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Abstract

In recent years, a variety of extensions and refinements have been developed for data augmenta-

tion based model fitting routines. These developments aim to extend the application, improve the

speed, and/or simplify the implementation of data augmentation methods, such as the determinis-

tic EM algorithm for mode finding and stochastic Gibbs sampler and other auxiliary-variable based

methods for posterior sampling. In this overview article we graphically illustrate and compare a

number of these extensions all of which aim to maintain the simplicity and computation stability

of their predecessors. We particularly emphasize the usefulness of identifying similarities between

the deterministic and stochastic counterparts as we seek more efficient computational strategies.

We also demonstrate the applicability of data augmentation methods for handling complex models

with highly hierarchical structure, using a high-energy high-resolution spectral imaging model for

data from a new generation of satellite telescopes, such as the Chandra X-ray Observatory.
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1 Introduction

Numerous statistical algorithms involving data augmentation have enjoyed remarkable pop-

ularity in the biological, medical, physical, social, engineering, and other sciences. These al-

gorithms include both deterministic versions such as the Expectation Maximization (EM) al-

gorithm (Dempster, Laird, and Rubin, 1977) and its many extensions and stochastic versions

such as the Data Augmentation (DA) algorithm (Tanner and Wong, 1987), the method of

auxiliary variables (Besag and Green, 1993), and other Markov chain Monte Carlo (MCMC)

methods including the Gibbs sampler (Geman and Geman, 1984). The popularity of these

algorithms rests in their suitability for fitting highly structured models (e.g., missing data

models, latent variable models, hierarchical models, etc.) with high dimensional parameters.

Such models are themselves growing ever more popular in modern statistical practice pre-

cisely because complex data generation mechanisms are often naturally defined in terms of

unobserved quantities. This aides inference because the unobserved quantities often have a

direct physical interpretation and are of scientific interest themselves. From a probabilistic

point of view, complex correlation structures are much more easily described in terms of

unobserved quantities and the conditional independence structures of hierarchical models.

Thus, formulating multi-level models in terms of unobserved variables enables us to parse

complex highly-structured data. A primary advantage of algorithms involving data aug-

mentation is that even in these settings they are relatively easy to implement (as illustrated

in the spectral model of Section 2) and enjoy stable convergence properties (e.g., EM-type

algorithms exhibit monotone convergence in likelihood).

In this paper, we review, summarize, and compare much of the recent work on algorithms

involving data augmentation, with EM-like algorithms on the deterministic side and Gibbs-

sampler-type MCMC samplers on the stochastic side. This work is primarily aimed at
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extending the applicability of the algorithms and improving their computational speed. We

focus on methods that build on the statistical insight of the algorithms while maintaining

their attractive properties (e.g., simplicity and stability), rather than numerical methods

that can sacrifice these properties. We present basic ideas and concepts but gloss over

much of the technical detail, which are documented in the cited references. To this end, we

include a series of schematic graphic representations of the various algorithms that we hope

can clarify and highlight their relationships, especially in visualizing the similarities between

the deterministic algorithms and their stochastic counterparts. We begin with two overview

schematics. Figures 1 describes the relationships among the various EM-type algorithm and

Figure 2 describes the synergy between the deterministic and stochastic algorithms that we

discuss in this article.

The paper is organized into seven additional sections. As a running example, Section 2

introduces a model for Poisson spectral imaging designed to analyze data from the Chandra

X-ray Observatory and similar photon counting devices. Section 3 focuses on methods de-

signed to simplify calculation in complex models, specifically data augmentation and model

reduction in the context of both mode-finding and sampling algorithms. Section 4 reviews

general strategies for improving convergence rates such as blocking and collapsing. These

methods are illustrated in Sections 5 and 6 in the context of nesting, conditional augmenta-

tion, marginal augmentation, joint augmentation, and partial collapsing. Finally, Section 7

applies some of these methods to the running example and Section 8 concludes with a brief

discussion.

2 A Poisson Spectral Model

This section briefly outlines a model for spectral analysis in astronomy that is designed to

summarize high-resolution x-ray and γ-ray spectra. The treatment here is simplified for

illustrational purposes. Details can be found in van Dyk, Connors, Kashyap, and Siemigi-

nowska (2001), Protassov et al. (2002), Hans and van Dyk (2003), van Dyk and Kang (2004),

3



EM Algorithm 

(1977) 

Stochastic 

Simulation 

Variance  

Calculations 

Model 

Reduction 

Efficient DA 

Monte Carlo 

Integration 

ECM 

(1993) 

ECME 

(1994) 

SEM 

(1991) 

DA 

Sampler 

(1987) 

MCEM 

(1990) 

PXEM 

(1998) 

CDA-EM 

(1997) 

Nested EM 

(2000) 

AECM 

(1997) 

SECM 

(1995) 
Algorithms 

Methods 

Figure 1: A Family Tree of Algorithms inspired by EM. The tree illustrates how various techniques
have been combined with the basic framework of EM to formulate new algorithms. It should be re-
garded as description of the historical inspiration of the various algorithms rather than as a hierarchy
of generalizations and special cases. The basic stochastic simulation EM-type algorithm, known as DA
is described in Section 3.1 and Figure 3. Model reduction and ECM are described in Section 3.3 and
Figure 4. Efficient data augmentation including CDA-EM and PXEM is described in Section 5 and
Figures 5 and 6. It is combined with model reduction to formulate ECME and AECM in Section 6 and
Figure 11. The use of Monte Carlo integration with and without efficient data augmentation in MCEM
and nested EM is discussed in Section 5.5 and illustrated in Figures 8–10. The variance calculations

of SEM and SECM are developed in Meng and Rubin (1991) and van Dyk et al. (1995), respectively.
The arrows illustrate the development and combination of techniques that inspired the generalizations
of the EM algorithm.

4



EM Algorithm 

Model 

Reduction 

Efficient DA 

Monte Carlo 

Integration 

ECM 

ECME 

MCEM 

PXEM 

CDA-EM 
Nested 

EM 

AECM 

DA Sampler 

Gibbs Sampler 

Marginal DA 

PX-DA 

Partially Blocked 

Gibbs Sampler  Partially Collapsed 
Gibbs Sampler 

Figure 2: The Synergy Between EM-type Algorithms and their Stochastic Counterparts. The figure
shows the cross-fertilization of EM-type algorithms and DA-type samplers. The relationships between
EM and DA and between ECM and the Gibbs sample are illustrated in Figures 3 and 4, respectively.
Marginal data augmentation and PX-DA are described in Section 5.2. The partially blocked Gibbs
sampler that inspired the nested EM algorithm is illustrated in Figure 8 and the partially collapsed
Gibbs sampler and its connection with the ECME and AECM algorithms are discussed in Section 6.
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van Dyk et al. (2006), and Park et al. (2008). The spectral model is designed to summarize

the relative frequency of the energy of photons (x-ray or γ-ray) arriving at a space-based

detector. Because of the digital nature of the detector, energies are collected as counts in a

number of energy bins (e.g., as many as 4096 on the detectors aboard the Chandra X-ray

Observatory). These detectors have much higher resolution than their predecessors, and

thus smaller expected counts per bin. Independent Poisson distributions are therefore more

appropriate to model the counts than the commonly used Gaussian approximation.

Specifically, we model a spectrum as a mixture of a “continuum” term and an “emission

line”. The continuum characterizes the electromagnetic emission over a broad range of

photon energies while the emission line can be viewed as an aberration from the continuum

in a narrow range of energies. A typical spectrum might be composed of multiple continua

and multiple emission lines. For simplicity we suppose there is only one of each in the model.

In particular, we parameterize the intensity in bin j ∈ J = {1, . . . , J} as

λj(θ) = δjf(θC , Ej) + νpj(µ, σ
2), j ∈ J , (1)

where δj is the known width of bin j, f(θC , Ej) represents the continuum term and is a

function of the continuum parameter, θC , Ej is the known mean energy in bin j, ν is the

expected photon counts corresponding to the emission line, µ and σ are the center and scale

(or rather “width”) of the emission line, and pj(µ, σ
2), which is a function of µ and σ2, is

the proportion of the emission line counts that are expected to fall in bin j. We typically

quantify pj(µ, σ
2) via a Gaussian distribution, a t distribution, or in the case of a vary

narrow line, a delta function. (These are all standard astronomical approximations to the

distribution of the strictly positive photon energies of an emission line.) The collection of

parameters, θC , (ν, µ, σ2), and θA (defined below) are together represented by θ. Here we

consider two simple forms of the continuum f(θC , Ej), (1) a log linear model, for example the

power law γE−β
j and (2) a free (i.e., saturated) model, f(θC , Ej) = θC

j , typically including a

smoothing prior distribution such as a Markov chain for θC
j , j ∈ J , e.g., θC

j | θC
1 , . . . , θ

C
j−1 ∼

N
(

θC
j−1, 1/ωj

)

for j = 2, . . . , J, where ω = (ω2, . . . , ωJ) is a smoothing parameter and we

assume a flat prior for θC
1 .
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Unfortunately, the photon counts are degraded in the observed data. For example, instru-

ment response is a characteristic of the detector that results in blurring of the photons, i.e., a

photon that arrives in bin j has probability Mij of being detected in bin i ∈ I = {1, . . . , I}.

The I × J matrix {Mij} is determined by on-going calibration of the detector and is pre-

sumed known. (Because calibration can be conducted at higher resolution than the binning

of the detector, the instrument response matrix may not be square.) Another complication

is absorption, a process by which a proportion of photons in a given energy bin are absorbed

by matter between the astronomical source and the detector. This results in stochastic

censoring, where the censoring rate varies with energy. A similar process occurs in the tele-

scope itself: the detector’s effective area depends on the energy of the photons. Finally, the

counts are contaminated by background events. Because of these degradations, we model

the observed counts as independent Poisson variables with parameters

ξi(θ) =
J
∑

j=1

Mijλj(θ)djg(θ
A, Ej) + θB

i , i ∈ I, (2)

where dj is the (presumed) known effective area of the detector for energy bin j as a pro-

portion of the total detector area, g(θA, Ej) is the probability that a photon of energy Ej is

not absorbed by matter between the source and the detector and θB
i is the Poisson inten-

sity of the background, which is generally estimated via real-time calibration in space. The

absorption model, g(θA, Ej), may be a (constrained) log linear model with θA denoting the

model parameter. Note that λj(θ) in (2) is given by (1).

How to construct simple, stable, and efficient algorithms for fitting this model is the

running example for the rest of this article.

3 Statistical Concepts and Computation

The EM algorithm is unique among common numerical optimization routines in that it

is primarily formulated in statistical rather than mathematical terms. The missing data

setup, the Expectation step, and the complete-data computations of the Maximization step
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of EM stand in contrast for example to the derivatives and local linearization of the Newton-

Raphson algorithm. Other EM-type optimizers and their related stochastic samplers extend

this in that their motivation and implementation rely heavily on statistical concepts and

insight. In this section we discuss two such concepts: data augmentation and model re-

duction. We show how their effective use of the divide-and-conquer strategy of reducing a

complex problem into an iterated sequence of simpler ones has led to a rich class of statistical

algorithms.

3.1 Data Augmentation

Computational methods based on data augmentation are generally applied to posterior dis-

tributions or likelihood functions. Here we generally take a Bayesian perspective but are

mindful of the fact that for computational purposes a likelihood function is equivalent to

a posterior density under a constant prior distribution. Thus, the object of study can be

written as

p(θ|Y obs) =
∫

p(θ, φ|Y obs)µ(dφ), (3)

where Y obs is the observed data, µ is a common measure such as Lebesgue or counting

measure, θ is the unobserved quantity of primary interest, and φ includes nuisance parame-

ters, latent variables, missing data, or any other unobserved quantity of secondary interest.

The method of data augmentation can be used to either compute the mode of θ under the

marginal distribution given in (3) or to obtain a sample from (3) which in turn can be used

to approximate the posterior mean, variance, quantiles, etc., via Monte Carlo simulation.

In the spirit of the EM literature, we use a more inclusive notation Y aug in place φ, where

Y aug is called the augmented data and represents the combination of Y obs and any latent

variables or missing data. The target posterior distribution can be expressed as

p(θ|Y obs) ∝ p(Y obs|θ)p(θ) , (4)

where p(θ) is a prior distribution and p(Y obs|θ) yields a likelihood. In this way, data aug-

mentation methods can be viewed as embedding (4) into a larger augmented data model,
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via
∫

M(Y aug)=Y obs
p(Y aug|θ)µ(dY aug) = p(Y obs|θ) , (5)

where M is some many-to-one mapping from Y aug to Y obs. Using the factorization

p(Y aug|θ) = p(Y aug|Y obs, θ)p(Y obs|θ), (6)

we recognize that (5) can be maintained with any choice of p(Y aug|Y obs, θ); that is, as long

as p(Y aug|θ) yields the correct marginal distribution p(Y obs|θ). In some cases we can use this

flexibility to introduce artificial augmented data purely for computational reasons. Thus,

we can choose p(Y aug|Y obs, θ) in order to optimize or improve computational performance

rather for statistical modeling, as we shall discuss in Section 5.

Data augmentation can lead to useful algorithms if the conditional distributions, p(Y aug|Y obs, θ)

and p(θ|Y aug) are easy to work with (e.g., to sample, maximize, and/or compute expecta-

tions). Thus, a useful choice of an augmented data model specifies a division of a model into

two simpler conditional models which are typically much easier to analyze.

The EM algorithm computes a posterior mode using the conditional distributions via the

familiar two-step iteration, consisting of

E-step: Compute Q(θ|θ(t)) = E[log p(θ|Y aug)|Y obs, θ(t)],

M-step: Set θ(t+1) = argmaxθQ(θ|θ(t)),

where the parenthetical superscript t indexes the iteration. This iteration is known to

increase p(θ|Y obs) and converges to a stationary point of p(θ|Y obs) that is generally, but

not always, a (local) mode of p(θ|Y obs) (Dempster et al., 1977; Wu, 1983; Vaida, 2005).

The two steps of this iteration give EM its name; i.e., the Expectation or E-step and the

Maximization or M-step.

The Data Augmentation (DA) algorithm of Tanner and Wong (1987) replaces the two

steps of the EM algorithm with two sampling steps, each samples one of two full conditional

distributions:

Step 1: (Y aug)(t+1) ∼ p(Y aug|Y obs, θ(t)),
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Expectation Step

Maximization Step

p(θ|Y aug)

p(Y aug|θ)

Random Draw

p(θ|Y aug)

p(Y aug|θ)

Figure 3: The EM (left panel) and DA (right panel) algorithms. In the maximization step of EM, we
compute θ to maximize the conditional expectation of log p(θ|Y aug), with the expectation computed in
the expectation step, see Section 3.1.

Step 2: θ(t+1) ∼ p(θ|(Y aug)(t+1)).

This iteration produces a Markov chain, {θ(t), t = 1, 2, . . .}, which under mild regularity has

the desired stationary distribution, p(θ|Y obs) (see Roberts, 1996; Tierney, 1994, 1996, for

convergence results). The EM and DA algorithms are compared in Figures 3. In all of the

figures in this article, conditioning on Y obs is suppressed, and hexagons, circles, and squares

(or their elongated versions) represent expectation steps, (conditional) maximization steps,

and random draws, respectively.
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Level Variable Notation Range

1. The ideal data: no blurring, binning, background Y
···s = {Y

···C , Y
···L} Positive, keVb

contamination, absorptiona or mixing of sources

2. The binned ideal counts Ÿ s
j = {Ÿ C

j , Ÿ
L
j } Counts

3. The binned ideal counts after absorption Ẏ s
j = {Ẏ C

j , Ẏ
L
j } Counts

4. The mixed and binned ideal counts after absorption Ẏ +
j Counts

5. The mixed, binned, and blurred ideal counts Y +
i Counts

after absorption
6. The mixed, binned, and blurred ideal counts Y obs

i Counts
after absorption and background contamination,
this is, the observed data

Table 1: Data augmentation in the spectral model. For all variables, j ∈ J , i ∈ I, and s ∈ S, where J
indexes the ideal bins, I indexes the detector bins, and S indexes the sources.
a In the statistical model the effective area of the instrument is handled in exactly the same way as
absorption. Thus, in this table, absorption includes the effective area of the detector.
b The ideal data are the photon energies measured in kiloelectron volts (keV).

3.2 Data Augmentation in the Spectral Model

Table 1 lists a hierarchy of augmented data structures used to construct EM and DA algo-

rithms for fitting the spectral model described in Section 2. In the notation of Table 1 more

dots in the accent above a variable represent greater degrees of augmentation; variables with

fewer dots are (sometimes stochastic) functions of those with more dots. The set S is the

collection of photon sources, here simply S = {C,L}, where C represents the continuum

and L the emission line. The superscript on “Y ” represents the photon source; a “+” in the

superscript indicates a mixture of both sources.

Reading top-to-bottom in Table 1, the relationships among the variables are as follows.

The vectors Y
···C and Y

···L contain the exact energies of photon attributed to the continuum

and emission line, respectively. Because photon arrivals follow a Poisson process, the length

of both of these vectors are Poisson variables; the length of Y
···L has expectation ν. These

energies are binned and the resulting counts recorded as Ÿ s = (Ÿ s
1 , . . . , Ÿ

s
J ), for s ∈ S. Ab-

sorption and the varying effective area of the instrument cause an energy-varying proportion
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of these counts to be lost. In particular,

Ẏ s
j | Ÿ s

j , θ ∼ Binomial
(

Ÿ s
j , djg(θ

A, Ej)
)

, j ∈ J , s ∈ S. (7)

For the observer, the continuum and emission line counts are combined, Ẏ +
j = Ẏ C

j + Ẏ L
j for

each j. Blurring, due to instrument response, shuffles photons among the bins and into the

observed bin counts via

Y + | Ẏ +, θ ∼
J
∑

j=1

Multinomial
(

Ẏ +
j ,Mj

)

, (8)

where Y + = (Y +
1 , . . . , Y

+
I ), Ẏ + = (Ẏ +

1 , . . . , Ẏ
+
J ), and Mj is the jth column of M , j ∈ J .

Because M may not be a square matrix, the lengths of Y + and Ẏ + may differ. Finally,

background contamination leads to the observed bin counts,

Y obs
i | Y +

i , θ ∼ Y +
i + Poisson(θB

i ), i ∈ I. (9)

This augmented-data construction leads to easy implementation for two reasons. First,

each level of augmented data follows a standard distribution given θ and the data in the

rows lower in Table 1. Reading Table 1 bottom-to-top, each conditional distribution can be

derived using Bayes theorem. For illustration, we report the details of just two:

Y +
i | Y obs

i , θ ∼ Binomial

(

Y obs
i ,

ξi(θ) − θB
i

ξi(θ)

)

, i ∈ I, (10)

where ξi(θ) is defined in (2) and

Ÿ L
j | Ẏ L

j , θ ∼ Ẏ L
j + Poisson (ηj) , j ∈ J , (11)

where ηj = νpj(µ, σ
2)(1−djg(θ

A, Ej)). The other necessary conditional distributions can be

found in Appendix B of van Dyk et al. (2001). Thus, the E-step of EM and the corresponding

draw of DA are straightforward. Second, given the data in Table 1, the posterior distribution

of θ is a set of independent standard distributions. For example, given Y
···L iid

∼ N(µ, σ2), it is

easy to compute the posterior distribution of (ν, µ, σ2), recalling that the length of Y
···L is a

Poisson random variable with mean ν. The posterior distributions of the other components
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of θ are also standard and simple to derive. Thus, the M-step of EM and the corresponding

draw of DA are again easy to implement. Incorporating proper prior information can be

accomplished using the appropriate semi-conjugate prior distributions as described in van

Dyk et al. (2001).

3.3 Model Reduction

Model reduction involves using a set of (typically complete) conditional distributions in a

computation method designed to learn about the corresponding joint distribution. Reducing

the augmented-data model significantly broadens the applicability of algorithms involved

in data augmentation, while maintaining their stable convergence properties (e.g., Meng

and Rubin, 1993). In particular, if we partition θ into P subvectors, θ = (θ1, . . . , θP ),

reducing the augmented data model involves working with the set of conditional distribu-

tions p(θ1|Y
aug, θ−1), . . . , p(θP |Y

aug, θ−P ) in place of directly working with p(θ|Y aug); here

θ−p = (θ1, . . . , θp−1, θp+1, . . . , θP ). For example, the ECM algorithm (Meng and Rubin, 1993)

replaces the maximization in the M-step of EM with a sequence of P conditional maxi-

mizations or CM-steps of the form

CM-step p: Set θ(t+ p

P
) = argmaxθ Q(θ|θ(t)) subject to θ

(t+ p

P
)

−p = θ
(t+ p−1

P
)

−p .

The ECM algorithm is useful when the CM-steps exist in closed form but the M-step

does not. ECM is illustrated with P = 2 in the left panel of Figure 4.

The same strategy can be applied to the DA sampler. By replacing the draw from

p(θ|Y aug) with a sequence of draws from the corresponding full conditional distributions,

the sampler becomes a P + 1 step Gibbs sampler. This sampler is illustrated in the right

panel of Figure 4. In the context of sampling, we can also reduce p(Y aug|θ) into a set of

conditional distributions. Partitioning the expectation step, however, has proven much more

illusive. One strategy involves using the law of iterated expectations in the computation of

the E-step and results in the Nested EM algorithm; see Section 5.5.
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Expectation Step

Maximization Step
Conditional

p(θ1|θ2, Y
aug) p(θ2|θ1, Y

aug)

p(Y aug|θ)

Random Draw

p(θ1|θ2, Y
aug) p(θ2|θ1, Y

aug)

p(Y aug|θ)

Figure 4: The ECM Algorithm and the Gibbs Sampler. The left panel shows a three-step ECM
algorithm composed of an E-step and two CM-steps. The corresponding Gibbs sampler is illustrated
in the right panel and is composed of three steps including a data augmentation step. In the conditional
maximization steps of ECM, we compute the component of θ to maximize the conditional expectation of
the log of the quantity in the ©, with the expectation computed in the expectation step, see Section 3.3.

Rather than using a partition of θ, a more general model reduction scheme updates

θ by conditioning on a sequence of functions of θ. It is only required that the functions

allow movement anywhere in the parameter space, i.e., the functions are “space-filling” as

described by Meng and Rubin (1993). Again, the same strategy can be used in sampling

algorithms, such as the Bayesian IPF sampler used to fit constrained models on contingency

tables (Schafer, 1997; Gelman et al., 2003). A recent work by Yu and Meng (2009) further

explores the use of this strategy to improve MCMC algorithms by employing a sequence of

sufficient and auxiliary data augmentation schemes that are space filling.
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3.4 Model Reduction in the Spectral Model

To illustrate model reduction in an augmented data model, we consider the second form

of the continuum model, namely the free model f(θC , Ej) = θC
j with a Markov-chain-type

smoothing prior θC
j | θC

1 , . . . , θ
C
j−1 ∼ N

(

θC
j−1, 1/ωj

)

for j = 2, . . . , J, where ω = (ω2, . . . , ωJ)

is a smoothing parameter and we assume a flat prior for θC
1 . For simplicity we assume there

is no emission line and that δj = g(θA, Ej) = 1 for each j, that is, the bins are of the same

size and that there is no absorption. In this case, we use only rows 4–6 of Table 1 in our

data augmentation scheme to derive

Q(θ|θ(t)) =
J
∑

j=1

[

E(Ẏ C
j |Y obs, θ(t)) log θC

j − θC
j

]

−
1

2

J
∑

j=2

ωj(θ
C
j − θC

j−1)
2 . (12)

Once we have computed the expectation in (12), we need only optimize Q(θ|θ(t)) as a function

of θ. Unfortunately, this optimization cannot be done analytically when some ωj > 0.

However, the partial derivative of Q(θ|θ(t)) with respect to θC
j is a quadratic function of θC

j

if we fix θC
−j. Thus, as is discussed by Fessler and Hero (1995) and is improved in Section 7,

we can construct an ECM algorithm with J CM-steps of the form

(θC
j )(t+1) = max

{

0,
1

Aj

(

Bj +
√

B2
j + AjE(Ẏ C

j |Y obs, θ(t))
)

}

,

where

Aj = ωj + ωj+1 and Bj = −
(

1 − ωj(θ
C
j−1)

(t+1) − ωj+1(θ
C
j+1)

(t)
)/

2 .

4 Improving Rates of Convergence

EM-type algorithms and their stochastic counterparts have seen many applications largely

because of their computational stability and simple implementation. Nonetheless these

methods are legitimately criticized for their slow convergence in some settings. Strong

posterior correlations among the components updated in each step lead to full conditional

distributions that are far less variable than the corresponding marginal distributions. This

in turn leads to smaller step sizes and slower progress toward the mode or toward the sta-

tionary distribution. Much work has been focused on developing algorithms with improved
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rates of convergence that continue to enjoy the simplicity and stability that makes data

augmentation so useful in practice. As we shall see with both data augmentation and model

reduction, less is better if one hopes for speed while more is often better if one hopes for

simplicity. In this section, we discuss the sometimes conflicting strategies for improving the

computational performance of methods based on data augmentation.

4.1 The EM and DA Rates of Convergence

Before we can develop criteria for speeding up data augmentation methods, we need math-

ematical measures of their rates of convergence. For EM, such a measure is given by ρEM,

the spectral radius of the so-called matrix fraction of missing information (Dempster et al.,

1977),

I − Iobs [Iaug(Y aug)]−1 , (13)

where I is an identity matrix, Iobs is the observed Fisher information matrix and Iaug(Y aug) =

− ∂2

∂θ·∂θ
Q(θ|θ∗)|θ=θ∗ with θ∗ the posterior mode; our notation for Iaug emphasizes that both

Q(θ|θ′) and the augmented-data information matrix depend on the choice of augmented

data. Here we use the traditional terms (e.g., Fisher information) of the EM literature,

which primarily focus on likelihood calculation, even though we are dealing with the more

general posterior computation. In particular, Iobs is the negative of the second derivative of

the log posterior density evaluated at the posterior mode.

We call ρEM the global rate of convergence and I−Iobs(Iaug)−1 the matrix rate of conver-

gence of the EM algorithm. More general formulations of the rate of convergence for ECM

and other EM-type algorithms are given by Meng and Rubin (1993, 1994), Meng (1994),

Meng and van Dyk (1997), and van Dyk (2000b). For the EM algorithm, our goal is to

minimize ρEM as a function of the data augmentation scheme. For the DA algorithm, the

geometric rate of convergence (Amit, 1991) is

1 − inf
h:Var(h(θ)|Y obs)=1

E[Var(h(θ)|Y aug)|Y obs]. (14)

Although this quantity and the maximum lag one autocorrelation (Liu, 1994) are valuable for
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theoretical calculations, they are generally difficult to work with analytically in particular

models. The EM-approximation of van Dyk and Meng (2001) is essentially based on a

Gaussian approximation to the posterior distribution and simply replaces these quantities

by ρEM. Van Dyk and Meng (2001) illustrate that this approximate EM criterion can lead

to substantial improvements in DA samplers. Thus, one of our basic strategies is to focus on

methods that reduce ρEM with an understanding that such methods are useful in formulating

efficient data augmentation schemes for both deterministic and stochastic algorithms.

4.2 Blocking and Collapsing

As the formulations of the matrix rates of convergence for more complex EM-type algorithms

in the above cited articles illustrate, analysis of convergence is significantly more complex

with multi-step algorithms. In the analysis of DA and Gibbs samplers, the spectral radius

and the norm of the forward operator are useful measures of the convergence behavior of

a Markov chain (Liu, Wong, and Kong, 1994; Liu, 2001). Based on these measures, Liu

et al. (1994) introduced two strategies that have emerged as important general techniques

for improving the behavior of Gibbs-type samplers.

To illustrate these techniques, consider a P -step sampler that simulates each component

of θ = (θ1, . . . , θP ) in turn conditioning on the most recently sampled values of the other

P−1 components of θ. The first strategy, known as blocking, involves combining two or more

draws into a single draw. For example, the last two steps could be combined into a single

draw of (θP−1, θP ) given the other P − 2 components of θ. Collapsing, on the other hand,

involves the construction of a sampler on a subspace of the original sampler. For example,

we might compute the marginal distribution of θ−P by integrating out θP and construct a

(P − 1)-step sampler using the full conditional distributions of the first P − 1 components

of the original partition of θ. Each of these components is updated conditioning on the most

recently sampled values of the other P − 2 components of θ−P to construct a Markov chain

with stationary distribution equal to the marginal distribution of θ−P .

Liu (2001) shows that both of these strategies are expected to improve the convergence
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behavior of the original P -step sampler in that they reduce the norm of its forward operator.

(For Gibbs samplers with more than two steps, the norm may not be equal to the rate of

convergence of the Markov chain.) He also showed that collapsing reduces the norm by at

least as much as blocking. Thus, good general advice is to collapse whenever possible, and

to block if you can when collapsing is not possible. Liu’s technical results apply only when

blocking is applied to the last steps of each iteration of a Gibbs sampler and/or when the

subparameter sampled in the last step is collapsed out of the sampler, as we discussed for

illustration in the previous paragraph. Nonetheless, experience shows that both strategies

are more generally useful and should be implemented whenever feasible.

Analogous advice applies to EM-type algorithms. In the comparison of the EM and ECM

algorithms, blocking suggests that fewer CM-steps should be preferred and that the ECM

algorithm is expected to converge more slowly than the corresponding EM algorithm. While

this is good general advice, it does not always hold mathematically; Meng (1994) gives a

simple example in which ECM outperforms EM. We emphasize that the motivation of ECM,

however, is not faster convergence but easier implementation. We generally consider ECM

when the M-step of EM is not tractable and thus the EM algorithm itself is not feasible.

Collapsing is also a useful strategy in the context of EM-type algorithms. The next section

is devoted to methods that aim to reduce the information in Y aug and thus effectively collapse

a portion of Y aug out of the iteration. Section 6 describes intermediate strategies that allow

partial collapse when full collapse is not possible, as in the ECME and AECM algorithms.

In the context of EM, we can sometimes also collapse θ via a profile loglikelihood. Sup-

pose that θ = (θ1, θ2) and that we are able to compute the profile likelihood ℓ̃(θ1;Y
obs) =

ℓ(θ1, θ̂2(θ1, Y
obs)|Y obs), where θ̂2(θ1, Y

obs) is the maximizer of ℓ(θ1, θ2|Y
obs) when θ1 is fixed.

There are two ways to construct an EM algorithm in this situation. The first way is to

construct a data augmentation, Y aug, to implement EM for the full parameter θ = (θ1, θ2)

via the full augmented data loglikelihood, ℓ(θ1, θ2|Y
aug). That is, we do not take advantage

of the potential computational gain of using the profile likelihood. The second way is to

construct a data augmentation, Ỹ aug, to augment the profile likelihood ℓ̃(θ1;Y
obs) and then
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implement the EM algorithm for the subparameter θ1 only. Note that here we use the no-

tation ℓ̃(θ1;Y
obs) rather than ℓ̃(θ1|Y

obs) to emphasize that ℓ̃(θ1;Y
obs) may not necessarily

be a proper loglikelihood in the sense of being derived from a log density or probability of

Y obs. We can nonetheless use EM, because it is possible to construct an EM algorithm for

maximizing any objective function D(θ;Y obs) as long as we can find an augmented objective

function D(θ;Y aug) such that exp
{

D(θ;Y aug) −D(θ;Y obs)
}

is a proper conditional density

function of Y aug given θ and Y obs; see the rejoinder of Meng and van Dyk (1997) for more

discussion on this flexibility of EM. Therefore, it is possible to use EM for the profile likeli-

hood by treating ℓ̃(θ1;Y
obs) as an objective function. This collapsing through profiling has

not been generally recognized, but can significantly improve the speed, when compared to

the first way of directly applying the EM algorithm to the full likelihood. See Meng (1997)

for more discussion and an example involving a zero inflated Poisson model.

5 Efficient Data Augmentation

Inherent in the definition of the augmented data model is a choice: There are infinitely

many augmented data models satisfying (5). In this section we discuss various criteria for

this choice that result in efficient algorithms. By “efficient data augmentation” we mean

using augmentation schemes that improve speed, while maintaining stability, and simplicity.

Here we discuss techniques that are able to achieve all three criterion: They reduce the

augmented data in the construction of the algorithm to improve speed while maintaining

stability and simplicity.

The basic idea is similar to collapsing in the Gibbs sampler. Suppose that an EM algo-

rithm or a data augmentation sampler can be constructed with a baseline data augmentation

scheme that we denote Ỹ aug. Further suppose that Ỹ aug = Y aug
1 ∪Y aug

2 , where both Y aug
1 and

Y aug
2 are legitimate data augmentation schemes in that they both contain Y obs. It is easy

to show that Iaug(Ỹ aug) ≥ Iaug(Y aug
1 ) (i.e., that Iaug(Ỹ aug)− Iaug(Y aug

1 ) is semi-positive defi-

nite) and that E[Var(h(θ)|Ỹ aug)|Y obs] ≤ E[Var(h(θ)|Y aug
1 )|Y obs], where h(·) is any real-valued
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function, the first expression being an asymptotic variant of the second (Meng and van Dyk,

1999). Thus, by (13) and (14), construction of an alternate algorithm using only Y aug
1 as the

augmented data results in faster converge. This strategy effectively collapses Ỹ aug \Y aug
1 out

of the algorithm. We will discuss direct applications of this idea when we discuss the nest-

ing strategy in Section 5.5. Less direct applications are the topic of Sections 5.1–5.3. The

methods described in these sections do not directly decompose Ỹ aug into two components

but still aim to either reduce Iaug(Ỹ aug) or to increase E[Var(h(θ)|Ỹ aug)|Y obs].

5.1 Conditional Augmentation

The methods of conditional, marginal, and joint augmentation all take advantage of the

flexibility in (5) to introduce less informative augmented data in order to construct a more

efficient algorithm. To search for a good augmented data model using any of the three

methods, we begin by parameterizing the augmented data model using a working parameter.

We define a working parameter to be a parameter in the augmented data model that is not

identifiable under the observed data model, p(Y obs|θ). In particular, we generalize (5) via

∫

M(Y aug)=Y obs
p(Y aug|θ, α)µ(dY aug) = p(Y obs|θ) (15)

for all α in some class A. Notice that the right-hand-side of (15) does not depend on the

working parameter. An effective method of introducing α is to let Y aug = Dα,θ(Ỹ
aug), where

Dα,θ is a one-to-one mapping for any θ and α ∈ A and Ỹ aug is the baseline augmented

data. Typically Ỹ aug is the standard augmented data used to construct EM-type algorithms

or samplers for fitting a particular model. In the context of the EM algorithm, we can

compute the scalar rate of convergence, ρEM(α), for each α. Conditional augmentation

simply optimizes ρEM(α) as function of α and then conditions on the optimal value of α

throughout the iteration. Meng and van Dyk (1997) call an EM algorithm constructed

with the resulting optimal data augmentation scheme an efficient data augmentation EM

algorithm. For clarity, we refer to it here as a conditional data augmentation EM algorithm

or CDA-EM. Although this choice of augmented data model is based on the EM rate of
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convergence, the same model can be used to construct data augmentation samplers. This is

an example of the approximate EM criterion discussed in Section 4.1.

It is worth noting that the optimization required by conditional augmentation occurs as

part of the derivation of the algorithm. The value α is fixed when we run the algorithm; see

Figure 5. The methods of marginal and joint augmentation, on the other hand, avoid this

initial optimization problem by averaging over or fitting α on the fly, and more importantly

they can lead to better algorithms.

5.2 Marginal Augmentation

Marginal augmentation also begins with (15), but in addition to a working parameter intro-

duces a working prior distribution, p(α). The working prior distribution is typically chosen

so that α and θ are independent, so that

∫

M(Y aug)=Y obs

[
∫

p(Y aug|θ, α)p(dα)
]

µ(dY aug) = p(Y obs|θ) . (16)

Note that if we define the resulting augmented data model as p(Y aug|θ) =
∫

p(Y aug|θ, α)p(dα),

we obtain
∫

p(Y aug|θ)µ(dY aug) = p(Y obs|θ). Thus, (16) results in a legitimate data augmen-

tation scheme. (Marginal augmentation was introduced by Meng and van Dyk (1999) and

is very closely related to the PX-DA sampler of Liu and Wu (1999).)

This strategy is motivated by a desire to reduce the information in Y aug for θ. Since con-

ditioning tends to increase information, marginalization may be advantageous. In particular,

for any function h(·), we have

E[Var(h(θ)|Y aug)|Y obs] = E[E[Var(h(θ)|Y aug, α)|Y obs, α]|Y obs] (17)

+ E[Var[E(h(θ)|Y aug, α)|Y aug]|Y obs].

If p(Y aug|θ, α) is generated by Y aug = Dα(Ỹ aug) using the baseline augmentation, Ỹ aug, then

E[Var(h(θ)|Y aug, α)|Y obs, α] does not depend on α and (17) implies

E
[

Var(h(θ)|Y aug)|Y obs
]

≥ E
[

Var(h(θ)|Y aug, α)|Y obs, α
]
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Expectation Step

Maximization Step

set

Y a = Dα,θ(Ỹ
a)

α⋆ = argmin ρEM(α)

p(θ|Y a, α⋆)

p(Y a|θ, α⋆)

Figure 5: The EM Algorithm Constructed with Conditional Data Augmentation. (In the maximization
step we compute θ to maximize the conditional expectation of log p(θ|Y aug, α⋆), with the expectation
computed in the expectation step. Here we use the superscript “a” as an abbreviation for “aug” or
“augmented”.)

for any α, and thus in terms of the geometric rate marginal augmentation is superior to

conditional augmentation (Meng and van Dyk, 1999). This result, however depends on

the working parameter being introduced via Y aug = Dα(Ỹ aug), a transformation depending

only on α. When the transformation depends on the model parameters as well, conditional

augmentation can be superior. See Meng and van Dyk (1999) or Liu and Wu (1999) for

details.

Although there is no need to choose α when using marginal augmentation, we are left

with the choice of working prior distributions. One strategy for choosing p(α) (van Dyk and

Meng, 2001) suggests parameterizing the working prior, p(α|ψ) and chooses ψ as a level-
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two working parameter via a conditional augmentation criterion. Liu and Wu (1999) show

that under certain conditions, Haar measure leads to an optimal algorithm with the correct

stationary distribution. In general, however, using an improper working prior distribution

may not even lead to the correct stationary distribution let alone optimality; see Meng and

van Dyk (1999); van Dyk and Meng (2001) and van Dyk (2009). When it exists, the use of

Haar measure typically leads to a joint chain on the enlarged space (α, θ, Y aug) that is non-

positive recurrent, but the marginal chain on the original space (θ, Y aug) converges properly

to the desired posterior distribution p(θ, Y aug|Y obs); see Hobert (2001), Marchev and Hobert

(2004), and Hobert and Marchev (2008) for additional discussion.

5.3 Joint Augmentation

There is no known easy way to implement EM-type algorithms that use marginal aug-

mentation. A similar strategy, however, uses the augmentation scheme (15), but rather

than optimizing ρEM as a function of α before running the algorithm or marginalizing α

out as in (16), this method fits α jointly with θ in the M-step. In particular, Liu et al.

(1998) presents the PXEM algorithm as a fast adaptation of conditional augmentation in

the context of the EM algorithm in the case when p(θ) ∝ 1, e.g., in maximum likelihood

estimation. Van Dyk (2000a) slightly extended the framework to the Bayesian case, by

defining Qpx(θ, α|θ
′, α0) =

∫

log[p(Y aug|θ, α)p(θ)]p(Y aug|Y obs, θ′, α0)dY
aug. As illustrated in

Figure 6, the PXEM iteration sets (θ(t+1), α(t+1)) equal to the maximizer of Qpx(θ, α|θ
(t), α0),

where α0 is some fixed value1. The particular value of α0 is generally irrelevant for a PXEM

iteration and is simply set to some convenient value throughout the iteration (e.g., α0 = 1

for scale working parameters and α0 = 0 for location working parameters). In this regard,

the PXEM iteration could be rewritten to avoid the dependence on α0 but it is generally

deemed easier to simply set α0 at one arbitrary value and avoid potentially complex alge-

1We need not condition on α = α(t) in Qpx because Qpx(θ, α|θ
′, α′) ≥ Qpx(θ

′, α′|θ′, α′) implies p(θ|Y obs) ≥ p(θ′|Y obs)

for any values of θ′ and α′. In particular, Qpx(θ
(t+1), α(t+1)|θ(t), α0) ≥ Qpx(θ

(t), α0|θ
(t), α0) implies p(θ(t+1)|Y obs) ≥

p(θ(t)|Y obs), see Liu et al. (1998) and van Dyk (2000a).
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braic manipulations. The situation is similar when using marginal augmentation with an

improper working prior distribution. In that case the posterior distribution of α is improper

leading to the technical concerns discussed in Section 5.2. With PXEM the observed data

likelihood does not depend on α which can lead to numerical problems if the updated value

of α is carried forward in the iteration.

We expect PXEM to perform at least as well as an algorithm that fixes α (i.e., CDA-EM)

in terms of the global rate of convergence because it essentially removes the conditioning on

α in the data-augmentation scheme. Removing this conditioning reduces Iaug (in a positive

semidefinite ordering sense) and thus improves the rate of convergence of EM (see Meng and

van Dyk, 1997 and Liu, Rubin, and Wu, 1998 for details). It is in this regard that PXEM

is an example of efficient data augmentation: it effectively reduces the augmented data

information in order to improve the rate of convergence without sacrificing simplicity or sta-

bility. This does not mean that PXEM generally dominates a CDA-EM algorithm because

different augmentation schemes are used in the context of the two strategies. In particular,

like marginal data augmentation, PXEM is generally implemented with a transformation,

Y aug = Dα(Ỹ aug). However, unlike that of conditional data augmentation, this transforma-

tion does not depend on θ; see Figure 6. Liu, Rubin, and Wu (1998) give an alternative

explanation for the efficient performance of PXEM, that by fitting α, we are performing a

covariance adjustment to capitalize on information in the data-augmentation scheme. They

also illustrate the substantial computational advantage PXEM can offer over other EM-type

algorithms for ML estimation. In the context of Bayesian calculations, van Dyk and Tang

(2003) show how one-step-late methods (Green, 1990) can be used to accomplish the required

optimizations of the PXEM M-step.

5.4 A Graphical Comparison of CDA-EM and PXEM

To illustrate the differences between the CDA-EM and PXEM algorithms, we consider a

simple Gaussian model. Suppose

Xi ∼ N(θ, 1/2) for i = 1, . . . , n (18)
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Expectation Step

Maximization Step

set

Y aug = Dα(Ỹ aug)

p(θ, α|Y aug)

p(Y aug|θ, α0)

Figure 6: The PXEM Algorithm. (In the maximization step we compute θ and α to maximize the
conditional expectation of log p(θ, α|Y aug), with the expectation computed in the expectation step.)

and

Yi ∼ N(θ, 1/2) for i = 1, . . . , m, (19)

where the X = (X1, . . . , Xn) is observed and Y = (Y1, . . . , Ym) is completely missing. Ob-

viously, the maximum likelihood estimate of θ is X̄ and the missing Y is not relevant.

Nonetheless, for illustration, we can construct an EM algorithm that treats Y as missing

data. In particular, with (X, Y ) being the augmented data, we have

Q(θ|θ(t)) = 2θ

[

nX̄ +
m
∑

i=1

E(Yi|θ
(t))

]

− (n+m)θ2 = 2θ(nX̄ +mθ(t)) − (n +m)θ2

which can be compared to the observed data loglikelihood, ℓ(θ) as in the first panel of

Figure 7, where n = 1, m = 5, X̄ = 0, and θ(t) = 5. The panel illustrates that ℓ(θ)

and Q(θ|θ(t)) have the same derivative at θ(t) and that their optimizers are the maximum

likelihood estimate, θ⋆, and θ
(t+1)
EM , respectively. (For diagrams illustrating EM’s iteration

and rate of converge, see Navidi (1997).)
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To use CDA-EM and PXEM, we introduce a working parameter α, via the transforma-

tion, Zi = Yi − αθ ∼ N[(1 − α)θ, 1/2] for i = 1, . . . , m, and treat Z = (Z1, . . . , Zm) as the

missing data. Since α is not identifiable given X, it is a valid working parameter. In this

case,

Q(θ, α|θ(t), α′) = 2θ

[

nX̄ + (1 − α)
m
∑

i=1

E(Zi|θ
(t), α′)

]

−
[

n+m(1 − α)2
]

θ2

= 2θ
[

nX̄ +m(1 − α)(1 − α′)θ(t)
]

−
[

n +m(1 − α)2
]

θ2.

The method of conditional data augmentation requires Iaug(α) = 2 [n +m(1 − α)2] be com-

puted by differentiating Q(θ, α|θ(t), α′) twice with respect to θ and minimized it as a function

of α. The optimal values occurs when α = 1 in which case the distribution of the missing data

does not depend on θ. The second panel of Figure 7 compares Qα(θ|θ(t)) ≡ Q(θ, α|θ(t), α)

computed with several values of α with ℓ(θ). As α grows closer to one, θ(t+1) grows closer

to θMLE. With the optimal value of α in this example, Qα(θ|θ(t)) and ℓ(θ) coincide, and

CDA-EM converges to θ⋆ in one iteration. In general, the algorithm does not converge in

one step but the underlying strategy of choosing a working parameter so that Qα(θ|θ(t)) is

closer to ℓ(θ) is always the goal.

For PXEM, α′ is fixed at the identity value of the transformation from Y to Z (i.e., α′ = 0)

and θ and α are updated at each iteration by jointly optimizing Q(θ, α|θ(t), α′ = 0). The

third panel of Figure 7 plots this function using a heat map, where brighter colors represent

higher values and darker colors represent lower values. The solid line superimposed on the

plot is the optimal value of θ as a function of α and is given by

∑n
i=1Xi +m(1 − α)θ(t)

n+m(1 − α)2
. (20)

For example, with α = 0 the curve gives θ
(t+1)
EM . The dashed line gives the optimal value of

θ as a function of α under CDA-EM. This curve corresponds to the modes of the dashed

curves in the second panel. The solid and dashed curves in the third panel differ because

CDA-EM and PXEM differ in how they treat α′ in Q(θ, α|θ(t), α′). PXEM fixes α′ at the

identity value under the transformation from Y to Z (i.e., PXEM fixes α′ = 0) whereas
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CDA-EM does not update α in the iteration and sets α′ = α throughout. The function

Q(θ, α|θ(t), α′ = 0) plotted in panel 3 increases along the solid curve as α goes to −∞ and

the solid curve asymptotes to θ = 0, the maximum likelihood estimate. Thus, both CDA-EM

run with α = 1 and PXEM converge to the maximum likelihood estimate in one iteration.

One might be tempted to think that PXEM is superior to CDA-EM because it opti-

mizes Q(θ, α|θ(t), α′ = 0) over both θ and α at each iteration whereas CDA-EM optimizes

Q(θ, α|θ(t), α′ = α) over only θ under a constraint that fixes α at a prespecified value. That

is, one might expect PXEM to increase ℓ more because it increases Q more. This reasoning,

however, not only blurs the difference in how the two algorithms treat α′ but also oversimpli-

fies the rates of convergence of EM-type algorithms. An algorithm that increase Q more at

every iteration does not necessary converge faster. This can be seen clearly in the first panel

of Figure 7. The optimal update is θ⋆, but θ⋆ is far from the maximizer of Q. Our goal is not

to increase Q more, but to make Q a better approximation of the log likelihood. As another

example, the EM algorithm by definition increases Q by at least as much in its M-step

as ECM can in a sequence of CM-steps. Nonetheless Meng (1994) shows that ECM can

converge faster than EM. In the present example, CDA-EM sets α = 1 and updates θ to

θ(t+1) = 0 which is a saddle point of Q(θ, α|θ(t), α′ = 0). Even though Q(θ, α|θ(t), α′ = 0)

evaluated at the CDA-EM update is less than when it is evaluated at the PXEM update,

both updates have θ(t+1) = 0 and thus give the same value of the observed data loglikelihood.

The rate of convergence is more directly determined by (13) than by the relative increase in

Q. It is this rate that CDA-EM aims to optimize and that PXEM improves by eliminating

the conditioning on α, see Section 5.3.

5.5 Nesting

Nested EM and DA-type algorithms involve iteratively using a data augmentation method

to accomplish one of the steps of a larger algorithm also involving data augmentation.

Figures 8 – 10 illustrate three different ways this might be done. To motivate the nesting

strategy we begin with the partially-blocked Gibbs sampler illustrated in Figure 8 (van Dyk,

27



−2 2 6

−
10

0
10

20

−2 6

−
10

0
10

20

−2 2 6−
1.

0
0.

0
1.

0
2.

0

θ

θ

θ

α

ℓ

Q

ℓ
an

d
Q

ℓ
an

d
Q

ℓ and Q(α = 1)

Q(α = 0.8)

Q(α = 0.6) Q(α = 0.4)

Q(α = 0)

θ(t)

θ(t)

θ(t)

θ
(t+1)
EM

θ
(t+1)
EM

θ
(t+1)
EM

θ
(t+1)

(α=0.8)
θ
(t+1)

(α=0.6)
θ
(t+1)

(α=0.4)

θ⋆

θ⋆

θ⋆

Figure 7: Comparing the CDA-EM and the PXEM Algorithms. The first panel compares ℓ(θ) and
Q(θ|θ′) for an EM algorithm applied to a simple Gaussian problem. The functions are normalized to be
tangent at θ(t). The second panel compares ℓ(θ) with Q(θ, α|θ(t), α) for several values of α and shows
how the missing data becomes less informative and Q(θ, α|θ(t), α) becomes a better approximation to
ℓ(θ) as α get closer to the optimal value, α = 1. The final plot is a heat map of Q(θ, α|θ(t), α′ = 0) that is
optimized in the PXEM algorithm. Lighter colors correspond to higher functional values. The function
has two critical points, one at (θ = 0, α = 1) and one at (θ = 0, α = −∞). The solid and dashed curves
give the optimal value of θ as a function of α by maximizing Q(θ, α|θ(t), α) and Q(θ, α|θ(t), α′ = 0),
respectively. The CDA-EM update is a saddle point of Q(θ, α|θ(t), α′ = 0) and the PXEM update
occurs in the limit as α → −∞. Nonetheless both algorithms return the maximum likelihood estimate
in one iteration, θ(t+1) = 0.
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2000b). Although we consider a sampler composed using three full conditional distributions,

the ideas apply immediately to samplers with arbitrarily many conditional distributions. In

particular, suppose we wish to sample from p(θ|Y obs), where θ = (θ1, θ2, θ3) by using a Gibbs

sampler which samples from each of p(θ1|θ2, θ3, Y
obs), p(θ2|θ1, θ3, Y

obs), and p(θ3|θ1, θ2, Y
obs)

in turn. If sampling from p(θ1|θ2, θ3, Y
obs) is expensive relative to sampling from the other

two conditional distributions, it may be beneficial to sample once from p(θ1|θ2, θ3, Y
obs) and

then to sample from p(θ2|θ1, θ3, Y
obs) and p(θ3|θ1, θ2, Y

obs) N times each in turn. If N is

large, the internal Gibbs sampler delivers an approximate draw from the joint distribution

p(θ2, θ3|θ1). If this approximation is good we are essentially running a blocked Gibbs sampler

with conditional distributions p(θ1|θ2, θ3, Y
obs) and p(θ2, θ3|θ1, Y

obs). The partially blocked

Gibbs sampler is useful when the advantage of blocking outweighs the cost of sampling from

p(θ2, θ3|θ1, Y
obs) via a nested Gibbs sampler. This strategy may be helpful when θ2 and

θ3 exhibit significant correlation given θ1 and/or p(θ1|θ2, θ3, Y
obs) is particularly difficult to

sample (e.g., van Dyk et al., 2001). Notice there is a subtle tradeoff here. If θ2 and θ3 are

(nearly) conditionally independent given θ1, then there is no need to run the inner iteration.

If, on the other hand, they are highly correlated, then the inner iteration may need to be

run many times in order to deliver a good draw. The key to success with this strategy is

repeating the expensive draw of p(θ1|θ2, θ3) as seldom as possible.

In the context of the EM algorithm, we can implement a similar strategy when the

augmented data naturally divide into two or more parts. Our strategy takes advantage of

the fact that an EM algorithm that treats only part of Y aug as missing and collapses over the

rest, is faster in terms of ρEM (Meng and van Dyk, 1997). Thus, we aim to construct an EM

algorithm using only part of Y aug. Although this algorithm typically does not have a closed

form M-step, the maximization can be accomplished by a second, typically closed-form,

EM algorithm that treats the remainder of Y aug as missing data. The resulting nested EM

algorithm (van Dyk, 2000b) has an improved rate of convergence but, because of the nesting,

each iteration requires more time to compute. If the computational complexity of the E-step

is relegated to the outer loop, this trade-off can go in favor of the nesting strategy when
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Random Draw

p(θ1|θ2, θ3)

p(θ2|θ1, θ3) p(θ3|θ1, θ2)

p(θ2, θ3|θ1)

Figure 8: The Partially Blocked Gibbs Sampler. The inner loop is iterated N times.

considering the actual computing time required. This advantage can be pronounced when

the outer E-step requires a Gibbs sampler to compute the necessary conditional expectations.

This is possible with the Monte Carol EM (MCEM) algorithm (Wei and Tanner, 1990), as

is illustrated by van Dyk (2000b). The MCEM algorithm is compared with the nested EM

algorithm in Figures 9 and 10.

6 Partial Collapsing as a Unified Approach

While the partially-blocked nature of the sampler in Figure 8 is clear, the nested EM algo-

rithm in Figure 10 partially removes Ỹ aug \Y aug
1 ⊂ Y aug

2 from the data augmentation scheme

in the spirit of conditional augmentation. In this regard, the nested EM algorithm is a type
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Maximization Step

Expectation Step

Random Draw

p(θ|Y a
1 , Y

a
2 )

p(Y a
1 |θ, Y

a
2 ) p(Y a

2 |θ, Y
a
1 )

p(Y a
1 , Y

a
2 |θ)

Figure 9: The MCEM Algorithm. The inner loop is iterated several times. The inner loops are both
iterated several times. (In the maximization step we compute θ to maximize the conditional expectation
of log p(θ|Y aug

1 , Y aug
2 ), with the expectation computed in the Monte Carlo expectation step. Here we use

the superscript “a” as an abbreviation for “aug” or “augmented”.)

of “partially collapsed” EM algorithm. In this section, we discuss a different strategy for par-

tially collapsing quantities out of an EM or DA algorithm. In particular, in algorithms that

involve model reduction, we can collapse quantities in some but not all of the CM-steps or

conditional draws. It is in this sense that we use the term “partially collapsed”.

Collapsing involves constructing an algorithm on a marginal distribution of the target

space of the original algorithm. That is, we construct an algorithm that works on a collapsed

parameter space of the original parameter space. (Here the parameter space includes all un-

knowns including latent variables and missing data.) Although this strategy is computational

efficient it can be practically difficult if some or all of the full conditional distributions on

the collapsed parameter space are complex or non-standard distributions. Given that the
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Expectation Step Random DrawMaximization Step

p(Y a
1 |θ, Y a

2 ) p(Y a
2 |θ, Y a

1 )

p(Y a
1 |θ)

p(Y a
2 |θ, Y a

1 ) p(θ|Y a
1 , Y a

2 )

p(θ|Y a
1 )

Figure 10: The Nested EM Algorithm with Monte-Carlo E-step implemented with a two-step Gibbs
sampler. (In the maximization step we compute θ to maximize the conditional expectation of
log p(θ|Y aug

1 , Y aug
2 ), with the expectation computed in the expectation steps, see Section 5.5. Here

we use the superscript “a” as an abbreviation for “aug” or “augmented”.)

augmented data are introduced specifically to simply the full conditional distributions, it

is not surprising that reducing that augmented data can sacrifice this simplicity. Partially

collapsed methods aim to reap some of the gains of collapsing in this situation. In particular,

when some of the conditional distributions on the collapsed parameter space are simple or

at least no more complicated that the corresponding conditional distribution of the original

parameter space, partially collapsed methods mix conditional distributions from the two (or

perhaps more) parameter spaces in the construction of EM-type algorithms and DA-type

samplers. For example, if a conditional maximization or draw given the augmented data are

not easier than the corresponding maximization or draw given the observed data, then we
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may as well use the version that does not involve data augmentation, that is the collapsed

version. As we shall discuss, this strategy has lead to a number of useful algorithms.

6.1 The ECME and AECM Algorithms

In order to improve the rate of convergence of the ECM algorithm, Liu and Rubin (1995)

formulated the Expectation Conditional Maximization Either or ECME algorithm in which

they suggest replacing one or more of the CM-steps of the ECM algorithm with

Direct CM-step p: Set θ(t+ p

P
) = argmaxθ log p(θ|Y obs) subject to θ

(t+ p

P
)

−p = θ
(t+ p−1

P
)

−p .

When an iterative method is required to accomplish one or more of the CM-step of ECM, it

is often no more difficult to maximize the conditional log posterior directly without recourse

to data augmentation. In this case Liu and Rubin (1995) argue that the direct CM-step is

expected to improve convergence without complicating implementation. We recognize this

as a partially collapsed algorithm. If all of the ECM CM-steps were replaced by direct

CM-steps the augmented data would be completely removed from the iteration. This would

collapse ECM into a Gauss-Seidel optimizer, which is generally expected to be faster than

ECM. Of course, if some of the CM-steps of ECM are simple closed-form optimizations

while those of ECME require numerical optimization, the computational tradeoff can easily

favor ECM over Gauss-Seidel.

Meng and van Dyk (1997) set up a more general framework by allowing different levels

of augmented data in each CM-step. The resulting algorithm is called the Alternating

Expectation Conditional Maximization or AECM algorithm and generalizes both the ECME

and the SAGE (Fessler and Hero, 1994) algorithms. In particular, Meng and van Dyk suggest

replacing the CM-step of ECM with

CM-step p: Set θ(t+ p

P
) = argmaxθ E

[

log p(θ|gp(Y
aug)) | θ(t+ p−1

P
)
]

subject to θ
(t+ p

P
)

−p = θ
(t+ p−1

P
)

−p . Here we have expanded Q(θ|θ(t)) according to its original

definition with two important changes. First, Y aug is replaced by some function gp of Y aug.

This allows us to reduce the data augmentation by differing amounts in each of the P CM-
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steps. Here we assume gp(Y
aug) is a legitimate data augmentation scheme for each p. In

particular, Y obs is part of each gp(Y
aug). Second, because the data augmentation varies

among the CM-steps, we must compute and E-step each time the data augmentation

changes, see Figure 11. Thus, in the expectation of each AECM CM-step we condition on

the value of θ produced by the most recent CM-step, not the value produced at the end

of the previous iteration. If the data augmentation is the same for several consecutive CM-

steps (i.e., if gp is the same) we need only recompute the E-step at the beginning of this

sequence. The same requirement holds for ECME in that the steps must be appropriately

ordered relative to the E-step. The CM-steps that involve data augmentation must all

follow the E-step and be performed before any of the CM-steps that do not involve

data augmentation, unless the E-step is repeated. These step-ordering requirements are

necessary to ensure monotone convergence of the ECME and AECM algorithms (Meng and

van Dyk, 1997). As we discuss next, similar step-ordering requirements apply to the partially

collapsed Gibbs sampler.

6.2 The Partially Collapsed Gibbs Sampler

Consider the two-step data augmentation sampler described in Section 3.1. To clarify ideas,

we rewrite this sampler with Y aug replaced by ψ and with the conditioning on Y obs sup-

pressed:

Step 1: ψ(t+1) ∼ p(ψ|θ(t)),

Step 2: θ(t+1) ∼ p(θ|ψ(t+1)).

Under the standard regularity conditions, we expect that after sufficient burn-in this sampler

will effectively return correlated draws from its stationary distribution, p(ψ, θ). In order to

speed up convergence to stationarity and reduce the correlation of the draws, we might take

a cue from ECME and AECM and attempt to partially collapse the sampler. In particular,

suppose we want to reduce the conditioning in Step 2. A reasonable and optimal strategy

might seem to be the following:
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Expectation Step

Maximization Step
Conditional

CYCLE ONE

p(θ1|θ2, Y
aug
1 )

p(θ2|θ1, Y
aug
2 )p(Y aug

1 |θ1, θ2)

p(Y aug
2 |θ1, θ2)

Figure 11: A Two-Cycle AECM Algorithm. (In the conditional maximization steps, we compute the
component of θ = (θ1, θ2) to maximize the conditional expectation of the log of the quantity in the ©,
with the expectation computed in the most recent expectation step, see Section 6.1.)

Step 1: ψ(t+1) ∼ p(ψ|θ(t)),

Step 2: θ(t+1) ∼ p(θ).

Clearly, ψ(t+1) and θ(t+1) are independent and the stationary distribution of this sampler

is p(ψ)p(θ) which is generally different than the target distribution, p(ψ, θ). In this simple

example, we need only change the order of the two steps to regain a chain with the target

distribution as its stationary distribution. Nonetheless, three important cautionary facts

regarding partially collapsed Gibbs samplers are illustrated by this simple example.

First, the “full conditional distributions” of the partially collapsed sampler may not be

compatible with any joint distribution. In the simple example, this is illustrated by the

fact that one cannot find a joint distribution of (ψ, θ) such that ψ depends on θ but θ is
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independent of ψ. This incompatibility means that we have left the standard Gibbs sampler

framework and that standard results as well as our intuition may fail. Second, as with ECME

and AECM, the order of the steps may matter. Even in this simple case, the stationary

distribution of the chain depends on the order of the steps.

Finally, the steps can sometimes be blocked to form a standard sampler. If we first draw

θ from its marginal distribution and then ψ from its conditional distribution given θ, we

are directly sampling from the joint distribution, and have thus blocked the two steps. In

fact, blocking is a special case of partially collapsing. It is easy, however, to construct cases

where partially collapsed samplers do not correspond to any blocked version of the ordinal

sampler (van Dyk and Park, 2008; Park and van Dyk, 2009).

Given these cautionary facts, it is clear that care must be taken when partially collapsing

a Gibbs sampler. Van Dyk and Park (2008) give a prescriptive method for construction

such samplers that are guaranteed to maintain the target stationary distribution. They also

argue that like blocking, partial collapsing improves the convergence characteristics of the

chain, but not as much as complete collapsing. This, along with the fact that blocking is a

special case of complete collapsing, unifies the blocking and collapsing strategies. Generally,

blocking is not as efficient as collapsing because blocking is only partial collapsing.

7 Refined Algorithms for the Spectral Model

By far the most computationally intensive aspects of the EM and DA algorithms for the

spectral model described in Sections 3.2 and 3.4 are the removal of the background counts

and the deblurring of the source counts, that is, computing the conditional expectation of

or sampling Y +
i and Ẏ +

j for i ∈ I and j ∈ J . These tasks involve looking up values in the

typically large matrix, M , a time-consuming task even when sophisticated sparse-matrix

techniques are implemented. Given the computation cost of these steps and the hierarchical

structure of the data augmentation, nesting is an obvious strategy. As an illustration, we

implement a nested EM algorithm. In this algorithm we start by setting Y aug
1 equal to Ẏ +

j for
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j ∈ J . Because this augmentation is smaller than the complete data-augmentation scheme

outlined in Table 1, fewer iterations of the EM algorithm are required. Because there is

less augmented data, however, the M-step is not in closed form. Thus, we implement an

inner EM algorithm to accomplish the M-step of the outer EM algorithm. This strategy is

similar to the algorithm illustrated in Figure 10, except the outer E-step does not require

a Gibbs sampler but is nonetheless computationally demanding. The inner EM iteration

fixes Y aug
1 and updates only the first three rows of Table 1 in the inner E-step and θ in

the M-step. If this inner EM converges slowly (e.g., there are many and/or weak emission

lines), a relatively large number of inner iterations (e.g., 10) may substantially improve the

speed of the algorithm. The outer E-step updates all of Y aug.

The advantage of nesting is illustrated using a spectrum of the high redshift quasar S5

0014+81 collected with the Chandra X-ray observatory as described by Elvis et al. (1994).

The spectrum is modeled using a power law continuum, f(θC , Ej) = γE−β
j , exponential

absorption, g(θA, Ej) = eξ/Ej , and a single Gaussian emission line with location, width, and

intensity parameters2 for a total of six free parameters. The first two panels of Figure 12 show

the convergence of ν, the expected counts attributed to the line, for the EM and nested EM

algorithms, respectively. The nested EM algorithm (run with 4 inner iterations) converges

in about a third of the time required by the standard EM algorithm. The remaining panels

in Figure 12 will be described shortly.

To further improve the convergence of the algorithms, we can reduce the augmented

information for θ using the method of conditional augmentation. In particular, we reduce

the counts attributed to the absorbed photons in the emission line, Ÿ L
j − Ẏ L

j . Recall that

absorption does not occur uniformly across the range of energies of an emission line, and the

energies of the observed photons are biased towards areas of low absorption, complicating

parameter estimation. Our typical strategy, as described in Table 1, is to treat the absorbed

photons as missing data. Thus, in the augmented data, there is no absorption. It is important

2A Gaussian emission line is parameterized as ν
σ
φ
(

E−µ

σ

)

, where φ is the standard normal probability density function,

µ is the line location, σ is the line width, and ν is the line intensity.
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to note, however, that we need not account for (i.e., augment) all of the absorbed photons,

rather we only need the absorption rate to be constant across the support energies of the

emission line. Thus, a better strategy is to augmented fewer absorbed photons, just enough

so that the absorption rates are equal across the range of energies of an emission line. In

particular, suppose amin is the lowest absorption rate, 1−djg(θ
A, Ej), where j varies over the

support of the emission line. To reduce the volume of the augmented data, we can compute

Ÿ k
j acting as if the absorption rate were 1−djg(θ

A, Ej)−amin. Here amin is the optimal value

of a working parameter, and we condition on it throughout. In this way, we add fewer counts

to each bin. As an extreme example, consider a delta function emission line that is contained

entirely within a single energy bin. In this case, the support of the emission line is one bin,

amin = 1− djg(θ
A, Ej) with j the index of the bin containing the line, 1− djg(θ

A, Ej)− amin

is zero, and we need not impute any missing counts to account for absorption in the line. We

emphasize that this does not change the model being fit, it only improves the efficiency of the

computation. This strategy is used in the CDA-EM algorithm and is combined with nesting

in the nested CDA-EM algorithm; both algorithms are illustrated in Figure 12. The nested

EM algorithm and the CDA-EM algorithm (coincidentally) require similar computation

time, combining the two strategies, however, is twice as fast as either alone. The final

panel in Figure 12 is a more detailed comparison of the three improved algorithms. These

algorithms are discussed and further illustrated in van Dyk and Kang (2004).

Other strategies described in this article lead to additional improvements. The posterior

distribution or likelihood of the location of a narrow emission line, for example, is typically

highly multimodal. The Poisson nature of the data leads to small energy ranges with more

counts than expected. These correspond to possible locations of a narrow emission line and

may be relatively large modes of the likelihood if the actual line is weak. The standard EM

and DA algorithms described here are not able to jump between these modes because line

location is updated while conditioning on which photons are attributed to that line. Thus,

the line location will be among the energies of these photons and only photons in this energy

range will be attributed to the line in the next step. To get around this, van Dyk and Park
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(2004) and Park and van Dyk (2009) suggest EM-type and DA-type samplers that remove

the conditioning on all or part of the augmented data while updating the line locations.

The result is ECME and AECM algorithms for mode finding and partially collapsed Gibbs

samplers for posterior exploration, all of which are much more efficient than the standard

EM and DA algorithms.

8 Concluding Remarks

The highly flexible nature of multilevel modeling inhibits an off-the-shelf algorithmic ap-

proach to model fitting. However, the flexibility of a dynamic combination of data aug-

mentation and model reduction give us tools to tackle these models. As illustrated in the

spectral model, the many recent extensions and refinements of data augmentation meth-

ods can substantially improve computational speed while maintaining simplicity and stable

convergence, thus greatly extending the applicability and power of data augmentation .

The data-augmentation and model-reduction strategies outlined in this article have been

used either explicitly or implicitly to derive numerous efficient EM-type and DA-type algo-

rithms with applications to a wide range of models including longitudinal data analysis for

binary response and robust methods, robust regression, binary and grey-level Ising models,

dynamic linear models, finite mixture models, Poisson image analysis, probit regression,

multinomial probit models, switching-state space models, factor analysis, spectral analysis,

etc. A small subset of examples can be found in Liu and Rubin (1994, 1995); Gelfand, Sahu,

and Carlin (1995); Meng and van Dyk (1997, 1998, 1999); van Dyk and Tang (2003); van

Dyk and Park (2004); Higdon (1998); Pilla and Lindsay (2001); Liu, Rubin, and Wu (1998);

van Dyk (2000a,b); Liu and Wu (1999); van Dyk and Meng (2001); Foulley and van Dyk

(2000); van Dyk and Kang (2004); Imai and van Dyk (2005a,b); Gelman, van Dyk, Huang,

and Boscardin (2008); Pope and Wong (2005); and Ghosh and Dunson (2009). We hope that

this overview paper will help to both further stimulate methodological research and promote

efficient implementation of EM-type and DA-type algorithms in practice. In other words,
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Figure 12: Various EM-type Algorithms for Fitting the Spectral Model. The figure illustrates the
computational advantage of nesting and conditional augmentation. All five plots show the convergence
of the parameter ν, the expected line count, as a function of C.P.U. time in seconds. The five plots
correspond to the standard EM algorithm based on the data-augmentation scheme outlined in Table 1
(solid line) ; the nested EM algorithm (dotted line); the CDA-EM algorithm (dashed line); an algorithm
that combines nesting and CDA-EM (dotted-dashed line); and a close up of the first 300 seconds
comparing all but the standard EM algorithm. The solid horizontal line in each plot is the MLE of ν.
The nested and CDA-EM used here are described in Section 7.
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to quote the title, we hope practitioners will have an easier time to climb likelihood surfaces

using EM-type algorithms and to explore posterior landscape using DA-type samplers.
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