
Biometrika (2013), 100, 4, pp. 817–830 doi: 10.1093/biomet/ast024
Printed in Great Britain Advance Access publication 11 July 2013

Practical perfect sampling using composite bounding chains:
the Dirichlet-multinomial model

BY NATHAN M. STEIN AND XIAO-LI MENG

Department of Statistics, Harvard University, Cambridge, Massachusetts 02138, U.S.A.

nmstein@post.harvard.edu meng@stat.harvard.edu

SUMMARY

A discrete data augmentation scheme together with two different parameterizations yields
two Gibbs samplers for sampling from the posterior distribution of the hyperparameters of the
Dirichlet-multinomial hierarchical model under a default prior distribution. The finite-state space
nature of this data augmentation permits us to construct two perfect samplers using bound-
ing chains that take advantage of monotonicity and anti-monotonicity in the target posterior
distribution, but both are impractically slow. We demonstrate that a composite algorithm that
strategically alternates between the two samplers’ updates can be substantially faster than either
individually. The speed gains come because the composite algorithm takes a divide-and-conquer
approach in which one update quickly shrinks the bounding set for the augmented data, and
the other update immediately coalesces on the parameter, once the augmented-data bounding
set is a singleton. We theoretically bound the expected time until coalescence for the com-
posite algorithm, and show via simulation that the theoretical bounds can be close to actual
performance.

Some key words: Anti-monotonicity; Bounding chain; Coupling from the past; Data augmentation; Markov chain
Monte Carlo; Monotonicity; Perfect sampling.

1. THE DIRICHLET-MULTINOMIAL MODEL

The multinomial model and its conjugate Dirichlet prior distribution are common building
blocks of more elaborate models for categorical data, with applications from topic modelling
(Blei et al., 2003) to biology (Holmes et al., 2012). Despite the model’s popularity, there is room
to improve algorithms for Bayesian inference. Although fast Newton–Raphson iterations can find
maximum likelihood estimates, as demonstrated in the 2003 Microsoft Resarch technical report
by T. P. Minka, ‘Estimating a Dirichlet distribution,’ sampling from the posterior distribution of
the parameters in a Bayesian setting is more challenging, especially in high dimensions.

In this paper we present a data augmentation scheme that yields a practical Gibbs sampler and
facilitates perfect sampling algorithms based on composite bounding chains. The central idea
of the composite perfect sampling algorithm is to strategically combine two or more bounding
chains, such that the composite chain has a much faster coalescence time than the individual
samplers. Our main theoretical result is a bound on the expected running time of the composite
algorithm, and we prove it using a somewhat general language about bounding chains, suggest-
ing that similar speed gains may be possible for other bounding chain algorithms. The dramatic
increase in speed we achieve is a small but encouraging step on the road toward perfect samplers
that can be routinely used in practice for Bayesian computation.

C© 2013 Biometrika Trust

 at H
arvard U

niversity on M
ay 5, 2014

http://biom
et.oxfordjournals.org/

D
ow

nloaded from

http://biomet.oxfordjournals.org/

818 N. M. STEIN AND X.-L. MENG

Let y be an N × k matrix of observed counts with i th row yT
i = (yi1, . . . , yik), and let μ be an

N × k matrix with i th rowμT
i = (μi1, . . . , μik), a k-dimensional probability vector withμi j � 0,∑k

j=1 μi j = 1. Conditioned on μ, the vectors yi are independent multinomial random variables
with probabilities μi and fixed sample sizes ni :

pr(yi |μ)= ni !∏k
j=1 yi j !

k∏
j=1

μ
yi j
i j (i = 1, . . . , N).

The probabilities μi in turn are independent draws from a Dir(α1, . . . , αk) distribution:

p(μi | α1, . . . , αk)=
�(
∑k

j=1 α j)∏k
j=1 �(α j)

k∏
j=1

μ
α j −1
i j (i = 1, . . . , N).

Integrating over μ, the posterior of the hyperparameters under a prior π(α1, . . . , αk) is

p(α1, . . . , αk | y)∝ π(α1, . . . , αk)

N∏
i=1

⎧⎨
⎩ �(

∑k
j=1 α j)

�(
∑k

j=1 α j + ni)

k∏
j=1

�(α j + yi j)

�(α j)

⎫⎬
⎭ . (1)

Constructing a practical perfect sampler for (1) is the main subject of this paper.

2. A DISCRETE DATA AUGMENTATION STRATEGY AND TWO GIBBS SAMPLERS

For reasons that will soon be clear, we shall use both the parameterization α = (α1, . . . , αk)

and the parameterization θ = (ω, λ), where ω=∑k
j=1 α j is a concentration parameter and λ=

(λ1, . . . , λk) is a mean vector with λ j = α j/ω. Throughout this paper, we assume that the prior
distribution on λ and ω factors into independent priors

λ∼ Dir(δ1, . . . , δk), ω∼ π0. (2)

Conditioning on the observed data y and the parameter θ , we construct our data augmenta-
tion scheme. If yi j > 0, we define conditionally independent Bernoulli random variables vi j =
(vi j,1, . . . , vi j,yi j) with

pr(vi j,m = 1 | y, θ)= ωλ j

ωλ j + m − 1
(m = 1, . . . , yi j);

and if yi j = 0, then vi j is defined as empty.
This data augmentation strategy has a nice interpretation in terms of a double-replacement

sampling scheme. The distribution of y given θ , integrating over μ, is equivalent to supposing
that there are N urns that initially have α j balls of colour j for j = 1, . . . , k, and we draw balls
independently from each urn following a double-replacement scheme. That is, when we draw
a ball of colour j , we replace it and add another ball of the same colour before sampling the
next ball. The observation yi j is the number of balls sampled from urn i with colour j , and the
data augmentation vi j,m is the indicator for the mth (m = 1, . . . , yi j) sampled ball whether it was
drawn from the original pool, in which case vi j,m = 1, or from the balls that were added to the
urns through the double-replacement scheme, in which case vi j,m = 0. Thus, it makes sense that
if yi j = 0, then vi j is empty because there is nothing to indicate, and if yi j > 0, then vi j,1 = 1
because the first sampled ball must have come from the original pool.

 at H
arvard U

niversity on M
ay 5, 2014

http://biom
et.oxfordjournals.org/

D
ow

nloaded from

http://biomet.oxfordjournals.org/

Practical perfect sampling 819

Letting v = {vi j }i, j , we then obtain the complete-data likelihood p(y, v | θ) as the product
p(v | y, θ)p(y | θ), clearly preserving the margin of interest p(y | θ). Since �(x + 1)= x�(x),

p(y, v | θ)=
N∏

i=1

�(ω)

�(ω + ni)

k∏
j=1

{ yi j∏
m=1

(ωλ j)
vi j,m (m − 1)1−vi j,m

}
, (3)

where we take the term in braces equal to 1 if yi j = 0. If the mean and concentration parameters
are independent in their prior distribution, which we will assume throughout, then they will also
be independent in their complete-data posterior distribution, since terms involvingω and λ factor
in (3). More intuition about (3) appears at the end of this section.

This data augmentation scheme yields a Gibbs sampler that is easy to implement. Denoting the
sufficient statistics of the augmented data z j =∑N

i=1
∑yi j

m=1 vi j,m , where we take
∑yi j

m=1 vi j,m =
0 if yi j = 0, we transition from (z, θ) to (z′, θ ′) by alternating between updating the parameters
given the complete data by drawing θ ′ from

p(θ ′ | z, y)∝ π(ω′, λ′) ω′
∑k

j=1 z j

{
N∏

i=1

�(ω′)
�(ω′ + ni)

}⎧⎨
⎩

k∏
j=1

λ′z j
j

⎫⎬
⎭ (4)

and updating the missing data given the parameters by drawing independently, for j = 1, . . . , k,

(z′
j | θ ′, y)∼

N∑
i=1

yi j∑
m=1

Ber

(
ω′λ′

j

ω′λ′
j + m − 1

)
. (5)

We will call equations (4)–(5) the standard Gibbs sampler. The discreteness of z = (z1, . . . , zk)

is a major advantage of this algorithm, as it enables perfect samplers to coalesce in finite time.
Another benefit of this algorithm is that using a Dirichlet prior distribution on λ leads to a con-
jugate Dirichlet update for the multivariate λ, and the only step that requires special attention is
sampling the univariate ω, for which many standard methods are available, including grid-based
and rejection methods. Additionally, the density p(ω | z, y) arises in the context of Dirichlet pro-
cess mixture models, and Escobar & West (1995) suggest a Gibbs sampler for this distribution.

Following Craiu & Meng (2011), we say that z′ given θ ′ and y in (5) has a nonhomo-
geneous binomial distribution. In general, a nonhomogeneous binomial random variable x ∼
NhBin{N ; (p1, . . . , pN)} can be represented as the sum of N independent Bernoulli random
variables bi ∼ Ber(pi), each with its own success probability pi . The nonhomogeneous binomial
distribution can be easily generalized to the nonhomogeneous multinomial distribution, which
is familiar from the traditional data augmentation approach to fitting finite mixture models. To
illustrate this, suppose data y = (y1, . . . , yN) are independent and identically distributed accord-
ing to the mixture model

p(yi | η)=
k∑

j=1

η j f j (yi), (6)

where for simplicity we can suppose that the densities f j (·) are fully known and the mixture
weights η= (η1, . . . , ηk) are of interest. The usual model-fitting approach augments y with a
nonhomogeneous multinomial variable z = (z1, . . . , zN) such that

pr(zi = j | y, η)= η j f j (yi)

η1 f1(yi)+ · · · + ηk fk(yi)
(j = 1, . . . , k).

 at H
arvard U

niversity on M
ay 5, 2014

http://biom
et.oxfordjournals.org/

D
ow

nloaded from

http://biomet.oxfordjournals.org/

820 N. M. STEIN AND X.-L. MENG

The complete-data likelihood is therefore p(y, z | η)=∏N
i=1
∏k

j=1{η j f j (yi)}1(zi = j), which as
a product can lead to straightforward Gibbs sampling and expectation-maximization algorithms
that are much easier to work with than the sums in (6). See Hobert et al. (1999), Murdoch & Meng
(2001), Casella et al. (2002), and Mukhopadhyay & Bhattacharya (2012) for examples in the
context of perfect sampling. The nonhomogeneous binomial augmentation in the Dirichlet-
multinomial model plays the same role as in finite mixture models: it turns sums into products.
In the Dirichlet-multinomial model, we can rewrite (1) as

p(ω, λ | y)∝
{
π(ω, λ)

N∏
i=1

�(ω)

�(ω + ni)

}⎧⎨
⎩

N∏
i=1

k∏
j=1

yi j∏
m=1

(ωλ j + m − 1)

⎫⎬
⎭ . (7)

The z augmentation turns the sums ωλ j + (m − 1) on the right-hand side of (7) into products as
shown in (3), which are much more convenient for sampling.

Before developing our perfect samplers, it is helpful to introduce another Gibbs sampler based
on this same data augmentation strategy. However, instead of using the θ parameterization, we
use the original α parameterization and alternate between draws from

p(α′
j | α[− j], z, y), p(z′

j | α′
j , α[− j], z[− j], y) (j = 1, . . . , k), (8)

where α[− j] = (α1, . . . , α j−1, α j+1, . . . , αk) and z[− j] is similarly defined. We will see in § 3·2
that while this algorithm sacrifices the factorization between the multivariate λ density and the
univariateω density, it offers convenient monotonicity properties that help in designing bounding
chains.

3. PERFECT SAMPLING USING BOUNDING CHAINS

3·1. Bounding chains

Propp & Wilson (1996) introduced coupling from the past to obtain exact draws from the sta-
tionary distribution of a Markov chain in finite time. The key idea is to run coupled Markov
chains from the past to the present with the same transition probabilities but starting from dif-
ferent states. The construction guarantees that if the chains couple by time 0, then the value at
time 0 is an exact draw from the stationary distribution of the chains. Propp & Wilson (1996)
recognized that the computation is much simpler when the updates of the chain are monotone
with respect to some partial order on the state space.

In general, it can be difficult to construct monotone chains. Bounding chains were therefore
introduced in Huber (1998) and Häggström & Nelander (1999) and developed in Huber (2004),
among others. They provide a solution for perfect sampling without requiring the monotonicity
used by Propp & Wilson (1996). A bounding chain for a Markov chain xt on a state space

is a set-valued Markov chain Xt on the set of all subsets of
, such that the current state xt ∈
Xt , for every starting value that could have been used for the xt chain; see Huber (2004) for
discussion and a slightly more general definition. When bounding chains are used in the context
of coupling from the past, coalescence is detected and the algorithm returns a draw from the
stationary distribution when X0 is a singleton.

Specifically, if the original xt chain can be written as a stochastic recursive sequence xt+1 =
φ(xt , ut), where φ is a deterministic function and ut is a random input, then the set-valued chain

Xt+1 =�(Xt , ut) (9)

 at H
arvard U

niversity on M
ay 5, 2014

http://biom
et.oxfordjournals.org/

D
ow

nloaded from

http://biomet.oxfordjournals.org/

Practical perfect sampling 821

(a) (b)

Fig. 1. (a) The relationship of the bounding chain �(·, ut) to the underlying Markov
chain φ(·, ut). (b) Coupling from the past using bounding chains.

is a valid bounding chain if φ(xt , ut) ∈�(Xt , ut) for every xt ∈ Xt , as illustrated in Fig. 1(a).
Coupling from the past for this bounding chain proceeds as follows: first, set T = T0 for some
fixed T0 such as 1, and X−T =
. Then, run the chain forward from X−T by repeatedly call-
ing (9) until we obtain X0, as illustrated in Fig. 1(b). If X0 is a singleton {x}, then x is an exact
draw from the stationary distribution of the chain defined by φ. Otherwise, set Told = T , set
T = Tnew > Told, where typically Tnew = 2Told, and repeat the procedure, drawing new random
inputs u−T , . . . , u−Told−1 and reusing the sequence u−Told, . . . , u−1.

To define the bounding sets used in our perfect samplers, we use the partial orders z � z̃
when z j � z̃ j , and α � α̃ when α j � α̃ j , for all j = 1, . . . , k. We say that θ � θ̃ when α � α̃,
and (z, θ)� (z̃, θ̃) when z � z̃ and θ � θ̃ . These partial orders admit a minimum and maximum
state for z, but only a minimum state for α:

zmin =
(

N∑
i=1

1(yi1 > 0), . . . ,
N∑

i=1

1(yik > 0)

)
, zmax =

N∑
i=1

yi , αmin = (0, . . . , 0).

It may seem surprising that zmin is not 0, but recall that if yi j > 0, then vi j,1 = 1, so zmin
j is the

number of nonzero entries in the j th column of y. These partial orders allow us to construct
bounding sets, the details of which appear below in the context of the two algorithms we use.

3·2. Componentwise algorithm

For our first algorithm, we work with the parameterization (α1, . . . , αk) instead of (ω, λ). To
guarantee the necessary monotonicity, it is sufficient for the prior density on ω to satisfy the
following property.

Property 1. The ratio

π0(α j + s̃ j)

π0(α j + s j)

(
α j + s̃ j

α j + s j

)1−∑k
j=1 δ j

is increasing in α j whenever s̃ j � s j , where δ1, . . . , δk are the Dirichlet parameters in (2).

From the conditional density

p(α j | y, z, α[− j])∝ π0
(
α j + s j

) (
α j + s j

)1−∑k
j=1 δ j α

δ j +z j −1
j

N∏
i=1

�
(
α j + s j

)
�(α j + s j + ni)

, (10)

where s j =∑ |= j α, we can show that for any prior satisfying Property 1, the conditional den-
sity (10) will enable monotone updates of α j . One such prior is ω∼ Ga(b0, b1) for 0< b0 �∑k

j=1 δ j and any positive b1.

 at H
arvard U

niversity on M
ay 5, 2014

http://biom
et.oxfordjournals.org/

D
ow

nloaded from

http://biomet.oxfordjournals.org/

822 N. M. STEIN AND X.-L. MENG

The following lemma, which is a slightly more general version of Lemma 1 in Møller (1999),
can be used to demonstrate why Property 1 enables monotone updates for α j .

LEMMA 1. Suppose X and Y are univariate random variables with densities f and g, respec-
tively, with respect to the same measure ν. Let SX = {x : f (x) > 0} and SY = {x : g(x) > 0}. If
the function h defined below is increasing for x ∈ SX ∪ SY ,

h(x)=

⎧⎪⎨
⎪⎩

0, (x ∈ SC
X ∩ SY),

f (x)/g(x), (x ∈ SX ∩ SY),

∞, (x ∈ SX ∩ SC
Y),

then X stochastically dominates Y , that is, pr(X � c)� pr(Y � c) for all c.

Proof. For h(x) to be increasing in x , it must be true that if x1 ∈ SC
X ∩ SY , x2 ∈ SX ∩ SY ,

and x3 ∈ SX ∩ SC
Y , then x1 < x2 < x3. Therefore, if c ∈ SC

X ∩ SY , then pr(X � c)= 0 � pr(Y �
c). Similarly, if c ∈ SX ∩ SC

Y , then pr(Y � c)= 1 � pr(X � c).
Now consider the case c ∈ SX ∩ SY . Let A = {X ∈ SY }. Since 1(Y � c) is decreasing in Y and

h(Y) is increasing,

0 � cov{1(Y � c), h(Y)} = pr({X � c} ∩ A)− pr(Y � c)pr(A),

whence pr({X � c} ∩ A)� pr(Y � c). But pr({X � c} ∩ AC)= 0, since if c ∈ SX ∩ SY and x ∈
SX ∩ SC

Y , then x > c. Thus, pr(X � c)� pr(Y � c) for all c. �

If α̃[− j] � α[− j] and z̃ � z, then the conditional distribution of α j given (y, z̃, α̃[− j]) will
stochastically dominate the distribution of α j given (y, z, α[− j]). This enables a monotone update
using inverse transform sampling by coupling upper and lower chains, which serve as upper and
lower bounds for our bounding sets, with the same uniform random input. We can update z given
(α, y) by drawing Un(0, 1) random variables uim for i = 1, . . . , N and m = 1, . . . , yi j − 1, and
then setting

z j =
N∑

i=1

1(yi j > 0)

⎧⎨
⎩1 +

yi j −1∑
m=1

1

(
uim � α j

α j + m

)⎫⎬
⎭ . (11)

To update z̃ j , we use the same random inputs u but replace α j by α̃ j , which makes it clear that
if α̃ j � α j , then the updated z̃ j satisfies z̃ j � z j .

It is natural to ask why any other algorithms are needed, since perfect sampling using monotone
coupling from the past is well established. Two problems make this algorithm impractical. First,
since the update for α j conditions on α[− j], this is not a two-step Gibbs sampler, and hence
the marginal sequence {zt : t = 1, . . .} does not form a Markov chain, where t indexes iterations
rather than components. Therefore, if we checked only the coalescence on z, we would ignore
the possibility that θ may be different in the lower and upper chains, which can in future steps
allow z to uncoalesce. Unfortunately, updating α j via inverse transform sampling guarantees that
θ will almost surely never coalesce, because pr(αU

j >α
L
j)= 1 at every time t , where U and L

denote respectively the upper and lower chains; a similar situation occurs in Møller (1999).

 at H
arvard U

niversity on M
ay 5, 2014

http://biom
et.oxfordjournals.org/

D
ow

nloaded from

http://biomet.oxfordjournals.org/

Practical perfect sampling 823

Second, to make the problem worse, because there is no natural maximum state for α, we do
not even have a method to draw the initial values αU and αL, conditioning on z = zmax in the
upper chain and z = zmin in the lower chain respectively, that would guarantee αU

[− j] � αL
[− j] for

all j . The coordinate-wise approach using (10) cannot initialize the full parameter vector with
this guarantee because it only updates each α j conditional on all the other values α[− j].

3·3. Vector algorithm

Our vector algorithm solves both problems above, but introduces a new one. It first updates
the entire parameter vector given the complete data, and then updates the augmented data given
the parameter. All random draws in the upper and lower chains are coupled by using probability
integral transform sampling with the same random quantiles. First, we draw

ωL ∼ p(ω | y, zL), ωU ∼ p(ω | y, zU). (12)

Here, the actual implementation of (12) will depend on the choice of π0, which we assume sat-
isfies Property 1. Then, for j = 1, . . . , k, we draw

γ L
j ∼ Ga(δ j + zL

j , 1), γU
j ∼ Ga(δ j + zU

j , 1). (13)

If we were to set αL
j =ωLγ L

j /
∑k
=1 γ

L
 and αU

j =ωUγU
j /
∑k
=1 γ

U
 , these would be valid draws

from the complete-data posterior distributions p(α | y, zL) and p(α | y, zU), as given in (4).
Unfortunately, this would not guarantee that αL � αU. Even if γ L

j � γU
j for all j , it is possi-

ble for γ L
j /
∑k
=1 γ

L
 > γ

U
j /
∑k
=1 γ

U
 for some j , and the difference may be large enough that

ωLγ L
j /
∑k
=1 γ

L
 > ω

UγU
j /
∑k
=1 γ

U
 , even though ωL <ωU.

However, we can achieve a valid bounding chain algorithm that preserves the order αL � αU

by dividing by the sum of γ in the opposite chain:

αL
j = ωLγ L

j∑k
=1 γ

U

, αU
j = ωUγU

j∑k
=1 γ

L

. (14)

If zL = zU immediately before this parameter update, then αL
j = αU

j for all j = 1, . . . , k, so that
it is possible to coalesce on z and α.

To see that alternating between updating α using (12)–(14) and then updating z given α and
y yields a valid bounding chain algorithm, suppose (zt , θt) ∈ Zt ×�t , where Zt = {z : zL

t � z �
zU

t } and �t = {θ : θL
t � θ � θU

t }. Then, we can draw ω∼ p(ω | y, zt) and γ j ∼ Ga(δ j + zt, j , 1),
where zt, j is the j th component of z at time t , and draw ωL, ωU, γ L, γU using (12) and (13),
guaranteeing that ωL �ω�ωU and γ L

j � γ j � γU
j . Therefore,

ωLγ L
j∑k

=1 γ
U

� ωγ j∑k
=1 γ

�
ωUγU

j∑k
=1 γ

L

,

so that θt+1 ∈�t+1. The z draw (11) ensures that zt+1 ∈ Zt+1.
The new problem is that this bounding chain is loose, making it impractical even on low-

dimensional, low-count datasets; see § 5. However, strategically alternating between the vector
algorithm and the componentwise algorithm can yield a much speedier composite algorithm, as
we demonstrate empirically in § 5, after a theoretical investigation in § 4.

 at H
arvard U

niversity on M
ay 5, 2014

http://biom
et.oxfordjournals.org/

D
ow

nloaded from

http://biomet.oxfordjournals.org/

824 N. M. STEIN AND X.-L. MENG

4. THEORETICAL RESULTS: COMPOSITE BOUNDING CHAINS

Suppose we wish to sample from p(θ | y), and we have an augmented-data model p(z, θ | y).
To detect coalescence, it is helpful for z to be discrete, but see Murdoch & Green (1998) for per-
fect samplers on continuous state spaces. We assume two underlying Markov chains with stochas-
tic recursive sequences xt+1 = φ(xt , ut) and xt+1 =ψ(xt , vt), where ut and vt are random inputs
and xt = (zt , θt). We use bounding chains Xt � xt with associated stochastic recursive sequences
Xt+1 =�(Xt , ut) and Xt+1 =�(Xt , vt). We assume that the bounding sets can be written as
Xt = Zt ×�t , with zt ∈ Zt and θt ∈�t .

Since our goal is to draw samples of θ , a perfect sampler will not terminate before �t is a
singleton. Thus, if � can quickly reduce Zt to a singleton and if � can reduce �t to a singleton
once Zt is a singleton, then alternating between � and � can be faster than either individually.
To take an extreme case, an alternating algorithm can coalesce on (z, θ) even if � can never
coalesce on θ and � can never coalesce on z.

Our composite algorithm alternates between (M − 1)-fold compositions� ◦ · · · ◦�=�M−1

for some pre-chosen M > 1, and single instances of �; more general combination strategies are
of course possible. That is, in notation, the composite stochastic recursion function is� ◦�M−1.

A stochastic recursion function ψ is monotone if and only if x � x̃ implies ψ(x, v)�ψ(x̃, v)
for all random inputs v. For bounding chains, we can use the subset relationship as a partial
order. That is, a bounding chain B is monotone if for all its random inputs v, B(X, v)⊆B(X̃ , v)
whenever X ⊆ X̃ .

LEMMA 2. If we let � denote the componentwise algorithm of § 3·2 and � denote the vector
algorithm of Section 3·3, then both � and � are monotone bounding chains.

Proof. This is easy to verify directly once we recognize that if z � z̃ and α[− j] � α̃[− j], then
p(α j | y, z̃, α̃[− j]) stochastically dominates p(α j | y, z, α[− j]), p(ω | y, z̃) stochastically domi-
nates p(ω | y, z), and Ga(δ j + z̃ j , 1) stochastically dominates Ga(δ j + z j , 1). Then, the partial
ordering x̃L � xL � xU � x̃U is preserved by using inverse transform sampling with the same
uniform random inputs to draw from the distributions in § 3·2 and § 3·3. �

To bound the expected running time until coalescence for � ◦�M−1, we assume that if Zt is
a singleton, then � causes Zt+1 ×�t+1 to be a singleton:

�({z} ×�, v)= {z′} × {θ ′} (15)

for any z,�, v. We call this property the ability to conditionally induce coalescence on θ . While
this may seem restrictive, our focus is on Bayesian computation where θ is the parameter of
interest and z is part of an augmented-data model. In such settings it is often possible to develop
bounding chain algorithms that can conditionally induce coalescence by including draws of the
full parameter vector θ given the observed and augmented data.

The time until coalescence is τ = min (t : Xt = {x}), where t is incremented each time either
� or � is called, that is, we define the time index t via

Xt+1 =
{
�(Xt , ut), t + 1 �≡ 0 (mod M),

�(Xt , vt), t + 1 ≡ 0 (mod M).
(16)

We check for coalescence only after each time � is called. To initialize the chain, we pass the
state space to �:

X0 =�(
x , v0). (17)

 at H
arvard U

niversity on M
ay 5, 2014

http://biom
et.oxfordjournals.org/

D
ow

nloaded from

http://biomet.oxfordjournals.org/

Practical perfect sampling 825

In a coupling-from-the-past implementation, we would initialize X−T =�(
x , v−T) for T > 0.
Incrementing t each time we use either update, rather than with each block, guarantees that differ-
ent values of τ corresponding to different choices of M can be compared directly, in that smaller
τ roughly corresponds to faster computation. We then have the following theorem.

THEOREM 1. Suppose � and � define monotone bounding chains, and that � conditionally
induces coalescence on θ as in (15). Then, letting Z M−1 be the bounding set for z at the end of the
first sequence �M−1 and letting |Z M−1| be its cardinality, the expected time until coalescence
of the composite algorithm (16) and (17) satisfies

M � E(τ)� M

pr(|Z M−1| = 1)
. (18)

In our composite algorithm for the Dirichlet-multinomial model, we let � be the component-
wise algorithm of § 3·2 and � be the vector algorithm of § 3·3. It is then straightforward to show
that the assumptions of Theorem 1 apply. Moreover, if we let φ be a stochastic recursive sequence
for the Gibbs sampler in (8) andψ correspond to the sampler in (4)–(5), then the composite chain
ψ ◦ φM−1 has the correct stationary distribution p(z, θ | y), and � ◦�M−1 is a valid bounding
chain for this composite Gibbs sampler. Thus, a perfect sampler using the composite updates
� ◦�M−1 will return a genuine draw from p(z, θ | y).

Proof of Theorem 1. The lower bound is trivially true because we check for coalescence only
at the end of a block, and it takes M steps to reach the end of the first block.

For the upper bound, we will show that τ is stochastically dominated by a scaled geometric ran-
dom variable with expectation M/pr(|Z M−1| = 1). Consider a modified version of�, called�0,
which first resets X =
x =
z ×
θ and then updates
x via�. That is,�0(X, v)=�(
x , v)

for any X . Because we use �0 to set the algorithm’s starting values, we can write the composite
algorithm as · · · ◦� ◦�M−1 ◦� ◦�M−1 ◦�0. Since � conditionally induces coalescence on
θ , if Z has coalesced at the end of�M−1, then � will cause� to coalesce in the next step. Thus
we can group the composite algorithm’s updates

· · · ◦ (�M−1 ◦�) ◦ (�M−1 ◦�) ◦ (�M−1 ◦�0)

and check whether Z has coalesced at the end of each block, though in practice we must be sure
to still call � after Z has coalesced to obtain a valid draw (z, θ). By using the same sequence of
random inputs, we couple this composite algorithm to a modified algorithm that substitutes �0
for every �, and we similarly group the sequence of updates in the modified algorithm:

· · · ◦ (�M−1 ◦�0) ◦ (�M−1 ◦�0) ◦ (�M−1 ◦�0).

Assuming that the random inputs to the stochastic recursive sequences at different steps are inde-
pendent, then since �0 deterministically resets X ignoring the current states, the blocks in the
modified algorithm are independent, and the indicators Im for Z -coalescence in block m are inde-
pendent and identically distributed, with pr(Im = 1)= pr(|Z M−1| = 1). Therefore the number of
steps until the first Im = 1 is a scaled geometric random variable with mean M/pr(|Z M−1| = 1),
where the scaling is necessary because there are M steps per group.

Finally, since � and � are monotone bounding chains, when we couple the composite
and modified algorithm by using the same sequence of random inputs, Z -coalescence in the
modified algorithm implies Z -coalescence in the composite algorithm, yielding the upper
bound in (18). �

 at H
arvard U

niversity on M
ay 5, 2014

http://biom
et.oxfordjournals.org/

D
ow

nloaded from

http://biomet.oxfordjournals.org/

826 N. M. STEIN AND X.-L. MENG

0 20 40 60 80 100 120

20

40

60

80

100

Average cell count (n i k)

M
*

N = 5

N = 30

N = 100

0 50 100 150 200 250

20

40

60

80

100

Dimension

M
*

ni k = 20

ni k = 50

ni k = 100

(a) (b)

Fig. 2. Plot of the dependence of estimates of M∗, where pr(|Z M∗−1| = 1)= 0·5, on the number of rows
N , the dimension k, and the average cell count ni/k. In (a), the dimension is fixed at 20, and in (b), the
number of rows is fixed at 5. Estimates of M∗ are based on 100 simulated datasets under each condition,

and error bars are ±2 standard deviations estimated via bootstrap.

Since both M and pr(|Z M−1| = 1) are monotonically increasing functions of M , Theorem 1
suggests an intuitively sensible trade-off that occurs when choosing M , the block size. If M is
too small, then pr(|Z M−1| = 1) is also small, and the upper bound on the expected time until
coalescence blows up, so that we have much weaker guarantees on the expected running time.
However, if M is so large that pr(|Z M−1| = 1)≈ 1 and Z typically coalesces well before M steps,
then much of the within-block computation will be wasted. In the next section, we will see from
simulation that minimizing the upper bound in (18) can lead to a choice of M that is not far from
optimal; see Fig. 3.

5. NUMERICAL ILLUSTRATION

To explore how the composite algorithm scales with the dimension k, the row total ni , and
the number of rows N , we simulated datasets under various conditions. In Fig. 2(a), we fixed
the dimension k = 20 and simulated datasets with number of rows N = 5, 30, and 100, and with
average cell count ni/k = 20, 50, and 100. For Fig. 2(b), we fixed the number of rows N = 5
and simulated datasets with k = 20, 50, 100, and 200, and with average cell count ni/k = 20,
50, and 100, for all i . For each choice of N , ni , and k, we simulated and fit 100 datasets under
independent exponential priors with mean 1 on α1, . . . , αk . Figure 2 plots the results for running
the componentwise algorithm on each dataset. The vertical axes are estimates of M∗, the block
size such that pr(|Z M∗−1| = 1)= 0·5, so that if the block size M = M∗, then the expected time
until coalescence for the composite algorithm satisfies M∗ � E(τ)� 2M∗. Encouragingly, M∗
appears to increase slower than linearly with N , k, and ni/k, and our method is not restricted to
small samples, as we are able to fit datasets with up to 200 000 total counts.

However, our implementation leaves room for improvement. With N = 100, each iteration
took approximately 14 seconds on a 2·80 GHz CPU. We do not view this as a fundamental lim-
itation of our method, however, since we made no attempt to optimize our code, and further
numerical and computational work could reduce the computation time for the draws from (10)
and (12), just as there are now fast algorithms to evaluate the inverses of common cumulative dis-
tribution functions, for instance. Of course, the computation time per iteration must also increase
linearly with k, since the componentwise algorithm must cycle through each dimension.

 at H
arvard U

niversity on M
ay 5, 2014

http://biom
et.oxfordjournals.org/

D
ow

nloaded from

http://biomet.oxfordjournals.org/

Practical perfect sampling 827

Table 1. Artificial datasets used to illustrate the speed gains of the
composite algorithm

Artificial dataset 1 Artificial dataset 2
Class 1 Class 2 Class 1 Class 2

Observation 1 5 10 10 20
Observation 2 6 9 12 18

(a) (b)

0

20

40

60

80

Block size

C
oa

le
sc

en
ce

 ti
m

es

5 10 15 20 5 10 15 20

0

20

40

60

80

Block size

C
oa

le
sc

en
ce

 ti
m

es

Fig. 3. Plots of the dependence of the composite algorithm’s time until coalescence on the block size M ,
for the (a) low-count and (b) high-count artificial datasets in Table 1. Grey points are jittered values of the
number of iterations until coalescence for different runs of the composite algorithm. Dashed lines are the
lower bound and estimated upper bound in (18), and the solid lines connect average coalescence times for

each block size.

To illustrate the speed gains in greater detail, we fit two simple artificial datasets, given in
Table 1, assuming independent exponential prior distributions on α1 and α2. The median coales-
cence time for the vector algorithm applied to the first artificial dataset was 81 000 iterations,
and 37% of runs had coalescence times greater than 105 iterations. We also applied the vector
algorithm to the second artificial dataset, but we stopped it at 106 iterations without observ-
ing coalescence. Thus, it can take an extremely long time for the vector algorithm to return a
value, even on low-dimensional, low-count problems with few observed rows. By itself, the vec-
tor algorithm is useless in practice, as is the componentwise algorithm, since the latter almost
surely never returns a sample.

However, the composite algorithm (16) is much faster. Figure 3 shows the times until coales-
cence for the composite algorithm on both datasets, using various M . The gains are substantial.
Whereas the vector algorithm could not return a single sample for the second artificial dataset in
106 iterations, typical coalescence times for the composite algorithm are in the dozens. Also plot-
ted are the upper and lower bounds in (18) on the expected coalescence times. The denominator
pr(|Z M−1| = 1) in the upper bound is estimated as the proportion with |Z M−1| = 1 of 200 runs
of the componentwise algorithm. On a 2·66 GHz CPU, code for the composite algorithm took on
average 16·0 and 16·1 milliseconds per iteration, with standard deviations 0·2 milliseconds per
iteration, for the low- and high-count artificial datasets, respectively.

6. CONCLUDING REMARKS

The block structure of our composite algorithm is reminiscent of read-once coupling from
the past (Wilson, 2000), which allows exact sampling without requiring the storage of random

 at H
arvard U

niversity on M
ay 5, 2014

http://biom
et.oxfordjournals.org/

D
ow

nloaded from

http://biomet.oxfordjournals.org/

828 N. M. STEIN AND X.-L. MENG

inputs necessary for traditional coupling from the past. However, in Wilson (2000), each block
restarts with the maximal bounding set if the chain fails to coalesce in the previous block. Thus,
using the notation of § 4, a read-once implementation of our sampler could be based on blocks
� ◦�M−1 ◦�0. Connection with another work in the literature is discussed in the Appendix.

On the limitation side, our approach assumes that the prior π on θ satisfies (2) and that the
prior π0 on ω satisfies Property 1. While this is limiting, importance sampling can be used if
another prior is desired. Suppose we wish to estimate the expectation of a function h(θ) under
the posterior distribution assuming the prior π1. We can generate exact samples θ(1), . . . , θ(L)
from the posterior distribution assuming the prior π and use the importance sampling estimator

Ê{h(θ) | y} =
∑L
=1

π1(θ())

π(θ())
h(θ())∑L

=1
π1(θ())

π(θ())

.

An avenue for future work is to investigate the trade-off between using this importance sampling
estimator based on independent exact samples under π , and using an approximate algorithm for
sampling directly under π1, such as any nonexact Markov chain sampler. A further challenge is
to extend our approach to models that account for covariates.

Despite the limitations of our specific algorithm, we believe the idea of using divide-and-
conquer composite bounding chains is suitably general, and it may provide an important step
towards our ultimate goal of making perfect sampling a workhorse in statistical computing.

ACKNOWLEDGEMENT

We are grateful to two referees, the associate editor, and the editor for suggestions that substan-
tially improved our presentation. We also thank Samuel Kou and Alexander Blocker for helpful
discussions, Steven Finch for proofreading, and the U.S. National Science Foundation for partial
financial support.

APPENDIX

Our data augmentation strategy was inspired by the algorithm of Kou & McCullagh (2009) for approx-
imating the weighted matrix permanent, defined as

perω(A)=
∑
σ∈�n

ωcyc(σ)
n∏

i=1

Ai,σ (i),

where A j,k is the (j, k)th entry of an n × n matrix A; cyc(σ) is the number of cycles of the permutation
σ ; and �n is the set of all permutations of {1, . . . , n}. The weighted permanent is the density function for
permanental processes, a class of Cox processes that can be used for classification (McCullagh & Møller,
2006; McCullagh & Yang, 2006). The sequential importance sampling algorithm of Kou & McCullagh
(2009) approximates the weighted permanent by drawing ordered partitions of {1, . . . , n}, which can
be mapped to permutations of {1, . . . , n} by viewing each block of the partition as a cycle, with the
order of elements in each cycle determined by their order in the partition. If A j,k = 1 for all j and k,
then the weighted permanent is �(ω + n)/�(ω). The algorithm of Kou & McCullagh (2009) can then be
interpreted as first randomly ordering the elements of {1, . . . , n}, and then partitioning them by drawing

zi ∼ Ber

(
ω

ω + i − 1

)
(i = 1, . . . , n − 1),

where zi = 0 means that elements i and i + 1 are in the same block.

 at H
arvard U

niversity on M
ay 5, 2014

http://biom
et.oxfordjournals.org/

D
ow

nloaded from

http://biomet.oxfordjournals.org/

Practical perfect sampling 829

In the aforementioned 2003 report by Minka, an exponential-family approximation is used to interpret
the Dirichlet-multinomial model as a ‘multinomial with “damped” counts.’ Our method offers another
perspective on that statement. Let us consider the likelihood for one observation y = (y1, . . . , yk):

pr(y |ω, λ)= �(ω)

�(ω + n)

k∏
j=1

�(ωλ j + y j)

�(ωλ j)
. (A1)

In (A1), we observe the class assignments a1, . . . , an and count the number of individuals assigned to each
class y j =∑n

i=1 1(ai = j). Unlike in § 2, here we introduce an augmented variable σ via p(y, σ | θ)=
p(σ | θ) p(y | σ, θ). We therefore must verify that p(y | θ)=∑σ p(σ | θ) p(y | σ, θ) is the same as (A1).

We first draw σ , a permutation of {1, . . . , n}, from

p(σ | θ)= �(ω)

�(ω + n)
ωcyc(σ).

This distribution depends only on ω, not λ, thus isolating the role of the parameter ω and giving us a
natural interpretation. This permutation then partitions the individuals {1, . . . , n} according to the cycles
of the permutation. We let Ci (σ)⊆ {1, . . . , n} denote the set of elements included in the i th cycle of σ ,
where i = 1, . . . , cyc(σ), and the order can be chosen, for example, according to the smallest element in
each cycle. We let Bi j denote the event that all of the individuals in cycle i are assigned to class j ; that
is, Bi j = {am = jfor all m ∈ Ci (σ)}. To ensure that class assignments are consistent within cycles of σ , we

also define the event D = ∩cyc(σ)
i=1 ∪k

j=1 Bi j . Then, given σ , individuals are assigned to classes according to
the multinomial distribution

p(y | σ, θ)= 1D

cyc(σ)∏
i=1

k∏
j=1

λ
1Bi j

j ,

where 1D is the indicator for the event D. This distribution depends only on λ, not on ω. We can then verify
that marginalizing p(σ | θ) p(y | σ, θ) over σ yields (A1).

This augmented-data model quantifies several well-known and intuitive features of the Dirichlet-
multinomial model. First, no approximation is required to interpret the Dirichlet-multinomial model as
a ‘multinomial with “damped” counts.’ A draw from the Dirichlet-multinomial model can be exactly gen-
erated by first partitioning the data according to a permutation of individuals, and then by classifying
individuals by a multinomial distribution acting on the blocks of the partition. The dampening is therefore
a result of blocking observations according to the permutation σ .

Second, it is commonly known that small values of ω induce sparsity in the observed data, while the
mean vector λ controls the expected frequencies of each class. Sparsity means that there may be many
classes with zero observations and a few classes with many observations. Thus, sparsity is associated with
high variance. In the permutation augmentation, small values of ω favour permutations with few cycles,
so that most individuals are partitioned into just a few blocks. The multinomial allocation to classes then
necessarily results in sparse observations, since the class assignment operates on blocks, not individuals.
Conversely, large values of ω favour permutations with many cycles, corresponding to fine partitions of
individuals and a lower chance of observing sparsity.

REFERENCES

BLEI, D. M., NG, A. Y. & JORDAN, M. I. (2003). Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022.
CASELLA, G., MENGERSEN, K. L., ROBERT, C. P. & TITTERINGTON, D. M. (2002). Perfect samplers for mixtures of

distributions. J. R. Statist. Soc. B 64, 777–90.
CRAIU, R. V. & MENG, X.-L. (2011). Perfection within reach: Exact MCMC sampling. In Handbook of Markov

Chain Monte Carlo, Ed. S. Brooks, A. Gelman, G. Jones and X.-L. Meng, pp. 205–32. Boca Raton: Chapman &
Hall/CRC.

ESCOBAR, M. D.&WEST, M. (1995). Bayesian density estimation and inference using mixtures. J. Am. Statist. Assoc.
90, 577–88.

 at H
arvard U

niversity on M
ay 5, 2014

http://biom
et.oxfordjournals.org/

D
ow

nloaded from

http://biomet.oxfordjournals.org/

830 N. M. STEIN AND X.-L. MENG

HÄGGSTRÖM, O. & NELANDER, K. (1999). On exact simulation from Markov random fields using coupling from the
past. Scand. J. Statist. 26, 395–411.

HOBERT, J. P.,ROBERT, C. P.& TITTERINGTON, D. M. (1999). On perfect simulation for some mixtures of distributions.
Statist. Comp. 9, 287–98.

HOLMES, I., HARRIS, K. & QUINCE, C. (2012). Dirichlet multinomial mixtures: Generative models for microbial
metagenomics. PLoS ONE 7, e30126.

HUBER, M. (1998). Exact sampling and approximate counting techniques. In Proc. 30th Symp. Theory Comp.
New York: Association for Computing Machinery, pp. 31–40.

HUBER, M. (2004). Perfect sampling using bounding chains. Ann. Appl. Prob. 14, 734–53.
KOU, S. C. &MCCULLAGH, P. (2009). Approximating the α-permanent. Biometrika 96, 635–44.
MCCULLAGH, P. &MØLLER, J. (2006). The permanental process. Adv. Appl. Prob. 38, 873–88.
MCCULLAGH, P. & YANG, J. (2006). Stochastic classification models. In Proc. Int. Cong. Math., vol. 3, Ed. M. Sanz-

Sole’, J. Soria, J. L. Varona and J. Verdera, pp. 669–86, Zurich: European Mathematical Society.
MØLLER, J. (1999). Perfect simulation of conditionally specified models. J. R. Statist. Soc. B 61, 251–64.
MUKHOPADHYAY, S. & BHATTACHARYA, S. (2012). Perfect simulation for mixtures with known and unknown number

of components. Bayesian Anal. 7, 675–714.
MURDOCH, D. & MENG, X.-L. (2001). Towards perfect sampling for Bayesian mixture priors. In Proc. Int. Soc.

Bayesian Anal. 2000, Ed. E. I. George, pp. 381–90. Luxembourg: Eurostat.
MURDOCH, D. J.& GREEN, P. J. (1998). Exact sampling from a continuous state space. Scand. J. Statist. 25, 483–502.
PROPP, J. G. & WILSON, D. B. (1996). Exact sampling with coupled Markov chains and applications to statistical

mechanics. Random Struct. Algor. 9, 223–52.
WILSON, D. B. (2000). How to couple from the past using a read-once source of randomness. Random Struct. Algor.

16, 85–113.

[Received November 2012. Revised April 2013]

 at H
arvard U

niversity on M
ay 5, 2014

http://biom
et.oxfordjournals.org/

D
ow

nloaded from

http://biomet.oxfordjournals.org/

	The Dirichlet-multinomial model
	A discrete data augmentation strategy and two Gibbs samplers
	Perfect sampling using bounding chains
	Bounding chains
	Componentwise algorithm
	Vector algorithm

	Theoretical results: composite bounding chains
	Numerical illustration
	Concluding remarks

