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Appendix 

Regularity Assumptions 

Regularity assumptions necessary for the calculations given in Section 2 may take many forms. 
The regularity conditions suggested here are not supposed to be technically exhaustive but merely 
suggestive of what may be needed: 

1. "Standard regularity assumptions" on the complete and observed data models, so that the MLE 
is asymptotically linear and efficient in both models. 

2. The draws from the posterior are asymptotically normal, i.e. given the observed data 

5 (nj - O^)-+>N (0, I(Oo). 
Often this follows from the same regularity conditions used to obtain the asymptotic distribution 
of the observed data MLE. 

3. With Xi . 
fo, (Xi IYi = yi), 

I SXili, (On)) 
N (0, Ely(Oo)-1) 

for any sequence On with I (On - 00) bounded and (almost) every sequence of yis. In practice, 
a Lindeberg condition should be verified. 

4. Uniform laws of large numbers hold for 

I nI n 

- 
Dos-y, (0) and - Dosy (0) 

i=1n i=1 

on a compact set of 0 with 00 as an inner point; here Xi .Lo(XilYi = yi). In practice this 
could be verified from additional smoothness (a Lipschitz condition) or more general empirical 
process techniques. 
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Summary 

By closely examining the examples provided in Nielsen (2003), this paper further explores the relation- 
ship between self-efficiency (Meng, 1994) and the validity of Rubin's multiple imputation (RMI) variance 
combining rule. The RMI variance combining rule is based on the common assumption/intuition that the 
efficiency of our estimators decreases when we have less data. However, there are estimation procedures 
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that will do the opposite, that is, they can produce more efficient estimators with less data. Self-efficiency 
is a theoretical formulation for excluding such procedures. When a user, typically unaware of the hidden 
self-inefficiency of his choice, adopts a self-inefficient complete-data estimation procedure to conduct an 
RMI inference, the theoretical validity of his inference becomes a complex issue, as we demonstrate. We 
also propose a diagnostic tool for assessing potential self-inefficiency and the bias in the RMI variance 
estimator, at the outset of RMI inference, by constructing a convenient proxy to the RMI point estimator. 

Key words: Congeniality; Incomplete data; Missing data; Variance decomposition. 

1 Introduction 

The main purpose of this paper is to investigate Nielsen's (2003) "counterexamples" to Rubin's 
multiple imputation (RMI) variance combining rule. Before doing so, we would also like to take 
this opportunity to comment on Nielsen's two main statements made in his abstract, namely, (1) 
Bayesian multiple imputation does not guarantee proper multiple imputation, and (2) Bayesian 
multiple imputation is inefficient even when it is proper. Anyone who only reads these statements, 
and who has not previously been involved in the research on RMI, is likely to be under the impression 
that the culprit here is "Bayesian". Logically, statement (1) is obviously correct: simply being a 
Bayesian does not automatically make one more "proper", in both its general and specific sense (as 
defined in Rubin, 1987), than a frequentist. An erroneous, or even just naive Bayesian analysis, be it 
for imputation or for any other purpose, can do just as much damage as any other erroneous method. 

In the same spirit, the user's complete-data estimation procedure cannot be completely arbitrary. 
One way to regulate the users' procedures is to require them to be self-efficient (Meng, 1994). 
This requirement is weaker than being fully efficient (e.g., MLE), because it merely excludes any 
complete-data procedure that can improve upon itself by applying the same procedure to a part of the 
same data. After discussing Nielsen's statement (2), as it is a more transparent issue, we explore the 
intriguing relationship between the self-efficiency and the validity of RMI inference in all Nielsen's 
examples. 

2 Theoretical Efficiency versus Practical Efficiency 

Nielsen's key point underlying his statement (2) is neither targeted at Bayesian nor RMI per se. It is 
more a general comment about statistical inference based on simulation, in particular, Markov chain 
Monte Carlo (MCMC). Theoretically, such an inference is never fully efficient, in both statistical 
and computational senses, compared to the same inference based on exact analytic calculation. 
But, as Nielsen emphasizes, such a comparison is "hardly fair", since if the analytic calculation is 
feasible, then there is no real need to conduct simulation. However, in the context of public-use 
databases, for which RMI was originally designed, even if it is possible for imputers to do everything 
analytically (which is never the case), they still need to resort to simulation in order to produce 
multiple imputations, for the obvious reason that the imputers are not the ones who will conduct the 
subsequent, typically many, statistical analyses using the imputed databases. 

Nielsen's point that one should use all k draws within each of the m independent Markov chains 
instead of just the final m independent draws (the last draw from each chain) reemphasizes sound 
advice that many advocated and followed in the literature (e.g., Gelman & Rubin, 1992). In general, 
one key exception to this rule is when the subsequent function evaluations are much more expensive 
than making the draws, in which case one would purposely ignore some of the dependent draws 
to achieve practical independence (known as "thinning", as in Meng & Schilling, 2002). Such cost 
considerations are quite common in statistical practice; for example, they underlie the reason for 
adopting cluster sampling instead of unit sampling, even if the former is typically statistically less 
efficient. 
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For similar practical considerations, when RMI is needed, there are at least two reasons why 
it can be wise to sacrifice a little bit of theoretical efficiency for practical efficiency, at least for 
now. First, such km imputations will no longer be conditionally independent (given the observed 
data), thereby making subsequent analysis more complicated. Although it is possible to derive more 
general combining rules for specific dependent structures (e.g., as with nested multiple imputation; 
see Shen, 2000 and Rubin, 2003), currently it is not clear whether it is possible to have a single set 
of combining rules for dealing with arbitrarily (conditionally) dependent multiply-imputed data sets. 
This, of course, is a topic worthy of research, but in order for such rules to be relevant for practical 
purposes, we first need to assess the feasibility of producing multiply-imputed datasets with large 
km. If km is small to moderate (e.g., 5-50), it would be more efficient, again from a practical point 
of view, to just produce km (conditionally) independent multiple imputations. 

Second, at least in the context of public-use databases, it is not possible to publish all average 
estimates, averaging over all km draws, that would cover the entire range of the possible estimators 
in the subsequent analyses. Even when the imputer and analyst are the same actor, the cost of the 
complete-data analysis can be such that to repeat it km times and then average is not practically 
desirable when km is large. This might sound strange, as one may wonder how can an investigator 
be able to make km draws, which involves a full Bayesian prediction machinery, yet not able to 
conduct km Bayesian analyses with the km complete data sets? However, one must keep in mind that 
outside the domain of public-use databases, RMI is most useful when a hybrid inferential method 
is needed. In his discussion of Meng (1994), Zaslavsky (1994) succinctly summarizes this "hybrid" 
perspective: 

"Because it may be so difficult to specify fully a Bayesian analysis, in many problems 
the best strategy can be to use a model-based Bayesian inference for the part that 
requires it, in particular the imputation of missing data, and to use frequentist methods, 
relying on estimates of means and variances and on approximate normality, for the rest 
of the inference. Multiple imputation is a device for such a combined approach, ... 
This strategy may engender uncongeniality of the analytic methods used in different 
parts of the inference, even though each is appropriate for its part of the inferential 
task, and even in cases in which the same organization carries out both parts of the 
analysis. Nonetheless, the mixed strategy is desirable when it is the most tractable valid 
approach." 

For such a hybrid approach, the cost of the two parts can be very different. Often, the imputation 
is the more expensive part, which limits the number of imputations one can create. Sometimes 
the complete-data analysis is the more expensive part, be it parametric, semi-parametric, or non- 
parametric. This was the case, for example, in Tu, Meng & Pagano (1993), who used RMI to deal 
with the delay in death reporting to US's Centers for Disease Control (CDC). The multiply-imputed 
datasets were then used for an AIDS survival analysis using Cox regression model, with the resulting 
estimates combined via Rubin's rules to reach an inferential conclusion. The imputation turned out 
to be relatively straightforward, based on a (conditional) negative binomial model for the number of 
delayed reports, and the posterior distribution for the model parameters was well approximated by a 
multivariate normal distribution thanks to the size of the CDC data (nearly 90,000 cases). However, 
the large sample size makes it a non-trivial task, relative to the effort of producing multiple imputa- 
tions, to conduct, for example, 1,000 Cox regressions. Nor were such a large number of replications 
needed. Tu, Meng & Pagano (1993) reported results using m = 10 and m = 50, and the results were 
practically the same, taking into account the simulation variation. The rationale for adopting RMI 
for this AIDS survival analysis was further discussed in the rejoinder of Meng (1994). 

Zaslavsky (1994) documented three complex situations where such hybrid approaches (not neces- 
sarily involving MI) are useful. Multiple imputation is by no means the only approach for handling 



610 X.-L. MENG & M. ROMERO 

complex incomplete-data problems, but it is certainly one of the more feasible and flexible due to 
its separation of the modeling for missing data and of the complete-data analysis, regardless of how 
many actors are involved in making the final inference. A possible price one pays for this feasibility 
is some theoretical inefficiency, either statistical or computational. But, as Zaslavsky concluded, such 
a strategy is desirable when it is the most tractable valid approach, not necessarily the most efficient 
approach in theory. See Rubin (1996) for more discussions on theoretical efficiency versus practi- 
cal efficiency, especially regarding avoiding unwise efforts made towards unachievable theoretical 
optimality when facing practical constraints. 

3 Full Efficiency versus Self-efficiency 

The conclusion of the previous section, of course, does not imply, in any way, that one should 
settle for an approach simply because it is feasible. Indeed, a major reason for the abuse of any 
popular statistical method, such as the bootstrap, is because the procedure is deceptively easy to use, 
especially when it is a part of a commercial software. The user, of course, should be concerned with 
the validity of any method being used. Facing the possibility of uncongeniality, which is a key feature 
of multi-party inferences, the user should also be informed of what types of validity the method was 
designed for. This might sound a bit rhetorical as many investigators would naturally equate "validity" 
with "the right answer", which is typically perceived to be unique. But as statisticians know, with 
real-life statistical inference there is never a single correct answer. This point is worth emphasizing 
because it reminds us that the concept of validity is not absolute, and just because one method is 
valid does not automatically imply invalidity or inferiority of all other methods. 

In the context of RMI, a great example of this fact is that although a standard confidence approach 
is valid, in the sense of delivering its promised nominal level of coverage (e.g., 95%), it can actually 
be inadmissible because the corresponding interval approach from RMI delivers shorter intervals, 
yet with at least the same nominal coverage (Meng, 1994; Rubin, 1996). This seemingly paradoxical 
phenomenon is due to the fact that the interval from RMI can be more efficient, albeit it could be 
made even more so if additional quantities, such as those cited by Nielsen's equation (11), were 
available to the user. Rubin (1996) provided an overview of this concept of confidence-validity, as 
Neyman (1934) originally conceived "confidence", and its importance in the context of RMI. Meng 
(1994) derived a set of conditions that not only guarantees the confidence-validity of RMI interval 
estimators but its superiority over the user's standard interval estimator without using RMI (even 
assuming the user's analysis is free of nonresponse bias). 

In particular, Meng (1994) introduced the notion of self-efficiency. This was based on the following 
observation. Since Rubin's variance combining rule relies on the following decomposition, 

Total Variance = Within-imputation Variance + Between-imputation Variance, (1) 

it is clear that, for this decomposition to be useful, the estimator from RMI cannot be more efficient 
than the user's complete-data estimator. This could happen, however, if the user's (complete-data) 
estimation procedure can actually produce a more efficient estimator when applied to the incomplete 
data than applied to the complete data. This is because the RMI estimator is an adjusted version of 
user's complete-data procedure applied to the incomplete data, adjusted for the non-response bias 
that was modeled by the imputer. As such, the RMI estimator it is often highly correlated with the 
(hypothetical) user's incomplete-data estimator without imputation, and thus the inherited properties 
of the user's estimation procedure may carry over to the RMI estimator. This is one reason that the 
congeniality concept in Meng (1994) was defined with respect to the user's estimation procedure, 
not just the user's complete-data estimator. A more important and somewhat subtle reason for this 
"insistence", as Nielsen noted in his Section 4, is that the frequentist operating characteristics of 
any incomplete-data analysis, be it RMI or otherwise, must depend on the missing data mechanism 
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(MDM), that is, the process that leads to the observed data pattern. Clearly, the user's complete-data 
estimator alone does not and cannot capture the MDM, but user's estimation procedure is driven by 
the MDM, and thus it is a more relevant ingredient for formulating congeniality. 

Estimation procedures that can provide more efficient estimators with less data may appear to be 
counterintuitive, but they do exist, even in simple examples. One such example was discussed in 

Meng (2001), using an example of Robins & Wang (2000), in the context of linear regression under 
heteroscedasticity. Because the standard least-square estimator (LSE) does not properly weight each 
observation with heteroscedastic errors, it is possible for the LSE estimator based on a partial data 
set to be more efficient than the complete-data LSE, when those data points with larger variances are 
missing. The self-efficient requirement, in a nutshell, eliminates such procedures. In other words, 
the LSE estimator may not be self-efficient with respect to a selection process that depends on the 
covariate (i.e., missing at random (MAR), but not missing completely at random (MCAR), as defined 
in Rubin (1976)). LSE estimators are typically used because of their robustness properties. However, 
to what degree such considerations contradict self-efficiency, which by itself also appears to be a 
desirable requirement, is a topic that requires much more research. 

Mathematically, self-efficiency is defined in the following way: 

Definition. (Meng, 1994): Let W, be a data set, and let Wo be a subset of Wc created by a selection 
mechanism. A statistical estimation procedure 80(.) for 0 is said to be self-efficient (with respect 
to the selection mechanism) if there is no E E (-oo, +oo) such that the mean-squared error of 
X0 (Wo) + (1 - X)0 (We) is less than that of 0 (We). 

Note that implicit in this definition is the assumption that the estimation procedure, 0(.), is 
well-defined for any subset of 

Wc 
that is selected by the specified missing-data mechanism; 0 (-) is 

well understood as a convention, but its rigorous mathematical formulation is beyond the scope of 
this paper because of the potentially arbitrary dimension and structure of Wo. Also note that this 
definition does not exclude the possibility that 0 (.) is self-efficient for some values of 0 but not for 
others, when the mean-squared error (MSE) or asymptotically the variance of 0(-) depends on 0. 
We also emphasize that at the first sight the requirement that 0 (We) is no less efficient than any 
XO (Wo) + (1 - X)0(We) may seem to be too strong for formulating our intuitive desire that 0(.), 
as an estimation procedure, should not produce a more efficient estimator with less data, which 
might appear to be adequately formulated by only requiring 0 (W,) be no less efficient than 

08(Wo). 
In 

actuality, the linear combination formulation is the more sensible, though a bit more subtle, theoretical 
formulation of our desire. This is because any 0 (W,.) can be rewritten as XO 

(W,.) 
+ (1 - X)0 (W,) for 

any X. 
Consider the following scenario. Suppose both of us (Meng and Romero) are provided with the 

same complete-data set We, and we both adopt the same procedure 0 (.). A third person, say Nielsen, 
is not provided with any data but only our two estimates, and he has the task of combining them 
to form a single estimate. Although there are many ways of combining two estimates, the linear 
combination is typically the easiest, and in fact the only combining method needed asymptotically 
when variance is used as the measure of efficiency (by a Taylor-expansion argument). Note that in 
order to maintain the consistency when linearly combining two consistent estimators 0, and 02 for 
the same 0, the linear weights in X101 +X 202 must satisfy Xi + X2 = 1, but neither of them is required 
to be between 0 and 1 (as we normally think of weights). Obviously, when we both apply 8 (.) to We, 
Nielsen will end up with the same 0 (We) regardless of his choice of the linear weight X. However, 
if 80(-) is not self-efficient, as defined above, then Nielsen can achieve a more efficient combined 
estimator than 8(We) by asking one of us to throw away some of the data, that is, by applying O(.) to 
Wo instead of We. Clearly, this is exactly what we try to avoid when we want to eliminate procedures 
that can produce more efficient estimators with less data. 

In words, what self-efficiency requires is that an estimation procedure cannot be improved upon 
itself by merely mixing the complete-data estimator with an estimator from applying the same 
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procedure to part of the data. This does not require that the complete-data estimator, co,,,, to be the 
most efficient estimator, but only that it is most efficient "within itself" (hence the term), defined by 
the linear mixture class 0 = {fOobs + (1 - )8Okom, X E (-0o, oc)}, with respect to the missing-data 
mechanism; here 0obs is the observed-data estimator resulting from user's estimation procedure on 
Wo rather than W,. Nielsen's first example provides such an illustration because his complete-data 
estimation procedure is self-efficient with respect to his MDM, but it is not fully efficient. In general, 
it is easy to show that any sample average procedure of i.i.d terms, namely, Ej=1 g(Xi)/n, is self- 
efficient with respect to an MDM that randomly selects a sub-sample of {X 1 

...., 
Xn }, as in Nielsen's 

first example. As we also see from Nielsen's verification, the bias in the RMI variance estimator is 

positive and thus the resulting RMI interval estimator is confidence valid when m = 0o. 
The above discussion should not be viewed as a suggestion that self-efficiency alone is sufficient 

to guarantee the validity of RMI inference. This cannot be the case because self-efficiency only 
regulates the user's complete-data estimation procedure, and as such it puts no restriction on the 

imputation model whatsoever. Technically, it cannot be a necessary condition either, because the 
estimator from the user's procedure applied to the incomplete data can be made arbitrarily different 
from the RMI estimator, 0~ (we focus on m = oc to separate the issue of uncongeniality from the 
issue of lack of efficiency due to finite number of imputation). Nielsen's second choice of the user's 
estimation procedure in his second example provides an extreme illustration of this arbitrariness, 
because his complete-data estimator is X, but the X sample is completely imaginary and thus there 
is no coherent way of defining the user's observed-data estimator 0os1 without imputation. In such 
cases, properties of O~ will put little restriction on the relationship between 

O,omf 
and 0obs, which is the 

key to self-efficiency. Nevertheless, in many practical situations, there is a strong correlation between 

0obs and 0~ even under uncongeniality, which leads to a strong relationship between self-efficiency 
and the properties of O~. Indeed, by Lemma 1 of Meng (1994), when O, = 0obs, self-efficiency 
becomes the sufficient and necessary condition for the RMI variance estimator (with m = 0o) to 
be consistent, under the additional assumption that the imputation model is second-moment proper 
with respect to the user's complete-data procedure. In addition to his Example 1, Nielsen's other 
examples also demonstrate this close relationship between self-efficiency and the validity of RMI 
(interval) estimators, as detailed in the rest of this article. 

4 Checking Self-efficiency for Example 2 

Nielsen's second example assumes that we have an i.i.d. sample {Yi, i = 1 ..., n} from N(O, 1). 
We then imagine that we could have had another independent sample {Xi, i = 1..., n} from 
N(0, U2) with known a2, but they are all missing. Nielsen's first choice of the complete-data 
estimator is the simple average of all X's and Y 's, namely, Ocom 

= (X + Y)/2. Given this complete- 
data estimator, it is natural to assume that the user would estimate 0 by 0obs = Y if he does not observe 
any Xi's (which is indeed the case). To check the self-efficiency of this procedure, let us examine the 
linear mixture Ox = XOobs + (1 - X)0)•om, 

whose sample variance, under Nielsen's specification, is 

1 1+u2 F 2a -1 S2 
__( 

22 -- ) 
V(Ox) = [(1 - 

,)202 
(1 +2 -2 1 + 1 . (2) 4n 4n 2+I 

Consequently, 

D,,() 
- 

V(Ox) - V(Ocom) = 2 2 2- 1 (3) 
4n 

0-2+1 
which is guaranteed to be non-negative for all X if and only if 2 = 1. That is, only when 2 = 1 is the 
procedure self-efficient, which of course is well known because when '2 # 1, we can easily improve 
the efficiency of O(,om by weighting X and Y by their known precisions, that is, the complete-data 



Discussion: Efficiency and Self-efficiency With Multiple Imputation Inference 613 

procedure should be (Y + 
0-2X)/(1 

+ a-2), which would still render the same 9ohs = Y when 
all X's are missing. We note that in this case, requiring self-efficiency leads to the fully-efficient 
MLE, but this is not true in general, as Nielsen's first example shows. Furthermore, if this were for 
a real-life application, there would really be no reason for not using the MLE as the complete-data 
estimation procedure, for the missing X's are completely imaginary and thus the actual value of a2 
is not relevant. Indeed, the RMI procedure (ignoring small m variations) would just reproduce the 
standard estimation procedure based on Y (or its asymptotic equivalent when the prior on 0 used in 

imputation is not the constant prior, such as N(0, 1) used by Nielsen), regardless of the actual value 
of a2 

When a2 # 1, the D,,(X) function of (3) has two roots, = 0 and = 2(u2 - 1)/(u2 + 1). 
Consequently, when 

a-2 
> 1, only some positive X's can make D,, () < 0, and when "2 < 1, only 

some negative X's can do the same. In other words, when a2 > 1, Oco 
is the most efficient estimator 

only among the "negative mixture" class 

- = { obhs + (1 - k)Ocomk, < 01, (4) 

and when 
a-2 

< 1, 0com 
is the most efficient estimator only among the "positive mixture" class 

8+ = {( obs (1 - ) 
_om, 

k> 01. (5) 
Since in this case the RMI estimator with m = o, 0m, is (asymptotically) the same as Oohs = Y, 
by Lemma 1 and Lemma 2 of Meng (1994), we can conclude that the RMI variance estimator has 
a positive bias when a2 > 1 and negative bias when a2 < 1. This is in complete agreement with 
Nielsen's finding with finite m, as it should be. 

5 Checking Self-efficiency for Example 3 

Nielsen's third example, which is a simulation study, assumes that, in the absence of missing 
observations, we have an i.i.d sample { (Xi, Yi), i = 1, ..., n } from a bivariate normal with equal 
means E (X) = E (Y) = 0, which is our estimand. Nielsen simulated 5000 data sets of size n = 200 
using 0 = 1, r2 = 0.5, Uo = 1, and o~, = 0.5, and hence p, = Corr(X, Y) = ./-5 = 0.707 
(note that Nielsen's p is our u ,1,, not our p, ,). The MDM is such that all Yi's are observed, but 
Xi is observed only when Yi < C. Let Ri = I y<Ic), then Xi is observed if and only if Ri = 1. 
Consequently, nob, - I'=1 Ri denotes the number of observed Xi's. For Nielsen's simulation, C 
was set to 1.84, so E(R) = P(Y < C) = 0.7995 / 0.8 and E(nobsh) = E(R)n a 160, implying 
about 20% of Xi's are missing. 

Unlike Example 2, where the MDM is MCAR, the MDM here is only MAR. Although MAR is 
enough to guarantee the ignorability of the MDM for likelihood inference when the additional "pa- 
rameter distinct" (PD) assumption holds (which is the case for this example because the conditional 
distribution of R given the observed data is free of any unknown parameter), it is not enough for 
a design-based inference (regardless of whether PD holds or not); see Rubin (1976) for a detailed 
discussion of such issues. This non-ignorability complicates our construction of user's estimation 
procedure that would naturally lead to Nielsen's complete-data estimator 

Ocomh 
= (X + Y)/2 when 

Ri = 1 for all i. For example, neither of the two obvious "design-based" choices, 

(1) 
i=> 

Z (XiRi + Yi) (2) I[ =1 ? i (6) 
obs - and ohs - 2 L nh 

is consistent for 0, because the mean of X conditioning on Y < C is not 0 as long as C is finite, 
even though the asymptotic bias of either estimator may be negligible for practical purposes when 
Co = (C - 0)/a, happens to be large. 

The inconsistency of both of these two estimators also highlights the danger of letting a general user 
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deal with missing data without being provided with the imputations. If this were a real application, 
and the user is unaware of the actual MDM, it is likely that he would mimic what he would do with 

complete data, either by averaging over all the observed X's and Y's, namely ~,) or by averaging the 

sample average of the observed X's, X0os, and Y, that is, .2 Of course, a more sophisticated user 
may compute the maximum likelihood estimator for 0 under the Nielsen's bivariate normal model 
assuming ignorability (which is a correct assumption), which would produce a consistent (and fully 
efficient) estimator. But then 

0o,,, 
= (X + Y)/2 could be this user's complete-data estimator only by 

an illogical mathematical construction. Indeed, under the assumption that the covariance matrix is 
known (this assumption greatly simplifies but has no real consequences for our current discussion), 
the complete-data MLE is 

(u - o,)X + (+ - O2y) 
0ML con1 = (7) 2 O 2 _ 

20-,. For Nielsen's simulation configuration,2 - -,u, = 0 and thus XM..com 
= X, that is, the entire Y 

X 
- O > OML corn 

sample carries no additional information about 0 once the X sample is fully observed. The reason 
is that when the slope for regressing Y on X is fy, = 

-•,y1/02 
= 1, which is Nielsen's choice, the 

"residual" Y - fX - N((1 - fyx)0, (1 - 
p2, 

)02) provides no additional information about 0. 
Clearly, for a user who is sophisticated enough to compute the MLE when some X's are missing, it 
would take an extraordinary argument to persuade him that he should adopt (X + Y)/2 instead of 
the MLE, X, when no Xi is missing. 

Therefore, a more logical and more relevant choice of a user's consistent estimation procedure is 
to assume that, in the absence of MI, the user would attempt to impute the missing X s in (X + Y)/2 
in some convenient but "consistent" way (e.g., not leading to an inconsistent estimator such as with 
imputing all missing Xi's by Xohs, that is, 002 given in (6)). There are a number of ways of doing 
so. One of them is to impute the missing Xi by its fitted value from the regression 

Xi(0) = 0 + 3(Yi - 0), (8) 
where = . - /0-2 

is assumed to be known for simplicity of our presentation (in practice 
f would be estimated by LSE from all the fully observed pairs of (Xi, Yi); this would alter our 
asymptotic variance calculations but would not change conclusions that are relevant for our current 
investigation). This leads to a "self-consistent" equation for 0, 

S•r =[RiXi 
+ (1 - Ri)Xi()1 ] (9) 

solving which leads to our estimation procedure 

h 
7 1 (XiRi + Yi + f(1 - Ri)Yi) (10) 

0obs = ?(10) 
E=j (1 + Ri + 0(1 - Ri)) 

Clearly, 
Oohs 

automatically yields On, o 
= (X + Y)/2 when all Ri = 1. It is also easy to verify that 

0ohs is consistent by the law of large numbers and the fact that E[R(X - 0)] = 
,E[R(Y 

- 0)]. 
To check the self-efficiency of this procedure, we can compute the MSE of 0x = X0ohs + (1 - c)0l0om 

or asymptotically its variance, which can be obtained via the standard delta method (see Appendix 
for details). Figure 1 plots nV(0x) as a function of X, where the horizontal line is 

nV(0con1) 
= -(uC + o ? 20,) = - = 0.625, (11) 4 8 

under Nielsen's setting. Similar to the case of 
-2 

< 1 in Example 2 (recall here we also have 

0- 
= 0.5 < cr = 1), 

0,.o, 
is the most efficient among the positive mixture class 8+ (defined in (5)) 
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but not among the negative mixture class 6- (defined in (4)); note that because nV(Ox) is quadratic 
in X, its value outside the plotting range in Figure 1 must also be above the horizontal line. If 9obs 

were (asymptotically) the same as 0m, then again by Lemma 1 and Lemma 2 of Meng (1994), we 
could immediately conclude that the RMI variance estimator would have a negative bias. However, 
for the current problem, 9obs of (10) is not asymptotically equivalent to 0~. Consequently, we cannot 

directly apply Meng's (1994) Lemmas to conclude the negative bias of the RMI variance estimator. 

0.7 

0.68 nVar( com ) 

nVar( 8) - - - 

0.66 
, , 

0464 0.6 - 

0.62-GO0 

0.58 
--3 -2.5 --2 -1 .5 --1 -0.5 0 0.5 1 

Figure 1. Compare Variance of Ox = -Oobs + (1 - )com,,, 
with V(Oc,,,). 

Nevertheless, because of the close relationship between 0obs and Om, we would still expect a 

negative bias in the RMI variance estimator based on our calculation for 0obs before performing 
an actual check for Om, either analytically or via simulation. The fact that Nielsen's simulation is 
consistent with this expectation is good indication of the role of self-efficiency in assessing the validity 
of the RMI inference. It also illustrates how we might investigate the bias issue in the RMI variance 
estimator of 0, via a corresponding, but more convenient, investigation by constructing a reasonably 
related obhs. The latter is more convenient because of the flexibility we have in constructing Oobs, 
which does not involve the Bayesian imputation, at least not the full details. Evidently, this indirect 

approach cannot be 100% effective, but it provides a way of diagnosing/detecting potential bias in 
the RMI variance estimator caused by user's choice of his complete-data estimator. Indeed, as we 
will see in the next section, not only does this diagnostic tool provide a qualitative indication (i.e., 
the sign of bias), but it can also provide a suggestive quantitative assessment of the magnitude of the 
bias in the RMI variance estimator. 

6 Assessing Self-inefficiency and Bias in RMI Variance Estimator 

As we discussed in Section 3, the linear-combination formulation of self-efficiency provides a 
direct theoretical quantification of our desire for excluding estimation procedures that can provide 
more efficient estimators with less data. Mathematically, checking self-efficiency via directly com- 

puting the (asymptotic) variance of the linear combination Ox, as in the previous two sections, can 
be short cut. Since V(0x) is a simple quadratic form of X, in particularly, 

V(Ox) - V(com1) 
= 

X2V(Oobs 
- 

Ocom) 
- 

2XCov(Oom, 01,com 
- 

Oobs), 

the following equivalence result is trivial to verify. 



616 X.-L. MENG & M. ROMERO 

THEOREM 1. Let Ocom = 0(W.) and ob, = 
0(Wo). 

Then 

(1) 0(.) is self-efficient if and only if Cov(Ocom1, Ocom - Oobs) = 0; 
(2) 

0(') 
is self-inefficient among the "positive" mixture class 8+ = {Oobs + (1 - )k)com, 

o > 01 
if and only if Cov(Ocom, Ocom - ohbs) > 0, 

(3) 0(.) is self-inefficient among the "negative" mixture class @- = 
{•Oobs 

+ (1 - )Oco, 01 
if and only if Cov(Ocom, 9com - obs) < 0. 

Therefore, in order to check self-efficiency, we only need to compute 

A = Cov(Ocom, Icomn 
- gobs) = 

V(Ocom)) 
- Cov(Ocom, Iobs). (12) 

The complete-data variance V(Oco,,) is typically easy to compute (e.g., as in (11)). The calculation of 
Cov(Ocom, obhs) can be a bit involved (see Appendix), but nevertheless it can be performed without 

involving MI. It turns out that for the current problem, A can be simplified to 

(1 ?+ 
,)(02 

- U2)[1 - q)(Co) A = 
-(13) 4n[(1 - 

,3)'(Co) 
+ (1 + /)] ( 

where Co = (C - 0)/u,. Interestingly, this calculation reveals that there are two special cases for 
which ohbs of (10) becomes self-efficient. The obvious one is when a•2 = 

oy, 
in which case the 

equal-weighted Ocom = (X + Y)/2 is the complete-data MLE and therefore it is more efficient than 

any other estimator. The less obvious case is when / = -1. An inspection of (10) reveals that when 

3 = -1, 0obs is the same as 

n E•=1 Ri(Xi + Yi)/2 
0obs n (14) 

bs =1 Ri 

In other words, 9obs is simply Ocom applied to all the fully observed pair {Xi, Yi }, with all the other 
observed Yi's discarded. As we mentioned in Section 3, the sample average of i.i.d. terms is self- 
efficient with respect to an MDM that randomly selects a sub-sample. However, our MDM here is not 
a random selection of sub-sample. Indeed 0Obs is inconsistent unless / = -1 because it converges to 

E[R(X + Y)] (1 + )May Op(Co) 

2E(R) 2 D(Co) 

where 
po 

and cD are respectively the density and cdf of N(0, 1). So the fact 0obs = bs alone does not 

explain why obhs is self-efficient (being consistent is only a necessary condition for self-efficiency). 
The real reason is that when / = -1, Cov(X + Y, Y) = (1 +/ )R = 0, and hence X + Y and 

Y are independent (since they are jointly normal). Consequently, as far as the procedure Ohbs goes, 
when / = -1, the MDM given by R = 1ry<c) is the same as an independent random sub-sampling 
of {Xi + Yi, i 1 ... , and therefore 

Ohs 
is self-efficient. This is a good example illustrating 

how self-efficiency captures the MDM through the choice of obsh. 
For Nielsen's simulation study, / = 0.5 and o,2 - o = -0.5 and thus A < 0, indicating a 

negative bias in the RMI variance estimator. The A quantity not only is useful for detecting the sign 
of the bias in the RMI variance estimator, it is also suggestive to the magnitude of the bias. This is 
because, as Kott (1992) observed, mathematically, the bias in the RMI variance estimator is due to 
the presence of the "cross term" in the general expression 

V(09) = 
V(0com) + V(0-0 - Ocom) + 2Cov(Gcom, 00 - 

Ocom), (15) 

where the first two terms on the right-hand side are consistently (when m = o) estimated respectively 
by the within-imputation variance and between-imputation variance (under the assumption of proper 
or second-moment proper imputation model for the user's complete-data estimator). Consequently, 
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the bias in the RMI variance combining rule (with m = oo) is given by 

BT = 
2Cov(O~com, Ocom - Oo). (16) 

If we substitute 
Oohs 

for O~, we see that B T, is just 2A, which can be computed or estimated by 
the user without MI. As long as we construct 9obs with some care (as in Section 5), the resulting 2A 
serves as a reasonable approximation to B T, or its finite version B T,,. 

To illustrate, for Nielsen's Example 3, we can easily calculate from (13) that 2A = -0.000198. 
This suggests that the relative bias in the RMI variance estimator, RT, = B T /V(0,), is about 

2A -0.000198 
RO- = =-5.8%, (17) 

V(Oobs) 0.003394 

where V(Oobs) = 0.003394 is from Appendix. The actual bias in RMI variance estimator with m = 5, 
from Nielsen's Figure 1 as well as from our own independent simulation, is about -0.00026 with a 
relative bias about -7.2%. Clearly, when 1obs is not equivalent to 

O•, 
R O defined in (17) cannot be 

RTm whether m = cx or not. Nevertheless, for practical purposes, it can be quite useful to have such 
a "ball-park" quantitative assessment at the outset of the actual RMI analysis, if the potential bias in 
the RMI variance estimator is of real concerns. 

7 Concluding Remarks 

The key message from Nielsen's paper, in our view, is the further emphasis that in order for RMI 
to provide valid inference, the user's complete-data procedure cannot be completely arbitrary. We 
certainly fully agree with this point, as previously investigated in various forms (e.g., Rubin's (1987) 
randomization validity requirement and Meng's (1994) self-efficiency requirement). However, as 
we show by both theory and examples, the needed restrictions appear to be more in line with 
self-efficiency than with full efficiency. Whereas full efficiency implies self-efficiency, the latter in 
general is a weaker requirement, and it is equivalent to the former only when we require it hold for 
an arbitrary missing-data mechanism. Although by itself self-efficiency is neither a sufficient nor 
a necessary condition for the validity of the RMI inference, we believe it is an important building 
block, providing a theoretical explanation why empirical investigations have shown satisfactory 
performance of RMI in many cases, where the complete-data estimators are sensible but by no 
means fully efficient (e.g., the list provided in Rubin, 1996). Of course, much more research is 
needed regarding the relationship between self-efficiency, full efficiency, as well as robustness. We 
therefore conclude by thanking Nielsen for providing several stimulating theoretical examples where 
such issues can be further examined. 
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Appendix 

Since 9obs of (10) is a ratio estimator, we invoke the following well-known large sample approxi- 
mation, in obvious notation, for computing V(Oobhs) and Cov(O,,o,,, Oobhs): 

CO U1 U2 1 EC W1,U2 E W2 
WlU 

- CW E Wi, U2- W2 W W2J E(W1)E(W2) EW1 EW2 
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A bit of algebra then yields 

V(XR) + (1 + 
3)2%2 + 32V(RY) 

nV(Oobs) = 
[1 + + + 

-((Co)(1 
- ?)]2 

(1 + /)Cov(XR, Y) - /Cov(XR, YR) - /(1? + /)Cov(Y, RY) 
+2 [1 + ? + / Q(Co)(1 - )]2 

and 

Cov(XR, X) + (1 + )qUx,y + (1 - /)Cov(RY, X) 
nCov( ohs, com) = 2[1 + 3 + QD(Co)(1 - ?)] 

(1 + 3)ua 
- /Cov(RY, Y) 

+ 
2[1 + [ + ?(Co)(1 - 3)] 

To simplify the algebra, we can assume E(X) = E(Y) = 0 as long as we rewrite R = liy<co}. It 
is then easy to verify the following identities 

E (RY) = -uy 
o(Co), 

E(RY2) = U2[(I(Co) - CO((CO)] 

E(RX2) = t2D(Co) + 2E(RY2), E(RXY) = 6E(RY2), 

where t2 = U,2 _- Ux,)y. 

Combining all the expressions above yields 

r2(D (CO) + (1 + 
)2y2 nV(Oobs) = [1 + 3 + 

? (Co)(1 - /)]2 

and 

C ( cm 2(I)(CO) + (1 ? 
3)(c 

y ? ) nCov(Oobs, Ocom) 
2= 2[1 + [ + Q?(Co)(1 - /)] 

For Nielsen's simulation configurations, we have 

nV(Oobs) = 0.678801 and nCov(Oobs, Ocom) = 0.644784. 

Together with nCov(Ocom) = 0.625 as in (11), we plot Figure 1 via 

V(Ox) = 
2V(Oobs) 

? (1 - )2V(0com1) 
+ 2(1 - 

)Cov(Oobs, Ocom) 

Resume 

A la suite d'une examination des exemples fournis par Nielsen (2003), cet article mene une investigation plus approfondie 
sur la connection entre auto-efficacit6 (self-efficiency, Meng, 1994) et la valabilit6 de la loi de calcul de variances 6tabli par 
Rubin dans le contexte de l'imputation multiple (RIM). La rXgle RIM de calcul de la variance s'appuye sur une hypothse 
intuitive qui &tablit que l'efficacit6 de l'estimateur d~croit avec le pourcentage des donnies manquantes. Il y a, quand 
mime, des procedures d'6stimation qui ne respectent pas l'hypoth~se d'en haut. Plus pr6cisement elles produisent des 
estimateurs plus efficaces avec moins des donn~es. L'auto-efficacit6 est une notion theorique qui peut nous aider a eviter ces 
situations paradoxales et incorrectes. Quand un ultilisateur, ignorant de l'auto-inefficacit6 de son choix, adopte une procedure 
d'estimation qui n'est pas auto-efficace, la validit6 th6orique de ses resultats est une problkme complexe. Nous proposons 
aussi une m~thode de diagnostiquer la potentielle auto-inefficacit6 et le biais de l'estimateur de variance RMI qui est fond&e 
sur un estimateur alternatif plus convenable que celui produit par RMI. 
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