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Abstract. Seeking an appropriate bias-variance trade-off is a common challenge for any

sensible statistician, especially those at the forefront of statistical applications. Recently,

addressing a class of bias-variance trade-off problems for studying gene-environment inter-

actions, Mukherjee and Chatterjee (2008) adopted an approximate empirical partially Bayes

approach to derive an estimator that amounts to using the following weighted estimator as

a compromise:

β̂c =
(β̂ − β̂0)2

V̂(β̂) + (β̂ − β̂0)2
β̂ +

V̂(β̂)

V̂(β̂) + (β̂ − β̂0)2
β̂0.

Here β̂ and V̂(β̂) are respectively our point estimator and its variance estimate of a parameter

β under a model, and β̂0 is a more efficient estimator of β under a sub-model via fixing a

nuisance parameter. The intuition here appears to be that since B̂ = β̂0 − β̂ is an estimate

of the bias in β̂0 when the sub-model fails, β̂c should automatically give more weight to

the robust β̂ or the efficient β̂0 depending whether or not B̂2 is larger than V̂(β̂). The

implication here seems to be that the original β̂ is inadmissible in terms of MSE because it

is dominated by β̂c, which appears to possess this magic self-adjusting mechanism for bias-

variance trade-off without needing any assumption beyond those that guarantee the validity

of the original β̂. But is this intuition itself admissible? This question was posed as a Ph.D.

qualifying exam problem at Harvard, in the context of a bivariate normal model. This article

documents this examination, and concludes with a suggestion of revisiting the classic theory

of admissibility, to which Professor Jim Berger has made fundamental contributions. The

investigation also reveals a partial shrinkage phenomenon of the partially Bayes method, as

well as a misguided insight in the literature of gene-environment interaction studies. Parts of

this article adopt an interlacing style interweaving research investigations with pedagogical

probes, honoring Berger’s prolific contributions in both endeavors.

Date: March 14, 2010.
Key words and phrases. Admissibility, Bias, Empirical Bayes, Mean-Squared Error, Partial Shrinkage,

Self-efficiency, Stein Estimator.
Prepared for Frontiers of Statistical Decision Making and Bayesian Analysis, a volume in honor of J.O.

Berger’s 60th birthday. The author thanks Alan Agresti, Joe Blitzstein and Xianchao Xie for constructive
comments, Bhramar Mukherjee and Nilanjan Chatterjee for their truly inspirational article, and NSF for
partial financial support.

1



2 XIAO-LI MENG

1. Always a Good Question ...

To many students, job candidates, and even some seasoned seminar speakers, a few fac-

ulty members are known to be “intimidating”. We pose tough questions, demand intuitive

explanations, challenge superficial answers, and we do so almost indiscriminately. A few stu-

dents have expressed their surprise to me: “How could you guys be able to pick on almost

any topic, and ask those penetrating questions even for things you apparently have never

worked on?” I cannot speak for my fellow challengers, but the students are certainly correct

that I have never worked on many of these topics, some of which I heard for the first time

before I posed a question. If there is any secret—or bragging—here, it is the one that many

senior statisticians work hard to pass on to our future generations. That is, there are only a

very few fundamental principles in statistics, and the bias-variance trade-off is one of them.

It is so deeply rooted in almost any statistical analysis, whether the investigator/speaker

realizes it or not. Equipped with a few such powerful weapons, one can fire essentially in

any situation, and almost surely not miss the target by too much.

The story I am about to tell is squarely a case of understanding bias-variance trade-off.

In the context of a genetic study, a speaker mentioned a recent proposal by Mukherjee and

Chatterjee (2008; hereafter M&C) for automatically achieving an appropriate bias-variance

trade-off. The moment I saw the proposed formula, as given in the abstract, I knew silence

would not be golden in this case. The method, if it has the properties it was designed for,

would have profound general implications given its simplicity and the practical demand for

such “automated” methods. For the very same reason, however, it could do serious damage

if it is applied indiscriminately but without its advertised properties in real terms.

As it happened, shortly after the seminar I needed to submit a problem for our Ph.D.

qualifying examination. What could be more appropriate to test students’ understanding of

bias-variance trade-off, and at the same time their ability to carry out a rigorous investiga-

tion of a seemingly intuitive idea? The resulting qualifying exam problem is reproduced in

Section 4 below, and the annotated solution is given in Section 5. Before presenting these

materials in verbatim, which document an effort of integrating research investigation with

pedagogical exploration, obviously the stage needs to be set. This is accomplished by Sec-

tion 2, which discusses a gene-environment interaction study that motivates M&C; and by

Section 3, which illustrates M&C’s partially empirical Bayes approach via a bivariate normal

example. Sections 2 and Section 3 also reveal, respectively, a misguided approximation in

the literature of gene-environment interactions, and a partial shrinkage phenomenon of par-

tially Bayes methods, and therefore they may be of independent interest. Indeed, Section 6

concludes with a suggestion of revisiting the classic theory of admissibility but with partially
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Bayes risk, which is also hoped to be a piece of admissible cake to the birthday-cake tasting

(testing?) event for Jim Berger, an amazingly prolific researcher and Ph.D. adviser.

2. Gene-Environment Interaction and A Misguided Insight

2.1. Estimating Multiplicative Interaction Parameter. The motivation for M&C’s

proposal appears to be the need to address a bias-variance trade-off in studying gene-

environment interactions. Following their setup, let E and G be respectively a binary

environmental factor and a binary genetic factor, and D be the binary disease indicator;

value “1” of any these binary variables indicates the presence (e.g., exposed, carrier, or with

disease). One key interest here is to assess if there is a gene-environment (G-E) interaction

in their impact on the odds of developing the disease. Let

(2.1) O(G,E) =
Pr(D = 1|G,E)

Pr(D = 0|G,E)
,

that is, the odds of disease in the sub-population defined by the pair {G,E}. Then the

so-called multiplicative interaction parameter ψ is defined as

(2.2) ψ =
O(0, 0)O(1, 1)

O(1, 0)O(0, 1)
,

which can be remembered as “odds ratio of odds”, by analogy with the well-known ratio

of cross-product expression of an odds ratio (OR), namely, the OR for a bivariate binary

distribution P (i, j) = Pr(X = i, Y = j), expressed as

(2.3) OR(X,Y ) =
P (0, 0)P (1, 1)

P (0, 1)P (1, 0)
.

This mathematical analogy also helps us to see why ψ is a useful parameter for assessing

whether the factors G and E contribute to the odds of disease in a multiplicative fashion,

that is, whether we can write O(G,E) = g(G)e(E) for some functions g and e. This is

because the mathematical reasoning behind the theorem “OR(X,Y ) = 1 if and only if P (i, j)

factors” is identical to that for “ψ = 1 if and only if O(G,E) factors.”

Consequently, by assessing whether β = log(ψ) = 0, we can infer whether the effects of

G and E are additive on the logit scale of the disease rate Pr(D = 1|G,E). In general,

to estimate β directly (and therefore to assess it) would require a representative sample of

{D,G,E}, as hinted by its expression in (2.2). Note however, by Bayes’ Theorem,

(2.4) O(G,E) =
P (G,E|D = 1) Pr(D = 1)

P (G,E|D = 0) Pr(D = 0)
∝ P (G,E|D = 1)

P (G,E|D = 0)
.

It is then easy to verify that ψ = OR1/OR0, and hence

(2.5) β = log(ψ) = log(OR1)− log(OR0) ≡ β0 − θ,
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where ORi = OR(G,E|D=i) is the odds ratio for the conditional bivariate binary distribution

P (G,E|D = i), i = 0, 1. Consequently, if G and E are conditionally independent given

D = 0, an assumption that will be labeled Assumption (0), then θ ≡ log(OR0) = 0.

This means that under Assumption (0), estimating β would be the same as estimating

β0 ≡ log(OR1), the log odds ratio of the diseased population (a.k.a., the “cases”). This

suggests the use of methods from retrospective sampling design, which typically is more

effective, in terms of sampling cost and/or statistical efficiency, than prospective designs,

especially when the disease prevalence is low; see Section 1 of M&C and the references

therein.

2.2. A Potentially Misleading Insight. There is, of course, no free lunch. From a statis-

tical inference perspective, the increased precision comes at the expense of possible serious

bias when the assumption θ = 0 fails. Incidently, in M&C, following an argument in Schmidt

and Schaid (1999), this assumption is made as a consequence of another two assumptions:

Assumption (1) G and E are independent in the general population (that is, not conditioning

on the disease status) and Assumption (2) the disease is rare. Whereas these two assump-

tions do imply Assumption (0) hold approximately because when the diseased population is

very small, the odds ratio between G and E for the disease-free population can be approx-

imated by that of the general population, these two assumptions were needed by Schmidt

and Schaid (1999) apparently because they did not recognize that the second factor in their

equation (1) is simply OR−1
0 , using our notation above. Consequently, instead of invoking the

theoretically more insightful Assumption (0), they had to invoke the assumption that “the

disease risk is small at all levels of both study variables” (“both study variables” here means

the gene variable and environmental variable) in order to justify that the aforementioned

second factor is (approximately) 1 (and hence θ ≈ 0). This unnecessary assumption appar-

ently was inherited from Piegorsch et. al. (1994), who correctly pointed out the usefulness

of the case-only studies.

This is a good demonstration of the value of precise theoretical derivation, because identity

(2.5) shows clearly that β = β0 if and only if θ = 0, a condition that has little to do with the

disease being rare. That is, it would be quite unfortunate if the quote above is interpreted

as declaring that the so-called “case-only” approach for estimating ψ is useful only for rare

diseases. Indeed, the only rationale for relying on Assumption (1) (and hence Assumption

(2)) I can think of is if checking the independence of G and E in the general population

is easier than in the disease-free population. This could be a case when we do not trust

the disease diagnosis, because the former does not require knowing each individual’s disease

status. But this advantage seems rather inconsequential in gene-environment interaction
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studies—if we do not have the disease status or do not trust them, then we have much more

to worry about than assessing the independence between G and E.

Indeed, M&C’s approach did not actually use Assumption (1) or Assumption (2). Instead,

they directly use (2.5) by writing β = β(θ) = β0 − θ and then reexpress (2.5) as

(2.6) β(θ) = β(0)− θ.

This re-expression allows M&C to invoke a partially Bayes approach (Cox, 1975; McCullagh,

1990), which puts a prior on the nuisance parameter θ only. Since β(0) = log(OR1) is

a characteristic of the diseased population (i.e., D = 1), its inference does not involve

θ = log(OR0), which is a characteristic of the disease-free population (i.e, D = 0). This

separation allows M&C to first infer β(0) via maximum likelihood estimation, and once β(0)

is replaced by its MLE, to infer β = β(θ) as a Bayesian inference problem of a function of

the nuisance parameter θ. This is the essence of M&C’s method, though their derivation

contains a couple of theoretical complications that do not seem necessary (see Section 3.4).

Of course, for a pure Bayesian, such a hybrid “two-stage” method is neither necessary

nor justifiable. However, as I argued in Meng (1994) in the context of a posterior predictive

p-value (which is a posterior mean of a classic p-value as a function of a nuisance parameter

under a prior on the nuisance parameter only, and hence a squarely partially Bayes entity),

the value of such partially Bayesian methods should not be underestimated. Minimally, they

allow some Bayesian perks to be enjoyed by those who do not wish to join the full B-club.

For example, in the current setting, it allows the use of the prior knowledge/belief that the

dependence between G and E is weak in the disease-free population. To see more clearly the

pros and cons of the partially Bayes framework, the next section will examine it in detail—

and compare it with the fully Bayes approach— in the context of a normal regression model

with one predictor.

3. Understanding Partially Bayes Methods

3.1. A Partially Bayes Approach for Bivariate Normal. M&C presented their general

approach via a heuristic argument, which essentially amounts to assuming normality when-

ever needed, with variances treated as known. To avoid the distractions of the heuristics,

which cannot be made precise in general because a Taylor expansion was invoked for approx-

imating a prior distribution, let us assume directly that we have an i.i.d. sample {y1, . . . , yn}
from the following bivariate normal model:

(3.1) Y =

(
X
Z

)
∼ N

((
α
β

)
,

(
1 ρ
ρ 1

))
,

where ρ is a known constant. Our interest here is to estimate β, with α being treated as a

nuisance parameter.
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As is well-known, without any prior knowledge, the MLE of β is β̂MLE = Z̄n =
∑

i Zi/n,

and the MLE for α is α̂MLE = X̄n =
∑

iXi/n. On the other hand, if we happen to know α,

then the MLE of β is the regression estimator

(3.2) β̂(α) = Z̄n + ρ(α− X̄n).

Note that this definition of the β̂(α) function allows us to reexpress (3.2) as

(3.3) β̂(α) = β̂(0) + ρα.

Clearly, given the data, the only unknown quantity in β̂(α) is α (recall ρ is known here).

Suppose we are willing to put down the prior N(0, τ 2) for α, where τ 2 represents our prior

belief about how close α is to zero. Under this prior, the partially Bayes approach combines

it with the (partial) likelihood from X̄n|α ∼ N(α, n−1) to arrive at the usual “shrinkage”

posterior (e.g., Efron and Morris, 1973)

(3.4) α|X̄n ∼ N
(
wτX̄n, (n+ τ−2)−1

)
,

where wτ = n/(n+ τ−2). Given this posterior of α, we can infer any of its functions, such as

β̂(α) of (3.2). In particular, M&C suggested to replace the α in (3.3) by the posterior mean

in (3.4), which results in, after noting from (3.2) that β̂MLE − β̂(0) = ρX̄n, their estimator

(3.5) β̂part
τ ≡ β̂(0) + wτ (β̂

MLE − β̂(0)) = wτ β̂
MLE + (1− wτ )β̂(0).

Therefore, for a given hyperparameter τ 2, the partially Bayes estimator β̂part
τ for β is a

compromise between the MLE under the restrictive model with α = 0, β̂(0), and the MLE

of β under the full model, β̂MLE = β̂(α̂MLE), as weighted by the usual shrinkage factor wτ .

3.2. Comparing Full Bayes with Simultaneous Partially Bayes. Before we discuss

the issue of choosing τ 2, it is informative to compare the above partially Bayes solution to

a full Bayes one, which of course would require a joint prior for {α, β}. To simplify the

algebra, let us assume that a priori β and α are independent, and β ∼ N(0, ς2), with ς2

given. Under this setup, the joint posterior of {α, β} obviously follows the usual regression

calculation:

(3.6)

(
α
β

) ∣∣∣∣∣
(
X̄n

Z̄n

)
∼ N

(
(Ω−1 + Σ−1

n )−1Σ−1
n

(
X̄n

Z̄n

)
, (Ω−1 + Σ−1

n )−1

)
,

where Σn = 1
n

(
1 ρ
ρ 1

)
and Ω =

(
τ 2 0
0 ς2

)
.

To understand the difference between the full Bayes and the partially Bayes methods,

however, it is more informative to invoke the following indirect derivation. Following the

partially Bayes argument, we first treat α as a known constant. Then it is easy to see that
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the β̂(α) of (3.2) is a sufficient statistic for β and

(3.7) β̂(α)|β ∼ N
(
β, n−1

ρ

)
,

where nρ = n/(1−ρ2) (larger than n due to gained information via regressing on α). Together

with the prior β ∼ N(0, ς2), the identical calculation for (3.4) yields

(3.8) β|β̂(α) ∼ N
(
wς,ρβ̂(α),

(
ς−2 + nρ

)−1
)
,

where wς,ρ = nρ/(nρ+ς
−2). The sufficiency of β̂(α) for β for given α implies that E[β|X̄n, Z̄n, α] =

E[β|β̂(α)], and hence, by iterated expectations and (3.3),

(3.9) E[β|X̄n, Z̄n] = wς,ρE
[
β̂(α)|X̄n, Z̄n

]
= wς,ρ

(
β̂(0) + ρE[α|X̄n, Z̄n]

)
.

At first glance, (3.9) achieves nothing because it simply transfers the calculation of E[β|X̄n, Z̄n]

to the equally difficult (or easy) problem of calculating E[α|X̄n, Z̄n]. But this observation

should also remind us that we can simply switch β with α (and accordingly ς with τ and Z̄n

with X̄n) to arrive at its dual identity

(3.10) E[α|X̄n, Z̄n] = wτ,ρ
(
α̂(0) + ρE[β|X̄n, Z̄n]

)
,

where wτ,ρ = nρ/(nρ + τ−2), and α̂(β) = X̄n + ρ(β − Z̄n).

It is now a simple matter to solve (3.9)-(3.10) to arrive at

(3.11) β̂full
τ,ς ≡ E[β|X̄n, Z̄n] =

wς,ρ[β̂(0) + wτ,ρρα̂(0)]

1− ρ2wς,ρwτ,ρ
,

where the superscript “full” highlights the fact that it is identical to the fully Bayes answer

from (3.6), as can be verified directly.

To express (3.11) in a more insightful way, we can use the fact that ρα̂(0) = ρX̄n−ρ2Z̄n =

β̂MLE − β̂(0)− ρ2β̂MLE to arrive at

(3.12) β̂full
τ,ς = wςτ,ρβ̂

part
τ ,

where β̂part
τ is from (3.5),

(3.13) wςτ,ρ =
wς,ρ − ρ2wς,ρwτ,ρ

1− ρ2wς,ρwτ,ρ
=

nρ,τ
nρ,τ + ς−2

,

and

(3.14) nρ,τ =
n

1− ρ2(1− wτ )
,

with wτ = n/(n+ τ−2), as in (3.4). This means that, as far as point estimator goes, the full

Bayes estimator β̂full
ς,τ can be viewed as a further shrinkage of the partially Bayes estimator

β̂part
τ towards zero. In particular, we notice that regardless of the value of ρ, limτ→∞ nρ,τ = n

and hence limτ→∞wςτ,ρ = n/(n+ ς−2) ≡ wς . This means that when τ =∞, the fully Bayes

estimator for β would reduce to the usual shrinkage estimator wςZ̄n based on the Z̄n margin
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alone. Intuitively, when τ =∞, there is no information to borrow from the prior knowledge

of α for estimating β even if ρ 6= 0, and hence all the information is in the {Z, β} margin.

3.3. Sequential Partially Bayes Methods and Partial Shrinkage. Intuitively, the fully

Bayes method takes into account the prior information β ∼ N(0, ς2), which was not used

by β̂part
τ . The above derivation shows how one can achieve the full Bayes efficiency by

performing two partially Bayes steps simultaneously, namely, by solving (3.9)-(3.10) as a

pair, which is a special case of applying the “self-consistency” principle (Meng, Lee and Li,

2009). In contrast, if we have carried out the partially Bayes method sequentially, that is,

in two stages, then the full efficiency is not guaranteed even if priors for both β and α are

used.

To see this more clearly, suppose we follow M&C’s general argument and first treat the

nuisance parameter α as known. Then conditioning on α, but taking into account the prior

information on β via N(0, ς2), our Bayes estimator for β is as given in (3.8),

(3.15) β̂ς(α) ≡ E[β|β̂(α)] = wς,ρβ̂(α) = wς,ρ

(
β̂(0) + ρα

)
.

Now, unlike in the simultaneous method described above, if we follow the general argument

as in M&C to treat β̂ς(α) as the objective of our inference, we would replace α in the right

most side of (3.15) by its (partial) posterior mean E(α|X̄n) = wτX̄n. This substitution then

will lead to the sequential partially Bayes estimator

(3.16) β̂seqe
ςτ,ρ = wς,ρ

(
β̂(0) + wτ (ρX̄n)

)
= wς,ρβ

part
τ .

Comparing (3.16) to (3.12), we see that although both of them are further shrinkages of the

same βpart
τ of (3.5) and both shrinkage factors depend on ς, β̂seqe

ςτ,ρ shrinks less towards zero

than the full Bayes estimator β̂full
ςτ,ρ. This is because

(3.17) wςτ,ρ ≡
nρ,τ

nρ,τ + ς−2
<

nρ
nρ + ς−2

≡ wς,ρ,

provided that

(3.18) nρ,τ ≡
n

1− ρ2(1− wτ )
<

n

1− ρ2
≡ nρ,

which is the case as long as ρ 6= 0 because wτ = n/(n+ τ−2) > 0.

Intuitively, β̂seqe
ςτ,ρ only achieves partial shrinkage compared to β̂full

ςτ,ρ because it fails to take

into account the prior information β ∼ N(0, ς2) when estimating α. Even when β and α are

a priori independent, as long as X and Z are correlated conditional on the model parameter,

X and Z are correlated with respect to the predictive distribution, that is, with the model

parameter integrated out according to the prior. In our current setting, the correlation

between (X,Z) with respect to their predictive distribution is ρτ,ς = ρ/
√

(1 + τ 2)(1 + ς2).

As long as ρτ,ς 6= 0, the information on the marginal distribution of Z via α will have an
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impact on the marginal distribution of X (and vice versa). However, as ς → ∞, ρτ,ς → 0

and hence this impact disappears as the prior information for β becomes diffuse. This can

also be seen from (3.17), which becomes equality and hence β̂seqe
ςτ,ρ = β̂fall

ςτ,ρ whenever ς = ∞,

regardless of the value of ρ or τ .

3.4. Completing M&C’s Argument. For a given value of τ 2, M&C’s general approach

is essentially an approximate version of what is presented in Section 3.1, resulting in the

same partially Bayes estimator general expression as in (3.5). I say essentially because M&C

apparently introduced a technical complication that is not necessary. The derivation in

Section 3.1 relies on treating β̂(α) of (3.2) as our estimand. Note β̂(α) actually depend on

data, but from the Bayesian perspective, treating it as a known function of the unknown

α only presents no conceptual or technical complication. However, M&C introduced β(θ)

(using their generic notation θ, which is the same as α for the bivariate normal example),

the limit of β̂(θ), as the data-free estimand, and then derive a partially Bayes estimator for

β(θ) via the delta method β(θ)− β(0) ≈ β′(0)θ and the (partially Bayes) posterior on θ.

In the example of the gene-environment interaction, this definition of β(θ) worked well,

because (2.6) holds for both the population version and sample version. However, for the

bivariate normal example, although the sample version β̂(α) of (3.2) is a linear function of

α, the limit version, according to M&C’s definition, would be a constant function because

β(α) = β for all α and hence β′(0) = 0. Consequently, in general, the aforementioned delta

method can be meaningless. Fortunately, this complication is really unnecessary, as we can

work directly with β̂(α) as the estimand for the partially Bayes method.

Another unnecessary complication is in M&C’s treatment of estimating the prior variance

as a hyperparameter. Given the prior θ ∼ N(0, τ 2), M&C first approximated the prior for

φ ≡ β(θ) by N(φ0, τ
2
φ), where φ0 = β(0) and τ 2

φ = [β′(0)]2τ 2. (Perhaps this is where M&C

felt the need to introduce the population version β(θ) because it might seem odd to put

a prior on a data-dependent quantity β̂(θ); but there is actually nothing incoherent in the

partially Bayes framework for the latter operation). To estimate τφ, M&C invoked an em-

pirical Bayes argument, which estimates the hyperparameter τ 2 by max{θ̂2 − v̂2, 0} when

the approximation v̂−1(θ̂ − θ)|θ ∼ N(0, 1) holds for some statistic v. A critical ingredient

of M&C’s proposal is to use θ̂2 as a conservative estimate of τ 2, which then leads to a con-

servative estimator of the corresponding hyperparameter τ 2
φ as τ̂ 2

φ = [β̂′(0)]2θ̂2. Substituting

this estimator for the hyperparameter in a general version of (3.5) leads to M&C’s general

proposal. But β̂′(0)θ̂ is nothing but the first-term Taylor expansion of β̂(θ̂)− β̂(0) = β̂ − β̂0

(though note the hidden assumption that β̂(θ̂) = β̂). This suggests that we can bypass the

calculation of β̂′(0) and directly use (β̂− β̂0)2 as a conservative estimator of τ 2
φ . Indeed, with

this modification, M&C’s proposal has the simpler expression as given in the abstract.
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What is necessary is that once the hyperparameter is estimated from the data, the op-

erating characteristics of the resulting estimator must be evaluated specifically according

to the estimation method used. That is, we can no longer rely on the established general

properties of the (fully) Bayesian estimators to justify their corresponding empirical coun-

terparts. We do tend to believe that such empirical estimators are reasonably accurate in

a variety of situations in practice, as demonstrated in M&C via simulations. But the same

belief sometimes can get us into deep trouble when we put too much faith on simulations,

which are necessarily limited. Indeed, intuitively speaking, the idea that we can achieve a

good universal compromise between β̂ and β̂0 only using themselves plus an estimate of V(β̂)

(see the formula in the Abstract or (4.1) below) is just too good to be true. It is true that

when β̂ is an unbiased estimator of β, B̂ ≡ β̂0− β̂ provides an unbiased estimator of the bias

in β̂0. But it would be illogical for us to worry about β̂ having too large a variance—and

hence the need to seek a reduction by bringing in a more efficient estimator β̂0—but not to

worry about the large variability in B̂, which depends on β̂ critically. How can we be sure

that the large error in the estimated weight ŵτφ = wτ̂φ , which in turn depends critically on

B̂, would not offset the gain in mean-squared error due to the (correct) weighting via wτφ?

Indeed, we are not sure at all, as demonstrated in the following Ph.D. qualifying exam

problem. (Again, both Section 4 and Section 5 are reproduced in verbatim, other than

correcting a few typographical errors.)

4. Learning through Exam: The Actual Qualifying Exam Problem

During a recent departmental seminar, our speaker made an assertion along the following

lines: “I have two estimators, β̂ and β̂0 for the same parameter β. The former is more robust

because it is derived under a more general model, and the second is more efficient because it

is obtained assuming a more restrictive model. The following is a compromise between the

two:

(4.1) β̂c =
(β̂ − β̂0)2

V̂(β̂) + (β̂ − β̂0)2
β̂ +

V̂(β̂)

V̂(β̂) + (β̂ − β̂0)2
β̂0,

where V̂(β̂) is a consistent estimate of the variance of β̂. This should work better because

when the more restrictive model is true, β̂c tends to give more weight to the more efficient

β̂0, and at the same time, β̂c remains consistent because asymptotically it is the same as β̂.”

As some of you might recall, I was both intrigued by and skeptical about this assertion.

This problem asks you to help me to understand and investigate the speaker’s assertion. To

do so, let’s first formalize the meaning of a general model and a more restrictive one.

Suppose we have i.i.d. data ~Y = {y1, . . . , yn} from a model f(y|θ), where θ = {α, β}, both

of which are scalar quantities, with β the parameter of interest, α the nuisance parameter,
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and the meaning of β does not depend on the value of α. Suppose the restrictive model takes

the form f0(y|β) = f(y|α = 0, β), i.e., under the restrictive model we know the true value of

α is zero. Let θ̂ = {α̂, β̂} be a consistent estimator of θ under the general model f(y|θ), and

let β̂0 be a consistent estimator of β0, which is guaranteed to be β only when the restrictive

model f0(y|β) holds. We further assume all the necessary regularity conditions to guarantee

their joint asymptotic normality, that is,

(4.2)
√
n

[(
θ̂

β̂0

)
−
(

θ
β0

)]
→ N

((
0
0

)
,Σ =

(
Σθ CT

C σ2
β0

))
.

For simplicity of derivation, we will assume Σ ≥ 0 (i.e., a semi-positive definite matrix) is

known, and the convergence in (4.2) is in the L2 sense (i.e., Xn → X means limn→∞E||Xn−
X||2 = 0).

(A) The speaker clearly was considering a variance-bias trade-off, assuming that β̂0 is

more efficient than β̂ when the more restrictive model is true. Under the setup above, prove

this is true asymptotically when θ̂ and β̂0 are maximum likelihood estimators (MLE, as in

the superscript below) under the general model and restrictive model respectively and when

we use the Mean-Squared Error (MSE) criterion (we can then assume Σθ and σ2
β are given

by the inverse of the corresponding Fisher information). That is, prove that if the restrictive

model holds, the (asymptotic) relative efficiency (RE) of β̂0 to that of β̂ is no less than 1:

(4.3) RE ≡ lim
n→∞

E[β̂MLE − β]2

E[β̂MLE
0 − β]2

≥ 1,

and give a necessary and sufficient condition for equality to hold. Provide an intuitive

statistical explanation of this result, including the condition for equality to hold.

(B) Give a counterexample to show that (4.3) no longer holds if we drop the MLE re-

quirement. What is the key implication of this result on the speaker’s desire to improve β̂

via β̂0?

(C) Since we assume Σ is known, we can replace V̂(β̂) in (4.1) by σ2
β/n, where σ2

β is an

appropriate entry of Σθ. We can therefore re-express (4.1) as

(4.4) β̂c = (1−Wn)β̂ +Wnβ̂0, where Wn =
σ2
β

σ2
β + n(β̂ − β̂0)2

.

Prove that, under our basic setup (4.2), limn→∞E(Wn) = 0 if and only if β 6= β0.

(D) Using Part (C) to prove that whenever β 6= β0,

(4.5) lim
n→∞

E[β̂c − β]2

E[β̂ − β]2
= 1.

Which aspect of the speaker’s assertion this result helps to establish?
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(E) To show that the condition β 6= β0 cannot be dropped in Part (D), let us consider

that our data {y1, . . . , yn} are i.i.d. samples from the following bivariate normal model:

(4.6) Y =

(
X
Z

)
∼ N

((
α
β

)
,

(
1 ρ
ρ 1

))
,

where ρ is known. Show that under this model, when we use MLEs for β̂ and β̂0,
√
n(β̂c−β)

has exactly the same distribution as

(4.7) ξ = Z0 − ρ(X0 +
√
nα)W̃n = (Z0 − ρX0) + ρ[(1− W̃n)X0 − W̃n

√
nα],

where (X0, Z0)> has the same distribution as in (4.6) but with both α and β set to zero, and

W̃n ≡ W̃n(ρ, α) =
1

1 + ρ2(X0 +
√
nα)2

.

Use the right-most expression in (4.7) to then show that

(4.8) nE[β̂c − β]2 = 1− ρ2 + ρ2Gn(ρ, α),

where

(4.9) Gn(ρ, α) = E[(1− W̃n(ρ, α))X0 − W̃n(ρ, α)
√
nα]2.

(F) Continuing the setting of Part (E), use (4.8) to prove that when α = 0, for all n,

(4.10) E[β̂MLE
0 − β]2 < E[β̂c − β]2 < E[β̂MLE − β]2,

as long as ρ 6= 0. Why does this result imply that β 6= β0 cannot be dropped in Part (D)?

What happens when ρ = 0?

(G) Still under the setting of Parts (E) and (F), verify that Gn(0, α) = nα2, and then

use this fact to prove that as long as nα2 > 1, there exists a ρ∗n,α > 0 such that for all

0 < |ρ| < ρ∗n,α,

(4.11) nE[β̂c − β]2 > 1 = nE[β̂MLE − β]2.

Does this contradict Part (D)? Why or why not?

(H) What do all the results above tell you about the speaker’s proposed estimator β̂c?

Does it have the desired property as the speaker hoped for? Would you or when would you

recommend it? Give reasons for any conclusion you draw.

5. Interweaving Research and Pedagogy: The Actual Annotated Solution

(A) This part tests a student’s understanding of the most basic theory of likelihood infer-

ence, especially the calculation of Fisher information, and the fact that the MLE approach

is efficient/coherent in the sense that when more assumptions are made its efficiency is

guaranteed to be non-decreasing.
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The result (4.3) is easily established using the fact that if we write the expected Fisher

information under the general model (with n = 1) as

(5.1) I(θ) =

(
iαα iαβ
iαβ iββ

)
, and notationally I−1(θ) =

(
iαα iαβ

iαβ iββ

)
,

then iββ = [iββ − i2αβi−1
αα]−1. The Fisher information under the restrictive model of course is

given by iββ with α = 0. Consequently, under our basic setup, when α = 0,

(5.2) RE =
iββ

i−1
ββ

=

[
1−

i2αβ
iααiββ

]−1

≥ 1,

where equality holds if and only if iαβ = 0 when α = 0, that is, when β and α are orthogonal

(asymptotically) under the restrictive model. Intuitively, the gain of efficiency of β̂MLE
0 over

β̂MLE is due to β̂MLE’s covariance adjustment via α̂MLE − α when α = 0. However, this

adjustment can take place if and only if β̂MLE is correlated with α̂MLE when α = 0, which is

the same as iαβ 6= 0.

(B) This part in a sense is completely trivial, but it carries an important message. That

is, the common notation/intuition that “the more information (e.g., via model assumptions)

or the more data, the more efficiency” can be true only when the procedure we use processes

information/data in an efficient way (e.g., as with MLE).

There are many trivial and “absurd” counterexamples. For example, in Part (A), if we

use the same MLE under the general model, but only use 1/2 our samples when applying

the MLE under the restrictive model, then the RE ratio in (5.2) obviously will be deflated

by a factor 2, and hence it can easily be made to be less than one.

[A much less trivial or absurd example is when we want to estimate the correlation param-

eter ρ with bivariate normal data {(xi, yi), i = 1, . . . , n}. Without making any restriction on

other model parameters, we know the sample correlation is asymptotically efficient with as-

ymptotic variance (1− ρ2)2/n (see Ferguson, 1996, Chapter 8). Now suppose our restrictive

model is that both X and Y have mean zero and variance 1. The Fisher information for

this restrictive model is (1 + ρ2)/(1− ρ2)2, therefore RE = 1 + ρ2 ≥ 1, which confirms Part

(A). However, since E(XY ) = ρ under the restrictive model, someone might be tempted

to use the obvious moment estimator r̂n =
∑

i xiyi/n for ρ. But one can easily calculate

that the variance (and hence MSE) of r̂n is (1 + ρ2)/n for any n. Consequently, the RE

of r̂n compared to the sample correlation is (asymptotically) (1 − ρ2)2/(1 + ρ2), which is

always less than one and actually approaches zero when ρ2 approaches 1. So the additional

assumption can hurt tremendously if one is not using an efficient estimator! (Students may

recall that my qualifying exam problem from a previous year was about this problem.) Mo-

ments estimators are used frequently in practice because of their simplicity and robustness
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(to model assumptions), but this example shows that one must exercise great caution when

using moment estimators, especially when making claims about their relative efficiency when

adding assumptions or data.]

(C) Intuitively this result is obvious, because when β 6= β0, the denominator in Wn can be

made arbitrarily large as n increases, and hence its expectation should go to zero. But this

part tests a student’s ability to make such “hand-waving” argument rigorous without invoking

excessive technical details, which is an essential skill for theoretical research.

Let ∆n =
√
n(β̂−β̂0−δ), where δ = β−β0. Then by (4.2), ∆n converges in L2 to N(0, τ 2),

where τ 2 = a>Σa, with a = (0, 1,−1)>. Therefore, there exists a n0 such that for all n ≥ n0,

V(∆n) ≤ 2τ 2. Consequently, for any ε > 0, if we let Mε =
√

2τ 2/ε, and An = {|∆n| ≥Mε},
then by Chebyshev’s inequality, we have

(5.3) Pr(An) = Pr(|∆n| ≥Mε) ≤
V(∆n)

M2
ε

≤ ε.

Now if δ 6= 0, then as long as n ≥M2
ε /δ

2, we have, noting 0 < Wn =
σ2
β

σ2
β+(∆n+

√
nδ)2
≤ 1,

(5.4) 0 ≤ E(Wn) = E(Wn1An) + E(Wn1Acn) ≤ Pr(An) +
σ2
β

σ2
β + (

√
n|δ| −Mε)2

,

where in deriving the last inequality we have used the fact that (u+ v)2 ≥ (|u| − |v|)2. That

E(Wn) → 0 then follows from (5.3) and (5.4) by first letting n → ∞ in (5.4), and then

letting ε→ 0 in (5.3).

To prove the converse, we note that when δ = 0, Wn =
σ2
β

σ2
β+∆2

n
. Therefore, by (Jensen’s)

inequality E(X−1) ≥ [E(X)]−1, we have

E(Wn) ≥
σ2
β

σ2
β + E(∆2

n)
→

σ2
β

σ2
β + τ 2

> 0.

(D) This part is rather straightforward, as long as the student is familiar with the Cauchy-

Schwarz inequality (which is a must!)

From (4.4), we have
√
n(β̂c−β) =

√
n(β̂−β)−WnDn, where Dn =

√
n(β̂− β̂0). It follows

then

(5.5) nE(β̂c − β)2 = nE(β̂ − β)2 + E(W 2
nD

2
n)− 2E[

√
n(β̂ − β)(WnDn)].

Under our assumptions, the first term on the right hand side of (5.5) converges to σ2
β > 0,

so (4.5) follows if we can establish that the second term on the right hand side of (5.5)

converges to zero. This is because, by the Cauchy-Schwarz inequality, the third term on the

right hand side of (5.5) is bounded above in magnitude by 2

√
nE(β̂ − β)2E(W 2

nD
2
n), and
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hence it must then converge to zero as well if the second term does so. But by the definition

of Wn in (4.4),

(5.6) E(W 2
nD

2
n) = E

[
Wn

σ2
βD

2
n

σ2
β +D2

n

]
≤ σ2

βE(Wn),

which converges to zero by Part (C) when δ = β − β0 6= 0. The implication of this result

is that the speaker’s assertion that β̂c is asymptotically the sane as β̂ is correct, as long as

β 6= β0. [Note there is a subtle difference between β = β0 and α = 0. The latter implies the

former, but the reverse may not be true because one can always choose β̂0 to be β̂ even if

the restrictive model is not true.]

(E) This part tests a student’s understanding of multi-variate normal models and the basic

regression concepts, with which one can complete this part without any tedious algebra.

The most important first step is to recoganize/realize that under the general model,

β̂MLE = Z̄n, and under the restrictive model, β̂MLE
0 = Z̄n − ρX̄n, where X̄n and Z̄n are the

sample averages; hence Dn = ρ
√
nX̄n. The first expression in (4.7) then follows from (4.4)

when we re-write it as β̂c = Z̄n−Wn(ρX̄n) and let X0 =
√
n(X̄n−α) and Z0 =

√
n(Z̄n−β),

and the fact that (X0, Z0) has the same bivariate normal distribution as in (4.6) but with

zero means. The second expression is there to hint the independence of the two terms, be-

cause the first term (Z0−ρX0) is the residual after regressing out X0, and the second term is

a function of X0 only. With this observation, (4.8) follows immediately because the residual

variance is 1− ρ2.

(F) Again, this part does not require any algebra if a student understands the most basic

calculations with bivariate normal and regression. When α = 0, W̃n(ρ, 0) = 1
1+ρ2X2

0
, and

(5.7) Gn(ρ, 0) = E[X0(1− W̃n(ρ, 0))]2 = E

[
X2

0

(
ρ2X2

0

1 + ρ2X2
0

)2
]
≡ Cρ,

where the constant Cρ > 0 is free of n and it is clearly less than E(X2
0 ) = 1. Therefore the

identity (4.8) immediately leads to nE[β̂c−β]2 = 1− (1−Cρ)ρ2, which is strictly larger than

nE[β̂MLE
0 − β]2 = 1− ρ2 and smaller than nE[β̂MLE − β]2 = 1, as long as ρ 6= 0. Clearly in

this case (4.5) of Part (D) will not hold because the ratio there will be 1− (1− Cρ)ρ2 < 1,

hence the condition β 6= β0 cannot be dropped in Part (D) – note when ρ 6= 0, β 6= β0 is

equivalent to α 6= 0.

When ρ = 0, β̂MLE = β̂MLE
0 , and hence regardless of the value of α, Part (D) holds trivially

even though the condition β 6= β0 is violated. This also provides another (trivial) example

that β = β0 does not imply α = 0, as we discussed at the end of the solution to Part (D)

above.
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(G) This part demonstrates the need of some basic mathematical skills in order to derive

important statistical results (that cannot be just “hand-waved”!).

When ρ = 0, W̃n(0, α) = 1, and hence Gn(0, α) = nα2. From its expression (4.9), the

(random) function under expectation is continuous in ρ and bounded above by X2
0 + nα2,

which has the expectation 1+nα2. Hence, by the Dominated Convergence Theorem, Gn(ρ, α)

is a continuous function of ρ for any given α and n. Consequently, whenever Gn(0, α) =

nα2 > 1, there must exist a ρ∗n,α > 0, such that for any |ρ| ≤ ρ∗n,α, Gn(ρ, α) > 1 as well. It

follows then, when 0 < |ρ| ≤ ρ∗n,α, from (4.8),

(5.8) nE[β̂c − β]2 = 1− ρ2 + ρ2Gn(ρ, α) > 1− ρ2 + ρ2 = 1 = nE[β̂MLE − β]2.

Inequality (5.8), however, does not contradict Part (D) because the choice of ρ∗n,α depends

on n, so Part (D) implies that as n increases, ρ∗n,α → 0.

(H) Parts (A) and (B) demonstrate that in order for the proposed estimator (4.1) to achieve

the desired compromise, a minimal requirement is that there should be some “efficiency”

requirement on the estimation procedures, especially the one under the more restrictive

model. Otherwise it would not be wise in general to bring in β̂0 to contaminate an already

more efficient and more robust estimator β̂.

Parts (C) and (D) proved that under quite mild conditions, the proposed β̂c is equivalent

asymptotically to the estimator under the general model, as long as the estimator under the

more restrictive model is asymptotically biased, that is, as long as β0 6= β. So in that sense

the speaker’s proposal is not harmful but not helpful either asymptotically, and therefore

any possible improvement must be a finite-sample one (which apparently is what the speaker

intended and indeed the only possible way if one uses MLE to start with).

Parts (E)-(G) give an example to show that when the restrictive model is true, the speaker’s

proposal can achieve the desired compromise, that is, β̂c beats β̂MLE in terms of MSE for all

n, but it is not as good as β̂MLE
0 . The latter is not surprising at all because in this case β̂MLE

0

is the most efficient estimator (asymptotically, but also in finite sample given its asymptotic

variance is also the exact variance). However, when the restrictive model is not true, then

there is no longer any guarantee that β̂c will dominate β̂ (indeed this is not possible in general

whenever β̂ is admissible). The result in Part (G) also hinted that in order for β̂c to beat

β̂, the “regression effect” of β̂ on α̂ must be strong enough (e.g., expressed in this case via

|ρ| > ρ∗n,α) in order to have enough borrowed efficiency from β̂0 to make it happen.

In summary, the speaker’s proposal can provide the desired compromise when the re-

stricted model is close to being true and the original two estimators are efficient in their own

right, but it cannot achieve this unconditionally. In general, it is not clear at all as when one



ADMISSIBILITY AND BIAS-VARIANCE TRADE-OFF 17

should use such a procedure, especially when the original two estimators are not efficient to

start with.

6. A Piece of Inadmissible Cake?

M&C’s β̂c evidently was proposed as an improvement on the original β̂, with MSE as the

intended criterion. Adopting the classic framework of decision theory (Berger, 1985), the

hope is that β̂c is R-better than β̂ in terms of the squared loss:

(6.1) R(β̂; (α, β)) =

∫
y

(β̂(y)− β)2f(y|α, β)µ(dy),

where f(y|β, α) is the sampling density and µ is its corresponding baseline measure. But for

R(β̂c; (α, β)) ≤ R(β̂; (α, β)) to hold for all β and α (and with strict inequality for at least

one (α, β)) means β̂ is not admissible under the squared loss. The simple normal problem

investigated in Section 4 and Section 5 demonstrates clearly that this would be wishful

thinking in general. The question then is how do we quantify the apparently good properties

of β̂c, as suggested by the empirical evidences in M&C?

If we have a joint prior on {α, β}, of course we can compare the Bayesian risks of β̂c and

β̂. But the partially Bayes approach precisely wants to avoid any prior specification about

β. This leads to the notion of partially Bayes risk

(6.2) rπ(β̂; β) =

∫
R(β̂; (α, β))π(dα).

If we adopt such a measure, then one fundamental question is under which prior π(α) the

original estimator β̂ is dominated by β̂c, that is, rπ(β̂c; β) ≤ rπ(β̂; β) for all β?

Intuitively, it is possible for β̂c to dominate β̂ in terms of rπ when π puts enough mass on

or near α = 0, as suggested by Part (F) of Section 4. The trouble is that in practice we will

not know how close the restrictive model is to the truth when we wish for an automated bias-

variance trade-off, because if we knew, then we surely should have included the information

in our model to improve our estimator (e.g., via an informative prior), just as if we know

α = 0 for sure, then we should just use β̂0 (assuming it is an efficient estimator under the

sub-model). We therefore seem to run into a circular situation. The information we need to

evaluate β̂c meaningfully makes β̂c unnecessary, but without it, there does not seem to exist

a meaningful way to establish the superiority of β̂c.

This was the main reason that I suspected that β̂c was more a craving than a creation.

I of course hope my suspicion is groundless and that M&C’s proposal can lead to a real

advancement at the frontier of methods for accomplishing appropriate bias-variance tradeoff.

But this is a case where only hard theory, not simulations nor intuitions, can settle the matter.

After all, the whole industry of shrinkage estimation came out of the counter-intuitive—at
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least initially—Stein’s paradox established by rigorous theory (Stein, 1956; James and Stein,

1961; Efron and Morris, 1977). There might be an empirical partially Bayes theory in parallel

to the elegant one established by Efron and Morris (1973) for shrinkage via empirical Bayes,

but the key ingredient in M&C, that is, estimating the prior variance via the conservative

(β̂0−β̂)2 is likely to be fatal to this line of exploration because the performance of β̂c depends

critically on the reliability of this estimation.

Evidently, there is a lot to be learned from the classic theory of admissibility before we

can settle this matter, because this is squarely a problem of comparing estimators under the

squared loss. Professor Berger has done much to build this field, so it is only fitting for me

to present the problem of comparing β̂c and β̂ in general as a piece of cake to him on the

occasion of his 60th birthday.

Happy Birthday, Jim, even if the cake turns out to be inadmissible!
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