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Using EM to Obtain Asymptotic Variance-Covariance 
Matrices: The SEM Algorithm 

XIAO-LI MENG and DONALD B. RUBIN* 

The expectation maximization (EM) algorithm is a popular, and often remarkably simple, method for maximum likelihood 
estimation in incomplete-data problems. One criticism of EM in practice is that asymptotic variance-covariance matrices for 
parameters (e.g., standard errors) are not automatic byproducts, as they are when using some other methods, such as Newton- 
Raphson. In this article we define and illustrate a procedure that obtains numerically stable asymptotic variance-covariance 
matrices using only the code for computing the complete-data variance-covariance matrix, the code for EM itself, and code for 
standard matrix operations. The basic idea is to use the fact that the rate of convergence of EM is governed by the fractions of 
missing infornation to find the increased variability due to missing information to add to the complete-data variance-covariance 
matrix. We call this supplemented EM algorithm the SEM algorithm. Theory and particular examples reinforce the conclusion 
that the SEM algorithm can be a practically important supplement to EM in many problems. SEM is especially useful in mul- 
tiparameter problems where only a subset of the parameters are affected by missing infonnation and in parallel computing 
environments. SEM can also be used as a tool for monitoring whether EM has converged to a (local) maximum. 

KEY WORDS: Bayesian inference; Convergence rate; EM algorithm; Incomplete data; Maximum likelihood estimation; Ob- 
served information; Parallel processors. 

1. INTRODUCTION 

1.1 The Theme of SEM 

Over the past dozen or so years, the expectation max- 
imization (EM) algorithm (Dempster, Laird and Rubin 1977, 
henceforth DLR) has become a remarkably popular tool in 
applied statistics and a common topic in many publications 
in statistics, so common in fact that articles often refer to 
it without citing any publication for it. A principal reason 
for this popularity is that it relies on flexible computing 
enviromments to find maximum likelihood estimates (MLE's) 
in complicated problems of missing and incomplete data 
primarily using complete-data tools: The M step is standard 
maximum likelihood estimation for complete-data prob- 
lems, and the E step is usually available from standard 
complete-data theory of conditional distributions. This idea 
of capitalizing on computing power and complete-data tools 
to handle missing-data problems, including random param- 
eter models, is a major theme in much of modem statistics: 
latent class models (Goodman 1974), missing data in 
ANOVA (Rubin 1976), mixture models (Titterington, Smith 
and Makov 1985), multiple imputation (Rubin 1987), data 
augmentation (Tanner and Wong, 1987), stochastic relax- 
ation (Gelfand and Smith 1990), and so on. 

Here we confine ourselves to the EM context but follow 
this theme of repeated computations using complete-data 
tools. Specifically, we supplement the maximum likelihood 
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estimates of EM with an associated asymptotic variance- 
covariance matrix for them, which can be obtained using 
only the code for the complete-data asymptotic variance- 
covariance matrix, the code for the EM algorithm, and 
standard code for matrix operations. In particular, neither 
likelihoods nor any derivatives of likelihoods or log-like- 
lihoods need to be evaluated. Previously suggested proce- 
dures for supplementing EM to obtain an asymptotic vari- 
ance-covariance matrix have restrictions and limitations that 
our procedure does not have, as discussed in Section 1.2. 
We believe that our procedure, which we call the supple- 
mented EM algorithm or the SEM algorithm, will be an 
important supplement to EM in many contexts, especially 
in modem computing environments where computer time 
is inexpensive relative to researcher time and where parallel 
processing is possible. SEM can also be applied to find the 
asymptotic variance-covariance matrix when the MLE's are 
obtained by any other method, such as by factoring the like- 
lihood with special patterns of missing data (Little and Rubin 
1987, chap. 6). 

It is important to emphasize that the variance-covariance 
matrix obtained by SEM is based op the second derivatives 
of the observed-data log-likelihood and thus is guaranteed 
to be inferentially valid only asymptotically. Consequently, 
from both frequentist and Bayesian perspectives, the prac- 
tical propriety of the resulting normal theory inferences is 
improved when the likelihood function is more nearly nor- 
mal. Therefore, in practice it is generally wise to define 
parameterizations with attention to this fact, for example, 
by using log(variance) rather than variance with normal data. 
These parameterizations typically also improve the stability 
of the SEM computations. The use of such transformations 
of parameters is illustrated in our examples. 

1.2 Other Methods 

Previous methods for obtaining asymptotic variance- 
covariance matrices in EM contexts have limitations that 

? 1991 American Statistical Association 
Journal of the American Statistical Association 

December 1991, Vol. 86, No. 416, Applications and Case Studies 

899 



900 Journal of the American Statistical Association, December 1991 

make them less automatically applicable than SEM. The 
technique described in Louis (1982), for instance, requires, 
in addition to the code for the complete-data variance-co- 
variance matrix and the code for the E and M steps, cal- 
culation of the conditional expectation (conditional on the 
observed data) of the square of the complete-data score 
function, which is specific to each problem. Algebraic 
analysis is often tedious or intractable, as pointed out in 
Meilijson (1989). Monte Carlo evaluation can be accom- 
plished using multiple imputation (Rubin 1987) of the miss- 
ing data given the maximum likelihood estimate, but then 
this requires new code for drawing the imputations, and its 
accuracy depends on the number of imputations. 

Meilijson's (1989) techniques, although like SEM in re- 
quiring no additional analysis, are unlike SEM in that they 
apply only to specialized cases in which the observed data 
are iid (independently and identically distributed) samples. 
Thus, as illustrated in Section 4, they cannot be automat- 
ically applied to general patterns of missing values even 
with iid complete data (e.g., normal or multinominal), or 
to many hyperparameter estimation problems. SEM can be 
applied to any problem to which EM has been applied, as- 
suming one has access to the complete-data asymptotic 
variance-covariance matrix. 

Methods such as those described by Carlin (1987), which 
obtain the second derivative of the observed-data log-like- 
lihood function by numerical differentiation, not only re- 
quire evaluation of this log-likelihood function (not re- 
quired by SEM) but are subject to the inaccuracies and 
difficulties of any numerical differentiation procedure with 
large matrices. Although SEM involves numerical differ- 
entiation, it is not used to obtain the desired variance-co- 
variance matrix but only the increases due to missing data 
that are to be added to the complete-data variance-covari- 
ance matrix. Therefore, SEM is typically more stable than 
pure numerical differentiation procedures because the ma- 
trix obtained by numerical differentiation is being added to 
an analytically obtained matrix, which is usually the dom- 
inant term. In cases with large increases in variance due to 
large amounts of missing information, the sequence of 
evaluations required by SEM appears to be very stable, with 
an internal check on numerical accuracy provided by the 
observed symmetry of the resulting variance-covariance 
matrix. We will discuss this further in Sections 5.2 and 5.3. 

A final possibility is to obtain variance-covariance ma- 
trices by techniques such as the bootstrap or jackknife, which 
resample data sets from the empirical distribution and per- 
form EM on each such data set. Such procedures might 
work well in large samples with iid structures, but their 
definition and performance is unclear in non-iid cases in- 
volving complicated patterns of missing data or models with 
several levels of randomness (e.g., variance components, 
latent structure, or empirical Bayes models). Furthermore, 
the use of such techniques can be viewed as unappealing 
in some likelihood or Bayesian contexts in which the de- 
sired measure of inferential uncertainty is the observed in- 
formation matrix, which at best is only approximated by 
resampling estimates. SEM provides this matrix without the 
restrictions or limitations of these other techniques.. 

1.3 SEM in Single Parameter Cases 

In his discussion of DLR, Smith (1977), noted the pos- 
sibility of obtaining the asymptotic variance for the MLE 
in single parameter cases by using the rate of convergence 
of EM. Using a simple example from DLR (see Section 
4.2 in this article), he gave the following simple relation- 
ship between V, the observed-data asymptotic variance, and 
Vc, the complete-data asymptotic variance: 

V = Vc/Al - r), (1.3.1) 

where r is the rate of convergence of EM. In other words, 
the observed-data asymptotic variance can be obtained by 
inflating the ordinary complete-data asymptotic variance by 
the factor 1 - r, where r is readily available from the out- 
put of EM. Letting 0 be the parameter, 0* be the MLE of 
0, and 0(t) be the EM estimate of 0 at the tth iteration, r 
can be well approximated by the ratio (0(t+1) - 0*)/(0(t) - 

0*) when t is large, or equivalently by (0(t+1) - OW)I((t 
- 0(t 1)). A statistically more appealing representation of 
(1.3.1) is 

V = Vc + A V, (1.3.2) 
where 

A V = [r/(l - r)] Vc (1.3.3) 

is the increase in variance due to missing data. 
Our method, SEM, provides a general formulation of this 

simple procedure and extends it to the multiparameter case. 
Three issues arise for multiparameter cases: the correct ma- 
trix version of (1.3.2), the computation of the matrix ver- 
sion of Vc, and the computation of the matrix version of r. 
We first establish the matrix version of (1.3.2) in Section 
2 after providing necessary background material. Then in 
Section 3 we describe the SEM algorithm, which addresses 
the computation of the matrix versions of Vc and r. Ex- 
amples are provided in Section 4 to illustrate our algorithm, 
and practical issues (e.g., stopping criteria) when imple- 
menting SEM are addressed in Section 5. 

2. BACKGROUND AND BASIC RESULTS 

2.1 The EM Algorithm 

Suppose we have a model for the complete data Y, with 
associated density f(Y I 0), where 0 = (01, . . ., Od) is the 
unknown parameter. We write Y = (YObS, Ymis), where Yob, 
represents the observed part of Y and Ymis denotes the miss- 
ing values. The EM algorithm finds the value of 0, 0*, that 
maximizes f(YOb I 0), that is, the MLE for 0 based on the 
observed data yobs 

The EM algorithm starts with an initial value 0(0). Letting 
0(t) be the estimate of 0 at the tth iteration, iteration 
(t + 1) of EM is as follows: 

E step. Find the expected complete-data log-likelihood 
if 0 were 0(t): 

Q(0 0 
=fL(0 I Y)f(Ymis Y0b 0 0 (t)) dmis' 
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where L(0 | Y) = logf(Y | 0). 
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M step. Determine 0(t?1) by maximizing this expected 
log-likelihood: 

Q(O(t+ ) I O(t)) ) Q(0 I 0 (), for all 0. 

The M step of EM is easy to implement in broad classes 
of problems, such as in exponential families, since it uses 
the identical computational method as ML estimation from 
L(0 I Y). The E step of EM is also very easy to implement 
in many problems, including many exponential family 
models, since it follows from standard complete-data the- 
ory for means of conditional distributions. 

2.2 The Rate of Convergence of EM 

The EM algorithm just described implicitly defines a 
mapping 0 -> M(0) from the parameter space of 0, 0, to 
itself such that 

0(t+1) = M(0(t)) fort = 0, 1. 

If 0(t) converges to some point 0* and M(0) is continuous, 
then 0* must satisfy 

0* = M(0*). 

Therefore, in the neighborhood of 0*, by a Taylor series 
expansion, we have 

(t+1) - 0* (0(t) - 0*)DM, 
where 

DM = i( o) (2.2.1) 

is the d x d Jacobian matrix for M(0) = (M1(0), .*., Md(0)) 
evaluated at 0 = 0*. Thus, in the neighborhood of 0*, the 
EM algorithm is essentially a linear iteration with rate ma- 
trix DM, since DM is typically nonzero. 

2.3 The Large-Sample Variance-Covariance Matrix 
of (0 - 0*) Based on Yobs 

It is well known that the large-sample variance-covari- 
ance matrix of (0 - 0*) based on Yobs, V, can be found as 
the inverse of the observed information matrix, 

V = IO (0 I Y (2.3.1) 

where Io(0 I Yobs) is the negative second derivative of the 
log-likelihood of 0 given Yobs, 

Io(0 I Yobs) = -- gf(Y0bs | 0) (2.3.2) ao- ao 
This function can be very difficult to evaluate directly. In 
contrast, the complete-data observed information matrix, 

a2 logf(Y I 0) Io (0 I Y) = -_ aoa (2.3.3) 

whose inverse gives the complete-data variance-covariance 
matrix, is often a simple function, as is its expectation over 
the conditional distribution f(Ymis I Yobs, 0) evaluated at 0 = 
0*: 

oc= E1110(0 Y) I robs, 0] (2.3.4) 
a-8* 

Of particular importance, in applications of the EM algo- 
rithm it is essentially as simple to evaluate I) as it is to 
evaluate the complete-data variance-covariance matrix; this 
fact is shown in Section 3.1. 

The matrix L is important here because the desired ob- 
served variance-covariance matrix, V, can be written as a 
simple function of I and DM, the matrix rate of conver- 
gence of EM as defined in (2.2.1). More specifically, as 
we will show in the next section, 

V= I,-, + AV, (2.3.5) 
where 

AV = I,-4jDM(I - DM)-' (2.3.6) 

is the increase in variance due to missing information, and 
I is simply the d x d identity matrix. The numerical eval- 
uation of DM is presented in Sections 3.3 and 3.4. 

2.4 Showing That V = 10 , + AV 

From the factorization 

f(Y I 0) = f(YObs I )f(Ymis I Yobs 0), 

it follows that the log-likelihood of 0 given Yobs is 

L(6 I Yobs) = L(6 I Y) - log f(Ymis I Yo,bs, 0) (2.4.1) 

Equation (2.4.1) implies, after taking second derivatives, 
averaging over f(Ymis I Yob,s 0), and evaluating at 0 = 0*, 
that 

Io(O I Yobs) = Ioc - Iom, (2.4.2) 

where the matrix 

Iom=E[ 8logf(Ymis I Yobs, 0) I obs, 0=0 

can be viewed as the missing information. Thus, (2.4.2) 
has the following appealing interpretation: 

observed information = complete information 

-missing information, 

which has been called the "missing information principle" 
by Orchard and Woodbury (1972). 

Equation (2.4.2) can be written as 

Io(O* I Yobs) = (I-IomIocY)Ioc (2.4.4) 

Equation (2.4.4) is useful because DLR showed that, if 
Q(6 I 6(t)) [defined by (2.1.1)] is maximized in the M step 
by setting its first derivative equal to zero, as with standard 
complete-data maximum likelihood estimation, then 

DM IomIojc (2.4.5) 

Substituting (2.4.5) into (2.4.4) and inverting gives 

V = I;' -(I -DM) (2.4.6) 

= Io-c + Io-c'DM(I -DM)-1, (2.4.7) 

which is the same as (2.3.5) and (2.3.6). 
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3. THE SEM ALGORITHM 

3.1 Definition 

The SEM algorithm consists of three parts: (1) the eval- 
uation of IOj', (2) the evaluation of DM, and (3) the eval- 
uation of V from (2.3.5) and (2.3.6). Each of these parts 
is now discussed. 

3.2 Evaluation of /l1 

In most common practical applications of EM, the com- 
plete-data density f(Y I 0) is from an exponential family, 
that is 

f(Y I 0) = b(Y) exp{S(Y)C'(0)}/a(0), 

where S(Y) is a 1 x k (k 2 d) vector of complete-data 
sufficient statistics, C(0) is a 1 x k vector function of 0, 
and b(Y) and a(0) are scalar functions. This form for 
f(Y I 0) implies from (2.3.3) that IO(0 I Y) = IO(0 I S(Y)) is 
a linear function of S(Y). Thus, from (2.3.4), 

Ioc = Io(0* I S*(Yobs)), (3.2.1) 

where S*(Yobs) = E[S(Y) I Yobs, 0*] is obtained at the last 
E step since the complete-data log-likelihood L(0 I Y) = 
L(0 I S(Y)) is also a linear function of S(Y). In other words, 
FO-cl can be obtained simply by substituting the conditional 
expectation of S(Y) found at the last E step of EM for S(Y) 
in Io-'(0* I S(Y)), which is the standard complete-data vari- 
ance-covariance matrix evaluated at 0 = 0* as a function 
of the complete-data sufficient statistics. 

It is important to emphasize that the complete-data in- 
formation matrix IO(0 I S(Y)) used previously is the com- 
plete-data observed information matrix, not the Fisher 
information matrix I(0) = E[IO(0 I Y) I 0]. The Fisher in- 
formation matrix is appropriate for our calculations only 
whenf(Y I 0) is from a regular exponential family [that is, 
when k = d and the Jacobian of C(0) is full rank], because 
in this case it is easy to verify that 

Ioc = I(0*). (3.2.2) 

When f(Y I 0) is not an exponential family density, the 
complete-data log-likelihood L(0 I Y) is no longer a linear 
function of its sufficient statistics, with the result that the 
expected complete-data log-likelihood, Q(0 I 0(t)), is gen- 
erally not in closed form as a function of 0. This typically 
raises some difficulties in directly implementing the E step, 
because in principle the E step requires us to evaluate Q(0 
I 0(')) separately for each 0 in the parameter space 0. One 
legitimate way to avoid this difficulty with large samples 
is to use a Taylor series expansion to linearize L(0 I Y) in 
terms of large-sample sufficient statistics. Once the linear- 
ization is formulated for the E step, our method can be ap- 
plied directly to compute Io-c', since IO(0 I Y) is also a linear 
function of these large-sample sufficient statistics. In some 
nonexponential family cases, our method can be applied 
without resorting to linearization arguments because the 
conditional density f(Ymis I robs, 0) is still from an expo- 
nential family. Thus IO(0 | Y) is a linear function of the 
conditional sufficient statistics from f(Ymis I robs, 0), and 

these conditional sufficient statistics are the only ones that 
involve missing data and need updating at each E step. 

3.3 Computation of DM 

For a vector 0, the simple procedure described in Section 
1.3 cannot be used to produce the entire DM matrix because 
the observed component-wise rates of convergence of EM 
[e.g., limt,. O((t+l) - O)/(0i) - 0o), i = 1, ..., d] provide 
only a few eigenvalues (in most cases, simply the largest 
eigenvalue) of DM, not the matrix itself (DLR; Meng 1990). 
Each element of DM, however, is the component-wise rate 
of convergence of a "forced EM" in the following sense. 

Let rij be the (i, j)th element of DM and define 0(t)(i) to 
be 

0()(i) = (0*, * *, O! , 0() 0* .. *, ad), (3.3.1) 
that is, only the ith component in 0(t)(i) is active in the sense 
that the other components are fixed at their MLE's. By the 
definition of rij, we have 

aM(0*) 
rij = ao 

Mj(0o', .. 0IL,, oi, 01*+1, ..., 01) - M1(0*) = lim 
0, - 0* 

= lim M0()(i)) - 
E limrm'?. (3.3.2) 

Because M(0) is implicitly defined by the output of E and 
M steps, all quantities in (3.3.2) can be obtained using only 
the code for EM. This motivates the following algorithm 
for computing rl() (t = 1, ... 

First obtain 0* by EM or any other procedure, such as 
closed-form answers obtained by factoring the likelihood 
with special patterns of missing data (Little and Rubin 1987, 
chap. 6). Then run a sequence of SEM iterations from some 
starting point not equal to 0* in any component. At iteration 
(t + 1) of SEM, perform the following steps-the first step 
can be eliminated if the starting value for SEM is the same 
as one of the parameter inputs to the original EM (i.e., 
some 0(t)) and the subsequent sequence of original EM it- 
erates has been saved: 

INPUT: 0* and 0(t). 
Step 1. Run the usual E and M steps to obtain 0(t+1). 
Repeat steps 2-3 for i = 1, ..., d. 
Step 2. Calculate 0(t)(i) from (3.3.1), and treating it as 

the current estimate of 0, run one iteration of EM to obtain 
60'+1'(i). 

Step 3. Obtain the ratio 

-(t? = 0o(i)0) - j, for] = 1, ..., d. (3.3.3) 

OUTPUT: 0(t+1) and r) i, = 1, ..., d}. 

We obtain rij when the sequence r r(J+l), ... is stable 
for some t*'. This process may result in using different val- 
ues of t*~ for different r11 elements, as illustrated in Section 
5. When all elements in the ith row of DM have been ob- 
tained, there is no need to repeat steps 2 and 3 for that i 
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in subsequent iterations. Notice that this method works even 
if DM is a deficient rank matrix, but is not defined if any 
denominators in (3.3.3) are zero; this can happen but is 
easily addressed, as discussed in Section 3.4. 

This procedure for calculating rij from (3.3.3) is essen- 
tially numerically differentiating the vector function M(0), 
and there are other ways for doing this. For example, once 
0* is obtained, one can simply perturb it by d linearly in- 
dependent vectors Ei (i = 1, ..., d), and then solve a set 
of linear equations M(0* + Ej/2) - M(0* - Ej/2) = CEj, 
i = 1, . . ., d. The solution C provides an approximation to 
DM when all I|EiLi are small, but the accuracy of this ap- 
proximation typically depends on sensible choice of Ei (i = 
1, ..., d), which may not be an easy task in practice be- 
cause the magnitude of different elements of DM may vary 
substantially. Just as with the scalar case, one can also ap- 
proximate DM without first obtaining 0* (Dennis and 
Schnabel 1983; Lanskey and Casella 1990). The basic idea 
is to approximate rij at iteration t by 

_Mj(O(t )31 ... * 00 t)1 0i ' .t-l.) 0(t-f ) - (t) 
=i 

0(t 
i"- 

0(t-1 
1 j 

(3.3.4) 

rather than by riJ) of (3.3.3). Unlike in the scalar case, how- 
ever, when d > 1, computing ri1 without first obtaining 0* 
may actually require more computational time. The reason 
is that the number of E and M steps required for evaluating 
(3.3.4) is identical to that for (3.3.3) once 0* has been ob- 
tained, and the extra E and M steps needed to obtain 0* 
first can be easily compensated for by starting the evalua- 
tion of (3.3.3) from an initial value that is closer to 0* than 
the original starting value of EM (more details are given in 
Section 5). The quantity obtained from (3.3.4) can also be 
quite unstable when different components of 0(t) have dif- 
ferent rates of convergence (see our example in Section 4.3). 
For example, in (3.3.4), if 07- ) is quite close to Oi*, but 
Ot1) for some 1 = i is still relatively far from 0*, then 
there might be no suitable t* such that Fi%*) is a good ap- 
proximation to rij. Nevertheless, whether or not the pro- 
cedure defined by (3.3.3) is the best way to approximate 
DM in general deserves further investigation. 

3.4 Extensions When Some Components Have No 
Missing Information 

When there is no missing information on a particular 
component of 0, EM will converge in one step for that com- 
ponent from any starting value, with the result that the cor- 
responding component of M(0) will be a constant with zero 
derivative. In this case with {Mi(0), j = 1,,. . ., dl} constant, 
the method described in Section 3.3 cannot be applied to 
compute r' for i = 1, ..., dl, because the corresponding 
denominators in (3.3.3) are zero. But then, because rij = 
O for j = 1, ..., d, and i = 1, ..., d, we can write 

di d2 

DMA'd (O DAM*), d + d2 =d- (3..) 

The method described in Section 3.3 can then be directly 

applied to compute the d2 X d2 submatrix DM*, and the 
following identity, proved in the Appendix, shows that DM* 
is sufficient for obtaining V. 

Letting 

d, d2 

rl-_ d (GI G2) (3.4.2) 
d2 2G2 G3 

we have 

V =J-1 + 0 0 GI G2 (3.43) oc V ( AV* G2 G3 +AV* 
where 

AV* = (G3 - GlG1lG2)DM*(I - DM*)-I, (3.4.4) 

and I in (3.4.4) is the d2 x d2 identity matrix. 
Expressions (3.4.3) and (3.4.4) are special cases of (2.3.5) 

and (2.3.6), and the intuition underlying them is quite clear. 
Write 0 = (i1, p2), where ij = (01, ..., Od1) and i92 = 

(0d1+I, , Od). Consider first the special case when G2 = 
0. In this case, with complete data, t#j1 - i and i92 - 

i2* are (asymptotically) independent, and, therefore, the 
missing information for i92 does not increase the variance 
of ij - *. Thus we only need to use DM*, the submatrix 
of DM corresponding to i92, to inflate G3 = Vc(i#*), the 
complete-data asymptotic variance of i2 - i92*. This gives 
the formulas (3.4.3) and (3.4.4) when G2 = 0- 

More generally, we can decompose i92- i2* into two 
(asymptotically with complete data) independent terms, 

- * = [(i92 - i*) - E(i2 -* I ij- *)] 

+ E(i92 - i2 I i - 

where the second term on the right side is purely a function 
of 1 - *, with no increase in variance due to missing 
information (its complete-data variance is G'GT1G2). This 
suggests that we only need to use DM* to inflate the com- 
plete-data variance of the first term, which is equal to 
Vc(i2* |) =G3 - G'G71G2, the complete-data asymp- 
totic conditional variance of i92 - i#j given i#- j Hence 
the variance of i2 - i~j is 

(G3 - G'Gj1G2)(I - DM*)y + GG21 G2 = G3 + AV*, 

which is exactly the term appearing at the lower right cor- 
ner of (3.4.3). The other elements of Io-cl remain unchanged 
because there is no missing information for iN. 

As illustrated in Section 4.4, the task of identifying the 
components of 0 with no missing information is often trivial 
from inspection. Otherwise these components can be iden- 
tified from the SEM iterations themselves, at least when- 
ever 0(?) 0& 0* for all i (i= 1, ..., d). 

3.5 Evaluation of V= Io + AV 

Having obtained Io-cl and DM, we apply (2.3.6) to cal- 
culate AV, and then add it to Io-cl to produce the desired 
variance-covariance matrix V. This matrix, however, is not 
numerically constrained to be symmetric even though it is 
mathematically symmetric. The asymmetry can arise be- 
cause of numerical inaccuracies in computing either DM or 
Io-1. For exponential families, Ioc is typically very accurately 
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computed, whereas for nonexponential families its accu- 
racy typically depends on large-sample approximations based 
on linearization methods. In contrast, the accuracy of DM 
is determined by the accuracy of EM itself, which typically 
is excellent when both E and M steps are simple calcula- 
tions and is adequate in most cases as suggested by expe- 
rience. If the resulting V is quite asymmetric, which we 
have only observed in the presence of programming errors, 
it is an indication of either such programming errors or se- 
vere numerical imprecision in either DM or Ioj1. This fea- 
ture of SEM is analogous to the feature of EM that each 
iteration must increase the observed-data likelihood, in the 
sense that a decrease in the likelihood function indicates 
either programming errors or severe numerical imprecision. 
We consider it a highly desirable property of SEM, which 
is not shared by other commonly used algorithms (e.g., quasi- 
Newton-Raphson) for obtaining the asymptotic variance- 
covariance matrix. More on this as a diagnostic for SEM 
is presented in Section 5.2. 

In Section 5 we also discuss how to proceed if I - DM 
cannot be inverted numerically because it is nearly singu- 
lar, which can happen when EM is extremely slow to con- 
verge. As is shown there, in general, one can always 
apply SEM to compute the observed-data observed infor- 
mation matrix IO(O* I Yob,). As suggested by our experience, 
if the resulting matrix is not (numerically) symmetric, then 
it is an indication of programming errors in either the EM 
code or the SEM code. If this matrix is symmetric but not 
positive semidefinite, then it indicates that EM has not con- 
verged to a (local) maximum but rather to a saddle point, 
and one should rerun EM starting near the last iterate but 
perturbed in the direction of the eigenvector corresponding 
to the most negative eigenvalue of IO(O* I Yob). In this sense, 
SEM can also be used to monitor the convergence of EM 
to a local maximum, which cannot be detected by moni- 
toring the increase in the likelihood. In fact, as we have 
encountered in practice, monotone increases in the likeli- 
hood may fail to detect programming errors in EM that leave 
"EM" converging to a nonstationary point. 

4. EXAMPLES OF SEM 

4.1 Introduction to Examples 

As we mentioned in Section 1.3, using a single param- 
eter example from DLR, Smith (1977) illustrated using the 
rate of convergence of EM to obtain the asymtotic standard 
error of the MLE. Since this example is very easy to un- 
derstand and gives the flavor of SEM, we briefly review it 
in Section 4.2 before giving two examples of multiparame- 
ter cases. 

In Section 4.3 we present a univariate contaminated nor- 
mal example, which has a special feature in that the large- 
sample component-wise rates of convergence of EM cor- 
respond to different eigenvalues of DM in contrast to the 
usual situation where they are all equal to the largest ei- 
genvalue of DM (Meng 1990). Despite this peculiarity in 
the convergence of EM, SEM remains quite stable. 

In Section 4.4 we use a bivariate normal data set with 
the first variable fully observed to demonstrate the use of 

formulas (3.4.3) and (3.4.4) to deal with the situation where 
only a subset of the parameters are affected by missing 
information. 

As we will see in all these examples, SEM is easy to 
implement and the results obtained from it are quite satis- 
factory. Incidentally, Meilijson's (1989) technique cannot 
be applied to the examples of Sections 4.2 or 4.4 because 
the observed data do not have iid structures even though 
the complete data do. 

4.2 A Multinomial Example 

This example has frequently appeared in the literature of 
the EM algorithm since it was first used in DLR to intro- 
duce EM (e.g., Louis 1982; Little and Rubin 1987). Sup- 
pose the complete data Y = (Y1, Y2, Y3, Y4, Y5) have a mul- 
tinomial distribution with cell probabilities 

(1/2, 0/4, (1 - 0)/4, (1 - 0)/4, 0/4), 0 ' 0? 1. 

The objective here is to find the ML estimate for 0 based 
on the observed counts Yobs = (Y1 + Y2, Y3, Y4, Y5) = (125, 
18, 20, 34). Notice that if Y were observed, the MLE of 0 
would be immediate: 

0* = (Y2 + Y5)/(Y2 + Y3 + Y4 + Y5). (4.2.1) 

Also note that the log-likelihood L(0 I Y) is linear in Y, so 
in the E step we only need to replace the missing values 
by their corresponding conditional expectations. Thus at the 
tth iteration, we have for the E step 

Yt) = 125 (/(4.2.2) 2 1/2 + 0(t)/4; 422 

and for the M step, from (4.2.1), we have 

0(t+1) = (Y(t) + 34)/(Y(t) + 72). (4.2.3) 

Formulas (4.2.2) and (4.2.3) together define the mapping 
0(t+1) = M(0(t)), the EM algorithm. In fact, by substituting 
Yt) from (4.2.2) into (4.2.3), and letting 0(t+1) = 0(t) = 0*, 

we can explicitly solve a quadratic equation for the MLE 
of 0: 

0* = (15 + /53,809)394 .6268214980. 

Table 1 displays the convergence to this solution from 
the initial value 6(0) = .5. The second column in the table 
gives the corresponding values of 4 = arcsin \/0, which 
is the well known variance-stabilizing transformation for 
the binomial proportion 0. The third and fourth columns 
give their corresponding deviations d(t) = 0(t) - 0* and 
d+) = 4(t) - 4*. The fifth and sixth columns are the cor- 
responding ratios of successive deviations. The ratios are 
essentially constant for t - 3, which implies that the rate 
of convergence for EM is r = .1328. This rate of conver- 
gence is invariant under any one-to-one differentiable trans- 
formation of the parameter. 

Since the complete-data density is 

f(Y I 0) ac 0Y2+Y5(1 - )3Z 

the complete-data variance for 0 - 0* is simply the ordi- 
nary binomial variance 0(1 -0)/n, where n = Y2 + Y3 + 
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Table 1. The EM Iterations for the Example in Section 4.2 

t f9 (" (t' " d(t) ~~~~~~d(t) d(t+1)/d(t) d(+ )/d(t) 

0 .50000000 .78539816 -.12682150 -.12822228 .1465 .1490 
1 .60824742 .89450953 -.01857408 -.01911092 .1346 .1352 
2 .62432105 .91103720 -.00250045 -.00258324 .1330 .1331 
3 .62648888 .91327661 -.00033262 -.00034383 .1328 .1328 
4 .62677732 .91357478 -.00004418 -.00004567 .1328 .1328 
5 .62681563 .91361438 -.00000587 -.00000606 .1328 .1328 
6 .62682072 .91361964 -.00000078 -.00000081 .1328 .1328 
7 .62682140 .91362034 -.00000010 -.00000011 
8 .62682149 .91362043 -.00000001 -.00000001 
9 .62682150 .91362044 -.00000000 -.00000000 

Y4 + Y5. Thus, from (1.3.1), as given in Smith (1977), the 
asymptotic standard error of 0 - 0* based on the observed 
counts Yobs is 

- 0*)0 11/2 
I I ~~~.051, 
n*(l -r) 

where n* = Y* + 72 = 101.83 is the expectation of n given 
the MLE of 0. Similarly, since the complete-data variance 
of 4 - O* is 1/(4n), the asymptotic standard error of 4 - 
O* based on yobs is 

r 1 -1/2 

-.053. 
-4n*(l1-r)_ 

These numerical results can be verified by direct compu- 
tation (for example, see Little and Rubin 1987, p. 138). 

4.3 A Univariate Contaminated Normal Example 

This example is used in Little and Rubin (1987) to il- 
lustrate the idea of treating mixture models as incomplete- 
data problems. Suppose xl, ..., xn represent an independent 
sample from the univariate contaminated normal model 

f(x I ,u u-2) = (1 -_ r)N(,tt, u2) + 1TN(t,u ur2/A), 

where 0 < IT < 1 and A > 0 are both known. The objective 
here is to find the MLE 0* = (,u*, log o-2*) for 0 = (, 
log ur2), which is, as mentioned in Section 1.1, an appro- 
priate parameterization for normal theory inference and for 
SEM computations. 

This problem can be treated as an incomplete-data prob- 
lem although there are no missing data in the usual sense. 
Let 

h(q) =1-i, if q= 1, 

=V, if q=A, 

= 0, otherwise; 

then X = (xl, . . ., x,) can be considered as an independent 
sample from a population such that 

ind 2 
Xi I 0, qi - N(Q, &- /qi), 

where the qi are unobserved iid random variables with known 
density h(qi). In this setting we can apply the EM algorithm 
to compute 0*, treating Q = (ql, ..., q,) as the missing 
data Ymis, X as the observed data Yobs, and (X, Q) as the 
complete data Y. 

Implementing EM is quite straightforward. Since the 
complete-data log-likelihood is linear in the qi, the E step 
reduces to finding the conditional expectation 

wi(t) wi(0()) = E(qi I xi, 0()), (4.3.1) 

where 0(') is the current estimate of 0. A simple application 
of Bayes's theorem yields 

Wi(O) E(qi I Xi, 0) 

1 - T + rk3/2 exp{(l - A)z72} 2 

1 - T + AT 1/2 exp{(l - A)z72}' 

where Z2 = (xi- _t)2/o_2. The M step is also trivial since 
the complete-data MLE of 0 = (,u, log o-2) is in closed 
form: 

n n 

*= qixi qi, (4.3.3) 
i=l i=l 

and 

log o 2* = log{- E qi(xi - A*)2} (4.3.4) 

Therefore the new estimate, 0(t+1) = (A(t+l), log o.2(t+1)), can 
be easily obtained from (4.3.3) and (4.3.4) with qi replaced 
by wit) from (4.3.1) and (4.3.2). 

To illustrate SEM, we performed a simulation with ,t = 
, o- 2 = 1, A = 2, IT = .1, and sample size 100. Table 2 

Table 2. The EM Iterations for the Example in Section 4.3 

t {]ee d(,') d(t)Id(t) log dt2(t) ld2t) 

0 .19866916 -.00061984 .05187 .22943020 .00923662 .03502 
1 .19925685 -.00003215 .04890 .22051706 .00032348 .03496 
2 .19928743 -.00000157 .04708 .22020489 .00001131 .03497 
3 .19928893 -.00000007 .04590 .22019397 .00000040 .03498 
4 .19928900 -.00000000 .04509 .22019359 .00000001 .03499 
5 .19928900 -.00000000 .04443 .22019358 .00000000 .03497 
6 .19928900 -.00000000 .04223 .22019358 .00000000 .03386 
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Table 3. SEM Iterations for DM for the Example in Section 4.3 

t r('3 r(t) r(3 r" 

0 .04251717 -.00112649 - 2.00063697 .03494620 
1 .04251677 -.00112375 -.00063697 .03492154 
2 .04251674 -.00112359 -.00063666 .03492066 
3 .04251658 -.00112333 -.00063663 .03492059 

True .04251675 -.00112360 -.00063666 .03492063 

gives the EM output with initial values ,? x and o2(o) 
= s2/(l - v + ir/A) (which is an unbiased estimate of 
u2), where 1 = ,(t)- u*and d(t) = log 02(t) - log o-2*. 
The first four rows of Table 2 give the corresponding output 
for r(J) (i, j = 1, 2), for t = 0, ..., 3, obtained by SEM 
using 0* = 0(6) and starting from 0(0); the last row gives the 
true values of rij (i, j = 1, 2) obtained by direct computation 
using analytic expressions (Meng 1990). 

As we can see from Table 3, using only six iterations 
initially to estimate 0*, we can approximate rij very well 
by riJ) for "moderate" t. More precise values for rij can be 
obtained by using more initial iterations of EM to obtain a 
more precise value for 0*. From Table 3, we can take 

(.04252 -.001 12~ 
DM= (-.00064 .03492 J (4.3.5) 

The complete-data variance-covariance matrix Io;L is 
readily available from standard calculations for the bivar- 
iate normal distribution [notice that the complete-data den- 
sity f(x, q I 0) is from an irregular exponential family]. In 
particular, using (2.3.4), we have 

IOCI= 1 (r2/w 0) = (.01133 .0), (4.3.6) 

where niw* = Yi wi(0*) = 109.97696 is obtained at the last 
E step. Thus, from (4.3.5) and (4.3.6), using (2.4.6) [or 
(2.3.5) and (2.3.6)], we have 

.01184 (.00001) (4X3X7) 

The symmetry of the resulting matrix indicates numerical 
accuracy, as discussed in Section 3.5. 

It is seen from the third and sixth columns of Table 2 
that the two components of 0 converge at different rates, 
corresponding to two different eigenvalues of DM. This 
special feature occurs because the two components of 0 are 
asymptotically independent with both complete data and 
observed data. 

The above simulation has been repeated with many dif- 
ferent choices of A, nT, and sample size n, including some 
extreme cases (e.g., A = .01, XT = .5). In all these cases, 
SEM obtains quite stable and accurate values for DM, and 
hence for V, since the computation of Ioj2 using (4.3.6) is 
very accurate. 

4.4 A Bivariate Normal Example 

In Section 3.4 we mentioned that in some cases there is 
no missing information for some particular components, and 

Table 4. Data for the Example in Section 4.4 

Y1 8 6 11 22 14 17 18 24 19 23 26 40 4 4 5 6 8 10 
Y2 59 58 56 53 50 45 43 42 39 38 30 27 ? 

then we need to identify these components so that we can 
inflate the appropriate submatrix of the complete-data vari- 
ance-covariance matrix. The following example, which is 
used in Little and Rubin (1987, pp. 101-106) for the pur- 
pose of comparing different interval estimates, has this 
feature. 

The data given in Table 4 are assumed to follow a bi- 
variate normal distribution with parameter (gj, /2, 012 

o'2, p), where p is the correlation coefficient. As is well 
known, a normalizing parameterization in this case is 0 = 
(l, 2, log o-2, log o-2, Zp), where Zp = .5 log{(l + p)/ 
(1 - p)} is the Fisher Z tranformation of p. Since the first 
variable is fully observed, the MLE's for g,u and log o-2 are 
simply the sample mean and the log of the sample variance 
(with divisor n) of the first variable, respectively. Thus EM 
will converge in one step for these two components from 
any starting values, with the result that the corresponding 
components of M(0) are constant functions. The imple- 
mentation of EM for the normal distribution has been fully 
described in the literature, for instance, using the SWEEP 
operator in Little and Rubin (1987, chap. 8). 

The first row of Table 5 gives the MLE for 02 = (A2 

log o-2, Zp), using 02* 0(65) (In this case, the closed-form 
value of 02* can be obtained by factoring the likelihood; see, 
for example, Little and Rubin 1987, pp. 98-100). The sec- 
ond row gives asymptotic standard errors for 02 - 02*, ob- 
tained by direct computation in Little and Rubin (1987, p. 
106) (and transformed via the appropriate Jacobian), and 
the third row gives the corresponding standard errors ob- 
tained by SEM. 

The SEM results are obtained as follows, using the method 
of Section 3.4. First, using the algorithm in Section 3.3, 
we obtain DM*, the submatrix of DM corresponding to 02 
= (y2~ log o-2 Zg2 

/.L2 log o-2 Z p 

2 ( .33333 .05037 -.02814 
DM* = log o-2| 1.44444 .29894 .01921 (4.4.1) 

ZP \ - .64222 .01529 .32479 

Since the complete-data distribution is from a regular ex- 
ponential family (the standard bivariate normal), by (3.2.2), 
to obtain Io 1 we only need to compute the inverse of the 
complete-data Fisher information matrix I-1(0*). It is par- 
ticularly easy to do this for the bivariate normal: 

Table 5. MLE's for 02 and Their Asymptotic Standard Errors (SE.) 

IL,, log U92 Zp 

MLE (0(65)) 49.33 4.74 -1.45 
S.E. from Little and Rubin (1987) 2.73 .37 .274 
S.E. from SEM calculations 2.73 .37 .274 
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Iojj = I-1(0*) 

1 2 ~~~~log (7- log (72 Z /i /-L2 1oo 2oo ZP 

7 4.9741 -5.0387 0 0 0 
= /L2 -5.0387 6.3719 0 0 0 

log a, 0 0 .1111 .0890 -.0497 
log or2 0 0 .0890 .1111 -.0497 
ZP 0 0 -.0497 -.0497 .0556 

(4.4.2) 
After a rearrangement that makes the first two rows and 
columns correspond to the parameters for the first com- 
ponent for which there is no missing information, the right 
side of (4.4.2) becomes 

K1 log cr2 log U2 Z wI 1oo /-L2 2oo ZP 

/ 4.9741 0 -5.0387 0 0 
log cr2 0 .1111 0 .0890 -.0497 

/L2 -5.0387 0 6.3719 0 0 
log 2 0 .0890 0 .1111 -.0497 

0 -.0497 0 -.0497 .0556 

(G' G3) 

using the notation of (3.4.2). Applying formula (3.4.4), we 
obtain 

AL2 log o2 Zp 

2 /1.0858 .1671 -.0933k 
AV* = log o2 .1671 .0286 -.0098 1, (4.4.4) 

ZP < - .0933 - .0098 .0194 

which is the increase in the variance of 02 - 0t due to 
missing information. 

To obtain the asymptotic variance-covariance matrix for 
02 - 02, we only need to add AV* to G3 of (4.4.3). For 
example, for the standard error of /L2 - /4, we have from 
(4.4.3) and (4.4.4) 

(6.3719 + 1.0858)1/2 2.73, 
as given in the third row of Table 5. 

5. REMARKS ON THE IMPLEMENTATION OF SEM 
5.1 Starting Values and Stopping Criterion 

The choice of starting values for SEM is based on con- 
siderations of both numerical accuracy and computational 

cost. As for numerical accuracy, it is almost always safe 
to use the original EM initial values as the starting values 
for SEM computations for DM. This choice does not re- 
quire any additional work but may result in some unnec- 
essary iterations because the original starting values may 
be far from the MLE. Based on our limited experience, we 
suggest using either a suitable (e.g., the second) iterate of 
the original EM or two complete-data standard deviations 
from the MLE, where the complete-data standard devia- 
tions are simply the square roots of the diagonal elements 
of 11. Of course, sophisticated users of our method may 
be able to choose other starting values that preserve nu- 
merical accuracy but reduce the number of iterations. 

The stopping criterion for SEM should be less stringent 
than that for the original EM because the method for com- 
puting DM is essentially numerical differentiation of a 
function, which is known to be less accurate than evalu- 
ating the function itself. We use the square root of the stop- 
ping criterion of the original EM as the stopping criterion 
for SEM (e.g., if the stopping criterion for EM is 10-8, 
then the stopping criterion for SEM is 10-4). Such a stop- 
ping criterion typically will stop the iterations at different 
places for different elements of DM, as illustrated in the 
next section. 

5.2 Diagnostics 

The symmetry of the resulting variance-covariance ma- 
trix V and the numbers of iterations needed for SEM to 
converge for different elements of DM provide very infor- 
mative diagnostics for programming errors and numerical 
precision. 

As an illustration, Table 6 gives some details in imple- 
menting SEM for the example in Section 4.4. The first col- 
umn gives the stopping criteria used for EM and SEM. The 
second column gives the corresponding total number of it- 
erations for EM, and the next three columns give a 3 x 3 
SEM index matrix, where each element is the total number 
of iterations needed for SEM to converge for the corre- 
sponding element of DM* using the original EM starting 
value as the initial value for SEM. The three columns under 
the heading DM* and AV* give the corresponding conver- 
gent values of DM* and AV*. 

It is evident from the table that the more stringent the 
criterion we use, the more symmetry we have in the final 

Table 6. Numbers of EM and SEM Iterations and Convergent Values of DM* and AV* Under Three Different Criteria 
in the Example in Section 4.4 

Stopping 
criterion Number of EM Number of SEM DM* AV* EM; SEM iterations for 0* iterations for DM* 

10-4; 10-2 27 2 2 2 .333332 .048028 -.036111 1.080332 .154940 -.125674 
3 2 2 1.392507 .285944 .007518 .160118 .026170 -.012917 
8 2 6 -.651442 .017030 .334558 -.092877 -.008900 .021572 

10 8; 10-4 46 2 8 11 .333333 .050273 -.028245 1.085304 .166662 -.093749 
17 14 13 1.444338 .298837 .019051 .167033 .028514 -.009822 
16 9 14 -.642371 .015366 .324922 -.093329 -.009754 .019380 

10-12; 10-6 65 2 17 20 .333333 .050374 -.028144 1.085838 .167083 -.093350 
26 23 23 1.444443 .298944 .019210 .167087 .028555 -.009778 
26 17 23 -.642220 .015291 .324793 -.093344 -.009777 .019352 



908 Journal of the American Statistical Association, December 1991 

matrix AV*, the increase in variance-covariance due to 
missing information. Thus, from the symmetry of the re- 
sulting variance-covariance matrix, we can basically de- 
duce how many digits in the final result are trustworthy. If 
the resulting variance-covariance matrix is quite asym- 
metric, one should first increase the accuracy of the original 
EM (that is, use a more stringent stopping criterion) to see 
if the symmetry is improved. If it is not improved, our ex- 
perience suggests the existence of programming errors in 
either the EM code or the SEM code. 

The fact that SEM converges at different steps for dif- 
ferent elements of DM suggests that some standard com- 
putational methods (e.g., quasi-Newton-Raphson) that 
provide the entire symmetric variance-covariance matrix at 
the same iteration might not provide as accurate results. 
The SEM index matrix tells us when SEM has converged 
for each element, and so if one observes that some elements 
in DM require the total number of iterations, the indication 
is that these elements have not converged, and one should 
use more stringent stopping criteria for EM and SEM. 

5.3 Stability 

As we mentioned earlier, the numerical differentiation 
method described in Section 3.3 is not used to obtain the 
variance-covariance matrix, but rather the increases in 
variance-covariance due to missing data that are to be added 
to the complete-data variance-covariance matrix. As a re- 
sult, SEM typically is stable for the following reasons. When 
some increase in variance is large, the convergence of EM 
is slow because of the large fraction of missing informa- 
tion. This slow convergence of EM, however, provides an 
excellent sequence of iterates from which its linear con- 
vergence rate can be recovered, and thus the results ob- 
tained from SEM are typically quite accurate. In contrast, 
when the increases in variance are relatively small, the 
complete-data variance-covariance matrix, which is usu- 
ally very accurately calculated, dominates the increases due 
to missing data. Therefore, the resulting matrix, as the sum 
of this accurately obtained complete-data variance-covari- 
ance matrix and the matrix of small increases due to miss- 
ing data, is still quite satisfactory even if the numerical dif- 
ferentiation part of SEM used for calculating the increases 
is not as accurate as it is when the convergence of EM is 
slow. Thus, SEM is typically more stable than pure nu- 
merical differentiation procedures because of this automatic 
" self-adjustment. " 

As we mentioned in Section 3.3, there are other ways to 
obtain DM using other sequences of values for numerical 
differentiation, and they could be used in place of our 
method. A nice feature of our method is that it, like EM, 
is easy to implement and works reliably without extra at- 
tention because the EM iterates automatically choose "ap- 
propriate" step sizes for numerically differentiating the vec- 
tor function M(O). Just as a sophisticated user can develop 
a special purpose algorithm superior to EM in special cases, 
a sophisticated user can write a special purpose numerical 
differentiation program that is superior to our method in 
special cases. SEM is a general algorithm for computing 

asymptotic variance-covariance matrices using EM, which 
preserves the simplicity and stability of the EM approach. 

5.4 Computational Effort and Storage Requirements 

The total amount of computation involved in SEM with 
d > 1 is greater than that for the corresponding EM. As- 
suming the square root stopping rule will be used with the 
SEM computations for DM, our experience is that the max- 
imum number of iterations of SEM for each row of DM is 
less than one-half the number of EM iterations; for exam- 
ple, see Table 6. Each of these SEM iterations is approx- 
imately d + 1 times as computationally expensive as an 
EM iteration. (In addition, SEM requires a d X d matrix 
inversion and a d x d matrix multiplication to compute V, 
which will be ignored in the following discussion since the 
iterative part of SEM is usually the dominant expense.) 
Consequently, SEM requires roughly (d + 1)/2 times as 
much computational time as EM itself. This factor, how- 
ever, applies only to standard computing environments. In 
parallel computing environments, SEM can be faster than 
the corresponding EM because each of the d rows of DM 
can be evaluated independently by d parallel processors as- 
suming a"ccess to the current EM iterate 0(t), available either 
by saving initial EM iterates or by distributing 0(t) to each 
of the d parallel processors from another processor running 
EM in parallel. Thus, if the computer being used has d + 
1 parallel processors, then SEM is roughly twice as fast as 
the corresponding EM under the square root stopping rule. 
In this sense, SEM is ideally suited for modem parallel 
computing environments because the bulk of the compu- 
tations can be done in parallel and then combined to pro- 
duce the desired answer. 

Another concern in practice is storage requirements, again 
a problem of decreasing importance in many modem com- 
puting environments. The matrices involved (V, DM, L) 
are d x d, and for large d are large. But this is a feature 
of the problem if all of V is desired; it is not a problem 
created by SEM. If only a subset of values of V are desired, 
a version of SEM that involves only this subset would be 
attractive, but we have not been able to find a computa- 
tionally effective version of SEM for this. Of course, if 
storage is no problem, some computational time [or parallel 
processor (d + 1)] can be cut when computing DM by sav- 
ing the original sequence of EM iterates. 

5.5 How To Proceed When I - DM Is Nearly Singular 

As shown in Section 2.3, the calculation of AV requires 
the inversion of I - DM, which can be nearly singular when 
the convergence of EM is extremely slow (i.e., when the 
largest eigenvalue of DM is very close to 1). Statistically 
this implies that the observed-data likelihood function is flat 
along some directions and thus that the observed-data ob- 
served information matrix I,(O* I Y0b,) [defined by (2.3.2)] 
is nearly singular. As with the storage requirements for V, 
this issue is a feature of the likelihood function and data, 
and is not a problem created by SEM. In fact, even in these 
ill-conditioned cases, SEM can be very helpful for identi- 
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fying the directions with little information and for finding 
the asymptotic variance-covariance matrix for the linear 
combinations of 0 - 0* about which the observed data do 
provide information. 

More speciflcally, using (2.4.4) and (2.4.5), one can first 
apply SEM to obtain the observed-data observed informa- 
tion matrix, sometimes called the precision matrix P = 
Io* I Yobs) = (I - DM)Ioc. As discussed in Section 3.5 
and Section 5.2, any lack of (numerical) symmetry in P 
indicates lack of convergence or existence of programming 
errors. Assuming (numerical) symmetry of P, standard ma- 
trix operations can then be applied to find the spectral de- 
composition of P, 

P =B diag(AI, A2, ...,Ad) B, 

where A1 : A2 ? * * Ad are the eigenvalues of P and the 
columns of B are the corresponding orthonormalized ei- 
genvectors. If Ad is identified as (numerically) negative, as 
we mentioned in Section 3.5, it indicates that EM has not 
converged to a (local) maximum but to a saddle point, and 
then EM should continue in the direction corresponding to 
Ad. Otherwise, suppose the first m (s d) eigenvalues are 
positive (and the last d - m eigenvalues are identified as 
numerically close to zero), and their corresponding eigen- 
vectors form the d X m submatrix B1 of B; that is, B = 

(B1, B2). Then the m x m diagonal matrix diag(A- 1, As', 
A.. m) gives the asymptotic variance-covariance matrix 

for the linear combination B'(0 - 0*) about which the ob- 
served data do have information. The asymptotic variance- 
covariance matrix for the linear combination B'(0 - 0*) is 
infinity or nearly infinity because the observed data have 
little or no information about it; in other words, the ob- 
served-data likelihood function is flat along the directions 
determined by B2- 

APPENDIX 

Proof of (3.4.3) and (3.4.4) 

By the definition of AV in (2.3.6), from (3.4.1) and (3.4.2), 
we have 

AV = Io1DM[I - DM]1 

(G1 G2 t0 A (Id, A(Id2-DM*)-' 
\G' G3\ 0 DM*, 0 (Id2- DM 

(o (G1A + G2DM*)(Id2- DM*)-' 
\O (G2A + G3DM*)(Id2- DM*)- (A. 1) 

But the upper right corner of the last matrix in (A. 1) is zero, since 
AV is symmetric, which implies that 

A = -GTlG2DM*. (A.2) 

Substituting (A.2) into (A. 1) we obtain 

=( (G3- G2G, lG2)DM*(Id2- DM*)-' 

=(O AV*)' (A.3) 

where AV* is defined in (3.4.4). Thus (3.4.3) follows from (2.3.5) 
and (A.3). 

[Received January 1990. Revised March 1991.] 
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