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SUMMARY

Perfect sampling using the coupling from the past (CFTP) algorithm mtes- i
duced by Propp and Wilson in 1996. In much the way rejection sampling al-
lows one to convert samplers from one distribution into samplens fanother,
CFTP allows one to convert Markov chain Monte Carlo algorithms from ap-
proximate samplers of the steady-state distribution into perfect @iese 1996
CFTP has been applied to many different Markov chains. However, its use in
routine Bayesian computation is still in the early stages of developmigris
paper provides a couple of building blocks for its potentially noeitapplication

in Bayesian mixture priors, includingtamixture coupler, and demonstrates the
types of difficulties that currently prevent CFTP from being appliedinaly in
Bayesian computation.
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1. INTRODUCTION

Markov chain Monte Carlo (MCMC) is commonly used to explore posterio
distributions. In this technique, a Markov chalfy is constructed so that the
marginal distribution of sampled values converges to the posterioteriast; X,

is set to some arbitrary value and then the chain is updated to proguce,, . . ..
After skipping an initial segment (“burning in”), sampled valu€s are used to
estimate properties of the posterior such as moments, modes, quattiles,

A worry for practitioners is knowing how long the chain needs to be run
before the marginal distribution of; is close enough to the posterior. Theu-
pling from the past algorithm (CFTP; described below) formulated by Propp
and Wilson (1996,1998) does not face this problem: it allows a Madk@in
simulation method to be used to drawactly from the limiting distribution of
the Markov chain.

Propp and Wilson’s work has stimulated a great amount of theoretical and
methodological work in the emerging MCMC areageffect sampling or exact
sampling. David Wilson maintains an annotated bibliography covering much of
this work; seeht t p: // di macs. rut gers. edu/ ~dbwi | son/ exact ; he
has also written a primer on perfect sampling (Wilson, 2000b) in whiEfiRC
and other perfect sampling algorithms are discussed. However, the pedext
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sampling in routine applications of Bayesian computation is stiltsninfancy
(see Green and Murdoch, 1999¢Nér and Nicholls, 1999 and Murdoch, 2000).
In this paper we explore the use of CFTP for Bayesian mixture pribescase
of mixture likelihoods was considered in Hobettal. (1999) and will be further
explored in future work. We present several ideas that are potentiaiiyulr
and show the types of difficulties one currently faces in attempted route®f
perfect sampling for Bayesian analysis.

2. COUPLING FROM THE PAST: A BRIEF REVIEW

We start with the observation that if a positive recurrent Markov chgjrhad
been run from the indefinite past £ —c0), then by timet = 0 it would have
reached steady-state, add}) would be a draw from the limiting distribution.
What CFTP does is to calculate the valueX@f while only carrying out a finite
amount of computation.

To illustrate, we note that the usual computer simulation of a Markainch
can be written in stochastic recursive sequence (SRS) form as

Xir1 = (X, Upya), (1)

whereU; is an i.i.d. sequence of random values from an easily simulated distri-
bution, andp is a deterministic function. Calculation &f, appears at first to be
impossible without going back tbo= —co: it depends onX _;, which depends

on X_,, and so on. However, CFTP works because we do not always need to
know X _; exactly in order to calculat&y, and we need to know even less about
sampled values further in the past. If we go far enough back, it is pestiat

no matter what value the chain took, it will evolve to the sakije

This is implemented by imagining the entire sequelice have been sam-
pled once and then fixed. (In practice we normally didwalues only when we
need them.) We then consider a collection of chains started at some fime 0
from every possible state 6f _;. These are all updated using the same updating
function¢ and the same sequencedgfvalues. If the resulting values of, vary
from chain to chain, then a larger valueBfis used, and the same calculation is
repeated. If the resulting values &f all agree, then increasirigwould have no
effect, since any path has to pass throughe state at time-7". The common
value X, is clearly a draw from the limiting distribution.

The CFTP algorithm may or may not terminate, depending on the choice
of updating function. It is essential thatbe chosen so that it causes states to
coalesce, i.e., so that for at least some valuesléfandY # Z, ¢(Y,U) =
#(Z,U). (This condition is not sufficient, but we will not give exact suffict
conditions: in practice a satisfactogyfunction is demonstrated by the success
of the CFTP algorithm!) Furthermore, even when a CFTP algorithmitettes
with probability one in theory, it may take too long or too much meyntar
be practical. This is the key difficulty we need to overcome in order to make
CFTP a routine tool in Bayesian computation. There have been a variety of
clever methods developed in the literature, including the “bracketinghokof
Propp and Wilson (1996) which can take advantage of a monotonicity pyaygfer



¢. However, since these methods require additional structures of therlyimg
Markov chain, their applicability depends critically on whether our chain meets
these specific requirements. A challenge in routine applications of C&-gikher

to identify such structures in a problem at hand (e.g., identify a ugeflal
ordering for the “bracketing” method), or to construct a new methodayes by
tailoring an existing method for a different problem, to make the coelese fast
enough to be practical. The work reported in this paper is an example ofsuch
effort.

An additional issue that can be problematic in routine practical implesnent
tion is that, because th&, values may be re-used many times/as increased,
programming CFTP can be tricky. Wilson (2000a) has devised a variedided
“read-once CFTP” that avoids this problem, allowitig values to be sampled
only forward in time. Rather than search for a tim& from which coalescence
has occurred, read-once CFTP looks through fixed size blockB &éps, say),
until it finds one for which coalescence occurs entirely within the bloge s
Figure 2 of Section 7 for an illustration. Taking advantage of the feat the
occurrence of this event is independent from block to block, Wilson stbat
the last observation in a single path from the end of one coalescent bldlok t
start of the next one is equivalent to a perfect CFTP sample.

3. MIXTURE PRIORS

The simplest way for a mixture to enter a Bayesian model is in the pigbri-d
bution. We may have & component mixture priofy(6) Zle p;m;(0). This
could arise if the investigator was unsure which of several reasonadly phiors
should apply, or if s’/he wanted to mix a small proportion of a diéfyorior with
a relatively sharp one, in case the knowledge that led to the sharp pm@ditu
out to be inapplicable, or if a complex prior was built up of componérs
relatively simple distributions.

Suppose we have dagaleading to likelihoodZ(6 | y). The posterior is then
7(0]y) o< >, pimi(0)L(0). In order to construct a Markov chain, we follow the
standard approach and augment the parametét, to wherez € {1,...,k}
indicates the mixture component. The joint density (fyrz) is proportional to
p.m.(0)L(0), whose marginal fop is our target posterior density. With this
augmentation, we can implement the Gibbs sampler by alternating between the
two conditional distributions

pzﬂz(g)ﬁ(g) _ pzﬂ'z(e)
G109 = S OL®) S pm6) @
7(0]2y) x m(0)L(6). ®)

Sampling fromr(z | 6, y), a discrete distribution ok values, is straightforward.
Sampling fromr (0| z, y) may be less so, but it is typically easier than sampling
directly from the desired mixture distribution(6 | y).

We may write this Markov chain in SRS form in many ways; a simple one

is as follows, for the case whefas one dimensional. We Iéf; = (Ut(l), Ut(2)),



whereUt(l) are i.i.d. U(0,1) random variables. Then both,; andz;,, are
selected via the inverse CDF method from their conditional distidingtiusing

Ut(l) andUt(z), respectively. The usefulness of this method depends on how easy
it is to compute the inverse CDF function off | z,y), especially wherd is
continuous and unbounded.

Does this chain converge in distribution 440, z | y)? Typically it does,
though in cases where the conditional distributiafié| =, y) do not have areas
of common support it will not. Does the CFTP algorithm work, at |éattieory?
Again under the conditions where the chain has a unique limitingilolision it
will: there will be a possibility that two different chains will bg@dated with the
samez;; value, and from then on all future updates of both will be identical.
The following normal example illustrates this point as well as thestnasic
steps of our mixture coupler.

4. ANORMAL MIXTURE PRIOR EXAMPLE

To introduce the basic ideas of this paper, we start with an artificial3 com-
ponent mixture prior for a one-dimensional location paraméter

1. 0.1% fromN (0, 10) (a slightly diffuse prior in case our guesses are wrong);
2. 49.9% fromN (1, 1) (our first guess abouh);
3. 50% fromN (20, 1) (our second guess abaijt

Suppose we have one observatigns 12.1, from N (6, 72), wherer? = 1. The
one observation setting is not restrictive under the normality aggamwith
known variance, as we can replagby i and modifyr2 accordingly.

Because this is a mixture of normal distributions, we can calculatedbe p
terior analytically. In particular, with prioer(6) = Z’;:lpzN(uz,ag) and
y ~ N(0,72%), we have

k
0y ~> w(y)N (p=(y), 02 (1)), (4)

wherey. (y) = (072, + 7 2) /(072 +772),02(y) = (0;2 +772)"", and

- (1= —y)?

ws(y) o WGXP{W}'

For our example, the components of the posterior turn out to be@BP8 of
N(11,10/11), (2) 0.0% ofN (6.55,1/2), and (3) 13.2% ofV (16.05, 1/2).

To illustrate our basic mixture coupler, we pretend that the weight icu
tions above were not feasible, and try to determine the weights byasimol We
will simulate directly from the component distributions; for matiier problems
this might not be feasible, but it would still often be easier to sateifrom the
components than from the mixture as a whole, especially when the weights ar

()



not known. There are also other ways of getting around this problemSgee
tion 6). Following the general CFTP strategy described in Section Ztaréed
our coupler from all three possible states:pfind then proceeded as follows for
the three chains:

1. For sampling givenz;, we simulated a commal ~ N(0, 1) and then applied
a linear transformation depending on the valuezpfo obtainé,,; as a draw
from = (0|z:,y). Therefore, if two chains have the samevalue, they will also
produce the sam@ , ;.

2. To sample: givené, 1, we calculated the multinomial distribution$z|6; 1, v)
for the three (or fewer) values 6f.;, and sampled from them using the inverse
CDF method with a commo# ~ U(0,1). Thus, if two chains have the same
0:+1, they will produce the samg ;.

With this basic coupler, coalescence of CFTP is fairly slow. The mediarevalu
of T for coalescence was 128. However, the “perfect” nature of the sampler is
indicated in Figure 1, which plots the simulated value# @eft panel) and the
posterior density of) using the estimated weights from the proportions of the
simulated:’s (right panel), both against the true density curve.
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Figure 1. Plot of posterior density fof. In both plots, the solid line is the true density;
on the left, 1,000 simulated values are shown using the varialolthyitered plotting
method of Lee and Tu (1997). On the right, the density estimadénalot by estimating the
weights from the proportions of the 1,000 simulatedhlues, is shown dashed.



5. TRANSFORMING THE COMPONENTS

In the example above, we observed that coalescence was quite slow because the
Gibbs sampler did not mix well: it was quite difficult to make a jumgnfrone
mode to the other. A well-known and often effective technique for spgagin
a Gibbs sampler is to reduce the dependence among its components viariransf
mation (i.e., reparametrization), as we demonstrate below.

First, we can shift each component so that the modes are aligned. That is,
we change variables froifd, z) to (¢, z) = (6 — m., z), wherem,, is the mode
of the conditional distribution of | z. The Jacobian is 1, so the joint density of
(¢, z) is proportional ta, 7, (¢ + m. ) L($ +m) and the Gibbs conditionals are

P72 (P +m.)L(p+m.)
m(z14:9) i pimi(P +m) L(d+m;)’ ©)
m(@l2,y) o< TS+ m)L(P+ my). (7)

This produces a vast improvement in the speed for our normal examptetheit
median value of" needed for coalescence reduced from 128 to 1.

Second, we could go further and also rescale each component so that the
dispersions of the conditional densities@jfz match each other more closely.
Specifically, we can transforrfd, z) to (¢, z) = (A;1(0 — m.), z), where the
conditional covariance df is ©, = A, AT, With this transformation, the Jaco-
bianis| A, |, so the the Gibbs conditionals are

| Az [pom (A + m2)L(A20 + m:)

For our normal example, this location-scale transformation makedependent

of z, so our mixture coupler would always coalesce in one step. In other wiords
this special case, this transformed CFTP algorithm is the same as dinestiyng

¢ andz from their joint density, which is the product of two marginal deiesit

and thus directly obtaining independent drawg ®fa @ = A,¢ + m.. In prob-

lems where CFTP is needed, this simplification does not happen. Howsger, t

is not necessarily a problem because our goal is to find a suitable tnavadfon

that will render fast coalescence, not necessarily in one step. In other words,
we can choose some approximatg and A, to achieve both simplicity and fast
mixing rate, as we show in the next section.

6. AT MIXTURE COUPLER VIA FURTHER AUGMENTATION

In the previous section we avoided the difficult construction of &Eoupler

for the continuous and typically unbound@dy augmenting with z, which
only hask possible states, and using the two-step Gibbs sampler. (In practice,
is typically small; for largek, the multi-stage CFTP of Meng (2000) may help to
reduce the computational load for starting the chain at every possiike)stA
key for this method to work is that the resulting conditional drdw ¢or ¢ with

the transformation) given is easy to couple with different values of



When this direct conversion does not lead to easily coupled dravésdiop
givenz, further augmentation could be helpful. Consider the same mixtote pr
lem as in Section 4 except the normal likelihood is replaced ydamensional
t likelihood with v degrees of freedom. We retain the normal prior; it is quite
common and convenient to use normal distributions to represent pfama-
tion regardless of the form of the likelihood. Specifically, suppeschave i.i.d
samplest” = {Y3,...,Y,} from ad-dimensional location-scaledistribution
ta(0, X0; v), where the degrees of freedonand scale paramet&), are assumed
to be known. Our prior fof is given byr () = Z’jzlpzN(pz, ¥.). (Note that
k = 1 gives the usual posterior fromtaikelihood with normal prior.) In this
caserr(f]z,Y") does not correspond to any convenient multivariate distribution
and it is not easy to couple directly. However, using the decomposition

sy/?z )
Y=0+—"—, Z~N40,I), q~x,/v, ZLlyg, 10
7a a(0,1) / (10)

we can augmerit” into {Y, ¢} = {(Y;,q:),i = 1,...,n}. Itis easy to check (as
in van Dyk and Meng, 2001) that givenandg (andY’)

9|YaQaZ ~ Ny (NZ,quz-,q)v (11)

where

fog = Ve |90 Y aVi+ 57| Sih=0 S +50 (12)

s

Givend, {z,q1,...,q,} are mutually independent with

2
Xv+d .
10,Y ~ . i=1,...,n, 13

andr(z|0,Y) is a multinomial distribution calculated in the same way as in (2)
with £(0) being thet-likelihood. We thus have a two-step Gibbs sampler alter-
nating between drawing frofy 1 given{z;, ¢: } using (11)-(12), andlz¢ 11, gt+1 }
given#,; using (13) and the multinomial (2).

The addition of the continuous componegptto the Gibbs sampler makes
the construction of a coupler trickier. Murdoch and Green (1998) shotesd t
coalescence of a coupled Gibbs sampler follows from coalescence of all but one
component; here we need eittfgror both z; andg; to coalesce. Fortunately, the
simple univariate scaleg? conditionals given in (13) allow us to directly apply
Wilson’s (2000b, Section 2.4.8) layered multiscale gamma coupler tplsam
following (13). This coupler gives a discrete set of updates to the wntable
set of scaled,? , , distributions. When the scale factor is in an interzalb), the
set is bounded above if < oo and finite if, additionallya > 0. We start with
a = 0andb = 1/v, from (13). Wher¥;, is calculated, the upper bound gnis
sufficient to give an upper bound ¢ 1|, which in turn givesz > 0 when we
come to they,,; calculation. With a finite set of possible values;ef, we then



pair each of them to thk possible values of; 1, and thereby determine a finite
number of paths to follow. In a practical implementation this number rtithps
too large to handle, and we may still only keep track of the bounds; eaigntu
it will by chance take on as small a multiple bfas desired. There is a tradeoff
between waiting a long time for a small multiple versus using a |atoohputer
memory for a large one.

The underlying Gibbs sampler here suffers the same slow mixinggmob
as the one in Section 4. Indeed, the two Gibbs samplers become the same when
v — oo (thed-dimensional version of the Gibbs sampler of Section 4 is obvious).
We again can apply the transformation idea in Section 5 to speed up thegmixin
However, we do not want to use the conditional mpdg and “standard devia-
tion” matrix Ei/f from (11) for the transformation. This is because although such
a transformation will make independent of ¢, 2}, it will upset the important
conditional independence structure in (13). To get around this prohientan
use the conditional mode, and “standard deviation” matri® , calculated from
pretendingthe sampling density were normal; (6, ) instead oft4(0, Xo; v);
that is, we can use the same transformatios A (6 — m.) as in Section 5.
The resulting conditional distribution fa¥ is obviously, by (11),

(/§|Y,q,z ~ Ny (Azl(ﬂz7q_m2)v Alez,q(AZl)T) . (14)
Conditional ong, z andq = {q, . . ., ¢, } are no longer independent, but condi-
tional on bothy andz, we still have, independently for=1,...,n,

2
Xy
6|6, Y,z ~ e (15)

(Y; — Ao — mZ)TZ(Tl(Yi — A0 — mz) +v

Thus the Gibbs step for drawing:+1, ¢:+1} given¢.; can be easily accom-
plished by first drawing;;, 1 from z given¢; 1, which is the same multinomial
as in (8) with£ being thet likelihood, and then drawing;, 1 using (15) with

z = z11 ande¢ = ¢.41. The multiscale gamma coupler can be implemented in
the same way with appropriately modified bounds.

7. NUMERICAL ILLUSTRATION AND CONCLUDING REMARKS

To illustrate the couplers of Section 6, we start with the example=ofién 4, but
usingt1 (0, 1,v) in place of theN (0, 1) likelihood. The prior forf is the same
normal mixture. With large degrees of freedom £ 50), this is very similar

to the previous example, and coalescence using the transformed couplst; is f
with 7' < 10 typically (see left panel of Figure 2). The untransformed coupler is
slower, withT" > 200 in most simulations. Using read-once CFTP to generate
an i.i.d. sample of 1000 observations from the posterior requiretbhdf about
8000 time steps with the transformed coupler, and about 670,00Gtape with

the untransformed one. The block sizefor the read-once CFTP was 6, the
median of nine forward coalescence times we ran in advance.
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Figure 2. An illustration of read-once CFTP for themixture withv = 50 and block size

6. On the left the steps required to obtain the first two draws apsvsh the vertical gray
lines represent the unbounded sefafalues at the start of each block; the vertical gray
brackets show the bounds rirom the multiscale gamma coupler; the other gray lines
are the collection of updates of all of the finite states. The sdéidkddine is the single
path started from the end of the first coalescent block; the circles iteltba two draws.
On the right 1000 draws are shown using the method of Lee and9Rrjtogether with

the true posterior density function (normalized by numericalgragon).

On the other hand, whem = 1, coalescence was much slower. For the trans-
formed coupler,T” was in the neighborhood of 6200. We believe it took this
long because the transformation was optimized for a normal likelinmatdyith
v = 1 the actual likelihood often is far from that. For the untransformed up
we gave up aftet0® steps without observing any coalescence. Convergence may
also be slower withl > 1. While working on a single observation with= 2
andv = 50, the chains took about the same time to coalesce asdvith 1.
However, the slow convergence with smalis exacerbated in high dimensions:
for example, the transformed algorithm failed to coalesdéfhsteps withy = 1
andd = 2.

With thet distribution, a sample size of 1 is hardly an interesting problem.
We have used our coupler successfully on largee( 50) randomly generated
datasets with large; it works well there provided the data are centered at a good
estimated, presumably because the likelihood is so dominant in the posterior.
In other words, it is better to bourld — 4| than to boundé)| in the multiscale
gamma coupler. Interestingly, very largecan also help to overcome the small
v problem whem is large enough so that the normal transformation is again
approximately optimal. For other cases, the coupler fails because thereoare to
many (e.g.10%) possibilities for they vector: we did not have enough computer
resources to follow all of them. Obtaining better transformations fichscases
appears to be a key to make our coupler work in general.

The difficulties we encountered here, namely, (1) too slow to coalesce (due
to slow mixing of the forward chain) and (2) too many states to trace, prealy



in current attempts to implement CFTP for Bayesian problems with urdemlin
and continuous state spaces. For models wheré-tb@mponent mixture ap-
pears in the likelihood, the latter problem could be especially severegis\iil
be k™ terms in the posterior, in contrast toterms as in mixture-prior models.
Overcoming these difficulties requires better constructions (e.g., letefor-
mations, better bounds), which in turn require a level of analyticreffoeater
than is needed to find the corresponding forward MCMC algorithm. Hewev
such efforts are worthwhile, especially for those of us whose researclisgoal
construct effective and reliable algorithms for general users.
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