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ABSTRACT

We present a unified framework for coupling the EM algorithm with
the Bayesian hierarchical modeling of neighboring wavelet coeffi-
cients of image signals. Within this framework, problems with miss-
ing pixels or pixel components, and hence unobservable wavelet co-
efficients, are handled simultaneously with denoising. The hyper-
parameters of the model are estimated via the marginal likelihood
by the EM algorithm, and a part of the output of its E-step auto-
matically provide optimal estimates, given the specified Bayesian
model, of the noise-free image. This unified empirical-Bayes based
framework, therefore, offers a statistically principled and extremely
flexible approach to a wide range of pixel estimation problems in-
cluding image denoising, image interpolation, demosaicing, or any
combinations of them.

Index Terms— wavelets, missing data, denoising, interpolation

1. INTRODUCTION

The statistical modeling of image signals in the wavelet domain is
primarily based on the observations that a wavelet coefficient and
its adjacent/parent coefficients of image signals are correlated. Here
we use Bayesian hierarchical modeling to capture such correlations.
While similar approaches have been suggested [1, 2, 3], wavelet-
based imaging algorithms commonly use heuristically determined
parameters, which are often restrictive or inaccurate. To overcome
these short comings, we assume a general model form and couple
the EM algorithm framework with the Bayesian models to estimate
the hyper-parameters via the marginal likelihood, that is, we adopt
the empirical Bayes approach. One key benefit of this approach is
that a part of the output provides automatically provides the optimal
Bayesian estimate (given the specified model) of the noise-free im-
age, as specified. Under the assumption of additive noise, a similar
EM algorithm was designed in [4, 5], but the parameter estimation
is limited to that of noise correlation matrix.

Another key benefit of this approach is that it can easily be ex-
tended to simultaneously deal with problems with missing or incom-
plete pixel values, either because of mechanical designs (e.g., demo-
saicing) or because distortion (e.g., picture impainting) or both. In
the context of wavelet-based image processing, missing or incom-
plete pixel is a difficult problem because wavelet transform takes a
linear combination of image signal, and thus many, or even all of the
noisy wavelet coefficients are unobserved. Using the EM algorithm,
however, the considerations for the missing pixel imputation and the
model parameter estimation can be combined into a unified theoret-
ical framework. The E-step imputation can be viewed as a solution
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to a model-based image denoising problem with incomplete data, or
a model-based image interpolation given noisy data. This general-
ization has wide ranges of useful applications that include image de-
noising, image interpolation, demosaicing, or combinations of them.

Given the space limitation and the considerable generality of our
approach, we assume the familiarity with the EM algorithm [6] and
focus on the basic theory under additive Gaussian noise. However,
neither the additivity nor the normality is essential to our general
approach—they just simplify both the presentation and implementa-
tion. We present the Bayesian hierarchical model in Section 2, and
its EM algorithm in Section 3. We illustrate the method with exper-
imental results in Section 4, and conclude in Section 5.

2. BAYESIAN HIERARCHICAL MODELING

Suppose there are /N pixels in an image Fl = [f1,.-., f~], where
/s is the true pixel value at location z € {1,...,N}. In an im-
age denoising problem, the observed image, y is corrupted by noise.
Assuming an independent additive Gaussian noise, let y = f + e,
where e ~ N(0,3.). The objective here is to estimate f given y.
Suppose only some of the pixels in the image y are observed. Define
Yobs — [yObSh we ayobsNo] and y;is = [ym151a s ,ymist] as ob-
served and missing pixel values, respectively, where N, + Ny, = N
and, without loss of generality, y = = [ygbs, yr;s]. We represent f
and y by wavelet transform, d = W f and w = Wy, respectively.
Here, W is the two-dimensional wavelet transform matrix operator
with M subbands. Define wg.,, as the wavelet coefficient at the k-th
pixel location in the 72-th subband (m = O represents the scaling co-
efficients). Define vector Wy, = {wyrms } € R, where wyr ., are
coefficients in w that are in the neighborhood of wi,, (to be made
precise in the sequel), and let dg., be defined similarly. Let Wy,
correspond to the appropriate rows of W such that wx,, = Wimy.
Here we assume orthogonal wavelet transform (i.e. WW' =1,
but the theoretical framework extends to non-orthogonal and over-
complete transforms in a straightforward manner (see Section 4).
The Bayesian hierarchical model of the image wavelet coeffi-
cients considered in this paper is based on ideas exploited in [1].
Assuming signal-independent additive Gaussian noise, wavelet co-
efficients are modeled hierarchically. Motivated by the observation
that wavelet coefficients of natural images tend toward heavy-tailed
distributions (see [1]), we model dy,, by a t-distribution with v,
degrees of freedom. That is, Wy, and dx,, take the following form:

wkm|dkm ~ indep N(dkm,zwm) (D
dkM|ka ~ indep N(ﬁ’ma EdM/qu) (2)
Qo ~ indep X5, /. 3)
ICIP 2006



The use of the unobserved mean chi-squared variables g = {qkm}
to represent the ¢,,,, as part of the augmented data is a well-known
strategy for easy EM implementation [7]. Here out goal is to esti-
mate the (hyper-)parameter 8 = {Xwm, Xdm,Vm, Em } by maxi-
mizing the marginal log-likelihood £(8|yobs ) = log p(yobs|@). The
direct maximization is very difficult because of the missing pixel val-
ues. The EM algorithm circumvents this problem by iteratively max-
imizing the much easier augmented-data log-likelihood £(0|x) =
log p(x|0), where & = {y, f, q}, or equivalently {w, d, ¢} are the
augmented data. Because only yons is observed, the E-step com-
putes the imputation of augmented-data sufficient statistics, needed
4+ — g [d‘yobs, o
be used to compute the “best” estimate, at the (¢ + 1)st iteration, of
[, the noise-free image, as f [+ — W T Jlet+1]

Before we proceed, we point out a potenual theoretical incom-
patibility inherited in (1)-(2) when the neighborhoods are allowed
to have overlaps. As we have no space to discuss this issue in
any details, in particularly its connection with the over-complete ex-
pansions, we simply point out that assuming independence between
overlapping neighborhoods provides a computationally efficient ap-
proximation for practical implementation.

by the M-step, which includes ] . This can

3. EM ALGORITHM DERIVATION

Given H[t], the (t+1)st iteration of the EM algorithm first calls for

Q(0;0) = £ [1og p(]0)|yon-, 0"
=>E [logp(’wkm|dkm; Xwm) + log p(dim|qim; {ms Xam)
i yobsao[t]] B

A celebrated result of EM algorithm [6] states that the choice of 8
that maximizes Q(@; 01)), that is, the next 1terate 0t increases

our objective function: £(0™F|yspe) > (0% |yons). The ad-
) instead of directly the targeted

+log p(qrm|vm)

vantage of maximizing Q) (0, or

£(8]yobs ) is that it is often the case that log p(x|@) depends on
the missing part of & linearly via a set of augmented-data sufficient
statistics S (). Consequently, maximizing Q(8; 1) is the same as
maximizing £(@|x), but with the (partially) missing S (x) imputed
via the E-step: StHU(x) = F [S(w) Yobs; 0[t]] 3

For our problem, this is most clearly seen when v, is known,
and thus the log p(qum|vm ) part is unneeded for Q(0; 1)), We
therefore present our basic algorithm first under this assumption. It
is then easy to verify that S(x) = {S1(w,d), S2(q,d)}, where

Sl(w’d) - {wkmw;rma dkmd;crma wkmd;crm s
Sg(q,d) - {ka, Qem B, qkmdkmd;crm}

Indeed, since @ is reduced to 61 = {Xwm, Xam,Em}, the maxi-
mizer of Q(64; 0 ) is the weighted least-square estimate [6]:

1] 2o Elgim dim|Yobs, 0]

m - ’ 4
2k Elarm|yons, 0] @
21[22;1] = n;ll Z E[’wkm’w;m — wkmd;m . dkm’w;m
* + dkmd;crmkyobs, [t]], (5)
Egil =n,, Z Elgrm( dkmdkm o £lIT _ gletugr
k +£ f+1£f+1 )|yobs, H]’ ©)

where 7., 1S the number of wavelet coefficients in the m-th subband.

3.1. A Conditional E-step

To carry our the above calculation, we need to compute S 1] (x) =

E [S (w) yobsa
for q, and therefore is complicated. However, when conditioned
on q, only multivariate normal distributions are involved. So our
general strategy is to first take the expectation conditioned on g (and
Yobs With 8 = G[t]), and then integrate out ¢ numerically when we
complete the M-step.

Specifically, let ¢ = E(y|q;0) = W' E[w|q] and Q), =
Cov(y|q,8) = W T Cov(w|q, )W be the conditional mean and
variance of y given g under our model (1)-(3). Note that ¢ is free
of q under our model, and given q, Q|4 and ¢ can be defined com-
pletely by the parameters in 8. Define ¢ons the sub-vector of ¢
that corresponds to yobs, and partition Cov(y|q, ) into four sub-
matrices according to the partition ¥ = (Yobs, Ymis) a8 Qg =
[Qo‘q, omla; molqs m|q]. Conditioned on g, the noisy image
y is imputed via the standard regression estimate:

] . This computation involves the ¢-distribution

g\q = E[y|q, Yobs, 0] = @ + [QO\q§ QWO\Q]QL?\};(yobs - ‘Pobs)'

And Cov(Ymis|q, Yobs, #) is a Schur complement of £,/ in £24:
Cov(ghmis| s Bobes 0) = Rinfg — Rera)g Ry Rom)q-

Imputation of other data vectors follow easily:

Wimlg = E[Wkm|q, Yobs, 0] = Wim Ey|q, yobs, 0] = Wim g
Cikm\q = Eldim|q, Yobs, 0]

= E|Edim|Wim, @, Yobs, 8]|q, Yobs, 0]

= Elém + (Sum + aemZan) " Sum (@em — &n)|d, Yobs, 0]

= &+ (Bum + GomZam) " Bam (Wemlg — &m).
Using the formulae above, all the covariance matrices (conditioned

on q) that are needed to carry out ¥/ [S (x) ‘q Yobs 0] can be calcu-

lated analytically. See (7), (8), and (9), where [ is an identity matrix,
and Cupmlg = (Zam + @emE ) "

3.2. The M-step
By (4)-(6), the M-step updates 81 = {Zwm, Xdam, Em } by

[t4+1] _ Zk fooo kadkm\qp(qwoba ol )dq
" S o aemp(@yons, 08)dgq

t+1 — p 1
§ / wkm\q - Awdkm\q - Awdkm\q

+ Adpmiq)0(@|yons, 01)dq,
t+1 o 712/

Qiem Adkm\q - dkm\qE [T 5 [l dkm\q
0
+ &R )p(qlyons, 61 dg.

Likewise, the estimate for the noise-free wavelet coefficients are
found by integration:

Cikm = E[dkm|yobs,9] = / Cikm\qp(qwobs,a)dq
0

The integrals above can be simplified via the Bayes rule.
cally, for any integrable g(q), we have

fO ¢obs
fO ¢obs

Specifi-

Eg(q)|Yobs, 0] =
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=Wim [COV(y|q, Yobs, 8) + ﬁ\qﬁ\z] Wil = WiimCov(y|d, Yobs, 0) Wi, + wkm\qwl—crm\q
Askmiq =Edimdim|a, yobs, 0] = E {E[dkmdkTmW, q, Yobs, 0]‘qayobs, 0}
—E { Cov(dim|w, @, yone, 0) + Eldim|uw, @, yobe, 01 Elddnlw, 4, yore, 6] 4, yobe, 0}
=Capmiqg + E { [Em + Cdkm\qz;}n(wkm - Em)] [(wkm - Em)—rz;vlncdkm\q + El] ‘q, Yobs 0}
=Catmiq + (I = CarmigSuwm) Em€m) T — BumCarmig) + (I = CaimiqSwm) EmBrmiq)(BwmCarmiq)
+ (CatmigZwm) W@rmigbm) I = SumCarmiq) +
Avarmlg =E[wWimdim @, Yobs, 0] = E {wkmE[dkTth, q, Yobs, 0]‘qayobs, 0}

=K {wkm [(wkm - Em)TE;}nCdkm\q + E;;:I ‘qayobsao} = Awkm\qz;}ncdkm\q + wkm\qEv‘;(I - Ezzvlncdkm\q)

Awkm\q :E[wkmwgm|qa yobsao] - kaE[ny|qa yobs’o]wk—rm

D

®)

(Cdkm\qz;}n)Awkm\q (E;vlncdkm\q)
&)

where, denoting | - | the determinant operator,

To—1
_ i (yobs - Soobs) Qo (yobs -
¢obs(q) - |QO\q| 2 exp {_ D) i

Soobs) }

p vm/2)—1 Vmkm
Plamln) = g™ exp { ~ZET L (10)

3.3. When v,,, is unknown

Both the E-step and M-step becomes a bit more involved when vy,
also needs to be estimated. For such cases, we can employ the
ECME (expectation-conditional maximization either) algorithm [6,
8, 7] —an extension of EM algorithm—to speed up the computation.
Let @ = {61,602}, where 01 = {3wm, Zam, Em} and 02 = {vn, }.
The ECME uses two conditional M-steps instead of one M-step:

017! = arg max Q({61,6;"};6")
1

0£t+1] = arg néaxlogp(yobs|{0£t+1],02}).
2

Here the first CM-step is identical to the M-step described above.

The second CM-step can be carried out via Newton-Raphson:

A e
g//(02|0£t+1]> ’

[t+1]

Mold

[t+1] _

Vmnew

1D
where £(62]01) = log p(yobs|01, 02) and

p(yobs|01,02)<x/ ¢obs(q) | [ plarmlvim)dgim
0 k,m

can be evaluated numerically as before. Note here p(qxm, |vm) must
be the proper density of X,Q,m /Um, not the unnormalized density
as given in (10), because the normalizing constant is a function of
the unknown parameter v, and thus it is needed in calculating the
derivatives required by (11). Note also that v, is continuous as
X2 distribution is a special case of the Gamma distribution with the
shape parameter o0 = v//2.

4. IMPLEMENTATION, APPLICATIONS, AND RESULTS

Once 8" is found by our algorithm, our estimate of the true im-
age f is the posterior mean, FH = WTE[d|yobs, 0“]], where W
now stands for wavelet transform applied to each color component
independently. This is clearly useful to a number of applications.

The algorithm is implemented using the overcomplete Daubechies

4 separable wavelets. The overcomplete expansion is accomplished
by convolution (i.e. ignoring the downsample operator), and the re-
dundant representation of wavelet coefficients are projected back to
the span of the image signal by averaging together the shifted ver-
sions of inverse wavelet transforms, amounting to the model averag-
ing in the pixel domain. The elements in wy,,, are the wavelet co-
efficients taken from a 3 x 3 spatial window centered around wg ..
Here the members of wg., are taken only from the m-th subband,
although the inclusion of parent/child wavelets is a straightforward
extension. For color image f, wy, includes the wavelet coefficients
from all color components belonging to their respective 3 x 3 spatial
window centered around wg.,. Note that there are redundant esti-
mates of the wavelet coefficients in dy., because of the overlapping
neighborhoods of 3 x 3 moving window. These redundant estimates
are averaged together before the inverse wavelet transform.

For our experiment, the degree of freedom v, is set to 0.1 for
wavelet coefficients and 1 for scaling coefficients (so the second
CM-step is unneeded). All other parameters are estimated by our
algorithm. The initial values 34, are trained using a reference im-
age, or a typical noise-free (color) image that with no missing data.
The initial noise correlation matrices 3., are set to an identity ma-
trix multiplied by the initial guess of the noise variance. The prior
mean vectors £, are set to 0 for the wavelet coefficients and the
average color values in y.ps for the scaling coefficients.

Because the literal execution of this algorithm is computation-
ally intensive, we made a few approximations in our implementation
(due to page constraints, the impact of such approximations will be
reported in future work). First, we assume g, is spatially slowly
varying and therefore we effectively treat ¢u/,;, = grm When k and
k’s belongs to the same 3 x 3 neighborhood (or we can view this
as a model modification to (3) by assuming a common g within each
neighborhood). This approximation greatly reduces the dimension
of the numerical integration over ¢ to one. Second, to greatly re-
duce the size of matrices in computing the regression imputation,
we approximate E[yi|d, Yov, 8] by E[yilq, yovs 0], where yons,
is a subset of yons restricted to a n; X n; neighborhood around the
pixel location i; we found a value n; € (10, 20) typically adequate.

In the case that all noisy pixels are observed, the proposed algo-
rithm presents a method for estimating the noise-free pixel values, f,
given noisy pixels y. Conversely, when only a subset of the noise-
free pixels are observed, the proposed algorithm offers a method to
interpolate the missing pixels. Furthermore, by interpreting spec-
tral channels as separate different color components of the image,
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(b)

(d)
Fig. 1. Zoomed portion of the output images (o, = 25). Method(s)
in (a) [13], (b) [13]+[1], (c) [9], (d) proposed (3rd iteration).

the interpolation method generalizes to hyper-spectral images seam-
lessly. In the real-world image interpolation problems, however, the
observed data most certainly contain noise, sometimes to a severe
degree. This is especially apparent in digital cameras, as the noise
in the image sensor in a poor lighting condition is often amplified in
the interpolation step known as demosaic(k)ing. While the recently
published methods yield impressive results in the absence of noise,
to the best of the authors’ knowledge, none of the methods address
the noise problems explicitly, with the exception of [9, 10]. Note also
that the proposed algorithm readily generalizes to irregular sampling
patterns (e.g. [11]) or with a choice of color filters other than red,
green, and blue.

Given the page constraints, we only present experimental results
on demosaicing. We assume that the image sensor, arranged in RGB
Bayer pattern [12], is corrupted by white additive Gaussian noise.
As the test images, we use widely available 24-bit color images of-
ten referred to as the “clown” and “lena,” and the MSE of the output
images are shown in table 1 (treating all color components equally).
In the presence of noise, the proposed algorithm clearly outperforms
demosaicing [13], demosaicing followed by denoising [13, 1], and
method in [9] that perform demosaicing and denoising simultane-
ously. Zoomed portion of the output images (o, = 25), shown
in figure 1, demonstrate that the proposed algorithm reduces noise
while preserving the sharpness of the image details, and introduces
less noticeable artifacts when compared to the alternatives. Note that
the MSE increases after several iterations partially due to overfitting
by the MLE and approximate nature of our current implementation.

5. CONCLUSION

We presented a new framework for coupling the EM algorithm with
the Bayesian hierarchical modeling of wavelet coefficients of im-
age signals. The E-step in the algorithm yields an estimate of the
noise-free pixel values, even if only a subset of noisy pixels are ob-
served. The M-step finds the maximal likelihood estimates (MLE) of
the model hyper-parameters. The proposed method unifies the sta-

Table 1. The MSE of the demosaiced “clown” and “lena” images
corrupted by white noise with standard deviation o, .

clown lena
method On=0 ©0,=25| on=0 o,=25

method in [13] 50.56 492.08 26.47 578.82
methods in [13]+[1] | 50.56 203.92 26.47 92.13
method in [9] 105.95 194.00 36.17 95.00
proposed, t =1 45.77 163.42 21.94 83.64
proposed, t = 2 47.30 151.51 19.81 76.21
proposed, t = 3 52.54 156.48 20.26 82.43
proposed, t = 4 61.48 160.97 21.30 86.17
proposed, t = 5 70.35 165.04 22.28 89.74

tistical treatments of the missing pixels with that of the noisy obser-
vation data, thereby yielding results potentially substantially better
than when interpolation and denoising are performed independently.
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