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SUMMARY

Perfect sampling using the coupling from the past (CFTP) algorithm was intro-
duced by Propp and Wilson in 1996. In much the way rejection sampling al-
lows one to convert samplers from one distribution into samplers from another,
CFTP allows one to convert Markov chain Monte Carlo algorithms from ap-
proximate samplers of the steady-state distribution into perfect ones. Since 1996
CFTP has been applied to many different Markov chains. However, its use in
routine Bayesian computation is still in the early stages of development. This
paper provides a couple of building blocks for its potentially routine application
in Bayesian mixture priors, including at mixture coupler, and demonstrates the
types of difficulties that currently prevent CFTP from being applied routinely in
Bayesian computation.
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1. INTRODUCTION
Markov chain Monte Carlo (MCMC) is commonly used to explore posterior
distributions. In this technique, a Markov chainXt is constructed so that the
marginal distribution of sampled values converges to the posterior of interest;X0

is set to some arbitrary value and then the chain is updated to produceX1, X2, . . ..
After skipping an initial segment (“burning in”), sampled valuesXt are used to
estimate properties of the posterior such as moments, modes, quantiles,etc.

A worry for practitioners is knowing how long the chain needs to be run
before the marginal distribution ofXt is close enough to the posterior. Thecou-

pling from the past algorithm (CFTP; described below) formulated by Propp
and Wilson (1996,1998) does not face this problem: it allows a Markovchain
simulation method to be used to drawexactly from the limiting distribution of
the Markov chain.

Propp and Wilson’s work has stimulated a great amount of theoretical and
methodological work in the emerging MCMC area ofperfect sampling or exact

sampling. David Wilson maintains an annotated bibliography covering much of
this work; seehttp://dimacs.rutgers.edu/~dbwilson/exact; he
has also written a primer on perfect sampling (Wilson, 2000b) in which CFTP
and other perfect sampling algorithms are discussed. However, the use ofperfect
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sampling in routine applications of Bayesian computation is still in its infancy
(see Green and Murdoch, 1999, Møller and Nicholls, 1999 and Murdoch, 2000).
In this paper we explore the use of CFTP for Bayesian mixture priors; the case
of mixture likelihoods was considered in Hobertet al. (1999) and will be further
explored in future work. We present several ideas that are potentially fruitful
and show the types of difficulties one currently faces in attempted routineuse of
perfect sampling for Bayesian analysis.

2. COUPLING FROM THE PAST: A BRIEF REVIEW

We start with the observation that if a positive recurrent Markov chainXt had
been run from the indefinite past (t = −∞), then by timet = 0 it would have
reached steady-state, andX0 would be a draw from the limiting distribution.
What CFTP does is to calculate the value ofX0 while only carrying out a finite
amount of computation.

To illustrate, we note that the usual computer simulation of a Markov chain
can be written in stochastic recursive sequence (SRS) form as

Xt+1 = φ(Xt, Ut+1), (1)

whereUt is an i.i.d. sequence of random values from an easily simulated distri-
bution, andφ is a deterministic function. Calculation ofX0 appears at first to be
impossible without going back tot = −∞: it depends onX−1, which depends
on X−2, and so on. However, CFTP works because we do not always need to
knowX−1 exactly in order to calculateX0, and we need to know even less about
sampled values further in the past. If we go far enough back, it is possible that
no matter what value the chain took, it will evolve to the sameX0.

This is implemented by imagining the entire sequenceUt to have been sam-
pled once and then fixed. (In practice we normally drawUt values only when we
need them.) We then consider a collection of chains started at some time−T < 0
from every possible state ofX−T . These are all updated using the same updating
functionφ and the same sequence ofUt values. If the resulting values ofX0 vary
from chain to chain, then a larger value ofT is used, and the same calculation is
repeated. If the resulting values ofX0 all agree, then increasingT would have no
effect, since any path has to pass throughsome state at time−T . The common
valueX0 is clearly a draw from the limiting distribution.

The CFTP algorithm may or may not terminate, depending on the choice
of updating function. It is essential thatφ be chosen so that it causes states to
coalesce, i.e., so that for at least some values ofU andY 6= Z, φ(Y,U) =
φ(Z,U). (This condition is not sufficient, but we will not give exact sufficient
conditions: in practice a satisfactoryφ function is demonstrated by the success
of the CFTP algorithm!) Furthermore, even when a CFTP algorithm terminates
with probability one in theory, it may take too long or too much memory to
be practical. This is the key difficulty we need to overcome in order to make
CFTP a routine tool in Bayesian computation. There have been a variety of
clever methods developed in the literature, including the “bracketing” method of
Propp and Wilson (1996) which can take advantage of a monotonicity property of

2



φ. However, since these methods require additional structures of the underlying
Markov chain, their applicability depends critically on whether our chain meets
these specific requirements. A challenge in routine applications of CFTP is either
to identify such structures in a problem at hand (e.g., identify a usefulpartial
ordering for the “bracketing” method), or to construct a new method, perhaps by
tailoring an existing method for a different problem, to make the coalescence fast
enough to be practical. The work reported in this paper is an example of suchan
effort.

An additional issue that can be problematic in routine practical implementa-
tion is that, because theUt values may be re-used many times asT is increased,
programming CFTP can be tricky. Wilson (2000a) has devised a variationcalled
“read-once CFTP” that avoids this problem, allowingUt values to be sampled
only forward in time. Rather than search for a time−T from which coalescence
has occurred, read-once CFTP looks through fixed size blocks (ofB steps, say),
until it finds one for which coalescence occurs entirely within the block; see
Figure 2 of Section 7 for an illustration. Taking advantage of the fact that the
occurrence of this event is independent from block to block, Wilson shows that
the last observation in a single path from the end of one coalescent block to the
start of the next one is equivalent to a perfect CFTP sample.

3. MIXTURE PRIORS

The simplest way for a mixture to enter a Bayesian model is in the prior distri-
bution. We may have ak component mixture prior,π(θ) ∝ ∑k

i=1 piπi(θ). This
could arise if the investigator was unsure which of several reasonably sharp priors
should apply, or if s/he wanted to mix a small proportion of a diffuse prior with
a relatively sharp one, in case the knowledge that led to the sharp prior turned
out to be inapplicable, or if a complex prior was built up of componentsfrom
relatively simple distributions.

Suppose we have datay, leading to likelihoodL(θ | y). The posterior is then
π(θ | y) ∝ ∑

i piπi(θ)L(θ). In order to construct a Markov chain, we follow the
standard approach and augment the parameter to(θ, z) wherez ∈ {1, . . . , k}
indicates the mixture component. The joint density for(θ, z) is proportional to
pzπz(θ)L(θ), whose marginal forθ is our target posterior density. With this
augmentation, we can implement the Gibbs sampler by alternating between the
two conditional distributions

π(z | θ, y) =
pzπz(θ)L(θ)

∑

i piπi(θ)L(θ)
=

pzπz(θ)
∑

i piπi(θ)
, (2)

π(θ | z, y) ∝ πz(θ)L(θ). (3)

Sampling fromπ(z | θ, y), a discrete distribution onk values, is straightforward.
Sampling fromπ(θ | z, y) may be less so, but it is typically easier than sampling
directly from the desired mixture distribution,π(θ | y).

We may write this Markov chain in SRS form in many ways; a simple one
is as follows, for the case whereθ is one dimensional. We letUt = (U

(1)
t , U

(2)
t ),
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whereU
(i)
t are i.i.d. U(0, 1) random variables. Then bothθt+1 andzt+1 are

selected via the inverse CDF method from their conditional distributions using
U

(1)
t andU

(2)
t , respectively. The usefulness of this method depends on how easy

it is to compute the inverse CDF function ofπ(θ | z, y), especially whenθ is
continuous and unbounded.

Does this chain converge in distribution toπ(θ, z | y)? Typically it does,
though in cases where the conditional distributionsπ(θ | z, y) do not have areas
of common support it will not. Does the CFTP algorithm work, at leastin theory?
Again under the conditions where the chain has a unique limiting distribution it
will: there will be a possibility that two different chains will be updated with the
samezt+1 value, and from then on all future updates of both will be identical.
The following normal example illustrates this point as well as the most basic
steps of our mixture coupler.

4. A NORMAL MIXTURE PRIOR EXAMPLE

To introduce the basic ideas of this paper, we start with an artificialk = 3 com-
ponent mixture prior for a one-dimensional location parameterθ:

1. 0.1% fromN(0, 10) (a slightly diffuse prior in case our guesses are wrong);

2. 49.9% fromN(1, 1) (our first guess aboutθ);

3. 50% fromN(20, 1) (our second guess aboutθ).

Suppose we have one observation,y = 12.1, from N(θ, τ2), whereτ2 = 1. The
one observation setting is not restrictive under the normality assumption with
known variance, as we can replacey by ȳ and modifyτ2 accordingly.

Because this is a mixture of normal distributions, we can calculate the pos-
terior analytically. In particular, with priorπ(θ) =

∑k
z=1 pzN(µz, σ

2
z) and

y ∼ N(θ, τ2), we have

θ | y ∼
k

∑

z=1

wz(y)N
(

µz(y), σ2
z(y)

)

, (4)

whereµz(y) = (σ−2
z µz + τ−2y)/(σ−2

z + τ−2), σ2
z(y) =

(

σ−2
z + τ−2

)

−1
, and

wz(y) ∝ pz
√

σ2
z + τ2

exp

{

− (µz − y)2

2(σ2
z + τ2)

}

. (5)

For our example, the components of the posterior turn out to be (1) 86.8% of
N(11, 10/11), (2) 0.0% ofN(6.55, 1/2), and (3) 13.2% ofN(16.05, 1/2).

To illustrate our basic mixture coupler, we pretend that the weight calcula-
tions above were not feasible, and try to determine the weights by simulation. We
will simulate directly from the component distributions; for manyother problems
this might not be feasible, but it would still often be easier to simulate from the
components than from the mixture as a whole, especially when the weights are
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not known. There are also other ways of getting around this problem (seeSec-
tion 6). Following the general CFTP strategy described in Section 2, westarted
our coupler from all three possible states ofz, and then proceeded as follows for
the three chains:

1. For samplingθ givenzt, we simulated a commonX ∼ N(0, 1) and then applied
a linear transformation depending on the value ofzt to obtainθt+1 as a draw
from π(θ|zt, y). Therefore, if two chains have the samezt value, they will also
produce the sameθt+1.

2. To samplez givenθt+1, we calculated the multinomial distributionsπ(z|θt+1, y)
for the three (or fewer) values ofθt+1, and sampled from them using the inverse
CDF method with a commonU ∼ U(0, 1). Thus, if two chains have the same
θt+1, they will produce the samezt+1.

With this basic coupler, coalescence of CFTP is fairly slow. The median value
of T for coalescence was 128. However, the “perfect” nature of the sampler is
indicated in Figure 1, which plots the simulated values ofθ (left panel) and the
posterior density ofθ using the estimated weights from the proportions of the
simulatedz′s (right panel), both against the true density curve.
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Figure 1. Plot of posterior density forθ. In both plots, the solid line is the true density;
on the left, 1,000 simulated values are shown using the variable width jittered plotting

method of Lee and Tu (1997). On the right, the density estimate obtained by estimating the
weights from the proportions of the 1,000 simulatedz values, is shown dashed.
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5. TRANSFORMING THE COMPONENTS

In the example above, we observed that coalescence was quite slow because the
Gibbs sampler did not mix well: it was quite difficult to make a jump from one
mode to the other. A well-known and often effective technique for speeding up
a Gibbs sampler is to reduce the dependence among its components via transfor-
mation (i.e., reparametrization), as we demonstrate below.

First, we can shift each component so that the modes are aligned. That is,
we change variables from(θ, z) to (φ, z) = (θ − mz, z), wheremz is the mode
of the conditional distribution ofθ | z. The Jacobian is 1, so the joint density of
(φ, z) is proportional topzπz(φ+mz)L(φ+mz) and the Gibbs conditionals are

π(z |φ, y) =
pzπz(φ + mz)L(φ + mz)

∑

i piπi(φ + mi)L(φ + mi)
, (6)

π(φ | z, y) ∝ πz(φ + mz)L(φ + mz). (7)

This produces a vast improvement in the speed for our normal example, with the
median value ofT needed for coalescence reduced from 128 to 1.

Second, we could go further and also rescale each component so that the
dispersions of the conditional densities ofθ | z match each other more closely.
Specifically, we can transform(θ, z) to (φ, z) = (A−1

z (θ − mz), z), where the
conditional covariance ofθ is Σz = AzA

T
z . With this transformation, the Jaco-

bian is |Az | , so the the Gibbs conditionals are

π(z |φ, y) =
|Az | pzπz(Azφ + mz)L(Azφ + mz)

∑

i |Ai | piπi(Aiφ + mi)L(Aiφ + mi)
, (8)

π(φ | z, y) ∝ πz(Azφ + mz)L(Azφ + mz). (9)

For our normal example, this location-scale transformation makesφ independent
of z, so our mixture coupler would always coalesce in one step. In other words, in
this special case, this transformed CFTP algorithm is the same as directly drawing
φ andz from their joint density, which is the product of two marginal densities,
and thus directly obtaining independent draws ofθ via θ = Azφ + mz. In prob-
lems where CFTP is needed, this simplification does not happen. However, this
is not necessarily a problem because our goal is to find a suitable transformation
that will render fast coalescence, not necessarily in one step. In other words,
we can choose some approximatemz andAz to achieve both simplicity and fast
mixing rate, as we show in the next section.

6. A T MIXTURE COUPLER VIA FURTHER AUGMENTATION

In the previous section we avoided the difficult construction of a CFTP coupler
for the continuous and typically unboundedθ by augmentingθ with z, which
only hask possible states, and using the two-step Gibbs sampler. (In practice,k
is typically small; for largek, the multi-stage CFTP of Meng (2000) may help to
reduce the computational load for starting the chain at every possible state.) A
key for this method to work is that the resulting conditional draw of θ (or φ with
the transformation) givenz is easy to couple with different values ofz.
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When this direct conversion does not lead to easily coupled draws forθ or φ
givenz, further augmentation could be helpful. Consider the same mixture prob-
lem as in Section 4 except the normal likelihood is replaced by ad-dimensional
t likelihood with ν degrees of freedom. We retain the normal prior; it is quite
common and convenient to use normal distributions to represent prior informa-
tion regardless of the form of the likelihood. Specifically, supposewe have i.i.d
samplesY = {Y1, . . . , Yn} from a d-dimensional location-scalet distribution
td(θ,Σ0; ν), where the degrees of freedomν and scale parameterΣ0 are assumed
to be known. Our prior forθ is given byπ(θ) =

∑k
z=1 pzN(µz,Σz). (Note that

k = 1 gives the usual posterior from at-likelihood with normal prior.) In this
caseπ(θ | z, Y ) does not correspond to any convenient multivariate distribution
and it is not easy to couple directly. However, using the decomposition,

Y = θ +
Σ

1/2
0 Z√

q
, Z ∼ Nd(0, I), q ∼ χ2

ν/ν, Z ⊥ q, (10)

we can augmentY into {Y, q} = {(Yi, qi), i = 1, . . . , n}. It is easy to check (as
in van Dyk and Meng, 2001) that givenz andq (andY )

θ |Y, q, z ∼ Nd (µz,q,Σz,q) , (11)

where

µz,q = Σz,q

[

Σ−1
0

∑

i

qiYi + Σ−1
z µz

]

, Σ−1
z,q = (

∑

i

qi)Σ
−1
0 + Σ−1

z . (12)

Givenθ, {z, q1, . . . , qn} are mutually independent with

qi | θ, Y ∼
χ2

ν+d

(Yi − θ)T Σ−1
0 (Yi − θ) + ν

, i = 1, . . . , n, (13)

andπ(z | θ, Y ) is a multinomial distribution calculated in the same way as in (2)
with L(θ) being thet-likelihood. We thus have a two-step Gibbs sampler alter-
nating between drawing fromθt+1 given{zt, qt} using (11)-(12), and{zt+1, qt+1}
givenθt+1 using (13) and the multinomial (2).

The addition of the continuous componentqt to the Gibbs sampler makes
the construction of a coupler trickier. Murdoch and Green (1998) showed that
coalescence of a coupled Gibbs sampler follows from coalescence of all but one
component; here we need eitherθt or both zt andqt to coalesce. Fortunately, the
simple univariate scaledχ2 conditionals given in (13) allow us to directly apply
Wilson’s (2000b, Section 2.4.8) layered multiscale gamma coupler to sample qi

following (13). This coupler gives a discrete set of updates to the uncountable
set of scaledχ2

ν+d distributions. When the scale factor is in an interval(a, b), the
set is bounded above ifb < ∞ and finite if, additionally,a > 0. We start with
a = 0 andb = 1/ν, from (13). Whenθt+1 is calculated, the upper bound onqt is
sufficient to give an upper bound on|θt+1|, which in turn givesa > 0 when we
come to theqt+1 calculation. With a finite set of possible values ofqt+1, we then
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pair each of them to thek possible values ofzt+1, and thereby determine a finite
number of paths to follow. In a practical implementation this number may still be
too large to handle, and we may still only keep track of the bounds; eventually,
it will by chance take on as small a multiple ofk as desired. There is a tradeoff
between waiting a long time for a small multiple versus using a lot ofcomputer
memory for a large one.

The underlying Gibbs sampler here suffers the same slow mixing problem
as the one in Section 4. Indeed, the two Gibbs samplers become the same when
ν → ∞ (thed-dimensional version of the Gibbs sampler of Section 4 is obvious).
We again can apply the transformation idea in Section 5 to speed up the mixing.
However, we do not want to use the conditional modeµz,q and “standard devia-

tion” matrix Σ
1/2
z,q from (11) for the transformation. This is because although such

a transformation will makeφ independent of{q, z}, it will upset the important
conditional independence structure in (13). To get around this problem, we can
use the conditional modemz and “standard deviation” matrixAz calculated from
pretendingthe sampling density were normalNd(θ,Σ0) instead oftd(θ,Σ0; ν);
that is, we can use the same transformationφ = A−1

z (θ − mz) as in Section 5.
The resulting conditional distribution forφ is obviously, by (11),

φ |Y, q, z ∼ Nd

(

A−1
z (µz,q − mz), A−1

z Σz,q(A
−1
z )T

)

. (14)

Conditional onφ, z andq = {q1, . . . , qn} are no longer independent, but condi-
tional on bothφ andz, we still have, independently fori = 1, . . . , n,

qi |φ, Y, z ∼
χ2

ν+d

(Yi − Azφ − mz)T Σ−1
0 (Yi − Azφ − mz) + ν

. (15)

Thus the Gibbs step for drawing{zt+1, qt+1} givenφt+1 can be easily accom-
plished by first drawingzt+1 from z givenφt+1, which is the same multinomial
as in (8) withL being thet likelihood, and then drawingqt+1 using (15) with
z = zt+1 andφ = φt+1. The multiscale gamma coupler can be implemented in
the same way with appropriately modified bounds.

7. NUMERICAL ILLUSTRATION AND CONCLUDING REMARKS

To illustrate the couplers of Section 6, we start with the example of Section 4, but
usingt1(θ, 1, ν) in place of theN(θ, 1) likelihood. The prior forθ is the same
normal mixture. With large degrees of freedom (ν = 50), this is very similar
to the previous example, and coalescence using the transformed coupler is fast,
with T < 10 typically (see left panel of Figure 2). The untransformed coupler is
slower, withT > 200 in most simulations. Using read-once CFTP to generate
an i.i.d. sample of 1000 observations from the posterior required a total of about
8000 time steps with the transformed coupler, and about 670,000 timesteps with
the untransformed one. The block sizeB for the read-once CFTP was 6, the
median of nine forward coalescence times we ran in advance.
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Figure 2. An illustration of read-once CFTP for thet mixture withν = 50 and block size
6. On the left the steps required to obtain the first two draws are shown: the vertical gray
lines represent the unbounded set ofθ values at the start of each block; the vertical gray
brackets show the bounds onθ from the multiscale gamma coupler; the other gray lines
are the collection of updates of all of the finite states. The solid black line is the single

path started from the end of the first coalescent block; the circles indicate the two draws.
On the right 1000 draws are shown using the method of Lee and Tu (1997) together with

the true posterior density function (normalized by numerical integration).

On the other hand, whenν = 1, coalescence was much slower. For the trans-
formed coupler,T was in the neighborhood of 6200. We believe it took this
long because the transformation was optimized for a normal likelihood,but with
ν = 1 the actual likelihood often is far from that. For the untransformed coupler,
we gave up after106 steps without observing any coalescence. Convergence may
also be slower withd > 1. While working on a single observation withd = 2
andν = 50, the chains took about the same time to coalesce as withd = 1.
However, the slow convergence with smallν is exacerbated in high dimensions:
for example, the transformed algorithm failed to coalesce in106 steps withν = 1
andd = 2.

With thet distribution, a sample size of 1 is hardly an interesting problem.
We have used our coupler successfully on larger (n = 50) randomly generated
datasets with largeν; it works well there provided the data are centered at a good
estimateθ̂, presumably because the likelihood is so dominant in the posterior.
In other words, it is better to bound|θ − θ̂| than to bound|θ| in the multiscale
gamma coupler. Interestingly, very largen can also help to overcome the small
ν problem whenn is large enough so that the normal transformation is again
approximately optimal. For other cases, the coupler fails because there are too
many (e.g.,106) possibilities for theq vector: we did not have enough computer
resources to follow all of them. Obtaining better transformations for such cases
appears to be a key to make our coupler work in general.

The difficulties we encountered here, namely, (1) too slow to coalesce (due
to slow mixing of the forward chain) and (2) too many states to trace, are typical
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in current attempts to implement CFTP for Bayesian problems with unbounded
and continuous state spaces. For models where thek-component mixture ap-
pears in the likelihood, the latter problem could be especially severe, as there will
bekn terms in the posterior, in contrast tok terms as in mixture-prior models.
Overcoming these difficulties requires better constructions (e.g., bettertransfor-
mations, better bounds), which in turn require a level of analytic effort greater
than is needed to find the corresponding forward MCMC algorithm. However,
such efforts are worthwhile, especially for those of us whose research goalis to
construct effective and reliable algorithms for general users.
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