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In multicenter studies, one often needs to make inference about a population survival curve based on multiple, possibly heterogeneous
survival data from individual centers. We investigate a flexible Bayesian method for estimating a population survival curve based on a
semiparametric multiresolution hazard model that can incorporate covariates and account for center heterogeneity. The method yields a
smooth estimate of the survival curve for “multiple resolutions” or time scales of interest. The Bayesian model used has the capability to
accommodate general forms of censoring and a priori smoothness assumptions. We develop a model checking and diagnostic technique
based on the posterior predictive distribution and use it to identify departures from the model assumptions. The hazard estimator is used to
analyze data from 110 centers that participated in a multicenter randomized clinical trial to evaluate tamoxifen in the treatment of early stage
breast cancer. Of particular interest are the estimates of center heterogeneity in the baseline hazard curves and in the treatment effects, after
adjustment for a few key clinical covariates. Our analysis suggests that the treatment effect estimates are rather robust, even for a collection
of small trial centers, despite variations in center characteristics.
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1. INTRODUCTION

Analysts of multicenter clinical trials data are faced with a
series of statistical challenges in ascertaining treatment effects
while accounting for the possibly confounding influence of both
measured and unmeasured patient- and clinic-specific charac-
teristics. The effects of treatment and other patient covariates
may vary significantly from center to center, and the unrecorded
patient and/or center characteristics may influence trial end-
points. In addition, the baseline hazard function may display
nonunimodal shape, in contrast to the common assumption of
unimodality common to many parametric models. Furthermore,
in the arena of Bayesian models that are designed to address
some of these challenges, methods for diagnosing departures
from model assumptions are in need of further development.

In this article we present an analysis of a large multicenter
randomized placebo-controlled clinical trial to evaluate the ef-
fect of tamoxifen in treatment of women with early stage breast
cancer (Fisher et al. 1989). The effects of tamoxifen and a few
other clinically relevant patient covariates will be of interest,
along with variations in treatment effect and baseline hazard
from center to center. Whereas the number of patients enrolled
per center varies considerably, a hierarchical Bayes approach
is used to accommodate borrowing of information among large
and small trial centers. For this analysis, we extend a semipara-
metric hazard estimator that was explored in Bouman, Dukić,
and Meng (2005), which allows us to flexibly model the haz-
ard function and incorporate a priori hazard shape and smooth-
ness assumptions. For the purposes of model criticism and re-
finement, we also examine a method for detecting departures
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from the proportional-hazards assumption, based on the pos-
terior predictive distribution (e.g., Gelman, Meng, and Stern
1996).

The plan of this article is as follows: Section 2 details some
of the key statistical issues in multicenter survival modeling and
introduces the breast cancer problem and data. Section 3 devel-
ops the multiresolution survival model, while Section 4 gives
technical details of the Markov chain Monte Carlo (MCMC)
model implementation and model criticism criteria based on the
posterior predictive distribution. Section 5 presents the analy-
sis of the multicenter breast cancer clinical trial, including
our strategy for model checking and comparison. Finally, Sec-
tion 6 concludes the article with a discussion of modeling issues
raised in the analysis.

2. STATISTICAL ISSUES IN MULTICENTER TRIALS

Clinical trials for diseases such as early stage cancer usu-
ally involve multiple enrollment sites so as to obtain sufficient
numbers of patients to detect modest but potentially clinically
meaningful treatment benefits over a reasonable time period.
Although the trial protocol document generally defines specific
patient entry criteria and treatment procedures, there will in-
variably be some heterogeneity in patient mixture and treat-
ment delivery among centers. These may be due to differences
in patient demographic and clinical characteristics, as well as
deviations from the protocol by the treating centers, variations
in treatment compliance by patients, differences in follow-up
and event monitoring, and other unknown or unmeasured fac-
tors. This evaluation of the intended treatment under a variety
of conditions may be viewed as a strength of multicenter clin-
ical trials, because summaries of treatment effect that incorpo-
rate this “natural” heterogeneity may more realistically repre-
sent the impact of the treatment in practice.

There are several reasons why one should attempt to describe
these variations and consider the impact of enrollment sites
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on estimated treatment effects. First, presence of heterogene-
ity can challenge the validity of the overall trial findings that
are based on data that are aggregated without consideration of
the center-specific effects (Localio, Berlin, Have, and Kimmel
2001). Second, strong heterogeneity may suggest that different
subpopulations of treatment effects are present, which may be
due to differences in patient populations or may indicate prob-
lems with protocol implementation and adherence within some
centers. Third, treatment effects are quite often modest, and so
from the perspective of any single center or investigator, treat-
ment comparisons may be equivocal or reversed. In trials where
treatment assignment is not blinded, this may cause inappro-
priate alterations in trial conduct or diminished enthusiasm for
continuing enrollment and follow-up. Finally, if heterogeneity
is suggested, one might then examine the extent to which the
variations are attributable to patient characteristics, adherence
to treatment, follow-up reporting delinquency, or other factors.
These insights can help to determine how the summary treat-
ment effect should be estimated and reported. Our approach, by
pooling information from all centers, provides a flexible way to
obtain more reliable estimates of center-specific effects, as well
as an appropriately constructed overall treatment effect estimate
in the presence of heterogeneity.

2.1 Multicenter Randomized Clinical Trial for
Early Stage Breast Cancer

In 1982, the National Surgical Adjuvant Breast and Bowel
Project (NSABP), a National Cancer Institutes sponsored mul-
ticenter cancer cooperative group, initiated Protocol B-14, a
clinical trial to evaluate the efficacy of the drug tamoxifen af-
ter surgery for breast cancer. A total of 2,892 women with
estrogen-receptor-positive breast tumors and axillary lymph
nodes histologically negative for tumor cells were random-
ized after surgery to receive either a placebo or tamoxifen
(1,453 and 1,439 women, respectively) between January 1982
and January 1988. Primary findings were first obtained in 1989,
showing a significant reduction in breast cancer recurrence risk
for patients who received tamoxifen (Fisher et al. 1989). Longer
follow-up of these patients eventually revealed a survival ad-
vantage for those who received tamoxifen (Fisher et al. 1996).

The trial was conducted across 168 centers in the United
States and Canada; of these, 110 trial centers contributed at
least two patients to each of the placebo and tamoxifen groups.
In this analysis we included only patients enrolled in these
110 centers (constituting 96% of the cohort of 2,817 protocol-
eligible patients) to facilitate comparative analysis of our re-
sults with other potential analysis of the trial by conventional
stratified methods. Across these centers, the number of patients
per center ranged from 4 to 241, with a median of 15. Primary
endpoints for the trial were overall survival, defined as time
from surgery to death from any cause, and disease-free survival
(DFS), defined as time to first breast cancer recurrence at any
local, regional, or distant anatomic site, occurrence of a tumor
in the opposite breast, occurrence of other second primary can-
cers, or death prior to these events (i.e., time to first event of any
kind).

In this article we first perform an analysis using the DFS end-
point. However, over extended follow-up, DFS naturally ex-
hibits nonproportionality with respect to the tamoxifen treat-
ment effect, because patients who experience reduction in

breast cancer recurrence hazard due to tamoxifen consequently
remain at risk to fail later from the other events that com-
prise DFS (second primary cancers or deaths from noncancer
causes). Thus, we also present results for an additional end-
point, breast cancer-free survival (BCFS), defined as time to
breast cancer recurrence or occurrence of a new tumor in the
opposite breast, treating the other event types as censored ob-
servations. Modeling the cause-specific hazard for breast can-
cer events only may have more clinical relevance, and with
the exception of endometrial cancer, which occurs in less than
1.5% of patients but is more frequent among women taking ta-
moxifen, rates for nonbreast cancer events are essentially equal
between the two treatment groups (Fisher et al. 1996). For
BCFS and similar breast cancer specific endpoints, the tamox-
ifen treatment effect appears to follow the proportional-hazards
assumption quite well through at least 15 years of follow-up
(Fisher et al. 2004). In this analysis follow-up was administra-
tively censored at 10 years, so that proportionality holds rea-
sonably for both endpoints.

Among the 2,705 patients in the analysis, 733 experienced
breast cancer recurrence or a tumor in the opposite breast,
254 experienced other failure events (second primary cancers,
deaths prior to any other event), 89 were lost to follow-up prior
to 10 years (and treated as censored at their respective loss
times), and 1,629 were event-free at 10 years.

In a previous study (Bryant, Fisher, Gündüz, Costantino, and
Emir 1998), tumor size, tumor progesterone receptor level, and
age at enrollment were found to be prognostic for DFS. In Ta-
ble 1, which summarizes key patient characteristics, established
clinical categories were used for the first two covariates (tumor
size and progesterone receptor level), and linear and quadratic
terms were used to model effects of age at enrollment, which
was standardized with sample mean x = 54.7 years and sample
standard deviation s = 10.0 years. The main objective of this
work, as detailed in Section 5, will be to flexibly estimate for
both DFS and BCFS the baseline hazard and the effects of treat-
ment, tumor size, progesterone receptor level, and age, while
accounting for center heterogeneity in both the baseline hazard
and the treatment effect. The model variables for both endpoints
are coded so that the baseline group will consist of patients en-
rolled in the placebo trial arm, age 54.7 years at enrollment,
with tumor size ≤2.0 cm, and progesterone receptor level less
than 10 fmol/mg.

Table 1. Characteristics of 2,705 patients from NSABP B-14

Covariate Placebo Tamoxifen Total

Tumor size
≤2 cm 790 782 1,572
2.1–4 cm 489 511 1,000
≥4.1 cm 71 62 133

Progesterone receptor level
<10 fmol/mg 313 295 608
≥10 fmol/mg 1,037 1,060 2,097

Age
25–34 44 30 74
35–44 200 202 402
45–54 358 372 730
55–64 496 500 996
65+ 252 251 503
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2.2 Multicenter Survival Analysis

An important goal of survival analysis is estimation of the
survival curve S(t) and its transform, the cumulative hazard
H(t) = − log(S(t)). Standard survival analysis (Cox and Oakes
1984) accounts for differences among patients in this hazard
function through the proportional-hazards model (Cox 1972),
under which patient covariate effects multiply the baseline haz-
ard Hbase(t). In multicenter survival studies, where survival data
from different centers must be combined into one inferential
framework, methods that do not account for center heterogene-
ity via center-specific covariates and/or center-specific effects
may misestimate overall uncertainty of the hazard parameters.
Lagakos and Schoenfeld (1984), among others, discussed the
lack of collapsibility of the hazard ratio when important covari-
ates are omitted from the model, illustrating that not acknowl-
edging between-center heterogeneity may be highly mislead-
ing.

Existing literature provides a number of approaches to com-
bining survival data from multiple centers, although most have
been formulated for a meta-analysis setting, which is geared
toward combining one-dimensional summaries of individual
studies, rather than for a multicenter setting where models for
combining data or curves from centers are required. Parmar,
Torri, and Stewart (1998) outlined how to estimate treatment–
control log-hazard ratios and associated variances from avail-
able summary statistics or published Kaplan–Meier curves
from multiple clinical trials. Their method, intended for meta-
analytic applications, however, depends on assumptions of uni-
form right-censoring over discrete time intervals, and does not
accommodate patient-level or study-level covariates. A method
for estimating the baseline hazard function is given, but only
for data stratified into treatment and control groups. Hunink
and Wong (1994) also described estimation of baseline haz-
ard from multiple studies, but they only account for covariate
effects through stratification, without allowing for patient char-
acteristics observed on a continuous scale. In addition, none of
these methods accounts for potential heterogeneity from study
to study, beyond that attributed to the observed (discretized)
study covariates. See also Earle, Pham, and Wells (2000) for
a comparison of the performance of five survival meta-analysis
methods against an analysis of individual patient data. In the
area of multicenter analysis, Glidden and Vittinghoff (2004)
investigated the use of a gamma frailty model to account for
center-specific effects.

To the best of our knowledge, though, the closest model to
the one presented in this article was given by Gray (1994), who
developed a Bayesian analysis of variation in patient survival by
study center in multicenter trials, allowing for heterogeneity in
both control and treatment groups by placing a bivariate normal
prior on center-specific effects. Our study extends that approach
by employing a resolution-invariant method that accounts for
different forms of missing data beyond simple right-censoring
and can incorporate virtually arbitrary prior assumptions about
the hazard. In addition, we focus on developing measures for di-
agnostic testing of key model assumptions. Details of the mul-
tiresolution approach are summarized in the following section,
while a full treatment and discussion of its theoretical prop-
erties, including a comparison of its performance to some of
the common nonparametric hazard estimators, can be found in

Bouman et al. (2005). The application in that article involves
an AIDS dataset with a more complex censoring and truncation
mechanism than the dataset in this current article.

3. MULTIRESOLUTION MODEL FORMULATION

In this section we describe a strategy for estimating baseline
population survival, given possibly censored failure times and
covariate data for patients from K separate sources or studies
(e.g., centers), while accounting for study-specific heterogene-
ity beyond that attributable to the study-specific covariates. To
do so, we adopt a Bayesian proportional-hazards model that
allows for general censoring of the survival times and reflects
multiple sources of uncertainty in the posterior estimate of the
common population survival curve.

For this analysis we will choose a fixed and ordered set of
time horizons tj (the “time resolution”) and seek estimates of
the underlying baseline survival probability at the chosen tj,
Sbase(tj). Following standard practice, we focus on the cumu-
lative hazard Hbase(t) and the discrete hazard increments dj ≡
Hbase(tj) − Hbase(tj−1). Posterior estimates of dj can then easily
be transformed into survival function estimates via the identity
dj = ∫ tj

tj−1
hbase(s)ds, where the function hbase(t) is the hazard

rate at time t.

3.1 Multiresolution Prior for Baseline Hazard Increments

A standard Cox proportional-hazards model estimates co-
variate effects for survival, but treats the baseline hazard func-
tion as a nuisance parameter that can have a large or infinite
number of dimensions. The model we describe here estimates
the baseline cumulative hazard Hbase(t) at times tj, along with
covariate effects, where the resolution, consisting of the time
points 0 < t1 < t2 < · · · < tJ , has been chosen in advance ac-
cording to clinical interest. For the purposes of this model, as-
sume that J = 2M for M > 0, with the number of bins J cho-
sen in proportion to N, the total sample size available, so that
there are multiple observations per bin. The spacing of the tj is
usually chosen according to the time scale that is most reflec-
tive of the analysis needs and the relevant assumptions about
the underlying hazard function; in particular, the time points
are not required to be evenly spaced. In the case that the res-
olution cannot be specified with meaningful prior input based
on clinical needs and knowledge, the optimal level of resolu-
tion may be chosen using model selection criteria such as the
DIC of Spiegelhalter, Best, Carlin, and van der Linde (2002);
see Bouman et al. (2005) for an example of choosing an ap-
propriate number of bins for estimating the delay in AIDS case
reports to the Centers for Disease Control.

In each interval j, j = 1, . . . , J, for all times t such that
tj−1 < t ≤ tj, a constant hazard rate dj is assumed and thus the
baseline cumulative hazard is linearly interpolated at time t. For
times t > tJ , S(t) is not defined under our model and the failure
times after tJ are right-censored at tJ . Hence, the number of
bins J = 2M and bin widths tj − tj−1 should be chosen so that
the resulting piecewise-constant hazards assumption is math-
ematically reasonable and meets the substantive goals of the
analysis, while tJ should be chosen so that a minimal amount
of information is lost to “closure” censoring. We note that the
assumption of piecewise-constant hazard has been adopted in a
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number of articles in the literature such as, for example, Walker
and Mallick (1997).

Once the J time intervals have been chosen, the hazard in-
crements dj should be specified in a way that makes it easy
to formulate our prior beliefs about the shape and smooth-
ness of the underlying hazard curve. Let H ≡ Hbase(tJ) be
the cumulative hazard at the final time horizon tJ and let
dj, j = 1, . . . , J, be its J increments. For the multiresolution
parameterization, write H0,0 ≡ H(t2M ) = H(tJ), and for m =
1, . . . ,M, p = 0, . . . ,2m−1 − 1 (where m is the level of reso-
lution and p is the position in that level) decompose Hm−1,p

into the dyadic summands Hm,2p + Hm,2p+1. At the high-
est level of resolution, note that HM,0 ≡ d1 and HM,1 ≡
d2, . . . ,HM,2M−1 ≡ dJ , the hazard increments we want to es-
timate. Now let Rm,p ≡ Hm,2p/Hm−1,p and parameterize the
hazard increments d1, . . . ,dj by H0,0 (hereafter H) and the
“splits” R1,0, . . . ,RM,2M−1−1 (hereafter denoted Rm,p). For ex-
ample, when M = 3 and J = 23 = 8,

d1 = HR1,0R2,0R3,0,

d2 = HR1,0R2,0(1 − R3,0),

...

d8 = H(1 − R1,0)(1 − R2,1)(1 − R3,3).

A simple diagram of the two-level multiresolution prior is
given in Figure 1. Split parameters higher in the hierarchy gov-
ern coarser scale details of the cumulative hazard function,
while lower level parameters control finer scale differences.
Motivated by the development in Nowak and Kolaczyk (2000),
we place Beta priors on the Rm,p’s and a Gamma prior on H.
The shape parameters of the Beta prior for each Rm,p are cho-
sen to center the multiresolution prior on a given discrete haz-
ard d∗

j , j = 1, . . . , J. To control for the amount of smoothing in
the multiresolution prior, we multiply the shape parameter of
the Beta priors at each additional level of the hierarchy by a hy-
perparameter k. For example, the priors for H and Rm,p given
M = 3 and J = 8 would be

H ∼ Ga(a, λ), (1)

R1,0 ∼ Be
(
2γ1,0ka,2(1 − γ1,0)ka

)
, (2)

R2,p ∼ Be
(
2γ2,pk2a,2(1 − γ2,p)k

2a
)
, p = 0,1, (3)

R3,p ∼ Be
(
2γ3,pk3a,2(1 − γ3,p)k

3a
)
, p = 0,1,2,3. (4)

The use of arbitrary prior means, E(Rm,p) = γm,p, allows us
to a priori “center” the baseline hazard at any desired value d∗

j .
This is done by noting that because the H and Rm,p’s are a
priori independent, we can make E(dj) = d∗

j by specifying the
prior means of H and Rm,p separately. Specifically, we first set
recursively Dm−1,p = Dm,2p + Dm,2p+1, with DM,0 = d∗

1 and
DM,1 = d∗

2, . . . ,DM,2M−1 = d∗
J . We then let

γm,p = Dm,2p

Dm−1,p
and aλ =

J∑

j=1

d∗
j . (5)

This particular formulation of successive Beta priors also
has two desirable properties: (1) prior resolution invariance;
and (2) prior correlation of the dj dependent on the choice of

Figure 1. Annotated diagram of the two-level multiresolution prior.

k and a; for proofs of these properties see the Appendix. Prior
resolution invariance implies that the multiresolution prior on
a particular Rm,p does not depend on the number of levels M.
In other words, by integrating out higher resolution parameters,
one would obtain exactly the same prior as if those parame-
ters had not been considered in the first place. When our model
assumptions hold approximately, this invariance is reasonably
preserved in the posterior inference as well, as explained in de-
tail in Bouman et al. (2005).

As proved for a simpler version of this prior in Bouman et al.
(2005), when k = .5, the baseline hazard increments dj are a pri-
ori uncorrelated and, in fact, independently Gamma distributed.
Choosing k less or greater than .5 yields, respectively, nega-
tive or positive prior correlation among the dj’s. Positive prior
correlation induces smoothing of the baseline hazard function,
with hazard increments borrowing strength from the neighbors,
which could be desirable in the presence of heavy censoring.

3.2 Hyperpriors for Hyperparameters a, k, and λ

Although a fixed k can be specified, it is often possible to esti-
mate k from the data by putting a hyperprior on it. An exponen-
tial hyperprior with mean μk leads to the full conditional distri-
bution for k (conditioning on all other model parameter k−),

π(k|k−) ∝ exp

(

− k

μk

)

×
M∏

m=1

2m−1−1∏

p=0

[
�(2akm)

�(2γm,pakm)�(2(1 − γm,p)akm)

× (Rm,p)
2akmγm,p(1 − Rm,p)

2akm(1−γm,p)

]

, (6)

implying that the information in the data for k will come from
the joint posterior of a and all the “splits” Rm,p.

Multiresolution priors are based on a treelike structure, which
can induce a blocky correlation pattern. Namely, in a simple
multiresolution model, where a is fixed, it is possible to have a
situation in which two neighboring hazard increments are less
correlated than those further apart. To compensate for this un-
desirable property, Bouman et al. (2005) proposed mixing over
the shape parameter a to balance out the correlations among
increments.
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For this reason, we place a zero-truncated Poisson (ZTP)
hyperprior on a. The ZTP prior was chosen mostly for com-
putational convenience, because integer shape parameters will
suffice for most practical purposes. The density for ZTP with
parameter μa is e−μaμa

a/[a!(1 − e−μa)], resulting in the full
conditional distribution for a proportional to

μa

�(a + 1)

Ha

�(a)

×
M∏

m=1

2m−1−1∏

p=0

[
�(2akm)

�(2γm,pakm)�(2(1 − γm,p)akm)

× (Rm,p)
2akmγm,p(1 − Rm,p)

2akm(1−γm,p)

]

. (7)

To model the prior uncertainty about the scale parameter λ

that governs the mean of the cumulative hazard H, we use an
exponential prior on λ with mean μλ, yielding the full condi-
tional distribution

π(λ|λ−) ∝ exp

(

− λ

μλ

)
exp(−H(tJ)/λ)

λa
. (8)

We note that with the foregoing specification, to set the prior
mean of dj at d∗

j given the hyperparameters, we need to choose
μa and μλ such that [based on (5)]

μaμλ

1 − e−μa
=

J∑

i=1

d∗
j .

3.3 Log-Linear Proportional-Hazards Likelihood With
Center-Specific Effects

Our model handles general forms of failure time censoring
via Bayesian imputation. Because our model only describes the
baseline hazard on the interval [0, tJ], we make inference on
the model parameters conditional on imputing censored fail-
ure times before tJ , while assuming that all subsequent pa-
tient events are administratively right-censored and integrated
out of the likelihood. In this section we derive the continuous-
time complete-data likelihood, which is needed for posterior in-
ference. We employ the proportional-hazards assumption (Cox
1972) that h(t|X,ψ) = exp(X′ψ)hbase(t). (The use of a discrete
time proportional-hazards likelihood with the multiresolution
prior is explored in Bouman et al. 2005.)

When the ith failure time Ti is observed without censoring,
the conditional likelihood function for Ti ∈ [0, tJ], with X = Xi,
is

L(ψ |Ti,Xi) = f (Ti|Xi,ψ) = h(Ti|Xi,ψ)S(Ti|Xi,ψ)

= exp(X′
iψ)hbase(Ti)Sbase(Ti)

exp(X′
iψ), (9)

using f (T) = h(T)S(T). When a right-censored time Ti > tcens
is observed, the conditional likelihood becomes

L(ψ |Ti,Xi) = S(tcens|Xi,ψ) = Sbase(tcens)
exp(X′

iψ). (10)

The covariates Xi in the preceding likelihoods represent pa-
tient i’s information, such as age and tumor size, for which the
effects on survival are not expected to vary from study center
to study center. Whereas this is a multicenter study, we also
allow a center-specific hazard multiplier exp(η0,c) to model

the intrinsic survival heterogeneity that is due to the effects of
other unobserved covariates. Following standard practice, we
model the center effects η0 = (η0,1, . . . , η0,C)
 as iid N(0, τ−2

0 )

and model τ 2
0 (the precision) as an exponential variable with

mean μ0.
Similarly, for clinical trials in which patients are adminis-

tered one of two treatments (usually a standard and an exper-
imental therapy), we also account for heterogeneity by center
in the treatment/standard log-hazard ratio βtreat. Center-specific
departures from βtreat are denoted by η1 = (η1,1, . . . , η1,C)

so that the log-hazard ratio for center c becomes βtreat + η1,c.
In this model, therefore, subjects in the standard arm of cen-
ter c of the trial will have the conditional hazard rate exp(η0,c +
X′β)hbase(t), while those in the experimental arm will have the
conditional hazard rate exp(η0,c + η1,c + βtreat + X′β)hbase(t),
where β = (β1, . . . , βL)
 denotes the vector of covariate effects
other than that of treatment. Again, assuming that trial centers
are drawn at random from a larger population, the η1,c are mod-
eled as N(0, τ−2

1 ), with τ 2
1 an exponential variable similar to

the one used for τ 2
0 . Although we model the two center-specific

effects as a priori independent mostly because the center het-
erogeneity appears rather low, correlated center-specific effects
can be employed by using a multivariate normal prior. The pa-
rameter β is given a vague multivariate normal prior.

4. MODEL FITTING AND MODEL CHECKING

Given the multiresolution prior and survival time likelihood
described in the previous section, we now detail the Markov
chain Monte Carlo estimation procedures for estimating the pa-
rameter posteriors for H, k, and the Rm,p. In addition, we outline
a model checking procedure based on the posterior predictive
distribution.

4.1 Markov Chain Monte Carlo Bayesian
Model Estimation

For patient i, we observe the failure or censoring time Ti, a
censoring indicator δi (0 for censoring, 1 for observed failure),
center number c (c = 1, . . . ,C), and covariates Xi. The likeli-
hood contribution from the ith patient is

L(Ti|δi,β, βtreat,η0,η1,H,Rm,p,Xi, c,Ai)

= [Pihbase(Ti)]δi exp
(−PiHbase(min(Ti, tJ))

)
,

where Pi = exp(X′
iβ + η0,c + Ai(η1,c + βtreat)) and Ai is a

dummy variable that denotes participation in the experimental
treatment trial arm for the ith patient. Note that Pi is the haz-
ard proportion for the ith patient, depending on the effects for
overall treatment effect, center-specific effects, and effects for
other covariates. Patients with failure time Ti > tJ are consid-
ered administratively censored (δi = 0) at time tJ and contribute
Pi exp(−Hbase(tJ)) to the total likelihood. For N observed pa-
tients, the total log-likelihood expression then becomes

δ′[Xβ + �0η0 + �1η1 + βtreatA + F�R]

−
N∑

i=1

exp(X′
iβ + �0,iη0 + �1,iη1 + βtreatAi)

× Hbase(min(Ti, tJ)), (11)
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where X = (X1,X2, . . . ,XN)′ is the N × L matrix of covariates
other than treatment assignment; �0 and �1 are N × C indi-
cator matrices of membership in the cth study and the treat-
ment arm of the cth study, respectively: A is the vector of
N treatment assignments; � is the 2M × (2M+1 − 1) multires-
olution matrix for which the (i, j)th element is 1 when j =
1 or i ∈ [1 + 2M−m(j mod 2m), . . . ,2M−m + 2M−m(j mod 2m)],
m = �log2(j)�, and 0 otherwise; R is the multiresolution para-
meter vector (log(H), log(R1,0), log(1 − R1,0), . . . , log(RM,0),

log(1 − RM,0), . . . , log(RM,2M−1), log(1 − RM,2M−1)); F is an
N × 2M matrix for which the (i, j)th element is 1 if patient i
has an event (observed failure or right-censoring) at a time
Ti ∈ (tj−1, tj] and 0 otherwise. (Patients with failure or right-
censoring times Ti > tJ have Fi,j = 0, j = 1, . . . , J.) Note that
we use the piecewise-constant hazard rate assumption to com-
pute the cumulative hazard H(Ti) at all times Ti < tJ .

The Gibbs sampler steps (Geman and Geman 1984) for the
parameters H, Rm,p, and k are as follows:

1. Draw H from the full conditional π(H|λ,Rm,p) = Ga((a+
∑N

i=1 δi),1/[(1/λ) + ∑N
i=1 F(Ti)]), with mean μ =

(a + ∑N
i=1 δi)/[(1/λ) + ∑N

i=1 F(Ti)], where F(Ti) =
H(min(Ti, tJ))/H(tJ), a function of Ti and Rm,p.

2. Draw the Rm,p (in any order) from π(Rm,p|k,H) with log
full conditional (for given m and p)

(

akm − 1 +
N∑

i=1

δi�i,r

)

log(Rm,p)

+
(

akm − 1 +
N∑

i=1

δi�i,r′

)

log(1 − Rm,p)

−
N∑

i=1

H(min(Ti, tJ)), (12)

where r and r′ are the columns of � that correspond
to log(Rm,p) and log(1 − Rm,p), respectively. Observe
that this distribution is not Beta, because the terms
H(min(Ti, tJ)) depend on the Rm,p as well as H when
Ti < tJ .

3. Draw k from π(k|Rm,p), λ from π(λ|H), and a from
π(a|H,Rm,p) as described in Section 3.2.

The conditional posterior distributions for H, τ0, and τ1 are
conjugate Gamma. The full conditionals for Rm,p, η0,c, η1,c, and
each βl and βtreat are log concave and therefore can be sampled
by the adaptive rejection sampling (ARS) algorithm of Gilks
and Wild (1992). To sample from the full conditional distribu-
tions for the hyperparameters λ and k, which are in general not
log concave, we use an extension of ARS known as adaptive
rejection Metropolis sampling, which was described by Gilks,
Best, and Tan (1995).

4.2 Posterior Predictive Model Checking

The use of the posterior predictive distribution (PPD) for
model checking was investigated in Gelman et al. (1996), where
distributions of realized discrepancy statistics were used to di-
agnose directions of inadequate model fit to data. The PPD for

a future, replicate observation yrep given the vector of observed
censorings, failure times y, and model M is formally defined as

P(yrep|y,M) =
∫

P(yrep|θ ,M)P(θ |y)dθ , (13)

where θ is the vector of parameters for model M and P(θ |y)
is its posterior given the data. We usually condition the PPD
on the collection of covariates X, treatment assignments A, and
center memberships c(i) for each patient, and write

P
(
yrep|y,M,X,A, c(i)

)

=
∫

P
(
yrep|θ ,M,X,A, c(i)

)
P
(
θ |y,X,A, c(i)

)
dθ . (14)

Given a set of Monte Carlo draws θg,g = 1, . . . ,G, from
the parameter posterior, for each g we draw one yrep,g from
P(yrep|θg,M,X,A, c(i)). For our model, this amounts to draw-
ing a set of N survival times T rep,g

i from P(T rep,g
i |βg

treat,β
g,η0

g,

η1
g,dg,M,X,A, c(i)), where each T rep,g

i is in one of (tj−1, tj],
j = 1, . . . , J, or (tJ,∞], because we only work with a discrete
approximation to the baseline hazard function.

We can develop univariate statistics [functions of the origi-
nal data y or replicate yrep,g from the PPD (13)] that measure
departures from model assumptions in directions meaningful
to applied practitioners. One class of functions is of the form
T(yrep,g|tj) = f (̂Srep,g

treat (tj)) − f (̂Srep,g
control(tj)), where f (·) is a cho-

sen function, tj is a given time horizon, and Ŝrep,g
treat and Ŝrep,g

control
are estimated survival functions in treatment and control arms
given the replicate data. When f (s) = s, our statistic is a differ-
ence in survival probabilities; when f (s) = log(s), it is the dif-
ference in cumulative hazards at time tj; when it is the comple-
mentary log–log function f (s) = log(− log(s)), we obtain the
log ratio of cumulative hazards between treatment and control
arms. Due to the popularity (and interpretability as an estimate
of βtreat) of the log-hazard ratio, we use it here as an additional
check of the validity of our proportional-hazards assumptions.

5. ANALYSIS OF BREAST CANCER
MULTICENTER TRIAL

For all analyses performed in this article we chose a 32-bin
model, with the resolution corresponding to a constant
3.75-month hazard rate. We chose this resolution because it is
the closest to the 3- to 6-month monitoring intervals of the trial
protocol. The model parameters were estimated using output
from five Gibbs sampler chains with 1,000,000 iterations each,
of which the first 500,000 draws were discarded as burn-in. Of
the remaining 500,000 draws, every fifth iteration was retained
to reduce correlation, resulting in 100,000 draws for our analy-
sis (although the thinning is unnecessary for most parts of our
analysis). Standard Gelman–Rubin diagnostics performed sep-
arately for each parameter were used to check convergence. We
discuss the results for DFS in Section 5.1 and then for the BCFS
endpoint in Section 5.2.

5.1 Results for the DFS Analysis

For DFS analysis, we applied our model to all centers to-
gether, as well as to the three center strata separately. The strata
were constructed by sorting the 110 trial centers according to
their size and then dividing them into three groups in such a
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Table 2. Posterior credible intervals for predictor effects: All centers
combined; 10-year DFS

Tumor: Tumor: PGR Age Age
Trt. med. lg. high lin. quad.

Pooled analysis
2.5% −.58 .17 .30 −.44 −.01 .05

50% −.44 .29 .55 −.29 .07 .11
97.5% −.30 .42 .80 −.15 .13 .16

Large centers
2.5% −.69 .05 −.19 −.43 −.08 −.01

50% −.46 .27 .31 −.19 .04 .08
97.5% −.21 .49 .80 .09 .16 .17

Medium centers
2.5% −.70 .13 .23 −.59 −.02 .07

50% −.47 .36 .66 −.35 .09 .17
97.5% −.23 .57 1.09 −.10 .19 .27

Small centers
2.5% −.64 −.03 .11 −.61 −.07 −.02

50% −.39 .23 .57 −.35 .07 .08
97.5% −.14 .47 .99 −.09 .20 .17

way that roughly the same number of patients are in each group.
This grouping resulted in the following strata: a “large size”
stratum with 9 centers (size varies from 51 to 241) and 956 pa-
tients, a “medium size” stratum with 29 centers (size 19–50)
and 987 patients, and a “small size” stratum with 72 centers
(size 4–18) and 762 patients. The results are shown in Table 2,
which presents marginal 95% posterior credible intervals for
βtreat and the overall (pooled) tamoxifen/placebo log-hazard ra-
tio estimated across trial centers, as well as each of the other
covariate effects βl.

The 95% posterior credible interval estimate of (.56, .74) for
the pooled treatment–control hazard ratio exp (βtreat) indicates
a clear protective effect for tamoxifen. Tumor size is also shown
to be prognostic of 10-year disease-free survival, with the poste-
rior median of the parameter increasing with increasing tumor
size at time of enrollment. A higher concentration of proges-
terone receptors is shown to be protective, and there is posterior
evidence of a quadratic effect in age above and below the mean
age of 54.7 years. These results agree with those of the analysis
in Bryant et al. (1998), which suggested that the quadratic effect
was due to an increased frequency of recurrence for younger
women, who tend to have aggressive tumors, coupled with in-
creased failure risk for older women due to other causes, such as
a second primary cancer or death from noncancer causes. Due
to little center heterogeneity in the data, our covariate effect
estimates agree very closely with the estimates produced by a
simple Cox proportional-hazards marginal model fitted without
any center-specific effects. In addition, the Q–Q plots of those
center-specific median effects in both DFS and BCFS analyses,
shown in Figure 2, reveal no apparent contradiction to the nor-
mality of center effects, an assumption convenient for flagging
extreme center effects based on the classic “two sigma” rule.

The stratified analysis results largely agree with the overall
analysis, especially regarding the treatment estimates. As a par-
tial check of our results, we also examined (Fig. 3) Kaplan–
Meier estimates of survival curves for all centers pooled, as well

(a) (b)

Figure 2. The Q–Q plots of center-specific baseline heterogeneity:
10-year DFS (a) and BCFS (b) endpoints.

as for each stratum. These curves closely resemble each other,
lending support to our findings in Table 2.

Figure 4 displays pooled and stratified median posterior es-
timates for the 32 baseline hazard increments themselves (cor-
responding to constant 3.75-month hazard rates) for DFS end-
point. Pointwise posterior credible intervals are also shown,
where the boxplots give posterior medians, quartiles, and 2.5th
and 97.5th estimated posterior percentiles, yielding what we
like to refer to as caterpillar plots. Note that this 32-dimensional
vector is a discrete approximation to the baseline hazard rate
hbase(t), for which we estimate the hazard increment dj =∫ tj

tj−1
hbase(s)ds. Note that we show the 32 pointwise estimates

of the hazard increments, although aggregation of these incre-
ments or further postanalysis smoothing could be performed as
desired. The estimate in Figure 4 is consistent with the noted
pattern of a rising hazard to the end of the second year of treat-
ment (24 months), followed by a gradual decline in the follow-
ing years; in a number of other large-scale cohorts of early stage
breast cancer patients who receive surgical treatment, the time-
varying rate of recurrence seems to peak around 2 years and
then decrease (Hess, Pusztai, Buzdar, and Hortobagyi 2003).
The apparent nonmonotonic pattern may be due to an increase
in length of the screening interval beginning after 4 years on
study.

5.2 Results for the BCFS Analysis

Results for the BCFS endpoint are somewhat different. First,
notice from looking at the pooled analysis results in Table 3
that the restriction of the outcomes from DFS to the BCFS re-
sults in clinical predictors having slightly stronger effects and,
in particular, that the median estimate of protective treatment
effect in the BCFS analysis is larger than that for the DFS end-
point. We hypothesize that because the DFS endpoint includes
events other than breast cancer recurrence, the protective effect
of tamoxifen should, on average, be correspondingly smaller
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Figure 3. Kaplan–Meier plots for 10-year disease-free survival: All centers combined and stratified by size ( control; treatment).

than that in the BCFS analysis, with a similar reasoning for the
effects of high progesterone receptor level.

Second, from Table 3 one can see that the BCFS endpoint
also displays a higher degree of heterogeneity in parameter es-
timates across different center strata. Although the large and

small centers generally resemble the pooled survival estimates
in the two arms, medium centers seem to have a slightly higher
treatment effect. This contrast is also demonstrated in Figure 5,
where Kaplan–Meier BCFS estimates across treatment arms for
the pooled and the three strata are shown. Although not sta-

Figure 4. Caterpillar plots of posterior pointwise estimates of baseline hazard increments for DFS data (with 2.5%/25%/50%/75%/97.5%
credible boxplots).
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Table 3. Posterior credible intervals for predictor effects: All centers
combined, 10-year BCFS

Tumor: Tumor: PGR Age Age
Trt. med. lg. high lin. quad.

Pooled analysis
2.5% −.73 .27 .38 −.52 −.14 .02

50% −.58 .44 .71 −.36 −.06 .08
97.5% −.41 .59 .99 −.19 .03 .15

Large centers
2.5% −.83 .25 −.14 −.55 −.22 −.06

50% −.48 .50 .52 −.25 −.08 .06
97.5% −.19 .77 1.13 .05 .07 .17

Medium centers
2.5% −1.00 .24 .35 −.72 −.14 .05

50% −.72 .51 .85 −.46 −.01 .17
97.5% −.45 .80 1.30 −.15 .14 .28

Small centers
2.5% −.79 −.04 −.04 −.69 −.24 −.09

50% −.52 .26 .54 −.38 −.09 .04
97.5% −.22 .55 1.04 −.05 .08 .15

tistically significant, this potential difference across the three
strata might warrant further investigation. However, perhaps the
most interesting finding of all is the robustness of the tamox-
ifen treatment effect. It is indeed rather remarkable, at least
in this trial, that even in a collection of small center studies,
despite expected individual center variations, one can obtain
similar results as in larger, presumably well-established center,
studies.

The caterpillar plots in Figure 6, show pooled and stratified
posterior median and pointwise 95% credible interval estimates

for the 32 baseline hazard increments themselves (correspond-
ing to constant 3.75-month hazard rates) for the BCFS end-
point. The hazard estimates in Figure 6 show a similar pattern
to the DFS hazards, with the baseline BCFS hazard increments
peaking around 22 months and declining thereafter.

5.3 Posterior Predictive Model Checking

Figure 7 displays the posterior predictive distribution of
the treatment–control log-hazard ratio T(yrep|tj) at eight time
horizons tj (tj ∈ {7.5,15,22.5,30,37.5,45,52.5,60} months).
Each histogram shows 500 draws from the posterior predictive
distribution of

T(yrep|tj) = log
( − log(Srep

treat(tj))
) − log

( − log(Srep
control(tj))

)
,

where each yrep is a replicate dataset of size N = 2,705. (In re-
peated trials, a sample size of 500 draws was found to give a
reasonably stable Monte Carlo estimate of the PPD.) The ver-
tical line in the histogram indicates the observed value T(y|tj)
for each time horizon, and its position can be used to judge
the agreement between the observed data and the PPD refer-
ence distribution under the proportional-hazards assumption. If
proportional hazards gave a poor fit to the data, we would ex-
pect that the PPD would indicate a roughly constant log-hazard
ratio over time, where the data would show stronger time vari-
ation. We see that PPD reveals no strong contradictions from
the 15-month horizon onward, but at 7.5 months there seems
to be some evidence of nonproportionality, with the realized
value of the log cumulative hazard ratio appearing in the far left
tail of the PPD reference distribution. At this early follow-up
time, however, very few failure events have occurred, making
the corresponding hazard estimates more unstable. As a non-
Bayesian check of proportional hazards, we also produced plots

Figure 5. Kaplan–Meier plots for 10-year breast-cancer-free survival: All centers combined and stratified by size ( control; treatment).
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Figure 6. Caterpillar plots of posterior pointwise estimates of baseline hazard increments for BCFS data (with 2.5%/25%/50%/75%/97.5%
credible boxplots).

Figure 7. Posterior predictive distributions for treatment–control log cumulative hazard ratios: Eight time points.
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of Schoenfeld residuals for the treatment effect (not shown) for
each stratum and endpoint, but there was no significant evi-
dence of nonproportionality in the data.

5.4 Sensitivity to Prior Mean

To illustrate the nature of different priors we have considered,
in Figure 8 we present 10 draws from an exponential-centered
prior and from a Weibull-centered (with shape parameter equal
to 3) prior. The two priors seem to differ most notably in the
later time period, with the Weibull-centered prior having a ten-
dency to rise toward the end of the 10-year period. The effect
of the two priors on the final baseline DFS hazard estimates is
shown in Figure 9. Although the amount of smoothness in the
two estimates seems different (the Weibull-based hazard esti-
mate seems to be less smooth than the exponential-based one,
as expected), there seems to be very little practical difference
among the two sets of covariate estimates (Table 4). We thus do
not repeat the sensitivity analysis for the BCFS data.

5.5 Comparison to Gray’s Model

Our model of multicenter clinical trial outcomes can be com-
pared to the Bayesian hierarchical model explored in Gray
(1994). Following Gray’s notation, we model survival times
in N trial centers, each with ni patients with covariates xijk for
the kth covariate of the jth patient in the ith center. We assume
that there are p − 1 (equal to L in our notation) other covariates
in addition to the treatment assignment, for a total of p vari-
ables per patient. To model the baseline hazard, time is divided
into m discrete intervals with boundaries 0 < t1 < · · · < tm and
corresponding discrete hazard increments eαi . (In the analysis
in Gray 1994, m was set to 30, which was found to be large
enough and not to have a significant impact on effect estima-
tion.) The vector of proportional effects for the p covariates is

written as β = (β1, . . . , βp)
′, and the center-specific baseline

and treatment effects are, respectively, denoted θi0 and θi1 for
i = 1, . . . ,N. Note that the total treatment effect for center i is
then βp + θi1. The hazard for subject ij is then written as

λ(t|xij, α,β, θi)

= exp

{
m∑

q=1

αqIq(t) + θi0 +
p∑

k=1

βkxijk + θi1xijp

}

, (15)

where Iq(t) = 1 if tq−1 < t ≤ tq and is 0 otherwise.
For this parameterization, Gray (1994) placed independent

normal priors on βk and a zero-centered bivariate normal
prior on the center effects θi, whose covariance is given an
inverse-Wishart hyperprior. Successive log-hazard increments
αq − αq−1 are modeled as independent normal, with an inverse-
Gamma hyperprior on the variance. Writing γijq = αq + θi0 +∑p

k=1 βkxijk + θi1xijp, δijq as the failure indicator for patient ij
in interval q, and uijq as the total follow-up time in interval q,
the likelihood term for center i becomes

Li(α,β, θi) = exp

{ ni∑

j=1

m∑

q=1

[δijqγijq − uijq exp(γijq)]
}

. (16)

Gray (1994) estimated the posterior distribution for (α,β, θi)

via Gibbs sampling.
We fitted Gray’s model of center-specific heterogeneity for

the 10-year DFS endpoint, for all centers together, and con-
firmed our findings that there was little heterogeneity in these
data. Table 5 gives posterior estimates for the treatment effect
and other covariates for Gray’s model. As can be seen, they
agree closely with our estimates in Table 2.

Figure 8. Ten random draws from multiresolution priors centered on H(t) ∝ t and H(t) ∝ t3.
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Figure 9. Caterpillar plots of the baseline hazard estimate for the DFS data under the exponential and Weibull priors.

6. DISCUSSION

Because there is usually a strict study protocol in a random-
ized trial, the problem addressed in this article is somewhat dif-
ferent from the well-known phenomenon of intrahospital varia-
tion in treatment outcomes, which may be attributable to a wide
variety of factors, including attraction of difficult cases to cer-
tain hospitals or differential skills and resources across hospi-
tals. However, like observational studies, variation in outcomes
in the randomized trial setting may be due to differences in pa-
tient baseline characteristics that are not controlled by trial en-
try criteria. Furthermore, deviation from the protocol prescribed
treatment and follow-up regimen could account for apparent
variations in treatment efficacy.

Our stratified analysis is an attempt to include a measure
of case availability and possibly cancer treatment expertise.
Known prognostic factors, which are balanced by treatment
group overall through stratified randomization, may differ by
center and were included in modeling. Although DFS stratified

Table 4. Posterior credible intervals for predictor effects: 10-year
DFS all centers; exponential-versus Weibull-centered hazard prior

Tumor: Tumor: PGR Age Age
Prior Trt. med. lg. high lin. quad.

Exponential-centered
2.5% −.58 .17 .30 −.44 −.01 .05

50% −.44 .29 .55 −.29 .07 .11
97.5% −.30 .42 .80 −.15 .13 .16

Weibull-centered
2.5% −.57 .17 .29 −.44 −.01 .06

50% −.44 .29 .56 −.29 .06 .11
97.5% −.31 .42 .81 −.15 .13 .16

analyses (and, in particular, the baseline hazard rate estimates)
were very similar to the pooled analysis, for the BCFS end-
point we observe indications of larger variation among clinical
effects in the three strata based on size of institution. For the
DFS endpoint, which may tend to reflect patient heterogeneity
in risks for other diseases, this heterogeneity was much smaller,
and both the effect of treatment and some clinical covariates
were more modest. Further analyses of this finding will entail
consideration of other possible explanatory factors.

The B-14 trial included several large centers, with the
12 largest accruing centers accounting for nearly 40% of the
over 2,800 patients enrolled. However, in many cases, recruit-
ment of participants to multicenter trials is highly diffuse and
has many small individual contributions. This is, in fact, a
necessity in trials for less common diseases, where a large
catchment area (with many individual contributing centers) and
lengthy accrual period are necessary to obtain a sufficient sam-
ple size. In trials with more complex treatment regimens and
numerous, mostly small centers, heterogeneity of treatment ef-
fects might appear substantial. Methods such as those proposed
here could be used to evaluate the significance of intracenter
variations in treatment efficacy.

While investigating this multicenter dataset, we have also
adapted and explored some of the properties of a multiresolu-
tion estimator for a discrete time proportional-hazards model.

Table 5. Posterior credible intervals for predictor effects under Gray’s
model: All centers combined; 10-year DFS

Trt. Tumor: med. Tumor: lg. PGR high Age lin. Age quad.

2.5% −.56 .17 .31 −.43 .00 .06
50% −.43 .30 .57 −.29 .07 .11
97.5% −.30 .43 .81 −.15 .13 .16
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Our method furthers the existing multicenter approaches by al-
lowing for more generally censored (e.g., interval-censored or
truncated) data. For survival estimation in large public-health
databases, we often work with discretized covariates and sur-
vival times. In some situations, using “binned” failure times
and making the underlying population survival curve a finite-
dimensional parameter may be a desirable goal by itself. In
other situations, continuously observed outcomes are simply
not available. In any case, the analysis must take into account
the effects of discretization on inference and the resulting loss
in precision.

We have also demonstrated the use of the posterior predic-
tive distribution in model criticism. We believe, in particular,
that such techniques can be used to detect and justify adjust-
ment for heterogeneity in treatment and other covariate effects
across multiple studies, or multiple centers in a single study,
as we have applied them. Of course, the center-specific effects
estimated in our model are approximations to the actual het-
erogeneity in survival times, but including such effects can still
give some indication of how individual centers depart from the
overall effect. Future work will include investigation of hetero-
geneity in covariate effects other than the treatment effect we
have looked at in this study.

APPENDIX: PROPERTIES OF THE
MULTIRESOLUTION PRIOR

Here we give proofs of two properties of the generalized multireso-
lution prior given in (1)–(4) in Section 3.1 when 0 < γm,p < 1. (These
arguments are generalizations of those given in Bouman et al. 2005 for
the simpler case in which γm,p ≡ .5.)

First, when k = .5, we observe that in the prior, H ∼ Ga(a, λ) and
R1,0 ∼ Be(γ1,0a, (1 − γ1,0)a), with the “next level” hazard incre-
ments H1,0 = HR1,0 and H1,1 = H(1 − R1,0). A change-of-variables
calculation, using the fact that H is independent of R1,0, shows that
H1,0 and H1,1 are independently distributed as Ga(γ1,0a, λ) and
Ga((1 − γ1,0)a, λ), respectively. By following this argument recur-
sively to level M in the prior, we see that the dj are independently
Gamma-distributed, with shape parameters that depend on the values
of the γm,p.

Second, our prior for any Hm,p does not depend on our choice of M,
so that the prior is resolution-invariant under aggregation of the dj’s.
For m = 0, this statement is trivially true, because the Gamma prior
for H0,0 ≡ H does not depend on M. For a fixed level 0 < m < M,
the prior for Hm,p will be Ga(a

∏m
i=1 bi,pi , λ), where bi,pi = γi,pi or

1 − γi,pi , depending on whether the splitting Ri,pi variable in forming
Hm,p is in the left branch or the right branch (see Fig. 1). Clearly, this
distribution does not depend on M or any parameters for the “lower
levels” of the prior; that is, for fixed m, the joint prior of the Hm,p is
invariant to the choice of M > m.

[Received December 2003. Revised December 2005.]
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