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SUMMARY 

Data augmentation, sometimes known as the method of auxiliary variables, is a powerful 
tool for constructing optimisation and simulation algorithms. In the context of optimis- 
ation, Meng & van Dyk (1997, 1998) reported several successes of the 'working parameter' 
approach for constructing efficient data-augmentation schemes for fast and simple EM-type 
algorithms. This paper investigates the use of working parameters in the context of Markov 
chain Monte Carlo, in particular in the context of Tanner & Wong's (1987) data aug- 
mentation algorithm, via a theoretical study of two working-parameter approaches, the 
conditional augmentation approach and the marginal augmentation approach. Posterior 
sampling under the univariate t model is used as a running example, which particularly 
illustrates how the marginal augmentation approach obtains a fast-mixing positive recur- 
rent Markov chain by first constructing a nonpositive recurrent Markov chain in a 
larger space. 

Some key words: Auxiliary variable; EM algorithm; Incomplete data; Markov chain Monte Carlo; PXEM 
algorithm; Rate of convergence; Working parameter. 

1. INTRODUCTION AND OVERVIEW 

Research in data augmentation, which is a generic term for methods that require the 
construction of unobserved 'data', as a computational tool has produced a multitude of 
powerful algorithms both for mode finding and for distributional sampling. Perhaps the 
best-known example is the EM algorithm (Dempster, Laird & Rubin, 1977). One of the 
major contributions of Dempster et al. (1977) is the recognition that, by purposely con- 
structing 'missing data', one can apply the EM algorithm to many models that have no 
missing data in the traditional sense. The idea of augmenting the observed data to a larger 
dataset for which model fitting is easier was extended to posterior sampling by Tanner & 
Wong (1987), who developed the data augmentation algorithm which can be viewed as 
a two-step Gibbs sampler. 

Although these algorithms are flexible and often simple to implement, their slow conver- 
gence is a common complaint. For the EM algorithm, many proposals have been made for 
speeding the convergence; see Meng & van Dyk (1997) and Meng (1997) for a brief review. 
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Among them, we prefer methods that aim at increasing the speed without unduly sacrific- 
ing simplicity or stability in the resulting algorithms. An effective method for achieving 
this goal is to search for efficient data-augmentation schemes, where 'efficient' refers to 
both easy implementation and fast convergence of the resulting algorithms. Such algorithms 
are developed in Meng & van Dyk (1997, 1998), Liu, Rubin & Wu (1998) and van Dyk 
(2000) via a 'working parameter' which is introduced solely for the purpose of efficient aug- 
mentation, and thus is not a part of the original observed-data model. Currently, there 
are two methods of making use of such working parameters. 

The first approach, which we call conditional augmentation, seeks to condition on a 
fixed value of the working parameter that results in selecting an optimal or nearly optimal 
algorithm from a class of candidate algorithms indexed by the working parameter. For 
EM, the optimality refers to the minimisation of the expected observed Fisher information 
from the augmented-data likelihood/posterior as a function of the working parameter, 
since the so-called 'fraction of missing information' (Dempster et al., 1977) determines 
the rate of convergence of EM; the less we augment, in terms of the Fisher information, 
the greater the theoretical speed of convergence of the algorithm. The key constraint for 
this minimisation is that the resulting algorithm should be easy to implement. Meng & 
van Dyk (1997, 1998) give three applications where this balance is achieved. 

The second approach, which we call marginal augmentation, also aims at reducing the 
augmented information but, instead of conditioning on the value of the working parameter 
that minimises the augmented information, the methodology aims to marginalise over, i.e. 
integrate out, the working parameter. Not introducing a working parameter is, in fact, 
implicitly conditioning on a special value of an invisible working parameter. By actively 
avoiding this conditioning, we can increase the variability in the augmented data and thus 
reduce the augmented information. The idea of marginal augmentation was stimulated 
by our study of the expanded-parameter EM algorithm of Liu et al. (1998), which maximises 
the augmented-data loglikelihood as a function of the working parameter within each 
EM iteration. This contrasts the conditional augmentation method adopted in Meng & 
van Dyk (1997), where one seeks the optimal value of the working parameter before 
EM iterations. 

In general Markov chain Monte Carlo, marginal augmentation refines the standard 
auxiliary variable method, e.g. Besag & Green (1993) and Green (1997), and has connec- 
tions with several other approaches for improving mixing rates, as discussed in ? 4. It also 
suggests that one can often obtain a fast mixing positive recurrent Markov chain by 
constructing a larger nonpositive recurrent Markov chain; it is nonpositive recurrent 
because of the non-identifiability, and thus improper posterior, of the working parameter. 
This finding may add an interesting dimension to the recent debate over the usefulness of 
nonpositive recurrent Markov chains in Markov chain Monte Carlo, e.g. Casella (1996), 
Berger (1996) and George (1996), and calls for further investigation of Markov chain 
Monte Carlo theory with improper invariant distributions. 

The focus of this paper is to introduce conditional augmentation and marginal aug- 
mentation in the context of constructing sampling algorithms and to apply these 
approaches to the univariate t model. Applications to other common models, such as 
mixed-effect models and probit regression, will be reported elsewhere. For clarity and 
succinctness, we will avoid inconsequential mathematical details, and we assume back- 
ground knowledge of the EM algorithm, compare Dempster et al. (1977), Meng & van Dyk 
(1997) and McLachlan & Krishnan (1997), and of Markov chain Monte Carlo, 
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in particular the Gibbs sampler; compare Casella & George (1992), Tierney (1994), Gilks, 
Richardson & Spiegelhalter (1995) and Gelfand (1997). 

2. CONDITIONAL AUGMENTATION 

241. Theoretical background 
Suppose Yb, are the observed data and p(O Ybs) oc P(Yob I O)p(O) is the posterior density 

of 0 upon which inference will be based. Here P(Yb Ibs 0) is a probability density/function' 
with respect to a measure y(.), and p(O) is a proper or improper density on 0 E Rd. 
Typically, we want to find the modes of p(O I Ybs) and/or to sample from it. These tasks, 
however, are often nontrivial, in which case the idea of data augmentation may be useful. 
We start by relating the observed data, Y1bs to the so-called augmented data, Y1,ug, through 
a many-to-one mapping Yjbs8 =(Yug). The partially unobserved Yaug is given a model 
P(Yaug I 0) that preserves the marginal model of interest, P(Y,bs I0), namely 

jL(Yaug) = rb P(Yaug 0)I(dYaug) = P(Ymbs 0) (241) 
-#(Yaug) =Yobs 

With appropriate choices of p(Yaug 0), we can achieve two objectives simultaneously: 
(i) it is relatively straightforward to sample from or maximise p(O Yaug), and (ii) it 
is relatively easy to sample from or perform analytical calculation with respect to 
P(Yaug IYobs, 0). For maximising P(O I Yobs), with such choices, we can construct an easily 
implemented EM algorithm (Dempster et al., 1977) that iterates between the E-step, which 
computes Q(0 I 0(t)) = E{logp(O yaug)yobs 0(t)} and the M-step, which maximises Q(0 0(t)) 
to determine the next iterate 0 (t+ 1). To sample from P(O IYobs), we can implement Tanner 
& Wong's (1987) data augmentation algorithm, which iterates between sampling Y(t+) 
from P(Yaug 1obs) 0(t)) and sampling 0(t+1) from p(O IY V`l)). 

To speed up EM-type algorithms, the 'working parameter' approach (Meng & van Dyk, 
1997) introduces a hidden parameter, os, into (2 1) that is only identifiable given Yaug: 

{#((Yaug)= ro P(Yaug I 0, 0)/1(Yaug) = P(1Yobs I0) (2 2) 
-#(Yaug) = Y.b. 

Thus, introducing os does not alter the model we are fitting. The following univariate t 
example, adopted from Meng & van Dyk (1997), illustrates the construction of such an 
augmented-data model. 

Suppose y follows a location-scale t distribution with v degrees of freedom. Then we 
can write 

y =,u+ -q, z -N(O, 1), q-Xv2lv, z-lq, (2-3) 

where I denotes independence. Consequently, an obvious data-augmentation scheme for 
fitting (2 3) to Yobs = {Yi,.. , Yn}, where yi is assumed to be the ith independent realisation 
of y, is Yaug = {(yi, qJ), i= 1, ... , n}. More generally, we can view (2 3) as a special case 
of the following model with oc = 0: 

1l -oc 

U Z~~~~~~~ yMe2 s e + a ztN(O,1), qdaLmaon usingX23vv, zIsq. (2i4) 
Model~~~~~~,.I (24 ugssta h tnadagetto sn 23 si atcniinn 
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on a specific value of the working parameter, that is os = 0, and there may be other values 
of os that result in better algorithms. Indeed, Meng & van Dyk (1997) show that using 
os = 1/(1 + v) yields the optimal EM algorithm in the sense of maximising the theoretical 
speed of convergence. Although the optimal EM algorithm differs trivially from the standard 
EM algorithm corresponding to o = 0, its convergence is always faster and often much faster. 

The basic idea underlying the t example is in fact general. Once p(Y'ugI 0, ) is con- 
structed, it yields a class of EM implementations indexed by oc. We can then search for 
the optimal implementation by minimising the theoretical matrix rate of convergence 
DMEM(oL) = I -I1b8Ia-(Lc) over os in a suitable class 40. Here 

o = 8 lP(O I |bs) Iaug(a) = E { logP(O aug, X) | X } 8080 0=0* 1J0=0* 

where 0* is the limit of {0(t), t > O}. Since Iobs does not depend on L, it is sufficient to 
minimise Iaug(cx), in the sense of a semipositive definite order, over oc. Note that 

I `o I ' is the fraction of missing information mentioned in ? 1. We call this minimis- 
ation approach conditional augmentation because it seeks a fixed value of the working 
parameter to be conditioned upon while constructing an algorithm. 

A general method of introducing os can be formalised as follows. Typically, we start 
with a standard augmentation scheme Yaug = {Ymis, Yobs } with density/distribution 
P(Ymis1Yobs 0)P(Yobs10). We then define a more general data augmentation, Yaug= 
{ymis, Yobs}, via 

Ymis = -90CO( MiA) (2 5) 

where the mapping _9,,(.) is one-to-one for any given 0 and oc; for continuous Ymis we 
also assume this mapping is differentiable. For instance, with the t example, Ymis= 
{11,... , q4} and Ymis =_ o0(Ymis) = { -2aqlg,.. , o-2 ctn}. The distribution of Yaug is then 
given by 

P(Yaug I 0, ? ) = P( ymis I Yobsn 0, ?)P(Yobs I 0) = P(?(Ymis) I Yobs, 0) (AYmis I 0, ? ) I P(Yobs I 0), 
(2 6) 

where J(Ymis1I 0, Lx) is the Jacobian for the inverse transformation, -Y (Ymis), or 1 if Ymis is 
discrete. It is easy to see that 

T P(Yaug I 05 a) dYmis = {P(imis I Yobs7 O)P(Yobs 0 0) diYmis = P(Yobs 0 0); 

that is, (26) is a legitimate augmentation for any os such that _9,,(.) is a one-to-one 
mapping for any 0 e 0. We denote the set of all such os's by d; note that /0 may be a 
proper subset of v and os need not be a scalar. 

2 2. Finding efficient data-augmentation schemes: From EM to the Gibbs sampler 
To apply our augmentation approaches to the Gibbs sampler, we might consider choos- 

ing os on the basis of the so-called geometric rate of convergence of the Gibbs sampler. 
For the data augmentation algorithm, Amit (1991) has shown that the geometric rate of 
convergence is the square of the maximal correlation between 0 and 'lug under the joint 
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stationary density p(O, Yaug I Yibn, ), namely 

ADA ()= sup var [E{h(0) I Yaugn o} I Yobs, ?X] 
h:var{h(O) I Yobs} = 1 

= 1 - inf E[var {h(0) I Yaug o} L Yobs LX, x]. (2 7) 
h:var{h(O) I Yobs} = 1 

The right-most term in (2 7) relates A{DA(cL) to the maximal fraction of missing information 
(Liu, 1994a). Throughout the rest of the paper we will assume all expectation calculations 
are well defined, as in (2 7). 

However, it is clear from (2 7) that AuDA(cL) is not a practical criterion for choosing os 
except in special cases, e.g. with Gaussian models. A more manageable criterion is the 
lag-i autocorrelation, a common measure for studying the mixing rate of a Markov chain. 
If the chain from a data augmentation algorithm has reached equilibrium, Liu (1994a) 
establishes that, for any non-constant scalar-valued function h(O), 

corr{h(O(t)), h(O(t+'))} = var[E{h(0) Yaug, L}IYobs, x] 
var{Ih(O) IYobs } 

Consequently, the maximum autocorrelation over linear combinations h(O) = XTO, for 
x * 0, is given by 

sup corr (XTO(t), xTo(t?+1)) 
- SUP TTvr{( 

~g~~ is } 
= P (~-B(o-)), (2-8) 

x * o x * o x var (0| YObs)x 

where YFB(o) is the Bayesian fraction of missing information for 0 under p(Yaug I 0, 2), 

AB(a) = {var(Ol Yobs)} -1 var {E(O I Yaug, 2) I Yobs, L} 

= I - {var(O I Yobs)} - 'E{var(O I Yaug, o) I Yobs, L(}, 

that is the fraction of the posterior variance of 0 explained by the unobserved part of Yaug 
(Rubin, 1987, p. 86), and p(A) denotes the spectral radius of A. Thus, in order to reduce 
autocorrelation, we would like to maximise E{var(0 IYug) O) Yug bs, 0} over o using the semi- 
positive definite ordering. 

The autocorrelation criterion typically is still not practical because it requires the calcu- 
lation of E{var(0 Yaug, ?) Y,bs, o} which itself may require simulation. Fortunately, the 
Iaug(ac) criterion discussed in ? 2 1 for choosing the optimal EM algorithm turns out to be 
a rather useful approximation here too, at least in the applications we have encountered. 
This approximation becomes exact when p(O, Yaug I Yobsi, o) is normal, in which case 

I- (Lx) = E{var(0 I Yaug, ?) Yins, ?} 
and , =DA(p) = (B(()) = p(DMEM(L)); e.g. Roberts & Sahu (1997). Even in cases where 
I-(ac) does not approximate E{var(0 Yaug, o) Yin, } well, its maximiser can still be a 
very good approximation to the maximiser of the latter. The t example discussed in ? 2 1 
illustrates this point. 

Suppose we want to use a data augmentation algorithm to sample from the posterior 
p(,u, 2 IYobs), under the t-model given in (2 3) using the standard non-informative prior 
p(,u log(U2)) oc 1. Under the new augmentation scheme Yaug = {(yi, qj), i = 1, .. ., n}, 
defined by (2 4), we have 

qi |2o( 
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independently for i = 1,... n, 

ju 2 Yaug aN(/ N Ag q (2.10) 

where Y =Ilqiy/i=1 qi, and 

p(u IYaug, C ( ) + o expk- 2 L qi 2 + v}] (2411) 

Thus, the two steps of each iteration consist of first drawing q = (ql1... qn) from (2-9) 
and then drawing 0 = (,u, u2) jointly using (2410) and (2411). The density in (2411) is not 
easily sampled unless os = 0 or os = 1. Gilks (1997) uses the adaptive rejection Metropolis 
sampling to implement this step and his empirical result, with n = 100, shows that the 
closer os is to the optimal value for implementing EM, oc EM = 1/(1 + v), the smaller the p ~~~opt~ /1+) h mle h 
autocorrelation, corr(u(t), T(t+ 1)), where - = C-2. 

Gilks's (1997) empirical validation of the conjecture made in Meng & van Dyk (1997) 
that ocEM should also work well for the Gibbs implementation would not be of much 
interest if p(O, q IYobs, 2) could be well approximated by a multivariate normal, which is 
not the case; a plot of p(z I Yobs, ) will show obvious nonnormal character. Furthermore, 
Gilks's (1997) implementation was actually a three-step Gibbs sampler which drew 
from p(z Iu, Yaug, Lx) in place of (2 11), and thus was not the data augmentation algor- 
ithm on which (2 7) and (2 8) are based. This is rather encouraging; the usefulness of 
the ocEm approximation is apparent because it is typically much more difficult to 
compute E{var(O Yaug,o ) .0bsn c} than to compute Iaug( c). For example, calculating 
E{var(c IYaug, ) IYob8, L} requires first finding var(u<- Yaug, o) with respect to (211) and 
then averaging it over p(q I Yobs,, ). Neither of the two steps is analytically tractable; in 
computation, we used numerical integration in the first step and Monte Carlo integration 
in the second step, using the data augmentation algorithm to simulate from p(q IYobs, or). 

Table 1 provides the results with n = 100 and the same values of v and os, with the 
addition of os = 0 9 and os = 1, as in Gilks (1997); we used 30 000 Gibbs draws for the 
Monte Carlo integration in each cell. While these values are 0 03-0417 larger than the 
corresponding values given by Gilks (1997), partly as a result of different Yobs, they show 
the same pattern as Gilks's (1997) table. In particular, for each v, the smallest value of 
corr(c(t) , -(t + )) is given by the a that is the closest to 1/(1 + v). Although this does not 
imply that os = 1/(1 + v) exactly maximises E{var(c I Yaug, L) I Yobs,, L}, it is clear that 

= 1/(E 1 + v) can be used to approximate a DA for practical purposes. In ? 3, we will show 
that we actually can achieve the same convergence rate as Yaug with o = oc Em but without 
the unpleasant and time-consuming draws from (2411), which offsets the gain from the 

Table 1. The autocorrelation corr(c(t), T(t+ 1)) as a function of os and v. 
As the LoEm approximation suggests, the optimal value of a is near 
1/(v + 1); the corresponding values of the autocorrelation are underlined 

v 00 01 02 03 04 05 06 07 08 09 10 

1 080 075 070 065 0 61 060 061 065 070 075 079 
2 069 062 056 053 054 058 064 070 076 080 084 
4 056 048 045 048 056 065 072 078 083 086 089 
9 027 019 027 044 060 071 078 084 087 090 092 
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faster mixing rate in Gilks's (1997) implementation, and thus we provide an efficient 
algorithm for posterior sampling under the t model. 

3. MARGINAL AUGMENTATION 

341. Motivating marginal augmentation from conditional augmentation 
As seen in ? 2, in order to minimise the lag-i autocorrelation, the conditional aug- 

mentation approach aims to maximise E{var(O I Y'aug, 0) I Ybs, ox}. By viewing a as a random 
variable, we recognise that there is another way to increase E{var(O Yaug ) IYobsn, X}. 
Suppose we assign a proper 'working' prior distribution, p(o), to os and define the joint 
distribution of (0, o, Yaug) as 

p(O, LC, Yaug) = p(Yaug I 0, L)p(0)p(LX). (341) 

Since os is a working parameter, the posterior distribution of 0 given Yobs implied by (341) 
is proportional to P(Yobs O)p(O), our original model. Note that (31) assumes 0 and os are 
a priori independent, but, if we replace p(oa) by p(o I0) in (31), the implied conditional 
distribution p(O IYobs) is unchanged. For simplicity of presentation, we do not pursue the 
dependent case in this paper. 

Under the joint distribution (341), it is easy to verify that 

E{var(O I Yaug) Yobs= E [E{var(O I Yaug ) I Yaug } I Yobs] + E [var {E(O I Yaug, L) I Yaug } I Yobs] 

= E [E{var(O I Yaug, L-) I Yobs, L-} I Yobs] + E [var {E(O I Yaug ) I Yaug} I Yobs] 

E [E{var(O I Yaug, o) I Yobs, L}Ll Yobs] 

Therefore, if we use the marginal augmentation induced by (3 1), that is 

P(Yaug I0) = Jp(Yaug I0, x)p(Lc) doc, (3-2) 

then on average, with respect to os, the Bayesian fraction of missing information will 
be no larger than that from the conditional augmentation, p(Yaug I 0, or). When 
E{var(0 I Yaug, 0) I Yobs, L} does not depend on L, we have the following stronger result. 

LEMMA 1. If E{var(O Yaug, L) I Yobs, oc} does not depend on the working parameter, os, then 
p(FB) p(FB(O)) for each Lx c 4, where B = {var(0 lYobs)} var {E(0 Yaug) Yobs } and 
_B (O) = {var(0 I Yobs)} -' var {E(0 I Yaug, o) I Yobs, X} 

In other words, the data augmentation algorithm under the marginal augmentation 
P(Yaug 0) will produce lag-I autocorrelations over linear functions of 0 no greater than 
those under the conditional augmentation p(Yaug I 0, or). In view of the second expression 
in (2 7), we also have an analogous inequality between the geometric rate of convergence 
of the data augmentation algorithm under marginal augmentation, ADA, and that under 
conditional augmentation. 

LEMMA 2. If for any scalar-valued function h, 
E[var{h(0)JYaug, L} Y,bs, o] does not 

depend on a, then ADA < ADA(cX) for all a E v. 

When the original augmentation scheme can be written as Yaug = (Ymis, Yobs), the suppo- 
sition of Lemmas 1 and 2 is satisfied when the mapping -2,a o defined in (2 5) does not 
depend on 0, that is when we create a conditional augmentation via Amis =x(Znis). This 
is summarised in the following result. 



308 XIAO-LI MENG AND DAVID A. VAN DYK 

THEOREM 1. Given an augmentation scheme, aug= {i 1b.}, and a one-to-one map- 
ping a(.) indexed by a working parameter os E 4/, the class of conditional augmentations 
created by {Ymis, 'obs } = {9a(Ymis), 1obs } are equivalent, that is ADA(cX) At. Furthermore, for 
any given proper prior p(ac), the geometric rate of convergence of the data augmentation 
algorithm under the corresponding marginal augmentation 

P(ymis , Yobs)= f p(Ymis, Yobs I 0, L#)p(Lx) dco 

cannot exceed A. 

Proof. Under the joint distribution (3 1), (0, Ymis, Yobs) is jointly independent of o, where 
Ymis = - C(Ymis). This is because, by (2 6) and (341), 

P(O Ymis , Yobs X OC) = {pymis I Yobs , O)p(Yobs I O)p(O)} p) - 

Consequently, 0 is independent of os given ( Ymbs) 
and 5x is independent of , given 

Yobs8 It follows then that, for any h(O), 
E [var {h(0) I Ymis, Yobs, 0} I Yobs, o] = E [var {h(O) lymis, Yobs, L} I Yobs, oL 

= E [var {h(O) |Ymis, Yobs } I Yobs]I 

which is free of oc. LIi 

The implication of this result is that we can always try to improve an augmentation 
scheme Yaug= {ymis, Yobs} by introducing a working parameter via a mapping Ymis= 
9A(Ymis) and then implementing the data augmentation algorithm under the marginal 
augmentation with a suitable choice of p(oa) which is independent of p(O). The two main 
requirements for choosing the mapping -9a and the prior p(oa) are as follows. 

Requirement 1. Given 0, os and yaug are not independent. 

Requirement 2. It is relatively easy to draw from p(os I Yaug). 

Requirement 1 excludes the trivial choice of os, that is P(Yaug l0, L ) does not depend on 
os, and Requirement 2 ensures the savings from faster mixing will not be offset by the 
computational costs involved with the marginal augmentation approach. Additional 
requirements, such as ensuring that p(ymis IYobs, 0, oc) is easy to draw from, should be a 
part of the requirements for the original augmentation scheme P(Ymis I Yobs, 0). 

3 2. Implementing the Gibbs sampler under marginal augmentation 
Consider the t example of ? 2, but now with the following construction: 

y = u+l , z -N(O,l1), q ILax-2v, zl1q. (3-3) 

In other words, we use _('ymis) = {IL1 ... ., 4cq}, where {1,1... , q4} are the missing data 
in the original augmentation as in (2 3). This scheme is clearly not suitable for the con- 
ditional augmentation approach because -a does not depend on 0. However, Liu et al. 
(1998), who introduced (3 3), have shown that when (3 3) is used with the parameter- 
expanded EM, that is PXEM, algorithm it leads to a PXEM implementation which is identical 
to the optimal EM obtained under the conditional augmentation approach using aug- 
mentation scheme (24) with o = 1/( 1 ?v). This suggests that (33) may be efficient for 
implementing the Gibbs sampler for drawing from p(,u, u2 Yobs) 
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To derive a data augmentation implementation under (3 3), we choose LX -/3/4, where 
,y > 0 are given; the choices of ,B and y will be the subject of ? 3 4. Under this proper 

prior for oc and the standard improper prior p([u, log o2) oc 1, it is straightforward to derive 
that 

qi kta [0 robs, y 2 (34) 

independently for i 1, .. ., n, 

( _=lq 

where/Q = i=lqiyi/ 1 qi, and 

Z1n=1 qi(yi -) 
07 2 y X i ~~~~~~(3-6) 

aug 2 (3-7) 
Xy+nv 

Given these conditional distributions, we can implement a data augmentation algorithm 
with the marginal augmentation (3-2) as follows. At the (t + 1)st iteration, we draw q(t + 1) 
from the marginal augmentation 

p(q I, 
t), 

[2](t)?, Yobs) = { p(q I P(t), [52](t), Yobs, cx)p(cx) do, 

by first drawing (t +1) from its prior p(a) and then q(t +1) from p(q I (t), E[2](t), Yobs 
- 
=(t+ 1)) as given in (3 4). Given q = q(t+ 1), draw (1(t+1) [y2](t+ 1)) from p(a, 2 1Yug) = 

f p(u, o2 Yaug, oc)p(oc daug)do by first drawing 2(t+1) from the posterior p( IYaug) given by 
(3-7), then drawing [072](t+1) from (3 6) given x = a(t+ 1), and finally drawing It(t+l) from 
(3 5) given oc = O1(t+ ) and 02 = [0.2](t+ 1). As a comparison, the conditional augmentation 
approach would fix oc at a particular value, for example oc = 1, in (3 4)-(3 6), and ignore 
(3 7). It is easy to see that when oc is fixed at a the actual value of a is irrelevant for 
{([(t)? [021(t) t 0}. 

The description for the t procedure is again general. The data augmentation algorithm 
under the marginal augmentation (3 2) is typically implemented according to the following 
iterative scheme. 

Step 1. Draw V(t +) from the prior p(x), and then draw Y(t + 1) from 
P(Yaug I yobss O(t), Li(t+ 1))- 

Step 2. Draw a(t +1) from the posterior p(Lx Y(t+l)), and then draw 0 (t +1) from 
p(o yt Yu+ 1) S cx(t + 1) 

To ensure easy drawing from both p(c) and p(c ILYaug), it is generally effective to use 
conditional conjugate working priors with respect to p(Yaug 0, ), as we did with the 
t model. 

It is important to distinguish the &(t+1) in the first step from the a(t`+) in the second 
step. While -(t+1) facilitates the draw from p(-1-XI0), I (t+l) facilitates the draw from 

p( Yaug). Both of these distributions have oc integrated out and thus can be much more 
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difficult to draw from directly, as with the t model. Since a(t"+) is independent of o(t), the 
working parameters are not a part of the Markov chain. The resulting chain is given by 
{(Q(t), Y(g), t > O}, and all results regarding the standard data augmentation algorithm 
apply, e.g. both {0(t), t > O} and {Y(t)g, t > O} are reversible Markov chains; see Liu, Wong 
& Kong (1994). 

The above discussion suggests that there is an alternative implementation that sets 
a(t +1) = 2(t) instead of drawing a new a(t +1) from the prior p(ot). This is simply implementing 
the data augmentation algorithm with 0 = (0, ca) by iteratively drawing from P(Yaug 1 0 Yobs) 
and p(0 Yaug). These two schedules for implementation correspond to Scheme [1] and 
Scheme [2] of Liu et al. (1994). 

Scheme [1]. We iteratively draw from P(Yaug 0, Yobs) and p(O Yaug), which induces a 
marginal Markov chain for 0. 

Scheme [2]. We iteratively draw from p(Yaug I 0, 2, Yobs) and p(O, al Yaug), which induces 
a joint Markov chain for (0, 4). 

Since oc is not identifiable given Yobs, the invariant distribution given by Scheme [2] is 

P(O, Yaug I Yobs) = P(O, Yaug I Yobs c)p(oc), (3 8) 

and thus the limiting distribution of {0(t), t > O} under Scheme [2] is our target distri- 
bution p(O Yobs). 

While Scheme [1] and Scheme [2] have the same lag-i autocorrelation for linear 
combinations of O(t), the geometric rate of convergence of Scheme [1] cannot be bigger 
than that of Scheme [2] because the maximum correlation between 0 and Yaug cannot 
exceed that of 0 and Yaug (Liu et al., 1994). We note that, when oc and Yaug are independent 
given 0, the two maximum correlations are equal and thus the two methods have the 
same geometric rate of convergence, but this possibility is excluded by Requirement 1 
given in ? 3 1. 

Another difference between Schemes [1] and [2] is that the induced marginal chain 
{Q(t), t > O} is a Markov chain under Scheme [1], but not necessarily under Scheme [2]. 
However, with additional assumptions which are met in our applications, we can conclude 
that {0(t), t > O} is a Markov chain under Scheme [2]. 

LEMMA 3. Suppose the conditional augmentation is constructed via a one-to-one mapping 
?9A(.) indexed by a working parameter os E X, that is {Ymis, Yobs} = {Ix(9Ymis) Yobs} where 
j(Ymis IYobs, 0) is the original augmentation scheme which does not depend on oc, and p(oc) is 
a prior on v such that Scheme [2] is computable. Suppose also that the posterior of 0 given 
{Ymis, Yobs} = {9(Ymis), Yobs} does not depend on the value of E d sl. Then the marginal 
chain {0(t) t > O} induced by Scheme [2] is a Markov chain. 

Proof. Since O(t+1) is a draw from p(O ym')Y1bs) where Ygt+ l)- = (t(Y 
and Yi(t+l) is a draw from p(Y bs~ 0) which does not depend on 4(t) the transition 
probability p(Q(t+l)JO(t), C(t)) does not depend on CC(t) under our assumption that 
p(O l @2(t (5?i+j1)), Yobs) does not depend on C(t). LI 

3*3. Potential benefits of nonpositive recurrent Markov chains 
The previous discussion suggests that as long as drawing oc from the working prior is 

relatively simple one should always use Scheme [1]. If an improper prior for T is used, 
then obviously Scheme [1] cannot be implemented. However, Scheme [2] can be, as long 
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as p(cL IYaug) is proper, which is always the case under Requirement 2 of ? 3 1. Of course, 
since oc is not identifiable given Y,bS, we see from (3 8) that the invariant distribution of 
the joint chain produced by Scheme [2] is improper. Consequently, the joint chain 
{(0(t), 2(t) Y(g), t > O} is not positive recurrent; we assume irreducibility throughout. 

Using an improper working prior is a nontrivial extension in that it can greatly compli- 
cate the convergence behaviour, particularly because the marginal augmentation in (3 2) 
is not even defined; ? 3 4 will use the t example to illustrate this point. The advantage, 
however, is illustrated in Fig. 1 which shows corr(c(t), z(t + 1)) under Scheme [1] as a func- 
tion of y using the same four datasets as in Table 1. The parameters for p(o I ,B, y) are 
selected so that E(c-') = yf-1 is held constant, yfl1 = c, and thus var(oc-) = 2y -32 is 
inversely proportional to y. It is clear from Fig. 1 that for all four datasets the autocorre- 
lation is reduced as log(y) -> - oo, which suggests the choice y = 0; the limiting levels match 
the underlined values in Table 1 well, a phenomenon discussed in ? 4 2. However, in the 
limit as y -O, p( /=y/c, y) occL-1, an improper prior. 

(a) v=1 (b) v =2 

f0l75 0 065 o 0 
o 0 0 

~~~~~~~~0 5 
0 .6 0 - _ _----------_ _ _ __.......... 

-2 0 2 4 6 8 10 12 -2 0 2 4 6 8 10 12 

log (y) log (y) 

(c) v=4 (d) v=9 

0s54 0 026 o 0 
o 0 

046 - 020 - _---------- 

-2 0 2 4 6 8 10 12 -2 0 2 4 6 8 10 12 

log (y) log (y) 

Fig. 1. Reduction in autocorrelation using marginal data augmentation. The plots illustrate the 
effect of the hyperparameter y, with / = y/50, on the autocorrelation under marginal augmentation. 

The horizontal lines represent the autocorrelation under the standard augmentation. 

While the joint chain {(Q(t), 2(t), Y(t)g), t > O}, where O(t) = (8(t), [572](t)), does not converge 
jointly in distribution with p(o) oc o- 1, the induced marginal chain {0(t) t > O} is a positive 
recurrent Markov chain with P(O I Ybs) as its invariant distribution. To see this, we note 
from (3 5)-(3 7) that, when B = 0, p(O I ocq, Y.bs) does depend on oc(> 0). Consequently, the 
condition of Lemma 3 is satisfied and thus {0(t), t > 0} is a Markov chain; note that 
Lemma 3 does not require p(oc) be proper. That the target density, p(O I Ybs), is the invariant 
distribution of this chain is a consequence of the following result, which can also be used 
to verify the Markovian property of {0(t), t > 0}. 

THEOREM 2. Suppose an improper prior, p(oc), is usedfor implementing Scheme [2] that 
induces an irreducible Markov chain {0(t), (t) t , 0} with transition kernel p(O, o 0', x'). 
Supposefor any pair 0, 0' E 0 there exists a sequence of proper prior distributions pm(LX) such 
that the corresponding kernels pm(O 0') under Scheme [1] converge to p(0 0', oc') = 
f p(O, _ 0',I ') dc when m >- oo. Then {Q(t) t>0} is a positive recurrent reversible Markov 
chain with p(O 1Yobs) as its unique invariant distribution. 
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Proof. Since Scheme [ 1 ] is a standard data augmentation algorithm under each proper 
prior, pmjo), by Lemma 3.1 of Liu et al. (1994), pn( 0I') satisfies the detailed balance 
condition, 

Pm(() O')P('I Y1bs) = Pm((' 0)P(0 I Y,bs) (3 9) 

When m -> oo, the conditions of Theorem 2 imply not only that {Q(t) t > O} is an irreducible 
Markov chain because p(O 0', oc') = limm pm(f 0 O') does not depend on oc', but also that the 
detailed balance condition is satisfied by its transition kernel p(O 0') p(O 0', oc'). C 

It is clear from the proof that as long as there is a sequence Pm(O 0O'), satisfying (3 9), 
that converges to p(O 0', o') as m -* oo, the result of Theorem 2 holds. That is, pm (O 0') 
does not need to be from Scheme [ 1], although in practice it is most natural to construct 
{pm(O0'), m) 1} from Scheme [1]. For our t problem, this comparison between 
Scheme [1] and Scheme [2] also allows us to determine what values of the 'hyperparam- 
eters' ,B and y can be used when p(oc I ,B, y) is improper; see ? 3 4. We start by noting that 
when p(oc I ,B, y) is proper, that is when , > 0 and y > 0, Scheme [ 1 ] can be represented as 
follows by a stochastic mapping, O(t) -Q+ 1) where 0 = (, Uy2); see (34)-(37) for the 
derivation. 

Step 1. Draw independently Z - N(O, 1), Zy n -1Z x2+1 and n copies of nv+, denoted 
by {X2+ l * 2 

%+1,n 

Step 2. Compute 

wit) = {(Yr/L() ?v} (i= 1,. ..,n), 

E i-1 w + (3 0) 

Step 3. Compute 

(t+1) A(t+l) + Z i= Wi Xv+1 i(Yi-( t))2J} (3-11) 

n_ Z (1Wt)X 2,iyi-A(t+1))2 2~1 [0.2](t+1) - i =1 i ? V+ W,i(yi Ht 2 (342) 

Expressions (3410)-(3412) provide an explicit stochastic-mapping representation of the 
transition kernel from 0(t) * 0 (t + 1), which we find easier to use in the following investigation 
than the transition kernel itself. 

Under Scheme [2], the mapping for ,u, that is (3411), is unchanged, but the mapping 
for 72 is replaced by 

n=Z~ W(t 2+ -,y A(t+1))2 2~1 [52 ](t+ 1) - / ? %V+ W,t)Xi+l Xe %y+nv( 

where 2(t) is from the tth iteration; recall that Scheme [2] is a joint chain on {I., y21 }. If 
we compare (3.13) with (3.12), we see that when =y = 0 the transition kernel under 
Scheme [2] iS the limit of the transition kernel under Scheme [1] as y O with any fixed 
/1>0, because x>2 becomes a point mass at zero as y {O. Consequently, Theorem 2 iS 
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applicable. In fact, when Scheme [1] is expressed as (310)-(3-12), we can formally allow 
Scheme [1] to admit the case y = 0 by defining X2=o = 0 in (3412). 

The key message from the t example is not just that the marginal chain {0(t), t > O} 
converges properly when fi = y = 0, but also that it has the fastest mixing rate in the class 
of algorithms underlying Fig. 1. Figure 2 displays the relative gains offered by this algor- 
ithm, Scheme [2] with ,B = y = 0, over the commonly used standard algorithm, i.e. with 
oc= 1 throughout the iteration. In Fig. 2 the two algorithms are compared using three 
independent chains each for o2 under the Cauchy model, i.e. when v = 1, starting from 
three over-dispersed initial values. Figures 2(a) and (b) display the estimated autocorrela- 
tions of chain one under each algorithm. The improved algorithm not only reduces the 
lag-i autocorrelation from 0 8 to 06, but also substantially reduces the number of consecu- 
tive iterations between draws that are essentially uncorrelated. Figures 2(c) and (d) show 
a time-series plot of the realisations from chain one, and Fig. 2(e) and (f) plot the estimated 
potential scale reduction factor iRZ of Gelman & Rubin (1992) based on all three chains 
as a measure of convergence. The improved algorithm reaches an acceptable iP much 
faster than the standard algorithm. 

(a) Standard algorithm, chain 1 (b) Improved algorithm, chain 1 

UO 0.6 cl 06 
0 - 0 . 

2 4 6 8 10 12 14 2 4 6 8 10 12 14 
Lag Lag 

(c) Standard algorithm, chain 1 (d) Improved algorithm, chain 1 

4 L i4 
072 I.1iII071,i2 2 

0 0 _ _ _ _ _ _ _ _ _ _ 

0 500 1000 1500 2000 0 500 1000 1500 2000 
Iteration Iteration 

(e) Standard algorithm, 3 chains (f) Improved algorithm, 3 chains 

1.6 L. 1.6 

1.0 ------l 1 6_i_l 

0 100 200 300 400 0 100 200 300 400 
Iteration Iteration 

Fig. 2. Comparing the standard and improved algorithms for a univariate Cauchy model. 
(a) and (b), and (c) and (d), compare, respectively, the autocorrelation and time series plots of 
a2 for one chain. (e) and (f) compare the Gelman-Rubin RA statistic based on three independent 

chains, where values near one give evidence of convergence. 

The relative improvement becomes more dramatic with a multivariate t model, in paral- 
lel to the findings for EM in Meng & van Dyk (1997). Figure 3 repeats Fig. 2 with a four- 
dimensional Cauchy distribution, using the multivariate counterparts of (34)-(3 36). Under 
the improved algorithm the autocorrelation is effectively zero after lag two, while under 
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the standard algorithm this does not happen until after lag ten. It is remarkable that such 
striking gains are achieved with a simple addition of the draw of oc given by (3 7) with 
/B= y =0, essentially the same 'free lunch' as in Meng & van Dyk (1997) for the EM 
implementation. 

(a) Standard algorithm, chain 1 (b) Improved algorithm, chain 1 

? 06 u 0-6 
0 0 

2 4 6 8 10 12 14 2 4 6 8 10 12 14 
Lag Lag 

(c) Standard algorithm, chain 1 (d) Improved algorithm, chain 1 

4 4 
2 2 2 

0 500 1000 1500 2000 0 500 1000 1500 2000 
Iteration Iteration 

(e) Standard algorithm, 3 chains (f) Improved algorithm, 3 chains 

1-6 11. -6 
............... ... . . . . .. . . . . . .. . . . . . 

1.0 _____. ............... 1-0 . _ L . _ _ _ _ 

0 100 200 300 400 0 100 200 300 400 
Iteration Iteration 

Fig. 3. Comparing the standard and improved algorithms for a four-dimensional Cauchy model. 
The plots are the counterparts of those in Fig. 2 using one of the diagonal elements of the scale 

matrix. 

These examples illustrate the possibility of obtaining a fast-mixing positive recurrent 
chain by purposely constructing a larger nonpositive recurrent Markov chain. For the t 
example, not only is {Q(t), t > 0} a positive recurrent Markov chain with the desired station- 
ary distribution, but also {q(t),x(t), t > 0} is a positive recurrent chain, providing a real 
example of the phenomenon discussed by George (1996). Recognising which function of 
the joint chain {(Q(t), 2(t), q(t)), t > 0} converges properly is useful for proper diagnosis of 
convergence. This recognition is typically easy because it is directly related to the construc- 
tion of the working parameter; for the t example, q/ob is simply the original 'missing data', q. 

Not all improper working priors lead to Markov chains, and in general these chains 
may not converge in distribution to the target distribution. For the t problem, by compar- 
ing, or coupling, the stochastic mappings of Schemes [1] and [2], we are able to give a 
definite answer as to the choice of the hyperparameters for p(oc /l, y). As this coupling 
approach may be useful for other problems, we present key details in ? 3 4. 

3*4. Investigating the choice of improper working priors: The t example 
We first consider the case with /3=0 but y >0, corresponding to the improper prior 

pci) < 2-(1+7/2). In this case, the induced chain {Q(t) -(Th(t), [5y2](t)), t ?> 0} under 
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Scheme [2], though Markovian, does not converge to the desired target density. This is 
because if /B=0 and y > 0 and we condition on 0(t), due to the extra x2 in the denominator 
of (3 12), the random variable given by (3 13) is stochastically strictly larger than the one 
given by (312), which corresponds to the correct target density. To see this more clearly, 
let F (a2 1 Yb, 0') be the conditional cumulative distribution function of [a2](t11) given by 
(3 12) conditioning on 0(t) = 0', and let FY p(72 rYobs, 0', Le') be the conditional cumulative 
distribution function of [E2](t+1) given by (3-13) conditioning on 0(t) = 0' and (ct) =-. 

When /B = 0, F,, p(af2 I Yobs 0', O') can be rewritten as FP(2 YobS, 0'). With this notation, the 
stochastic ordering mentioned earlier is represented by 

F(2 I Yobs 0 ) I<F( Yobs 0') (3 14) 

for any U2 E R +, O' E R' x R + and y E R +, where R + = (0, + oo) and R'= (-oo, + oo). 
Integrating both sides of (3 14), with respect to the target density P(0' IYbs), yields 

FY(U2 I Yobs) FyI( Yobs 
I 0 )P()') Yobs) dO' < Fy (I7 Yobs 

, 
0')P(O' Yobs) dO' = F YobsI ) 

(3.15) 

where F(a2 Yobs) is the marginal cumulative distribution function for 72 under our target 
density p(O Yobs) and the right-hand equality holds because p(O I Yobs) is the invariant distri- 
bution of the Markov chain given by (3 10)-(3 12) when y > 0. It follows that P(0 Yobs) 

cannot be the invariant distribution for Scheme [2] because, if it were, F(2 Yobs) would 
be the same as F(-2 IIYob,). 

Similarly, when /3=0 but - nv <y <0, Scheme [2], while computable, also does not 
produce draws from the target distribution. This can be seen by comparing (3412) with (3413) 
and noting that x?Y+nv is stochastically smaller than xn when -nv <y <0, so we have 
FP(cY21 Yobs, 0')> FO(U2 I Yobs, 0') for any .2 E R + and 0' E R' x R+. Here Fo(072 1 Yobs, 0') = 
FO=0(af2I Yobs, 0') and 

Fo(72 I Yobs, 0')P(O' IYobs) dO' = F(t72 I Yobs) 

because (3412) can be formally extended to y = 0, as discussed in ? 3*3. Consequently, by 
analogy with (3 15), we obtain F,(U 2I Yobs)> F(72 I Yobs) when -nv<y<0. 

Thus, when 3 = 0, the only value of y that will lead to correct sampling is y = 0. That 
is, we must use p(oc) oc a -' as the improper prior within the class p(o) oc - (1 + y/2); in particu- 
lar, the constant prior on oc is excluded because it corresponds to y =-2. However, there 
is another set of values of {#, y} for which Scheme [2] is computable, namely when /3 > 0 
and - nv <y ?0. For this set, the rigorous theory for the convergence behaviour of 
{0(t), t > 0} is more complicated because it is no longer Markovian, and we need to 
use properties, e.g. Meyn & Tweedie (1993, p. 454), of the joint Markov chain 
{(O(t), 2(t) q(t)), t > 0}, which is a null chain. Intuitively speaking, since 2(t) will eventually 
drift to infinity and thus f/3(t) -+0 in probability, the limiting distribution of (3 13) is the 
same regardless of whether 3 = 0 or /3 > 0. In fact, when - nv < y < 0, our simulated chains 
under 3 = 0 and 3 > 0 effectively coincide before the end of the 'burn-in' period because 
of excessively large values of 2(t); the largest value we observed was 6 7e"8. 

This can be seen in Fig. 4 which displays quantile-quantile plots between the empirical 
quantiles of log- 2 obtained from the output of Scheme [2] under various choices of /3 
and y and the quantiles from the target density p(log a2 1'Ybs). Here the empirical quantiles 
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are based on 5000 draws, the first 100 being discarded, and the target quantiles are based 
on 100 000 draws, the first 6000 being discarded. The fact that the top and bottom plots 
are indistinguishable in the two right-hand columns is caused by the aforementioned 
'coincidence' phenomenon, and not because /3= 0-0001 is so close to B = 0. These two 
values of ,B are chosen to highlight the singularity at B = 0 in Fig. 4(a), (b), (e) and (f). 
Figures 4(e) and (f) show that, when /3 =0 but y >0, Scheme [2] produces simulated 
log U2,s that are stochastically too large; it appears there is a location shift, i.e. a multiplicat- 
ive factor on the U2 scale, the magnitude of which depends on the magnitude of y. However, 
once /3 > 0, that is p(oc I,B, y) is proper, Scheme [2] produces the correct invariant distri- 
bution, as can be seen in Fig. 4(a) and (b). In other words, for any y > 0 there is a singularity 
at 3 = 0 in terms of the behaviour of the invariant distribution of {0(t), t > 0} under 
Scheme [2], as is particularly visible in Fig. 4(a) and (e), when y = 20. 

(a) y=20, ,=00001 (b) y=2, ,=00001 (c) y=0, ,=00001 (d) y=-2, ,=0 0001 
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Fig. 4. The impact of the hyperparameters on Scheme [2]. The plots show quantile-quantile plots comparing 
the target distribution with draws of log U2 using a variety of priors for oc, p(oc I ,B, y). 

When y = 0, Scheme [2] provides the correct limiting distribution regardless of whether 
/3>0 or /3=0, as can be seen from Fig. 4(c) and (g). When -nv<y<0, Scheme [2] 
provides draws of log U2,S that are stochastically too small regardless of the value of ,B, as 
indicated by Fig. 4(d) and (h), where we choose y = -2 because this results in the constant 
working prior when 3 = 0. Table 2 summarises our findings and indicates whether or not 
the choice of hyperparameter gives a limiting distribution that is the same as, or stochas- 
tically larger/smaller than the target distribution. Our conclusion is that the best hyper- 
parameter value is y = / =0, not only because this choice provides the fastest algor- 
ithm but also because it is the simplest to implement; e.g. it avoids potential numerical 
problems caused by excessively large values of 2(t) under the choice of / > 0 and y = 0. 
Since os _ fl,,2 iS the conditional conjugate prior for p(Yaug 0, o ) and any other family 
would be likely to make implementation more complicated, this essentially establishes the 
best choice of an independent working prior for os, at least for practical purposes. 



Efficient data augmentation 317 

Table 2. Impact of the choice of ,B and y in p(cL I/,, y) on the behaviour of 
{(Th(t) [572](t)), t >? O} under Scheme [2]. First line in each cell indicates 
whether or not the chain is Markovian; second line indicates whether or 
not the choice has the correct limiting distribution, where 'too small' and 
'too large' mean that the marginal limiting distribution of o2 is stochasti- 

cally smaller or larger than the target marginal distribution of 72 

y>0 y=0 -nv<y<0 

B> 0 Non-Markovian Non-Markovian Non-Markovian 
Correct Correct Too small 

/B=0 Markovian Markovian Markovian 
Too large Correct Too small 

4. DiSCUSSION 
441. Connections between marginal augmentation and some other methods 

The marginal augmentation approach suggests that we can extend (2 2) to 

Li(Yaug)=Ybs {jP(Y,ug I 0r, Y)p(y.) dO} ,U(d Yaug) = P(YobsI 0), 

or, using the notation of (3 2), 

X P(Yaug I O)i(dYaug) = P(YObs I 0). (441) 
-&(Yaug) =Yob. 

The fact that (441) appears to be completely identical to the standard augmentation identity 
(21) is both correct and deceptive. It is correct because the marginal augmentation given 
by (3 2) is a legitimate augmentation in the sense of (241), and thus (241), as a general 
definition, is applicable. It is deceptive because, once we realise that a specific f(YaugI0) 
in (2 1) is in fact a conditional density conditioning on a specific value of an invisible 
variable oc, then (441) is a marginalisation of (241) via (3 2). In other words, once we identify 
a working parameter, it is better to write (2 1) as (2 2). This reflects an important difference 
between marginal augmentation and the usual form of the auxiliary variable method. 

As described in Besag & Green (1993) and Green (1997), standard auxiliary variable 
methods first enlarge the parameter 0 to (0, 4), without changing the marginal posterior 
P(Olyobs) for the given data Yobs, and then implement a Markov chain Monte Carlo 
algorithm on (0, 4). In other words, 4 plays the same role as Ymis in our notation. The 
marginal augmentation approach operates on a different level, in that we assume we have 
already chosen Yimis but realise that P(Ymis I 1'bs 0) is really p(Ymis I Yobs, 0, oc = oco), and conse- 
quently that we can try to refine the augmentation scheme, or equivalently refine an 
auxiliary variable, via the marginalisation of cx. A consequence of this difference is that 
for a standard auxiliary variable, X, (d, 0) are not independent given Yobs, since otherwise 
the use of 4 offers no help. However, for a working parameter oc, if (oc, 0) are a priori 
independent they are also a posteriori independent because the data contain no infor- 
mation about oc. 

The marginal augmentation approach also has an interesting connection with simulated 
tempering (Marinari & Parisi, 1992; Geyer & Thompson, 1995), which runs a Markov 
chain Monte Carlo algorithm on a sequence of distributions {pi(x), i= 1, ... ., m}, but 
typically only one of them, p1(x), the 'cold' distribution, is of real interest. Here we can 
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view i as a model parameter which is used as a working parameter, and each model, pi(x), 
is the conditional model p(x I i) implied by the joint distribution on the (x, i) space, p(x, i) = 
pi(x)p(i). We say i is a model parameter because only samples corresponding to i = 1 are 
from the target density, but it is also a working parameter because {pi, i > 2} are intro- 
duced to improve mixing. In contrast, marginal augmentation allows continuous oc and 
all samples are from the target density upon convergence. Note that for simulated temper- 
ing the pi's can even be densities on spaces with different dimensions, e.g. Green (1995) 
and Richardson & Green (1997), and marginal augmentation can be used to improve 
mixing within each pi. 

Finally, the marginal augmentation approach also has an intrinsic connection with the 
collapsed Gibbs sampler method of Liu (1994b), which uses the fact that, when Ymis can 
be decomposed into several components, one can 'collapse 0 down' in p(Ymi, IO Y0b,) by 
implementing a nested Gibbs sampler to sample from p(ymi I Yob). Similarly, the marginal 
augmentation method can be viewed as collapsing down the originally implicit oc in 
p(Ymis I X, 0, Yobs) to produce p(ymis 1 ' Yobs). 

4 2. Comparison between conditional augmentation and marginal augmentation 
Under the condition of Lemma 2, conditional augmentation is useless while the marginal 

augmentation can produce dramatic gains using the same working parameter. However, 
this says nothing about the comparison of the two approaches when they use different 
working parameters. For instance, in the t model, the data augmentation algorithm 
resulting from the optimal conditional augmentation, optimal over the value of the 
working parameter oc introduced via u 2-4, although more difficult to implement, produces 
the same empirical convergence rate as the data augmentation algorithm which uses the 
optimal marginal augmentation, optimal over the value of the hyperparameter in p(oc / ,B, y) 
with oc introduced via o4. This can be seen by comparing the underlined values in Table 1 
with the values in the plots of Fig. 1 as y -O0. 

The key to this equivalence lies in comparing two minimum maximum correlations: 
(i) the maximum correlation between Ymis =_,0(Ymis) and 0 under the conditional 

model P(Ymis, 0 b Yobs, Oc) minimised over oc, and 
(ii) the maximum correlation between Y - (Ymis) and 0 under the marginal model 

P(ymis 0 i1 Yobs) {p(Yis, 0 i Yobs, cx)p(c) dot 

minimised over the choice of a class of p(o), for example p(oc I ,/, y) indexed by the 
hyperparameters ,B and y. 

The t example suggests that it is possible to find different @ 0 and 9 such that these two 
minimum maximum correlations are equal. It also motivates the view of marginal aug- 
mentation as conditional augmentation that conditions on some hyperparameters, and of 
conditional augmentation as marginal augmentation with point-mass prior on the working 
parameter. The t example suggests first using marginal augmentation via ?0(Yimis) and 
then conditional augmentation to find the optimal value of the hyperparameter to deter- 
mine the optimal prior for oc. More applications of this strategy will be reported in a 
subsequent paper. 

The t model also illustrates that, when we view both missing data Ymi, and 0 as param- 
eters, the conditional augmentation method is equivalent to, possibly unusual, reparam- 
eterisations, and the marginal augmentation is a form of overparameterisation. Thus, in 
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general, if it is true that marginal augmentation can always achieve what conditional 
augmentation can, it carries a revolutionary message: overparameterise rather than 
reparameterise. 
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