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Maximum likelihood estimation via the ECM algorithm: 
A general framework 

BY XIAO-LI MENG 
Department of Statistics, University of Chicago, Chicago, Illinois 60637, U.S.A. 

AND DONALD B. RUBIN 

Department of Statistics, Harvard University, Cambridge, Massachusetts 02138, U.S.A. 

SUMMARY 

Two major reasons for the popularity of the EM algorithm are that its maximum step 
involves only complete-data maximum likelihood estimation, which is often computa- 
tionally simple, and that its convergence is stable, with each iteration increasing the 
likelihood. When the associated complete-data maximum likelihood estimation itself is 
complicated, EM is less attractive because the M-step is computationally unattractive. In 
many cases, however, complete-data maximum likelihood estimation is relatively simple 
when conditional on some function of the parameters being estimated. We introduce a 
class of generalized EM algorithms, which we call the ECM algorithm, for Expecta- 
tion/Conditional Maximization (CM), that takes advantage of the simplicity of complete- 
data conditional maximum likelihood estimation by replacing a complicated M-step of 
EM with several computationally simpler cM-steps. We show that the ECM algorithm 
shares all the appealing convergence properties of EM, such as always increasing the 
likelihood, and present several illustrative examples. 

Some key words: Bayesian inference; Conditional maximization; Constrained optimization; EM algorithm; 
Gibbs sampler; Incomplete data; Iterated conditional modes; Iterative proportional fitting; Missing data. 

1. INTRODUCTION 

The EM algorithm (Dempster, Laird & Rubin, 1977) is a very popular tool in modem 
statistics. It is an iterative method for finding maximum likelihood estimates and posterior 
modes in incomplete-data problems that has several appealing properties relative to other 
iterative algorithms such as Newton-Raphson. First, it is typically easily implemented 
because it relies on complete-data computations: the E-step of each iteration only involves 
taking expectations over complete-data conditional distributions and the M-step of each 
iteration only requires complete-data maximum likelihood estimation, which is often in 
simple closed form. Secondly, it is numerically stable: each iteration increases the 
likelihood or posterior density, and convergence is nearly always to a local maximum 
for practically important problems. 

A brief review of EM establishes the required notation for our extension. Let Y denote 
the complete-data vector random variable with density f(Yj 0) indexed by a d- 
dimensional parameter 0 e 0 Rd. If Y were observed, the objective would be to 
maximize the complete-data log-likelihood function of 0 

L(jl Y)IV logf(Y 0 ), 
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or, more generally, to find the posterior mode of 0, which maximizes L(0 I Y) +log p(0) 
for prior density p(0) over all 0 E 0; for Bayesian analysis, consider our log-likelihoods 
to be log-posteriors. In the presence of missing data, however, only a function of Y, 
Yobs, is observed. In a convenient but imprecise notation, we write Y = (Yobs, Ymis), 

where Ymis denotes the unobserved or missing data. For simplicity of description, we 
assume that the missing data are missing at random (Rubin, 1976), so that the log- 
likelihood for 0 is 

Lobs(O I Yobs) OClog f( YI 0) dYmis. 

Because of the integration, maximizing Lobs can be difficult even when maximizing L is 
trivial. 

The EM algorithm maximizes Lobs by iteratively maximizing L. Each iteration of EM 
has two steps: an E-step and an M-step. The (t + 1)st E-step finds the conditional 
expectation of the complete-data log-likelihood with respect to the conditional distribution 
of Ymis given Yobs and the current estimated parameter 0(t), 

Q(0 I 0() =j L(O JY)f( Ymis IYobs, 0 = 0 ) dYms, (1P1) 

as a function of 0 for fixed Yobs and fixed 0(t). The (t+ 1)st M-step then finds 0(t+?) to 
maximize Q(0 I 0(t)): 

Q((t+1)Ot 0() ) Q(0 j(t)), for all 0 E 0. (1.2) 

Although the general theory of EM applies to any model, it is particularly useful when 
the complete data Y are from an exponential family since, in such cases, the E-step 
reduces to finding the conditional expectation of the complete-data sufficient statistics, 
and the M-step is often simple. Nevertheless, even when the complete data Y are from 
an exponential family, there exist a variety of important applications where complete-data 
maximum likelihood estimation itself is complicated; for example, see Little & Rubin 
(1987) on selection models and log-linear models, which generally require iterative 

M-steps. In such cases, one way to avoid an iterative M-step within each EM iteration is 

to increase the Q function rather than maximize it at each M-step, resulting in a GEM 

algorithm (Dempster et al., 1977), which, although still increasing the log-likelihood Lobs 

at each iteration, does not in general appropriately converge without further specification 
on the process of increasing the Q function. The ECM algorithm is a subclass of GEM 
that is more broadly applicable than EM, but shares its desirable convergence properties. 

More precisely, ECM replaces each M-step of EM, given by (1.2), by a sequence of S 
conditional maximization steps, that is cM-steps, each of which maximizes the Q function 
defined in (1I1) over 0 but with some vector function of 0, gs(0) (s = 1, . . ., S) fixed at 
its previous value. The general mathematical expressions, given in ? 3, involve detailed 

notation, but it is easy to convey the basic idea. Suppose, as in our first example in ? 2, 
that the parameter 0 is partitioned into subvectors 0 = (01, . . ., Os). In many applications 
it is useful to take the sth of the cM-steps to be maximization with respect to Os with all 
other parameters held fixed, whence gs(O) is the vector consisting of all the subvectors 
except OS. In this case, the sequence of cM-steps is equivalent to a cycle of the complete- 
data iterative-conditional-modes algorithm (Besag, 1986), which, if the modes are 

obtained by finding the roots of score functions, can also be viewed as a Gauss-Seidel 
iteration in an appropriate order, e.g. Thisted (1988, Ch. 4). Alternatively, it may be 
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useful in other applications to take the sth of the cM-steps to be simultaneous maximiz- 
ation over all of the subvectors except for O, which is fixed, implying g,(0) = O. Other 
choices for the functions g,, perhaps corresponding to different partitions of 0 at each 
cM-step, can also be useful, as illustrated by our second example in ? 2. 

Since each cM-step increases Q, it is easy to see that ECM is a GEM algorithm and 
therefore, like EM, monotonely increases the likelihood of 0. Furthermore, when the set 
of g, is 'space-filling' in the sense of allowing unconstrained maximization over 0 in its 
parameter space, ECM converges to a stationary point under essentially the same condi- 
tions that guarantee the convergence of EM. To establish this precisely requires formal 
work presented in ?? 3 and 4, but to see this intuitively, suppose that ECM has converged 
to 0* and that the required derivatives of Q are all well defined; the stationarity of each 
ECM step implies that the corresponding directional derivatives of Q at 0* are zero, 
which, under the space-filling condition on {g, s = 1, ... ., S}, implies that the vector 
derivative of Q with respect to 0 is zero at 0*, just as with the M-step of EM. Thus, as 
with EM theory, if ECM converges to 0*, 0* must be a stationary point of Lobs. 

Following a presentation of motivating examples in ? 2, ?? 3 and 4 provide the formal 
treatment of the algorithm with mathematical definitions and convergence results, respec- 
tively. Section 5 then offers discussion on variations of ECM and briefly comments on 
ECM'S relationships with other iterative techniques. 

2. MOTIVATING EXAMPLES 

The key idea underlying the ECM algorithm can be easily illustrated by the following 
three examples, which share the common feature that even with complete data, maximum 
likelihood estimation requires multidimensional numerical iteration, but when the param- 
eters are restricted to particular subspaces, the resultant conditional maximizations either 
have analytical solutions or require lower dimensional, typically one-dimensional, iter- 
ation. Example 1 illustrates ECM in a simple but rather general model in which partitioning 
the parameter into a location parameter, 01, and a scale parameter, 02, leads to a 
straightforward ECM with two cM-steps, each involving closed-form maximization over 
one of the parameters while holding the other fixed, instead of an iterative M-step as 
with EM. The second example, a log-linear model for a 3-way contingency table, is also 
simple but illustrates two additional features of ECM: first, that more than two cM-steps 
may be useful, and secondly, that the g, functions do not have to correspond to a simple 
partition of the parameter, 0. The third example illustrates that, even if some cM-steps 
do not have analytical solutions, ECM may still have the advantage of being computa- 
tionally simpler and more stable because it involves lower-dimensional maximizations 
than EM. 

Example 1: A multivariate normal regression model with incomplete data. Suppose we 
have n independent observations from the following k-variate normal model 

Yi - N(Xi,8, l;) (i = 1, ... ., n), (2.1) 

where Xi is a known (k x p) design matrix for the ith observation, ,8 is a (p x 1) vector 
of unknown regression coefficients, and I is a (k x k) unknown variance-covariance 
matrix. By specifying particular mean structures and covariance structures, model (2X1) 
includes important complete-data models, such as seemingly unrelated regressions (Zell- 
ner, 1962) and general repeated measures (Jennrich & Schluchter, 1986), as special cases. 
It is known, however, that maximum likelihood estimation of 0= 3, l;) is generally not 
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in closed form except in special cases, as when I = cr2I, e.g. Szatrowski (1978). This result 
implies that, generally, multidimensional numerical iteration is inevitable in implementing 
the M-step of EM if it is employed to fit model (2-1) with incomplete data, such as 
multivariate-normal stochastic-censoring models (Little & Rubin, 1987, Ch. 11). 

For simplicity of presentation, consider the case where I is unstructured. Although 
the joint maximizing values of f3 and I are not generally in closed form, we note that if 
I were known, say I =- V(), then the conditional maximum likelihood estimate of f3 
would be simply the weighted least-squares estimate: 

p(t+l) = { E X,(z)X Xi} { E X,(Et)- Yi}. (2*2) 

On the other hand, given , =,p(t+l), the conditional maximum likelihood estimate of I 
can be obtained directly from the cross-products of the residuals: 

i n 
Y(t?1) =-E (Y, - x ) ) ( Y -X p(.+ , )T. )2.3) 

n iti 

Clearly, the log-likelihood function is increased by each conditional maximization 
(2 2) and (2.3): 

L(p(t+l), (t+l) Y y) ; L(p(tl), (t) j Y) 

These observations lead to the basic formulation of the ECM algorithm, which replaces 
the original M-step with the two cM-steps given by (2 2) and (2 3). More specifically, at 
the (t + 1)st iteration of ECM, one first performs the same E-step as with EM, i.e. find the 
conditional expectation of the complete-data sufficient statistics; in this example, 
E( Yi I Yobs, 0(t)) and E( YiYTI Yobs, 0(t)) (i = 1, ... ., n), where 0(t) = (13(t), 1(t)). Then one 
performs the first cM-step, which calculates p(t+l) using (2.2) with Yi being replaced by 
E(Yi Yobs, 0(t)). Having obtained p(t+l), one then performs the second cM-step, which 
calculates (t+1) using (2'3) where Yi and YiYT on the right-hand side are replaced with 
E( Yi l yobs, 0(t)) and E( YiYTI Yobs, 0(t)), respectively. Thus one iteration of ECM for this 
example consists of one E-step and two cM-steps, none of which requires numerical 
iteration. The ECM algorithm in this example can be viewed as an efficient generalization 
of iteratively reweighted least squares, e.g. Rubin (1983), in the presence of incomplete 
data. 

Example 2: A log-linear modelfor contingency tables with incomplete data. It is well 
known that certain log-linear models do not have closed-form maximum likelihood 
estimates even with complete data, for example, the no three-way interaction model for 
a 2x2x2 table. A well-known iterative algorithm for fitting these kinds of models is 
Iterative Proportional Fitting, e.g. Bishop, Fienberg & Holland (1975, Ch. 3). Let Oijk be 
the probability in cell ijk (i,j, k = 1, 2), where the parameter space 0 is the subspace of 

{Oijk, i, j, k = 1, 2} such that the three-way interaction is zero. In our notation, starting 
from the constant table (i.e. 0(2) = 8), given the fully observed cell counts Y = {Yijk} and 
current estimated cell probabilities { 0(t)}, the (t + 1)st iteration of Iterative Proportional 
Fitting is the final output of the following set of three steps: 

(tk 1/3) = 0(tk) . ijN (2*4) 
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o(t+2/3) = Ot+13)Y (2Y5) 

0(t+3/3) O(t+2/3) Y+jk 
ijk = (i)jk N (2-6) 

where N is the total count, Yij+ = Xk Yijk define the two-way marginal table for the first 
two factors, Oij(k) = Oijk/Xk Oijk define the conditional probabilities of the third factor given 
the first two, etc. It is easy to see that (2-4) corresponds to maximizing the log-likelihood 
L(O I Y) subject to the constraints Oij(k) = 0(ijtok) for all i, j, k. Similarly, expressions (2-5) 
and (2-6) correspond to maximizing the log-likelihood L(O I Y) subject to 0i(j)k i(j)k 

and 0(i)jk = 
M.k ),, respectively. The simplicity of Iterative Proportional Fitting comes 

from the facts that (a) the constraint of 'no three-way interaction' only imposes restrictions 
on the conditional probabilities (Oij(k), Oi(j)k, 0(i)jk), and thus, once these conditional 
probabilities are given, the conditional maximum likelihood estimates for the two-way 
marginal probabilities (Oij+, Oi+k, O+jk) are simply the sample proportions, and (b) if 
0(0) E 0, then all 0(t) E 0, so starting from a table of constant probabilities will yield the 
appropriate maximum likelihood estimates. 

Once we identify each iteration of Iterative Proportional Fitting as a set of conditional 
maximizations, we can immediately add an E-step at each iteration to fit the log-linear 
model to contingency tables with incomplete data. For instance, the only difference 
between ECM and Iterative Proportional Fitting for the above example is to replace yij+ 
by E (yij+ I Yobs, 0(t)), with analogous replacements for Yi+k and Y+jk at each iteration. 
Thus, in this case, ECM can be viewed as a natural generalization of Iterative Proportional 
Fitting in the presence of incomplete data. 

Example 3: A gamma model with incomplete data. Suppose our complete data Y= 

(Yl, . .. , yn) are a simple random sample from a Gamma density 

a1exp (-y/,8) 
f(y)= f3cF (a) (a>0,f >0), 

and we are interested in finding the maximum likelihood estimates of a and ,3 based on 
the observed data Yobs, which, for example, are the result of censoring the complete 
data, Y 

With complete data, the log-likelihood is 
n n 

L(a,81 Y)=(a-1) E logyi-- E yi-n{a log83+log F(a)}, (2-7) 
1ii=l 

which does not possess closed-form maximum likelihood estimates. But it is easy to 
derive from (2 7) that the conditional maximum likelihood estimate for p given a = a(t) 

is 

p(t+l)= Y (2-8) 
a (t) ' 

where y is the sample mean of the complete data. On the other hand, given 18 = p(t+1), 

the conditional maximum likelihood estimate for a a(t+l), satisfies the following equation 
a(t+l) = -log p(t+l)) (2*9) 

where g is the sample average of {log Yi, . . ., log yn}, and fr-' is the inverse digamma 
function, i(a ) = F'(a)/F(a). Although (2.9) does not provide a standard analytic solution 
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for a (t+1) a value can be easily obtained by a one-dimensional Newton-Raphson 
algorithm, e.g. Jensen, Johansen & Lauritzen (1991), or by having a general subroutine 
for the inverse digamma function. Iterating between (2 8) and (2 9) gives the maximum 
likelihood estimate of 0 = (a, ,8) from the observed sufficient statistics y and g. 

With incomplete data, implementing ECM simply means, in the E-step, replacing g in 
(2 8) and g in (2 9) by their corresponding conditional expectations given 0(t) = (a(t), ,8(t)) 
and the observed data, Yobs* The direct application of EM to this problem would require, 
say, applying two-dimensional Newon-Raphson to (2 7), which is typically less stable 
than one-dimensional Newton-Raphson. 

3. FORMAL DEFINITION OF THE ECM ALGORITHM 

The ECM algorithm replaces the original M-step of EM with several cM-steps. In 
Examples 1 and 3, the number of cM-steps is S = 2, and, in Example 2, S = 3. Associated 
with each of these S cM-steps is a function of 0 that is conditional on (or constrained) 
when maximizing Q(OI O(t)) of (IH1). For instance, in Example 1, 01 =,, 02=I, and, in 
Example 3, 01 =1f3, 02= a. In both examples, the first cM-step corresponds to maximizing 
Q(0 I 0(t)) subject to the constraint gl (0) = g (0@(t)) where g1 (0) = 02. The output from the 
first cM-step can be denoted by 0(t+) = (0(t+1), 0(t)). Given O(t+1), the second cM-step 
then maximizes Q(0 I O(t)) subject to the constraint g2(0) = g2(O(t+1)), where g2(0) = 01- 

Similarly, for Example 2, one can take g1(0) = {0ij(k)}, g2(0) = {Oi(j)k} and g3(0) = { (i)jk}, 
implying maximization over {0ij+}, {10i+k, and {0+jkk}, respectively; notice in this example 
the partition of 0 changes across cM-steps. 

In general, let 

G = I& (); s = 1,. lSI (3.1) 

be a set of S pre-selected (vector) functions of 0. Starting with 0(0) E 0, at the (t + 1)st 
iteration, t =0, 1,..., the ECM algorithm first performs the E-step in (1 1) and then S 
cM-steps instead of the M-step in (1 2), where the cM-steps are defined as follows. For 
s = 1,... ., S, find 0(t+s/S) that maximizes Q(0 I O(t)) over 0 E 0 subject to the constraint 
gs (0) = gs(Of{t+(s-l )/S}). That is, for s = 1, ... ., S, the sth cM-step in the tth iteration of 
ECM finds 0(t+s/S) such that 

Q( (t+s/S) 
I OM)) :-: Q ( 0 0 o(0) 

for all 0 E Es(O{t+(s-1)/S}) ={ E 0: gs(0) = gs(O{t+(s-l)/S})}. (3-2) 

Then the value of 0 for starting the next iteration of ECM, 0(t+1), is defined as the output 
of the final step of (3 2), that is 0(t+S/S) 0(t+1). 

Definition 1. An iterative algorithm is called an ECM algorithm if the (t + I)st iteration 
starts with an E-step, which finds Q(0 I O(t)) as a function of 0 as in (iI ), and is followed 
by S (:1) cM-steps, each of which finds 0(t+s/S) as in (3 2), for s = 1, ... ., S. 

In order to guarantee that ECM converges appropriately just as EM would do, certain 
restrictions are needed on the set of constraint functions, 0, so that the resulting maximum 
is an unconstrained maximum of Lobs in 0. This can be achieved by requiring G to be 
'space filling', as made precise by Definition 2 below. 

Definition 2. Let Ts(0) (s = 1, .. ., S) be the set of all feasible directions at 0 E 0 with 
respect to the constraint space 

es(8) = {e 0 : g (;) = gf(0)}, (3 3) 
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that is, 

Ts(6) ={ ERd :3{ (n} C 0s( O) such that77 lim j fl } (3.4) 

We say G ={g,, s = 1,. . ., S} is 'space filling' at 0 E 0 if 

T(O) =closure { as,rs: a, > 0 e, 7 E Ts(O)} =Rd (3*5) 

In the optimization literature, Ts(0) is often referred to as a 'tangent cone' since 
q E Ts(O) implies a77 E Ts(0) for any a > 0. The intuition behind (3 5) is simply that, at 
any point inside 0, one must be able to search in any direction for the maximum, so 
that the resulting maximization is over the original parameter space 0 and not constrained 
to a subspace of 0. 

To avoid unnecessary complications, we assume that gs(0) (s = 1,... ., S) is differenti- 
able and the corresponding gradient, Vgs(0), is of full rank at 0 E @0, the interior of 0. 
As illustrated by our examples, this condition is typically satisfied in practice. Under this 
assumption, one can show that (3 5) is equivalent to 

S 

J(o)- nis Js(0)={O}, (3*6) 
s=1 

where Js(f) is the column space of the gradient of gs(0), that is, 

Js(6) = {Vgs(O)A: A E R ds} 

and ds is the dimensionality of the vector function gs(0). Equation (3-6) is a direct 
consequence of the following identity, 

J(0t)={{: {T7 Oforall qe T(0)}, (3-7) 

which itself follows directly from the polar and bipolar theorems in the literature of 
constrained optimization, e.g. Fletcher (1980, Ch. 9), Lay (1982, Ch. 9). The advantage 
of expression (3 6) over (3 5) is that it can be verified directly in many applications. For 
instance, in Examples 1 and 3, J1(6) is orthogonal to J2(0) for any 0, and thus (3-6) 
holds for any 0 E 0. The verification of condition (3 '6) for Example 2 is also straightfor- 
ward (Meng & Rubin, 1991a). When the EM algorithm itself is viewed as a special case 
of ECM with S = 1 and g1(O) constant, condition (3 6) is automatically satisfied since 
Vgl(6) = 0 for all 0. 

4. MAIN CONVERGENCE PROPERTIES OF ECM 

Since 0{t+(s-)/S} E 0(0{t+(s-1)/S}) by induction, (3 2) implies 

Q( O(t+l) I 0(t)) ?~ QW0 It 0 (t))) (4.1 ) 

and thus we have the following. 

THEOREM 1. Any ECM is a GEM. 

As a result of Theorem 1, any property established by Dempster et al. (1977) and Wu 
(1983) for GEM holds for ECM. In particular, if the sequence {LObS( (:) YObS), t3} is 
bounded above, then it converges monotonically to some value L*, which in general is 
not necessarily a stationary value of LObS. When G is space filling at each iteration, 
however, we can show that ECM converges to a stationary point just as EM does, under 
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the same regularity conditions that Wu (1983) used for establishing the main convergence 
results for EM. Specifically, we assume his conditions (6)-(10) with appropriate adjustment 
of notation. The following result is a direct extension of Wu's Theorem 2 (1983) to any 
ECM sequence. Notice that Wu's regularity condition (9) guarantees that, if the initial 
value 0(0) E 0, then all iterates 0(t) E- 0, so all the following calculations are performed 
inside o0. 

THEOREM 2. Suppose that all the conditional maximizations in (3-2) of ECM are unique. 
Then all limit points of any ECM sequence {0(t), t - O} belong to the set 

r~ I 0e0:( Lobs(OI Yobs)eJ(O)l 

Proof. By Theorem 1 of Wu (1983), we only need to show that: 
(i) the mapping defined by ECM is a closed mapping; and 

(ii) if o r,, then 

Q(O(t+l) i 0(t)) > Q(#}(t) i @(t)). (4 2) 

Under the compactness condition (6) and continuous condition (10) of Wu, assertion 
(i) can be verified directly by using the fact that if Ok -> 0 then, for any O'e O(0) 
(s = 1, ..., S), where Es(8) is defined in (3-3), there exists Oke 0s(0k) such that O'k > 0'. 
This fact is a consequence of the inverse mapping Theorem, e.g. Rudin (1964, Ch. 9), 
which is applicable here since Vg,(0) is of full rank at all 0 E 00. 

We now prove (ii) by contradiction. Suppose (4'2) does not hold for some o(t) r. 
Then by (4-1) and (4-2) 

Q(O(t+S/s)I 0(t)) = Q(0{t+(s-1)/s}j 0(t)) for all s = 1, ... S 

which implies, by the assumption of the uniqueness of all conditional maximizations, that 

0(t+1) = 0{t+(S-1)/S} =_ = oft+(l/S)} = 0(t) (4.3) 

In other words, for all s, 0(t) is the maximizer of Q(0 I 0(t)) under the constraint 0 E 0s( (t)), 
which implies that, at 0(t), Q(0 I 0a)) decreases along any feasible direction determined 
by OS(0(t)) for all s, and thus 

D10Q(0(t)J0(t)), q 0, for all q E TJ(0t)), s= 1... , (44) 

where D10 denotes the first order derivative with respect to the first argument of Q. By 
the definition of T(O(t)) in (3-5), we have 

DoQ(a(t)J0 (t)) < 0, for all q E T(0(t)). (4 5) 

Since (Dempster et al., 1977) 

D10Q(0(tI 0(t)) =- Lobs(t I YObs) (4 6) 

(3-7) and (4-5) together imply that 

OLobs(0(t) I Yobs) E 1(0(t)), 

which contradicts o(t) o r. IZ 

When G is space filling at 6, J(0) = {0}, and thus Theorem 2 guarantees the following 
result. 
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THEOREM 3. Suppose that all the conditional maximizations in (3-2) of ECM are unique. 
Then all limit points of any ECM sequence {0(t), t ? O} are stationary points of Lobs( I 1 Yobs) 

if G is space filling at all 0('). 

The assumption of Theorems 2 and 3 that all conditional maximizations are unique is 
very weak in the sense that it is satisfied in many practical problems, but even this 
condition can be eliminated if we force 0(t+s/S) = 0{t+(S-1)/S} wherever there is no increase 
in Q(0 I 0(t)) at the sth cM-step. Alternatively, we can extend Wu's Theorem 6 (1983) to 
any ECM sequence by replacing the uniqueness condition with (a) the continuity of 
D10Q(0 I 0') in both 0 and 0', and (b) the continuity of Vgs(0) for all s, which are also 
typically satisfied in practical applications. The crucial property that makes this extension 
possible is again the space-filling condition on G. 

It is known that, in general, neither EM nor any optimization algorithm is guaranteed 
to converge to a global or local maximum, and ECM is not magical in this regard. Wu 
(1983) gave a number of conditions under which an EM sequence will converge to a local 
maximum. Almost all of these results can be extended to ECM with little difficulty. Among 
them, the following result, which is a direct consequence of Theorem 3 under the 
uniqueness condition or of the extension of Wu's Theorem 6 under the continuity 
conditions, is most useful since it covers many practical applications. 

COROLLARY 1. Suppose that Lobs(0 I Yobs) is unimodal in 0 E 0 with 0* being the only 
stationary point. Then any ECM sequence { 0(')} converges to the unique maximizer 0* if G 
is spacefilling at all 0(", and either (a) each CM maximization is unique or (b) D1`Q(0 I 0') 
is continuous in both 0 and 0' and Vgs(0) is continuous in Ofor s = 1, . . . , S. 

It is clear that the general results in Theorem 2 and Theorem 3 also apply to the CM 
algorithm, that is ECM without missing data, in which case the E-step becomes an identity 
operation: Q(0 I 0(')) L(O 0 Y). Two related issues are worth mentioning. First, if the set 
of constraint functions, G, is not space-filling, then, as shown in Theorem 2, CM will 
converge to a stationary point of the likelihood in a subspace of 0, which may or may 
not be a stationary point of the likelihood in the whole parameter space. Thus, except 
for pathological cases, for a fixed density with parameter space 0, one can construct a 
data set such that the corresponding CM sequence does not converge to a maximum of 
the likelihood in 0. In this sense, the space-filling condition is not only sufficient but 
also necessary. 

Secondly, since the space-filling condition on G does not involve data, one would 
expect that, if G leads to appropriate convergence of CM with complete data, it should 
also lead to appropriate convergence of ECM with missing data. This conjecture can be 
proved easily and rigorously when the complete-data density is from an exponential 
family, where ECM is especially useful. The advantage of the following Theorem 4 is that 
it enables us to conclude that ECM will converge appropriately whenever CM does so. 
For instance, one can immediately conclude the appropriate convergence of ECM in 
Example 2 without having to verify the space-filling condition, because the monotone 
convergence of Iterative Proportional Fitting with complete data has been established 
(Bishop et al., 1975, Ch. 3). 

THEOREM 4. Suppose the complete-data density isfrom an exponentialfamily and the 
set G of (3.1) is chosen such that any corresponding CM sequence strictly increases the 
complete-data likelihood at each iteration until it reaches a stationary point. Then all the 



276 XIAO-LI MENG AND DONALD B. RUBIN 

limit points of any corresponding ECM sequence are stationary points of the observed-data 
log-likelihood, Lobs( I Yobs) . 

Proof We only need to prove (i) and (ii) with J(0) = {O} in the proof of Theorem 2. 
The proof for (i) is unchanged because it does not involve the space-filling condition. 
To prove (ii) notice that, because L( 01 Y) is from an exponential family, we have 

Q(0 I 0(t)) = L( I Y()t), (4-7) 

where 9(') = E(f( Y) lYobs, 0(t)) with 9(Y) being the vector of the complete-data 
sufficient statistics. Thus, if 0(t) is not a stationary point of Lobs(0 I YObs) then (4-6) and 
(417) together imply that 0(t) cannot be a stationary point of L(0 I Y(t)). Therefore, the 
next iterate 0(t+1) will strictly increase L by our assumption on the CM sequence, and 
thus (4-2) follows from (417). fC 

5. DiSCUSSION 

In the absence of missing data, ECM is a special case of the cyclic coordinate ascent 
method for function maximization in the optimization literature, e.g. Zangwill (1969, Ch. 
5); also see Haberman (1974, Ch. 3) on Iterative Proportional Fitting. Although these 
optimization methods are well known for their simplicity and stability, because they 
typically converge only linearly, they have been less preferred in practice for handling 
complete-data problems than superlinear methods like Newton-Raphson. When used 
for the M-step of EM or a cM-step of ECM, however, simple and stable linear converging 
methods are often more suitable than superlinear converging but less stable algorithms. 
The reasons are first, that the advantage of superlinear convergence in each M- or cM-step 
does not transfer to the overall convergence of EM or ECM since EM and ECM always 
converge linearly regardless of the maximization method employed within the maximiz- 
ation step, and secondly, that the stability of the maximization method is critical for 
preserving the stability of EM or ECM since it is used repeatedly within each maximization 
step in all iterations. Finally, if one performs just one iteration of a superlinear converging 
algorithm within each M-step of EM, then the resulting algorithm is no longer guaranteed 
to increase the likelihood monotonely. 

In some cases, the computation of an E-step may be much cheaper than the computation 
of the cM-steps, and one might wish to perform an E-step before each cM-step. Each 
iteration then involves S 'cycles', where a cycle is defined by one E-step followed by one 
cM-step. At the sth cycle of iteration (t + 1), the E-step finds 

Q(0 I 0{t+(S-1)/S}) = |JL I Y)fJ Ymis I Yobs , 0 = 't+(S-1)/S)) dYmis 5 (5-1) 

as a function of 0 for fixed Yobs and fixed 0{t+(s-1)/S} and the cM-step finds 0(t+S/S) to 
maximize this function: 

Q(0(t+s/S) I O{t+(s-1)/S}) ) Q(0 I 0{t+(s-1)/S}) for all 0 E 0s(0{t+(s1)/s}) (5.2) 

Alternatively, one can perform an E-step only before a few selected cM-steps, but for 
descriptive simplicity we focus here on the case with an E-step preceding each CM step, 
and we call the corresponding algorithm a 'multi-cycle ECM'. For instance, in Example 
2, with multi-cycle ECM, Yi+k of (2 5) and Y+ik of (2 6) will be replaced by 
E ( y+kI ybI 0 {t+(1/3)}) and E(y +jkiyObI 0{t+(2/3)}) respectively at the (t+ 1)st iteration, 
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instead of being, as with ECM, replaced by E (yi+k I Yobs9s 0(t)) and E (Y+jk I Yobs, 0(t))q 
respectively. 

Since the second argument in the Q function is changing at each cycle within each 
iteration, a multi-cycle ECM may not be a GEM. The inequality (5-2), however, implies 

Q(0(t+S/S)I 0{t+(S-1)/S})> Q(0{t+(S-1)/S} 0{t+(S-i)/S}) (s = 1,..., S). (5-3) 

Expression (5-3) may be taken as the definition of an extended GEM, having iterations 
indexed by t, each of which consists of S distinct cycles indexed by s. Using the same 
argument for proving that GEM always increases Lobs, one can easily show that (5-3) 
implies an extended GEM algorithm increases Lobs at each cycle and thus increases Lobs 
at each iteration. Thus, just as with ECM, for any multi-cycle ECM sequence {0(t), t ? 0}, 
{Lobs(0(t) j Yobs), t - 0} converges monotonically to some L* if the sequence itself is 
bounded above. All other results on ECM in ? 4 apply to multi-cycle ECM. 

The obvious disadvantage of using multi-cycle ECM is the extra computation at each 
iteration. Intuitively, as a trade-off, one might expect it to result in larger increases in 
Lobs per iteration since Q is being updated more often. Practical implementations do 
show this potential, but it is not true in general. That is, there exist cases where multi-cycle 
ECM converges more slowly than ECM. In fact, there are even cases where EM converges 
more slowly than ECM! Details of these examples, which are not typical in practice, and 
other results on the rate of convergence of these algorithms, and their uses in computing 
the asymptotic variance-covariance matrix via the SEM algorithm (Meng & Rubin, 199 lb), 
appear elsewhere, e.g. Meng (1994). 

A final comment concerns the relationship of ECM to the Gibbs sampler (Geman & 
Geman, 1984) and other methods of iterative simulation such as the Hastings/Metropolis 
algorithm, e.g. Hastings (1970). Typically, if such an iterative simulation method can be 
implemented, so can ECM but with substantially less work and more straightforward 
convergence properties. As discussed by Meng & Rubin (1992) and Gelman & Rubin 
(1992), this fact has important implications for the practical use of iterative simulation, 
because ECM can search out modes and thereby obtain an approximate analytical 
distribution, which can be used both to start the iterative simulation and to help monitor 
its convergence. 
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