the Reporting Delays 

Population 
Covariates Northeast Central West South Mid-Atlantic < 1 million 

Time of death -.075 (.016) .109 (.017) .126 (.011) .026 (.016) .072 (.021) .189 (.010) 
IDMSW .005 (.057) -.035 (.098) -.132 (.090) -.379 (.076) .027 (.101) -.070 (.042) 
MSM .074 (.056) -.005 (.075) .039 (.044) .059 (.055) .129 (.082) .022 (.037) 
MSW 1.072 (.144) .130 (.213) -.174 (.219) -.287 (.180) .338 (.215) -.018 (.082) 

NOTE: Risk groups are coded as indicators, with IDMSM serving as a reference group and time of death a quantitative variable. 

IDMSW, which shows a relatively longer delay. The plot 
shows that approximately 90% of the deaths that will ever 
be reported will be done so within 2 years. 

3.2 Estimated Survival Distributions 

Having the delay distributions, the survival distributions 
were estimated next, by adjusting the reported cases as de- 
scribed in Section 2. Because deaths with an AIDS diagnosis 
after 1982 were included in the analysis, we were able to 
obtain distributions conditional on death within about 8 
years following diagnosis. Plotted in Figures 3-5 are the sur- 
vival distributions (1 - CDF) for the four risk groups within 
each disease category obtained under the discrete propor- 
tional hazards model and the assumption that survival has 
not changed over the time of diagnosis. (The widest confi- 
dence bands in Figs. 3-5 are associated with the MSW due 
to its relatively small sample size.) These plots show that the 
MSM seems to have the longest survival and IDMSW the 
shortest survival after a diagnosis of AIDS. Figures 3-5 also 
indicate that the average medians of survival for the PCP, 
OTH, and KS cases are approximately 12, 9, and 15 months, 
all of which are comparable with the estimates reported by 
Harris (1990b), Lemp et al. (1990), and Friedland et al. 
(1991). The dip at the end of the third month for PCP, which 

Month 
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Figure 1. Medians of Reporting Delay Distributions for the Six Geo- 
graphic Regions Classified by the CDC Surveillance System. The short- 
and long-dashed line (- --) represents the Northeast region; the dashed 
line (----), the West region; the dotted line (.... ), the Mid-Atlantic 
region; the long-dashed line (-- -), the Central region; the solid 
line ( ), the South region; and the dotted and long-dashed line 
(---- -** -), the population <1 million region. 

was also observed in Harris (1990b) and in Friedland et al. 
(1991), seems to suggest that those diagnosed with PCP might 
be at a relatively high risk during the first 3-month period 
following diagnosis. 

Note that the survival curves for OTH in Figure 5 show 
a close match when they are approximated by exponential 
distributions with means estimated from them. But, such 
exponential curves do not provide as good approximations 
for the survival curves in Figures 3 and 4. For KS, the ex- 
ponential curves fall below the estimated survival curves 
during the first 2 years after diagnosis, with a maximum 
discrepancy of about 5%, then cross and stay above them 
after that, with a maximum difference of about 3%. The 
approximations for PCP are similar, except for the reduced 
ranges of discrepancy-3% and 2% for the respective peri- 
ods-and some agreement between these curves during the 
initial 6 months following diagnosis. 

The survival trend for each disease and risk group category 
was obtained by fitting the discrete proportional hazards 
model with a covariate coded from 1 to 9 designating the 
year of diagnosis between 1983 and 1991. Shown in Table 
2 are the estimates of the regression parameters and the as- 
sociated p values for the disease and risk group categories 
corresponding to both the single-using mean imputation 
(9) -and multiple imputations. It is clear from the table that 

Probability 
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Figure 2. Cumulative Reporting Delay Distributions for the Four Risk 
Groups. The dotted and long-dashed line ( *-* ---. -) represents the 
IDMSM group; the long-dashed line (---), the IDMSW group; the 
short-dashed line (---), the MSM group; and the solid line ( ), the 
MSW group. 
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Figure 3. Survival Distributions and 95% Confidence Intervals (Vertical 
Bars) for Pneumocystis carinii Pneumonia for the Four Risk Groups. The 
dotted and long-dashed line (.* ---- -- -) represents the IDMSM group; 
the long-dashed line (-- -), the IDMSW group; the short-dashed line 
(- -), the MSM group; and the solid line ( ), the MSW group. 

even though the single imputation yields very similar esti- 
mates for the regression coefficients, it systematically under- 
estimates the associated variabilities (often by an order of 
magnitude), with the degree of underestimation determined 
by the fraction of missing information (Rubin 1 987a). Thus 
the p values that correspond to single imputation are far too 
small for some disease and risk group categories and will be 
very misleading when used for statistical inferences. In con- 
trast, the p values based on multiple imputation, even though 
they are slightly different under different number of impu- 
tations, essentially imply the same practical conclusions and 
provide valid inferences. It seems that in our context, ten 
imputations will suffice to yield reliable results. 

The results in Table 2 indicate that significant increase in 
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Figure 4. Survival Distributions and 95% Confidence Intervals (Vertical 
Bars) for Diagnosis Other Than Pneumocystis carinii Pneumonia and Ka- 
posi's Sarcoma for the Four Risk Groups. The dotted and long-dashed 
line .. .- .-) represents the IDMSM group; the long-dashed line 
(- --), the/IDMSW group; the short-dashed line (--t), the MSM group; 
and the solid line ( -), the MkSW group. 
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Figure 5. Survival Distributions and 95% Confidence Intervals (Vertical 
Bars) for Kaposi's Sarcoma for the Four Risk Groups. The dotted and 
long-dashed line (---- -) represents the IDMSM group; the long- 
dashed line (-- -), the IDMSW group; the short-dashed line (--t) 
the MSM group; and the solid line ( ), the MSW group. 

survival between 1983 and 1991 is mostly confined to the 
homosexual population (MSM and IDMSM) with PCP as 
one of the diagnoses, even though the patients who were 
diagnosed with opportunistic infections other than PCP and 
KS within the same population also show some improve- 
ment, especially for non-ID users. Under the model as- 
sumption the estimated coefficients shown in Table 2 imply 
an average 13% annual reduction rate in mortality for the 
PCP patients in this risk population and about a 7% reduction 
rate for those in the OTH category within the same popu- 
lation. 

Improvement of survival for PCP after 1987 has been re- 
ported by short-term survival analysis based on the surveil- 
lance data (Harris 1990b; Lemp et al. 1991). To accentuate 
the difference in survival between the two periods, we fitted 
the model to the PCP cases for the homosexual population 
using a binary covariate with 1 for people diagnosed after 
1987 and 0 otherwise. The estimates for the regression coef- 
ficients are -.34 for ID users and -.52 for non-ID users, 
both of which are highly significant as a consequence of sta- 
tionarity tests presented in Table 2. These estimates imply 
reduced mortality of 28% for ID users and 40% for non-ID 
users after 1987, which seem to be comparable to the reduced 
mortality of about 30% found in the San Francisco study 
for patients taking zidovudine (AZT) (CDC 1990; Lemp et 
al. 1990) and some other clinical trial studies (Volberding et 
al. 1990). Based on these other studies, it has been hypoth- 
esized that the improvement for PCP after 1987 was partly 
due to the intervention of the antiviral drug AZT (Harris 
1990b), although improvement of survival is evident even 
before 1987, a fact that must also be part of any explanation 
that attributes the improvement to some key event that oc- 
cuffed in 1987 (Bennett et al. 1989; Cotton 1989). Note that 
the reduction in mortality for non-ID users seems to be 
slightly higher than that reported by the San Francisco study, 
which might suggest that the improved survival for the PCP 
cases could also be attributed to other treatments, such as 
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Table 2. Estimates (p Values) of Regression Coefficient of Time of Diagnosis (Coded as a Quantitative Variable) 
for the Discrete Proportional Hazards Model When Fitted to Each Risk Group and Disease Category 

for Modeling Survival under Mean Imputation and Multiple Imputation (with M Imputations) 

MSM MSW 
Number of 
imputations PCP OTH KS PCP OTH KS 

ID 

Mean imputation -.113 (.000) -.071 (.007) .014 (.082) -.009 (.315) .008 (.035) .030 (.005) 
M = 10 -.099 (.000) -.066 (.046) .016 (.546) -.011 (.316) .008 (.656) .025 (.063) 
M = 50 -.100 (.000) -.064 (.069) .012 (.629) -.010 (.399) .009 (.601) .029 (.056) 

Non-ID 

Mean imputation -.162 (.000) -.080 (.000) -.077 (.025) .019 (.514) .038 (.091) .050 (.472) 
M = 10 -.163 (.000) -.079 (.000) -.077 (.079) .019 (.745) .031 (.621) .073 (.623) 
M = 50 -.163 (.000) -.079 (.000) -.076 (.061) .007 (.924) .029 (.745) .051 (.776) 

prophylactic trimethoprim-sulfamethoxazole or aerosolized 
pentamidine, that have been found to be successful in pre- 
venting recurrence of PCP (Hirschel et al. 1991; Leoung et 
al. 1990). Of course, without controlled clinical trials, all 
these hypotheses can remain only speculations. 

Plotted in Figure 6 are the medians of survival for the 
PCP cases from the risk groups IDMSM and MSM and for 
the OTH cases from the MSM risk group. It is seen that the 
medians for PCP in the MSM risk group averaged over the 
periods 1983-1985, 1986-1987, and 1988-1990 are ap- 
proximately 10, 15, and 21 months. These estimates seem 
to be comparable to the medians 10.3, 17.9, and 21 months 
for the PCP cases diagnosed in the periods 1981-1985, 1986- 
1987, and 1988-1990, estimated from the San Francisco 
study (Lemp et al. 1991). Note that only the estimates for 
PCP in the MSM group are comparable to the estimates 
reported from the San Francisco study, which may not be 
surprising, as about 85% of the population in the San Fran- 
cisco study were MSM. Significantly increased survival was 
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Figure 6. Median Survival Times for Pneumocystis carinii Pneumonia 
Cases in the MSM and IDMSM Risk Groups and for Diagnoses Other than 
Pneumocystis carinii Pneumonia and Kaposi's Sarcoma in the MSM Risk 
Group. The solid line ( ) represents the IDMSM (PCP) group; the 
short- and long-dashed line (- --), the MSM (PCP) group; and the long- 
dashed line (---), the MSM (OTH) group. 

also reported by Lemp et al. (1991) for cases diagnosed with 
infections other than PCP and KS. The medians of survival 
for OTH in the MSM risk group averaged over 1983-1985, 
1986-1987, and 1988-1990 are approximately 7, 8, and 10 
months, which are slightly lower than the average medians 
9, 10, and 13 months over 1981-1985, 1986-1987, and 
1988-1990 for the cases with infections other than PCP and 
KS reported in Lemp et al. (1991). 

4. DISCUSSION 

In this article we adopt an approach that combines EM 
with multiple imputation for properly analyzing survival data 
when the failure time is truncated and possibly censored and 
the reporting of such failures is constrained within a chron- 
ologic time interval. Another example involving similar data 
structures in the AIDS research, and thus our approach can 
be applied to, is the problem of estimating HIV incidence 
when the time of onset of AIDS is truncated and reporting 
delay is present. This approach not only accommodates the 
deficient features of most surveillance data sets of this nature 
in general and the CDC AIDS surveillance system in partic- 
ular, but also leads to greatly simplified estimation. Because 
the simplification is achieved by splitting the problem of 
joint estimation of survival and delay distributions into sep- 
arate estimations of each, the resulting estimates may not be 
as efficient as those based on the joint likelihood. However, 
this possible disadvantage is offset by the gain in simplicity 
of computing and the large sample sizes of the AIDS sur- 
veillance data set in particular and many other survey and 
surveillance data of similar magnitude in general. 

In the analysis we have treated deaths occurring in the 
same quarter as diagnosis as having survival times less than 
3 months. But a proportion of these individuals may rep- 
resent a much delayed diagnosis of AIDS at a time that is 
very close to death rather than rapid disease progression 
(CDC 1990). It is difficult or even impossible to identify 
these individuals from the surveillance data alone. In an at- 
tempt to investigate this possible bias, we refitted the models 
after deleting the deaths occurring in the same quarter as 
diagnosis, there was very little change in the estimates. 

An assumption used in modeling the survival distributions 
is that F(s* I z) = 1. We examined the deaths from AIDS 
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diagnoses before 1984 and found that less than 1% of them 
survived for 8 years. In light of this and results from other 
AIDS surveillance data and AIDS clinical trials studies, we 
think that it would be rare for an individual to survive for 
more than 8 years after an AIDS diagnosis. The estimates 
presented, therefore, seem to provide good approximations 
to the unconditional distributions. 

It is quite possible that the change in definition of AIDS 
by the CDC in 1987, which broadened the case definition 
to include presumptive diagnosis of several conditions, in- 
cluding PCP (CDC 1991), early diagnosis, overall improve- 
ment of medical care and treatment, and so on, could all 
effect the estimates. The results presented suggest that any 
explanations must accommodate a differential effect on the 
risk groups, because such a significant increasing trend is not 
observed for all the risk groups considered. 

The survival estimates presented in this article are based 
on reported deaths rather than on reported AIDS cases using 
standard survival methodology as in several similar analyses 
(Harris 1990b; Lemp et al. 1990, 1991). Unlike these other 
studies, where patients had been closely followed-up after 
an AIDS diagnosis, a sizable fraction of deaths in the CDC 
data will never be reported. Thus the standard approach is 
not appropriate for analyzing the CDC data. Simply cen- 
soring reported AIDS cases with no death certificates at the 
time of analysis will cause severe bias. Figure 7 shows the 
comparison between the two approaches for the PCP cases 
in the MSM risk group. The upper two survival curves are 
based on reported AIDS cases with death censored at two 
different times, one at the time of analysis and the other 1 
year before that time. The bottom curve, which is the same 
curve in Figure 3 for the same risk group, is based on reported 
deaths. The survival curves based on the reported AIDS cases 
show that between 15% and 18% of PCP cases would still be 
alive at the end of 5 years, a survival rate for PCP much 
higher than those reported by other studies (Friedland et al. 
1991; Lemp et al. 1990). This example explains the upward 
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Figure 7. Survival Distributions and 95% Confidence Intervals (Vertical 
Bars) for Pneumocystis carinii Pneumonia in the MSM Risk Group. Based 
on reportedAlDS cases with death censored at the time of analysis March 
1991 (upper curve), reported AIDS cases with death censored after March 
1990 (middle curve), and reported deaths (bottom curve). 

bias in the estimates reported by Rothenberg et al. (1987) 
that was first recognized by Lemp et al. (1990). Note that 
censoring death 1 year before the time of analysis produced 
a less-biased estimate. Nevertheless, such estimates from re- 
ported AIDS cases are always biased, unless we have knowl- 
edge to separate those whose deaths will never be reported 
from those who were still alive at the time of analysis. 

[Received May 1991. Revised August 1992. ] 
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