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Performing likelihood ratio tests with multiply-imputed 
data sets 

BY XIAO-LI MENG 

Department of Statistics, University of Chicago, Chicago, Illinois 60637, U.S.A. 

AND DONALD B. RUBIN 

Department of Statistics, Harvard University, Cambridge, Massachusetts 02138, U.S.A. 

SUMMARY 

Existing procedures for obtaining significance levels from multiply-imputed data either 
(i) require access to the completed-data point estimates and variance-covariance matrices, 
which may not be available in practice when the dimensionality of the estimand is high, 
or (ii) directly combine p-values with less satisfactory results. Taking advantage of the 
well-known relationship between the Wald and log likelihood ratio test statistics, we 
propose a complete-data log likelihood ratio based procedure. It is shown that, for any 
number of multiple imputations, the proposed procedure is equivalent in large samples 
to the existing procedure based on the point estimates and the variance-covariance 
matrices, yet it only requires the point estimates and evaluations of the complete-data 
log likelihood ratio statistic as a function of these estimates and the completed data. The 
proposed procedure, therefore, is especially attractive with highly multiparameter incom- 
plete-data problems since it does not involve the computation of any matrices. 

Some key words: Hypothesis testing; Incomplete data; Missing data; p-values; Significance levels; Wald test 
statistic. 

1. INTRODUCTION 

Multiple imputation, first proposed by Rubin (1978) and expounded upon by Rubin 
(1987), is a general statistical technique for handling missing data. It is particularly suited 
for handling nonresponse in large public-use sample surveys. The key idea, in contrast 
to single imputation, is to replace each missing value with a set of plausible values, 
thereby creating multiple completed data sets. Each of these resulting completed data 
sets is then analyzed using standard complete-data methods. The repeated analyses 
corresponding to one model for the missing data are combined to create one repeated- 
imputation inference, which takes proper account of the uncertainty due to missing data 
under that model. Repeated-imputation inferences across different models are contrasted 
to reveal sensitivity of inference to posited reasons for the missing data. In this and other 
ways, multiple imputation retains the major advantages yet rectifies the major disadvan- 
tages inherent in single imputation. 

Combining the complete-data analyses within a model is usually straightforward. For 
example, the combined estimate is simply the average of the completed-data estimates. 
The variability associated with this combined estimate is the sum of two components: 
the within-imputation variance, i.e. the average of completed-data variance estimates, 
and the between-imputation component, i.e. the sample variance of the completed-data 
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estimates. Significance levels can be obtained by computing a modified Wald test statistic 
from the quantities mentioned above, which is then referred to an F distribution. This 
procedure has been recently evaluated comprehensively in large samples by Li, 
Raghunathan & Rubin (1991), with the conclusion that it is essentially calibrated and 
the loss of power due to a finite number of imputations is quite modest in cases likely 
to occur in practice. A brief summary of these standard multiple imputation results is 
presented in ? 2. 

The procedure studied by Li et al. (1991) requires access to the completed-data estimates 
and their covariance matrices, and the latter may not be available in practice with standard 
computer packages, especially when the dimensionality of the estimand is high, such as 
can occur with partially classified multidimensional contingency tables. Motivated by 
the well-known relationship between the Wald test statistic and the log likelihood ratio 
test statistic, we propose a complete-data log likelihood ratio based procedure in ? 3. 
The proposed procedure is equivalent in large samples to the previous one, yet it only 
requires evaluations of the complete-data log likelihood ratio statistic as a function of 
parameter estimates for each data set completed by multiple imputation. The computer 
code for complete-data log likelihood ratio statistics is part of many standard complete- 
data routines. A numerical example is presented in ? 4 to illustrate the implementation 
of the new procedure. Unless otherwise noted, the appropriate reference for definitions 
and concepts is Rubin (1987), primarily Chapters 3 and 4. 

2. NOTATION AND BACKGROUND 

2-1. Large-sample hypothesis testing with complete data 
Let X be the n x p complete-data matrix, with associated density f(X I i/) indexed by 

the h-dimensional vector parameter if. Suppose in a particular analysis the parameter of 
primary interest, 0, is a k-dimensional vector function of 'I. Let 'i = +i(X) be an efficient 
estimate, e.g. maximum likelihood estimate, of qi and let 0 = @(X) be an efficient estimate 
of 0 with U = U(X) as the associated covariance matrix. With large samples, a common 
approximation that is acceptable to both Bayesians and frequentists is 

U2( - 0) N(0, I), (2-1) 

where the sampling distribution of U has lower-order variability than that of 0. Con- 
sequently, a p-value for the null value of 0, which without loss of generality we take to 
be zero, can be obtained as p = pr (xi2> d), where 

d d ( 0, U) = 0TU 0 (2.2) 

is known as the Wald x2 test statistic. 
It is well known that, under standard regularity conditions, d is asymptotically 

equivalent to the log likelihood ratio statistic d', which can be written as 

di = dl(qio, qi f X) = 2 log f,) (2.3) 

where 'I0 = +i0(X) is an efficient estimate of qi under f(X I '1; 0=0), that is, with qi 
restricted to lie in the h - k dimensional subspace defined by 0 =0. The basis of this 
equivalence is the h dimensional asymptotic normality of (ii - 'I), which we assume in 
addition to (2.1). 
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2-2. Hypothesis testing with multiply-imputed data based on moments 
With incomplete data, write X = (XObS, Xmis), where XObs is the observed part of X 

and Xmis is the missing part. Using proper imputation methods, such as using independent 
draws from the posterior predictive distribution f(Xmis I XObS), one can create m imputa- 
tions, X*Mis (1= 1, .. ., m) for the missing values Xmis, and thereby create m correspond- 
ing completed data sets 

{X*); I= 1, mm = I(Xobs X(*')Mis); 1, ... *, m}. (2.4) 

Standard complete-data methods then can be applied to compute the set of complete-data 
moments, i.e. estimates and covariance matrices: 

Sm = { = 
0(X(*)), U*1 U(x(')); 1- 1 ..., m}. 

The resulting estimate of 0 is 

7m = 0*13 m A= 

with associated variability 

Tm = Um + (1 + M-1)Bm, 

where 

1 m 
Um = ) U*i m 1=1 

measures the within imputation variability, and 

Bm = 
*_1 

E 68* m*l Om) 

measures the between imputation variability. 
Although hypothesis testing based on Sm can be accomplished directly by forming a 

Wald type statistic using Om and Tm, such a procedure does not provide satisfactory 
results when the dimensionality of 0 is substantially larger than the number of multiple 
imputations because of the deficient rank of Bm. One way to avoid this problem, which 
typically occurs in practice, is to assume equal fractions of missing information, that is, 
to assume that the proportional loss of information is the same for all components of 0. 
Under this assumption, the Wald type statistic is proportional to 

D . --- m Um (2.5) Dm k(1+ rm)' 

where 

rm = (1+ m )tr (BmU -m)/k (2-6) 

is the estimated average odds ratio of the fractions of missing information. The exact 
distribution of Dm is intractable, but it can be approximated well by an F distribution 
on k and w degrees of freedom, where the best choice of w thus far is given by Li et al. 
(1991): 

(A( + /-)1 I _l+ rl,1)2m otherwise. ) - I A 
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Major conclusions of Li et al. (1991) are that, in cases of practical interest, this procedure 
with m > 3 is insensitive to the assumption of equal fractions of missing information, is 
well calibrated, and suffers only modest loss of power relative to the ideal likelihood 
ratio test based directly on XOb,- 

2-3. Hypothesis testing with multiply-imputed data based on X2 statistics 
The use of significance levels rather than interval estimates is especially useful and 

common in models with many parameters. In these cases, however, a standard complete- 
data analysis often does not provide the entire k x k variance-covariance matrix U(X), 
but rather a scalar p-value, or equivalently, the x2 statistic, for the null value of 0. Thus, 
the repeated complete-data computations may not provide the set of the completed-data 
moments Sm defined in (2.4), but instead, the set of the completed-data Wald x2 statistics 

Sd= {d*,d (0*1, U*i); 1 = 1,..., m}, 

where the function d is defined in (2-2), or equivalently the set of the completed-data 
log likelihood ratio statistics 

Sd, = d ' (Ifd (o*1 $*I I X(,)); 1 = 1,..., m}, 

where the d' function is defined in (2.3), -3 0* = $0(X,_) and 4*, = $(X(*). Clearly, in 
these cases, the procedure given by (2-5)-(2-7) cannot be applied directly to obtain 
significance levels. 

A key representation in developing procedures for obtaining significance levels based 
on Sd or Sd, is 

A 

dD _( m_-1 )(+ )(2-8) 

where dm is the average of {d*i; 1 =1, ..., m}, and A-B means A= B + o (1) almost 
surely. Thus, since d*, d*1, asymptotically, 

Dm fm (DmIM m j rmr)/(1+rrm), (2.9) 

where d' , is the average of {d 1; 1= 1,..., m}. Notice that the only quantity in (2.8) or 
(2.9) that is not directly obtainable from Sd or Sd, is rm of (2 6). Replacing rm with 
estimates based on Sd or Sd, gives a set of procedures for computing p-values when only 
Sd or Sd, is available. The simplest and best replacement so far is given by Li, Meng, 
Raghunathan & Rubin (1991), 

rd = (1 + m1 Ed- (, Ed') /m}/(m -1), 

with corresponding test statistic 

which is then referred to the distribution Fk,aw5, where ws = (m - 1)(1 + r-1)2 and a = -3. 
Ahe Analogu Ar d Ml w a (,+A 

The aaloge Dd repacesd1 wit m1 whreve aplcbe,adtusDdd 
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Although the procedures based on Sd or Sd, are calibrated reasonably well in many 
cases of practical importance, they are distinctly inferior to procedures based on Sm, and 
the loss of power can be severe, especially when k is large and m is small. This degradation 
in performance is not surprising and will occur for any procedure based only on Sd or 
Sd,, because of the extreme loss of information when going from Sm to Sd or Sd,. Clearly, 
the only way to overcome this inherent difficulty is to obtain more information. In the 
next section we show how to combine Sd or Sd, with the set of estimates 

Se = 1( 4JJ*1S 4J10*1); I=13, * ** ml 
to obtain a valid p-value, assuming access to the computer code that calculates the 
complete-data log likelihood ratio statistic as a function of the parameter estimates at 
each completed-data set. The new test statistic is not only asymptotically equivalent to 
the practically satisfactory statistic Dm for any m - 2, but also can require much less 
computation because it calculates neither the complete-data variance-covariance matrices 
U*I (1= 1, . . ., m) nor the between covariance matrix Bin. 

3. COMPLETE-DATA LOG LIKELIHOOD RATIO BASED PROCEDURE 

3-1. An intermediate procedure 
Because the numerator of Dm in (2.5) is the simple quadratic form d(Om, UM)= 

Om Um Om from (2-5), (2.8) and (2-9), we have 

rm ~ I ) {dm-d (Om, U )} {d' -d(Om, Um)}. (3.1) k(m -1) m k(m-1)1 

Since rm is the only quantity needed for computing the denominator of Dm, we can 
obtain Dm from the scalar dm or dJ' and the scalar distance d(Om, Un). 

Under the lower order variability assumption of U, Umr U*i for any 1. Thus, if we 
have access to the Wald test statistic d(0*1, U*1) as a function of 0*1 at any completed 
data set, we can replace d(Om, Um) in (3-1) by any d(Om, U*1), or more efficiently by 
their average 

1m 
dw=- fi d(O-,U*,). (3.2) 

The corresponding test statistic then can be constructed as 

D = - D (3.3) 
k(1+ rw) 

m3 

where 

rw = + (dm - dw) (34) k(m -1) i 

3-2. Motivation for the new procedure 
The calculation of dw in (3.2) requires access to the Wald test statistic in each 

completed-data set as a function of the estimate of 0, but the well-known asymptotic 
equivalence between the Wald and log likelihood ratio test statistics suggests that we can 
compute d(0m, Urn) assuming access to the function d'(, qI Ix), defined in (2 3). An 
important but subtle distinction, however, is that although with the Wald test statistic 
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we can replace d(Gm, Urn) by any d(Gm, U*1), with the log likelihood ratio test statistic, 
we must average all m values. That is, even though d'( Ao*1, A*IIX(1))-d (OA U*1) for 
each 1, the analogous replacement of average estimates in d' does not work: 

d( qio J>m 9 tJ>m |X d( m3, U*l ) 
A ~~~~~~A 

for any 1, where 4rOm and f/m are the averages of {I/o0,; 1=1,..., m} and {'f/*; I=1,..., m}, 
respectively. Rather, asymptotically, with a quadratic complete-data log likelihood 
function, 

d'(if/,m '1m IX(*) - d (* l, U*l)-d(* lm, U*), (35 e ) 

which generally does not equal_d(Gm, U*,) unless there is no missing information. Their 
average, however, does equal 4w asymptotically because 

1m 
dL d- d '( om, m I XI') - d(G r, Urmn). (3*6) 

Equation (3.5) follows from viewing the log likelihood ratio d'(f/om, if/i | XI')) as the log 
ratio of an h-variate normal density with mean qf*i, where the numerator is evaluated at 
f/om and the denominator at 'f,m. The key observation is that, without loss of generality, 
4' can be taken such that f*l - 'o*i = (O*i, )T where the two components of if are 
orthogonal, and the first component, 0, has covariance U*1 and 00* =0. The right-hand 
side of (3.6) follows from (3.5) by viewing l d(O*,1, U* ) z; d(0*1, Um) as a total sum 
of squares decomposed into an m -1 degrees of freedom sum of squares about the mean, 
z d(Oj*i - Onm, UC), and a one degree of freedom sum of squares for the mean, d (Om, Um). 

3.3. Definition and computation of the new procedure 
Because dL- w i, in view of (3 3) and (3 4), we define our new test statistic as 

DL =- k(+ '(3.7) k(l + r,) 

where 

m + 1 
rL =k _ (d ' - dj). (3-8) 

k(m -1) 

Since for any m - 2, DL-Dm apd rL- rr, an obvious approximate reference distribution 
for DL is Fkw(rL), where the w(r) function is defined in (2-7). 

To compute DL, first assume we have Se and Sd', as well as access to the complete-data 
log likelihood ratio function d' used to compute d'* (1 = 1,..., m). From Se we calculate 
the average estimates f/om and imf, and from Sd, we calculate d ,, the average of 
{d *1; 1= 1, .. ., m}. Then, we make a second pass through the completed data, using /OOM 
and frm to calculate the m scalar quantities d'(f/ommf/Xrn ')),, and their average, dL, 
defined in (3 6). In most practical applications, the complete-data density f(X 1 4) is 
from an exponential family so that d'(iof/, 4' IX) is linear in the complete-data sufficient 
statistics, and thus dL is the complete-data log likelihood ratio statistic evaluated at the 
average parameter estimates (i/irn ifr) and at the average completed-data sufficient 
statistics. Having obtained d'rn and dL, we apply (3.8) to compute r,,, and then apply 
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(2 7) and (3 7) to compute w(rL) and DL, respectively. Finally, we obtain the significance 
level p = pr {Fkw(rL) > DL}. 

4. EXAMPLE 

4- 1. Likelihood ratio tests for complete contingency tables 
In the analysis of contingency tables, it is very common to test whether the cell 

probabilities {1Tjjk...,} have a special structure corresponding to a parsimonious model. 
For example, such null models often specify conditional independence of some factors 
given other factors. With complete data, that is, when each case can be classified into 
one cell, performing the likelihood ratio test is straightforward. Let ii and TOc be the 
maximum likelihood estimates of the cell probability for cell c under the saturated and 
null models, respectively. Then the log likelihood ratio statistic is 

d'=2 SC nc log ( c/AOc), (4-1) 

where the summation is over all the cells c in the table, nc = Nfc is the observed count 
in cell c, and N = ;c nc is the total count. When the null model is true, d' is distributed 
asymptotically as a chi-squared random variable with degrees of freedom equal to the 
number of independent restrictions on the cell probabilities under the null model (Bishop, 
Fienberg & Holland, 1975, p. 114). 

4-2. Creating multiple imputations for a partially classified table 
In the presence of missing data, some cases are only partially classified, as illustrated 

in Table 1 taken from Little & Rubin (1987, Table 9.8). Applying the EM algorithm to 
find the maximum likelihood estimates for the cell probabilities under the null model 
and then performing likelihood ratio tests, Little & Rubin (1987, p. 192) considered 
several models for these data in Table 1 assuming the missing data are missing at random 
(Rubin, 1976). As an alternative approach, we can use multiple imputation and then 
apply our new procedure DL to find the significance level without the need for a covariance 
matrix for the parameters, as with the moment-based procedure Din. 

The implementation of multiple imputation is particularly simple with a saturated 
model for a table having a monotone missing data pattern; even for nonmonotone 
patterns, data augmentation (Tanner & Wong, 1987) makes such multiple imputation 

Table 1. A 23 contingency table with partially classified observations 

(a) Completely classified cases 
Survival, i 

Clinic, k Prenatal care, i Died Survived 

A Less 3 176 
More 4 293 

B Less 17 197 
More 2 23 N(a)=715 cases 

(b) Partially classified cases, clinic missing 

Survival, i 
Clinic, k Prenatal care, i Died Survived 

? ~~Less 10 150 
More 5 90 N(b) - 255 cases 
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straightforward though iterative. For example, for the data set in Table 1, under the 
noninformative Beta (1, . . ., 1) prior for the cell probabilities {'TTijk} , the lth (1 = 1,.. ., m) 
imputation of the cell counts can be obtained as follows: 

Step 1: Draw the conditional cell probabilities XT.ij from Beta (n(at +1, nn(a2 +1) 
(i, j = 1, 2), where nijkaQ) is the observed cell count in cell (i, j, k) of the completely 
classified Table l(a). 

Step 2: Given the conditional probabilities iT.ij (i,j = 1, 2) drawn in Step 1, draw n(ji 
from Binomial (n(b), iT1 . ij), where n (b) is the observed counts in the marginal 
cell (i,j) of the partially classified Table l(b); let n(ij2= n(ib+ - n(b). 

Step 3: Calculate the lth imputed cell count for cell (i, j, k) as n(l)= n(la) + nb 

(i, j, k = 1, 2). 

4-3. Testing null models using our new procedure 
Once these m completed tables are created, one can treat each as if it were the complete 

data, and use formula (4. 1) to compute m completed-data log likelihood ratio test statistics 

d*l= 2 n(l) log (A (l)/ A(l )) (l = 1,..., m). 

The computation of dL of (3 6) involves evaluating the log likelihood ratio function 
at fm and rorm, where qi is a vector parameter providing the cell probabilities. For 
simplicity, we take if to be the cell probabilities, whence ffm and 4/JOmn are simply the 
averages of cell probabilities under the saturated and null models, respectively, across 
the imputations. Thus, letting Frc and #roc be the averages of the estimated cell probabilities 
across imputations for cell c under the saturated and null models, respectively, by (4-1), 

d'(fiom ,m IX(*) = 2 ,n() log (ircl/-roc) (=1,.. ., nm), 

whose average is equal to 

dL = 2 Ec &c log (TC/#Oc) = 2 ,C &c log (iic/liioc) 

where nc = Niic and noc = NToc. 

Table 2 presents the results for testing two different null models with several choices 
of m. The conditional independence model asserts that conditional on clinic, survival 
and prenatal care are independent, which was Little & Rubin's (1987) preferred par- 
simonious model based on their tests. The full independence model has all three factors 
mutually independent, and is included here for comparison. The second column gives 
rL of (3.8), the estimated average odds ratio of the fractions of missing information, 

Table 2. Testing null models using DL 

Conditional Full 
independence independence 

m rL DL P rL DL p 

2 0*46 0*06 0.938 0-70 41-86 0-000 
3 032 0-08 0927 041 51e12 0-000 
5 0-28 0-02 0-980 0-26 56-36 0-000 
7 026 003 0966 029 54.35 0000 

10 030 008 0928 034 52 33 0-000 
25 0-32 0.10 0905 0-36 51-97 0-000 
50 O030 O009 O0919 O037 5O098 0-000 

Ideal 0O10 0 904 52 67 0-000 
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which, except for m =2, is relatively stable as m increases, as we expected. The third 
column gives the value of the new test statistic DL, and the fourth column gives the 
corresponding p-value using the F reference distribution. The last three columns are the 
counterparts for the full independence model. For comparison, we include in the last 
row the corresponding results using the ideal likelihood ratio test based directly on the 
data in Table 1. It is clear from Table 2 that the tests based on DL reach essentially the 
same practical conclusions as the ideal test, even for small m. The satisfactory performance 
of these tests based on small numbers of multiple imputations is especially encouraging, 
because small m is common in practice. 
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