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SUMMARY 

A generalized Hodges-Lehmann type estimator for the treatment effect in the two- 
sample problem with right censoring, is proposed based on an inverse-quantile-type idea 
using truncated versions of the Kaplan-Meier estimators over the subspace where they 
are consistent. Its strong consistency and asymptotic normality can be obtained, under 
no conditions on the uninformative censorings, and the resulting variance is easily 
estimable from the data. In simulation studies the proposed estimator is superior to 
existing procedures in the presence of heavy unequal censoring. 

Some key words: Bootstrap; Censoring; Hodges-Lehmann estimator; Kaplan-Meier estimator; Scale 
parameter; Shift parameter; Treatment effect. 

1. INTRODUCTION 

An important problem in survival analysis within biostatistics and reliability testing is 
to estimate the difference between two treatments, or a treatment and a control, the 
two-sample problem. This problem is complicated in the presence of right censoring, 
especially when such censoring is informative. We shall focus on uninformative but 
arbitrary censoring. 

Most of the methods in the existing literature address this problem through one of 
two models, the accelerated life model and the proportional hazards model. (Cox & 
Oakes, 1984, Ch. 5.) We concentrate on the location shift model, which is equivalent to 
the accelerated life model, with a log transformation. This model is specified by the 
hazard rate function A(t) =f(t){1 - F(t)}1-, where F is the cumulative distribution 
function of the survival times and f= F'. It is assumed that A(t) =-A0(te-)e , where 
AO(t) is the baseline hazard function. The treatment effect is thus to accelerate or decelerate 
the time to failure. This model can be expressed as a regression problem with ,3 replaced 
by z,4 where z is a row vector of covariates for each study subject and ,3 a column vector 
of regression parameters. This formulation can be used to address the two-sample 
problem by selecting z = 0 for the first sample and z = 1 for the second. Linear regression 
methods can be used to solve the hypothesis testing and estimation problems (Cox & 
Oakes, 1984, p. 65). 

A few direct procedures for the two-sample problem impose fewer assumptions than 
the regression methods. Wei & Gail (1983) propose an estimation procedure, indirectly 
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through testing procedures based on test statistics from Gill's (1980, p. 46) K+ class. 
They impose fairly strong conditions to warrant the consistency and asymptotic normality 
of their estimator, and the variance of their estimator depends on the unknown density 
functions and their derivatives, which are hard to estimate well in the presence of 
censoring. As a result, they propose test-based confidence intervals for the parameter. 
Padgett & Wei (1982) address the scale version of the two-sample problem. To establish 
the consistency of their estimator, they assume that the support of the censorings exceed 
the support of the true survival distributions. If this condition is violated, the consistency 
of their estimate is questionable, as we demonstrate with Example 2 in ? 6. Such will be 
the case if the second sample is heavily censored. Note that the asymptotic normality of 
that estimator was not discussed by Padgett & Wei (1982). 

Akritas (1986) introduced a general method for quantile estimation in the shift version 
of the two-sample problem, using the distribution of the differences between the two 
lifetimes and truncating the samples before the upper limits of the supports of the 
censorings. He suggested that this method could be used to estimate the shift parameter. 
To do this, however, one must know in advance the proportion of the differences on the 
truncated spaces that are smaller than the shift. This is not common, since this proportion 
is a function of the unknown underlying distribution, unless the supports of the censorings 
extend to infinity, in which case this proportion is equal to 2 

In the present paper, we propose a generalized Hodges-Lehmann estimator that avoids 
the difficulties and problems mentioned above. The Hodges-Lehmann estimator has been 
widely used because of its robustness and simplicity, and our generalization preserves 
these desirable properties. After developing necessary notation in ? 2, we present in ? 3 
the motivation and definition of our estimator. Its large-sample properties are given in 
? 4. These results are obtained under very weak conditions on the survival distributions 
and under no conditions on the censoring mechanisms. Section 5 describes a method for 
consistently estimating its large-sample variance, and ? 6 presents simulation studies as 
well as a brief discussion on some practical issues. 

Note that the method used for estimating the shift parameter can easily be transformed 
to answer the scale question. Or if desired, one can apply the shift method directly to 
the log-transformed data. In fact these two procedures lead to the same estimator. Since 
the distribution of the estimator is asymptotically known, confidence intervals for the 
parameter can be directly derived, and thus the procedure described herein can be applied 
to testing problems, for instance to test the hypothesis of 'no difference' in location or scale. 

2. STATEMENT OF THE PROBLEM AND NOTATION 

Assume x4,... ,x are independent and identically distributed random variables 
according to the survival function F(s) = pr (x> s), with a similar assumption for 
y? . . ., yM according to G(s) = pr (yjo > s). In the location shift model it is assumed that 
G(s) = F(s - A), A being an unknown parameter, to be estimated. 

In the presence of right censoring, we cannot observe the xo's or yj?'s directly, since 
they have been censored by two sequences of random variables ui and vj, independent 
of the xi and yj. Here the ui's and vj's are independent and identically distributed according 
to U(s) = pr (ui > s) and V(s) = pr (vj > s), respectively. Instead, we observe the pairs 

{xi = min (x?, ui), E=1(y n j=1,...,n}, 
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Let FJ(s), Gm(s) be the Kaplan-Meier estimators of F(s), G(s) respectively. Define 
F.(s) = 1 - F.(s) and Gm(s) = 1 - Gm(s). Let T1 and T2 be preselected constants such 
that F( T1) > 0, G( T2) > 0 and almost surely, as n, m -* cx, 

sup IF.(s) - F(s)I -0, sup Gm(s) - G(s)I * 0. 
s-T, s T2 

Now define 
T, 

K1(8) = pr (y - x 8< , x TD) = G(s + 8) dF(s), 

T2 

K2(3) = 1 - pr (y - x - 8, y S T2) = I - J F(s - 8) dG(s), 

P={ F(s) dF(s), P2 = I G(s) dG(s). 
_00 -00 

Their estimators K1(8), K2(8), P1 and P2 are obtained by replacing F and G in the 
expressions above by Fn and Gm, respectively. Notice that both Kr(a) and Kr(8) (r = 1, 2) 
are monotone functions of 8. 

3. MOTIVATION AND DEFINITION OF OUR ESTIMATOR 

If in the problem above there is no censoring, then (Hodges & Lehmann, 1963) the 
shift hypothesis is, assuming that such A is unique, 

pr (Y-X ? lA) =pr (Y-X- A)=. (3.1) 

This generates the process for estimating A. Let 

K(a) =pr(Y-X6) J) = G(x+8 ) dF(x), P= F(x) dF(x)-=2 
_00 -00 

Then (3 - 1) becomes K (A)-P = O and A can be thought of as A = K1(P) = K 1(). Thus 
using the empirical estimator analogue for K-1(8), the estimator proposed by Hodges 
& Lehmann is A= K-1(P)= K-1(2), which in fact minimizes IK(8) - I and thus it turns 
out that A is the median among all differences yj -xi. In the problem at hand though, 
empirical distributions are no longer consistent because of the censoring. Natural sub- 
stitutes in this case are the Kaplan & Meier (1958) estimators. But it is known that these 
estimators might not be consistent beyond the supports of the censorings. Thus we use 
the truncated versions K1(8), K2(8) and Pl, P2, referred to in ? 2. So now we have 

K1 (A)-P1 = 0, K2(A))-P2 = 0, (3-2) 

instead of K(A) - P = 0. Note that (3 2) corresponds to shifting G by A to the left or F 
by A to the right. In the estimation process we seek to minimize 

1K1()>A1 f| Gm(s+8) dFn(s)f- F.(s) dF.(s) (3-3) 
-00 -00 

K2(8 )-P21= f| Fn (s s- ) dGm (s)j- Gm (s) dGm (s) (3.4) 

over 8, subject to the consistency of the Kaplan-Meier estimators. Since both Fn and 
Gm are present in each expression, the consistency of both is needed. In (3 3), Fn is, by 
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the selection of the upper limit of integration, T1. In order to guarantee that Gm(s + 8) 
is consistent, we must have s + 8 - T2. It is enough to impose the restriction 8 S T2-T 
since s Tl. The solution of this constrained minimization is, up to O(n A), l= 
min {KR1 P(), T2- T1}, which is a consistent estimator for min (A, T2- T1). With a similar 
argument, using (3 4) we obtain A2= max {Ky-1(P2), T2- T1}, which is a consistent 
estimator for max (A, T2- T1). Since 

min(A, T2-T1)+max(A, T2-T1)= A+T2-T1, 

we propose as an estimator for A 

Anm =A1+A2-(T2-T1). 

Notice that in the absence of censoring, when T1 = T2= oo the proposed estimator 
reduces to the Hodges-Lehmann estimator. Two differences with it, however, are worth 
pointing out. The Hodges-Lehmann estimator is the 50th percentile, i.e. the median, of 
the differences Yj - Xi. But in the censored case we do not have a fixed, known proportion 
any more. Instead we have the quantities P1 and P2 that are unknown and have to be 
estimated. Thus the solutions, no matter which expression we use, (3-3) or (3-4), are no 
longer the median among the yj - xi which have nonzero weight. Secondly, the solution 
depends on the minimization of both expressions (3-3) and (3-4). Thus by inverting two 
monotone functions instead of one we gain flexibility in dealing with differences in the 
censoring distributions. 

4. LARGE-SAMPLE PROPERTIES OF Anm 

The following two theorems give the large-sample properties of A nm, namely its 
consistency and its asymptotic normality. 

THEOREM 1. Suppose that A is the unique solution for Kr(8) = Pr (r = 1,2), where 
Kr(8), Pr are defined in ? 2. Then Anm -* A, almost surely, as n, m - oo. 

THEOREM 2. Let A =lim{n/(n+m)} and to=min (T1, T2-A). Assuming O<A <1, 
F(t) is continuous and 

1 t0 
d(to) = lim- f{F(t+ E) - F(t)}dF(t) 

exists and is positive, then (n + m)2(Anm -A) is asymptotically normally distributed, as 
n, m -* ao, with mean zero and variance 

Ak-12o(to) + (1-A)-1o2(to) 

f d(to)l2 

where 

2(to) 
10 {F2(t) - 2to1 u} (t)= {F(t)fF(t) dF(t), (4*1) 

2to =1 ('+ {G6(t) _ 02(to0+ A)}2 
0"2(to) -4 I G (t) I (t) - dG(t). (4.2) 

Here HF(t) = F(t) U(t), H0(t) = G(t) V(t) are the observed survival distribution functions. 
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Note that 

d(to) = { f2(t) dt 

if F(t) has density f(t). 
When there is no censoring, in which case T1 = T2= oo, this variance reduces to 

f Roo ]00-1 

{12A(1-A) ff2(t) dt , 
_00 

the asymptotic variance of the Hodges-Lehmann estimator (Hodges & Lehmann, 1963). 

5. ESTIMATION OF THE VARIANCE OF Anm 

To estimate the large-sample variance of Anm, we can use the Kaplan-Meier estimators 
Fn and Gm for the true survival distributions F and G, and the empirical distribution 
functions fH( ) and fH(m) for the observed survival distributions HF and HG respectively 
in (4- 1) and (4-2), but d (to) needs special treatment. For this we use an adaptation of a 
method of Rao (1983, pp. 269-70). In his notation, let {1k(t), k } 0} be an orthonormal 
basis in the space of square integrable functions. Through Parseval's equality Jf2(t) dt = 

k a9, where ak = Jf(t)4Ok(t) dt =J 4Ok(t) dF(t), with the integrals over the range (a, b), 
we can estimate 

rb q(n) 

JfS2( t) dt by ak 
a k=O 

where 
b 

ak k(t) dF(t) k(Xi)Wii 
a xi to 

Here wi is the Kaplan-Meier weight of xi, replacing the equal weights n-1 used by Rao 
in the uncensored case, and q(n) = o(n2). A simple choice for k(t) can be 

'~(b -a)-2 (k =0), 

1k 2(b -a)-L cos {7rk(t -a)(b -a)-'21 (k:,: 1), 

where b = to, and a = 0 since it is usually assumed in practice that the support of these 
distributions starts from 0. In general, one can select a so that the probability mass for 
values of t between -oo and a is negligible. Thus we can estimate the variance consistently, 
without having to estimate the density of the survival function. 

6. EXAMPLES AND DISCUSSION 

In this section we present some simulation results to demonstrate the effectiveness of 
the proposed procedure, and to compare it with the method of Padgett & Wei (1982), 
which has the same degree of computational simplicity as ours, but with added conditions 
on the censoring mechanisms. We use the following notation in the examples below. Let 
W((A, a) be the exponential distribution with mean A starting from a, 16(a, /3) be the 
Cauchy distribution centred at a and scaled by ,3 and 0U[a, b] be the uniform distribution 
over [a, b]. 
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Example 1. We performed a Monte Carlo study with two combinations of lifetime 
and censoring distributions. In the first combination F is F(1, 5) with A = 2, U is W(1, 6&2) 
and V is W(1, 8). In the second combination F is W(5, 1) with A = 2, U is Vt[5, 7] and 
V is l[8, 10]. Notice that the censorings in each case are not equal even after shifting. 
The sample sizes are n = 40 and m = 50. The values for T1 and T2 were selected so that 
they will be within the support of the censoring distributions. In particular, we chose 
T = 65 and T2= 8 -1 for the first combination and T1 =6 and T2=9 for the second 
combination. Table 1 gives the simulation results over 500 Monte Carlo repetitions. The 
first and second columns contain the sample mean and the sample standard deviation, 
SMC, of Anm, over the 500 repetitions. The third contains the sample mean of the estimate 
of the standard deviation of Anm, Sest, over the same 500 repetitions, using the method 
of ? 5, the fourth the bootstrap estimate of the standard deviation, Sbot, over 21 samples 
drawn from the chosen distributions and the last one the true value of the asymptotic 
standard deviation, Strue, whenever it is possible to calculate it directly from the formula 
in Theorem 2. The results in the exponential case clearly show the consistency of the 
estimate and give a satisfactory estimate for the variance. In the Cauchy case the standard 
deviation estimate is not as satisfactory, and the bootstrap gives better results. Note that 
the application of the bootstrap is straightforward since it only involves repeated random 
sampling with replacement from the pairs (xi, Ej) and (yj, yj) (Efron, 1981; Lo & Singh, 
1986). Finally, for the exponential case we plot in Fig. 1 the inverse of the asymptotic 
relative efficiency of our procedure with respect to the one proposed by Padgett & Wei 
(1982), as a function of to, defined in Theorem 2. It should be clear that as to approaches 
infinity our estimator coincides with the Padgett-Wei estimator and thus its asymptotic 
relative efficiency becomes one. On the other hand, as to approaches the beginning of 
the support of F our estimator demonstrates superefficiency since it becomes the maximum 
likelihood estimator, which in this case is the difference of the minimum sample order 
statistics among the observed uncensored values. 

Table 1. Simulation results for shift estimate and standard 
deviation comparisons in the exponential and Cauchy- 

uniform cases 

A nm SMC Sest SbOOt Strue 

Exponential 2-0001 0-1112 0-0800 0 1206 0-1046 
Cauchy-uniform 1-9232 0-3829 0-5846 0-3666 

&nm, SMC, mean value and standard deviation of estimate over 500 
Monte Carlo replications; Sest, mean estimated standard deviation; 
SbOot, bootstrap estimate of standard deviation; Strue, true asymptotic 
standard deviation. 

Example 2. In this simulation we used Cauchy survival distributions and uniform 
censoring. In particular F is W(5, 1) with A=2, U is 0[1 1l, 13] and V is 9[7, 8]. In the 
first sample there is practically no censoring, whereas in the second there is very heavy 
censoring and the upper end of its support is below that of the corresponding survival, 
thus violating the conditions of Padgett & Wei. Again 500 Monte Carlo replications were 
generated, with n = 180 and m = 220. Our procedure resulted in an average estimated 
shift 1 -9828 with a standard deviation of 0-173 whereas Padgett & Wei's method yielded 
an average estimated shift 1-~7996 with a standard deviation of 0-171 over the 500 
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Fig. 1. Inverse of asymptotic relative efficiency of pro- 
posed estimator with respect to that of Padgett & Wei 
(1982) as a function of to. Survival and censoring 

functions are exponentials used in Example 1. 

replications. Since the Monte Carlo mean of the Padgett-Wei estimator for A falls more 
than 10 of its standard deviations away from the true value, the consistency of their 
estimator is questionable in this case. Because the consistency of our estimator is 
guaranteed regardless of the censoring mechanisms, it gives good results even in this 
very unbalanced situation. 

Example 3. We now address the issue of the choice of T1 and T2 and the sensitivity 
of the estimator and its variance to this choice. Table 2 presents the effects of the various 
choices when the distributions are the exponential pair from Example 1 and the Cauchy- 
uniform pair from Example 2 with sample sizes n = 40 and m = 50. The values of T1 and 
T2 were selected in the following fashion. First, since the distributions were known, we 
selected fixed T1 and T2, corresponding to the first row of the table, so that they seemed 

Table 2. Choosing different T1 and T2 

Exponential Cauchy-uniform 
T1, T2 Anm SMC Anm SMC 

Fixed* 2-0031 0-1214 2-0672 0-3868 
Max 1 9911 0-1481 2-0515 0-3714 
98% 1*9911 0-1434 2-0676 0*3853 
95% 1-9971 0-1395 2-0696 0-3886 
90% 1-9965 0-1369 2-0747 0-3949 
80% 1*9963 0 1289 2-0860 0*4196 
70% 1*9940 0-1200 2-0861 0 4549 
60% 1-9905 0-1074 2-0779 0-5162 
P&W 1*9950 0 1474 1 8057 0-3523 

* For exponential, T1=6 = 5, T2=8-1; for Cauchy- 
uniform, T1=12, T2=7-5. 
P&W, Padgett & Wei's (1982) estimator. 



748 Y. C. BASSIAKOS, X.-L. MENG AND S.-H. Lo 

reasonable. Then we selected them in a data-dependent way starting with the maximum 
uncensored observation, then proceeding to the 98th percentile of all observations, 
uncensored and censored, then the 95th, 90th, 80th, 70th and 60th percentiles. We also 
include the Padgett-Wei estimator, in the last row, for comparison purposes. Within each 
case, the two columns give the average value of the estimate Anm from 500 Monte Carlo 
repetitions and its sample standard deviation Smi over these repetitions. In the exponen- 
tial-exponential case it is clear that the average values are almost unchanged with the 
change in T1 and T2, whereas the variances decrease as discussed in Example 1. In the 
Cauchy-uniform case again the variation in the average values is very little, but the 
variance increases as we truncate more observations. 

As a matter of practical choice, the investigator can decide what values of T, and T2 
to use before the data are collected, if this is possible. Otherwise, our suggestion to the 
potential user of our method would be to select the 90th or 95th sample percentile of 
the observed survival times, a choice that our simulation results support. The optimal 
choice of T, and T2 which result in the minimum asymptotic variance is still an open 
problem. 
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