
make predictions. However, if you do not know the height of a
plant or the sex of a person or their blood pressure when deciding
on a treatment, then you cannot use them. In such cases, the
appropriate predictive procedure depends crucially on how the
data were obtained. If predictor information becomes available
later, and you can change treatments, you might want to do that.

While prediction is the ultimate goal of science, causation is
the warm fuzzy. Causation can greatly simplify prediction and
we like to think that good causative models provide the best
predictions. But in the end, getting predictions correct is more
important than imagining that we understand why things hap-
pen the way they do. While I admit that I am not an expert on
the causal model literature, I am unfamiliar with any satisfac-
tory way to infer causation other than performing randomized
experiments. Sure, data analysis can help you choose between
two or more causative models, but that is a far cry from infer-

ring causation from data analysis. In fact, without knowing the
sampling design, we cannot even be sure of making appropriate
predictions from data analysis alone.
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Comment: A Fruitful Resolution to Simpson’s Paradox via
Multiresolution Inference

Keli LIU and Xiao-Li MENG

Simpson’s Paradox is really a Simple Paradox if one at all.
Peeling away the paradox is as easy (or hard) as avoiding a com-
parison of apples and oranges, a concept requiring no mention
of causality. We show how the commonly adopted notation has
committed the gross-ery mistake of tagging unlike fruit with
alike labels. Hence, the “fruitful” question to ask is not “Do
we condition on the third variable?” but rather “Are two fruits,
which appear similar, actually similar at their core?.” We in-
troduce the concept of intrinsic similarity to escape this bind.
The notion of “core” depends on how deep one looks—the
multi resolution inference framework provides a natural way to
define intrinsic similarity at the resolution appropriate for the
treatment. To harvest the fruits of this insight, we will need
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to estimate intrinsic similarity, which often results in an indi-
rect conditioning on the “third variable.” A ripening estimation
theory shows that the standard treatment comparisons, uncondi-
tional or conditional on the third variable, are low hanging fruit
but often rotten. We pose assumptions to pluck away higher-
resolution (more conditional) comparisons—the multiresolu-
tion framework allows us to rigorously assess the price of these
assumptions against the resulting yield. One such assessment
gives us Simpson’s Warning: less conditioning is most likely to
lead to serious bias when Simpson’s Paradox appears.

KEY WORDS: Bias-variance tradeoff; Principal stratification

1. THE SOURCE OF CONFUSIONS AND DEBATES

1.1 Comparing Apples and Oranges

Imagine Ms. Broken going to Dr. Heal to be treated for heart
disease. A new treatment was made available to Dr. Heal, who
also learned from a clinical trial that it can substantially out-
perform a standard treatment used as its control. However, its
effectiveness depends on a patient’s cholesterol level, which
can also be altered significantly by the treatment. Therefore, to
determine the appropriate treatment for Ms. Broken, Dr. Heal
needs to know how trial subjects with cholesterol level simi-
lar to Ms. Broken’s (say about 240 mg/dL) responded to the
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two treatments. The clinical trial data did include cholesterol
measurements for patients. Dr. Heal therefore seems to face a
rather simple task: compare the treatment effects and side ef-
fects among those in the clinical trial with cholesterol level at
240 mg/dL. Or using the terminology of Dr. Armistead’s stimu-
lating article, Dr. Heal needs to condition on the third variable,
cholesterol level, Z = 240, when comparing the outcome vari-
able Y (e.g., Y = 1 indicates success and Y = 0 otherwise) be-
tween the treatment group (indicated by T = 1) and the control
group (T = 0).

So why all the fuss about whether or not to condition on
the third variable Z? Since conditioning always leads to a more
refined state space, should not we always condition, at least
in theory? The answer is yes, provided that we condition on
the right conditions. In the scenario above, we were deliber-
ately vague about “cholesterol measurements of patients,” with
the measurement time unspecified. Clearly to be relevant for
Ms. Broken’s choice, Dr. Heal should condition on cholesterol
measurements taken at or just prior to the treatment. But what
if the available data are post-treatment measurements? Suppose
the new treatment decreases cholesterol by 20 mg/dL, whereas
the standard treatment has little impact. Then Zpost = 240 cor-
responds to Zat = 260 for the T = 1 group, clearly incompa-
rable with Zat = Zpost = 240 for the T = 0 group (assuming
the treatment period is short enough that temporal effects are
negligible). Therefore, conditioning on the same value of Zpost

actually leads to a comparison of apples and oranges: individu-
als alike post-treatment may be highly unlike at-treatment. This
illustrates the rationale for Pearl’s emphasis to not condition on
variables affected by treatment.

However, the logical implication of “do not condition on
variables affected by treatment” is not “condition on nothing.”
In our example, clearly we should condition on Zat, which,
though unmeasured, could be deduced from Zpost if we knew
how the treatments acted on cholesterol. Thus, even if we should
not condition on Zpost itself, we should condition on a function
of it. Third variables affected by treatments are therefore not
useless; it is just that an extra processing step is required.

In practice, we typically do not have full knowledge about
how Zat impacts Zpost. However, as we shall demonstrate,
even weak information or assumptions can lead to substan-
tively higher quality comparisons than not conditioning (or im-
proper conditioning). Our emphasis therefore is not to decide
whether or when we should condition or not. Rather, we focus
on the following more productive questions, and explore how
the framework of multiresolution inference (Meng 2014) can
help to answer them.

I. Ideal Question. If we had all the data we wished, what is
the ideal (infinite resolution) conditioning that allows us
to answer the substantive question exactly?

II. Inferential Question. How can we best approximate the
ideal conditioning by an operational (finite resolution)
conditioning (which may still not be directly estimable
from the data)?

III. Estimation Question. How can we best estimate our op-
erational conditioning based on the data we observe (data
resolution)?

1.2 In Case Causality is Not Your Cup of Fruit...

Before we proceed, we echo Dr. Armistead’s sentiment that
the central issues of Simpson’s Paradox can be addressed ade-
quately without necessarily invoking causality, unless one takes
an encompassing view that no inference is complete without
stating its causal origins or consequences. Causality is a useful
tool for answering question (I), helping to define and identify
the ideal “at-treatment” characteristics Zat (Pearl 2000). But it is
not the only tool (see Section 2), and its overhead (e.g., familiar-
ity with causal diagrams) may mask for some the fundamental
motivation behind using it in the first place: avoid comparing
apples and oranges. Besides, it provides little help for answer-
ing (II) or (III), which asks for a meaningful way to reduce the
ideal set of Zat to meet practical constraints. The easy answers,
“include all Zat” or “include all estimable Zat,” turn out to be
inadequate, as we shall demonstrate.

A moment’s reflection on questions (I)–(III) shows that the
inferential question is really a question about striking a balance
between what we want to know (I) and what we can answer
(III). Suppose you are standing at the edge of a lava pit with a
treasure on an island in the pit’s center. Pillars of obsidian jut
out from the lava, and you can only jump on one before vaulting
onto the island. But which one? Too close to the center may lead
to a fiery death on your first jump; too far, and the same fate
awaits on your second jump. This is precisely the “deathtrap”
we face in choosing an operational conditioning. Yet mention of
this tradeoff is absent from the usual discussions on Simpson’s
Paradox. Why is this?

The controversy surrounding “the third variable” has raged
because we often focus on one of two objectives to the exclusion
of the other. The first objective seeks to identify the types of
variables we can include in the operational conditioning. The
second to identify the operational conditions we can estimate
from the data. Those who seek only the first objective would
conclude that causality solves everything. Others who worry
only about the second would wonder why causality matters
at all. But there is a third objective—decide what variables
we should include in the operational conditioning—which is
the most important and the logical capstone to the first two.
Therefore, in the spirit of Dr. Armistead’s article, let us work
toward a rebirth. But instead of the third variable, let us resurrect
the “third objective!” The multiresolution setup in separating
the ideal, the inferential, and the estimation questions directly
addresses this forgotten objective of “should.”

2. A RESOLUTION VIA MULTIPLE RESOLUTION

Our motivating example shows that we can and should use
Z to infer the at-treatment similarity between subjects. While
intuitive, the notion of at-treatment is clunky in that it suggests
our reasoning depends on a temporal structure. In addition,
all individuals are fundamentally unique, so what does similar
mean? A formalism comprising the potential outcomes frame-
work (see Rubin 2005) and the multiresolution framework (see
Meng 2014) turns out to be adequate for formulating the mean-
ing of at-treatment similarity. Wasserman (2013, June 20, Blog)
argued that the potential outcomes framework (or some causal
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variant) is necessary for understanding Simpson’s Paradox. The
gist of the matter is that we need to distinguish between the log-
ical statements we wish to make (which are in terms of potential
outcomes), and the probabilistic statements that we can estimate
(which are in terms of observed data). This parallels our caveat
above to distinguish the estimand Zat from estimators based on
Z. However, we would be complacent to simply warn against
conditioning on Z directly. We need to know how to condition
on Z indirectly but correctly. The multiresolution framework
addresses this deficiency.

2.1 The Ideal Question: Infinite Resolution
for Individuality

Let � be our population of interest. Each ω ∈ � represents
an individual. All the intrinsic characteristics of this individual
(e.g., age, sex, genomic signature, etc., when ω represents a hu-
man) are encoded into ω. The idea behind the potential outcome
framework is to imagine copies of these individuals in parallel
universes where they receive different treatments. Similar to the
setup in Pearl (2011), this can be formalized mathematically by
considering an augmented product space �A ≡ � × T, where
T is the space of treatment assignments. A common setting is
T = {0, 1}, as in our motivating example. We can never study
any individual ω in isolation: our data are always produced from
the individual in some universe. As a helpful analogy, one might
think of ω as the Platonic form of the realized state (ω, t) (of
course, we cannot access the Platonic form directly). Anything
we can observe are functions of the realized state, that is, f (ω, t),
which could happen to be free of t but such are special cases.
The distinction between ω and (ω, t) is fundamental to what
follows—as our invocation of Plato might suggest, what we re-
ally care about are properties of ω, the form, and not properties
of (ω, t), the realization of the form in a particular universe. To
make this distinction clear, we will refer to ω as the individual
and to (ω, t) as the state or realized state.

It is essential to understand that the assumption of the prod-
uct space implies a decoupling between individuality, ω, and the
treatment. Hence, intrinsic characteristics encoded in ω must re-
main invariant to treatment. The white–black plants example in
Dr. Armistead’s article is useful for illustrating this point. Is
color a treatment for the individual plant—is � in this case
the population of plants? The product space assumption, � × C

(where C is {white, black}), says that we can choose any plant,
ω, and the state (ω, c) must be realizable in the world for all c.
But color, C (ω), is purely a function of ω, so the only realizable
state is (ω,C (ω)). Hence, the product space assumption, � × C,
is violated if � is the population of plants. Then what is � in
this case? Suppose that there is a 1–1 correspondence between
the color of a plant and the first base pair in the plants genome,
g (a vector of base pairs). Suppose further that the support of
possible g is the product of the supports of g’s components (this
does not hold in practice but is used here for simplicity of illus-
tration). Then we can decompose g as g = (c, g−1), where g−1

is g with the first component removed. We can now let ω = g−1,
so that � is the population of “proto”-plants. If we conceive of
treatment as color, our unit of analysis is no longer plants but

proto-plants. Any variable can be conceived of as a treatment, as
long as we correctly identify the “individual” (and population)
for which that variable is a treatment.

Having determined what our “individual” is, we can now ask
whether we should condition on plant height when our treat-
ment is color. As we discuss below, we should only condition
on characteristics intrinsic to our individual—the appropriate
conditioning depends on the unit of analysis. In this case, in-
dividual means proto-plant not plant. In the data, color is as-
sociated with plant height. Assuming that nature generated our
sample of plants through independent sampling of proto-plants
and colors, that is, assuming a randomized experiment with
proto-plants as units, our discussion below shows that this asso-
ciation implies that plant height functionally depends on color.
Proto-plants lack color, hence, plant height cannot be an intrin-
sic characteristic of proto-plants. This is not to say that there
is not another characteristic called “proto-plant height” that is
an intrinsic characteristic (and which we should condition on),
but proto-plant height is different from the measured height
(which is plant height). Conditioning on the latter does not lead
to conditioning on the former.

In general, we do not know how nature creates plants from
proto-plants and colors—that is to say when we conceive of
the treatment as color, we lack information on whether or not
the observed data can be analyzed as a randomized experiment
with proto-plants as the unit (or whether it should be seen as an
observational study). Thus even though conceptually, compar-
ing the effect of pesticides (with plants as the individual) is no
different than comparing the effect of color (with proto-plants
as the individual), having changed the unit of analysis, we lose
(or gain) information on the generation of the data. Hence,
comparing the effect of color is practically more challenging,
because nature and not the scientist designs the experiment.
This explains why we are fundamentally uncomfortable with
seeing color as a “treatment” despite the fact that any variable
is a treatment for some definition of “individual.” It is not a
treatment that we can apply.

To further emphasize the role played by the unit of analysis,
note that each proto-plant, ω, defines an equivalence class in
the population of plants (one containing all plants with identical
genome except possibly in the first base pair). So our unit of
analysis is an individual when the population consists of proto-
plants and an equivalence class when the population comprises
plants. Clearly, proto-plant is a lower-resolution unit of analy-
sis than a plant. Hence, we can say that a treatment applied to
individual plants (e.g., spraying pesticide) is of higher resolu-
tion than a treatment applied to equivalence classes of plants or
proto-plants (e.g., color). The key to understanding what follows
is that the correct conditioning should match the resolution of
the treatment. In fact, another way to say “do not condition on
variables affected by treatment” is “do not condition on char-
acteristics that exceed the resolution of the treatment.” That is,
plant height, a characteristic of individual plants, exceeds the
resolution of the treatment (color), which is applied to an equiv-
alence class of plants. The multiresolution perspective presents
this crucial insight in its most transparent form: know your unit
of analysis.
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Whereas our setup is generic, for concreteness of discussion,
we will focus on human populations and let Y (ω, t) ∈ {0, 1} be
the health status (e.g., cured or uncured) of state (ω, t). When
an individual, ω∗, walks into a doctor’s office, ideally the doc-
tor makes a choice of treatment by comparing Y (ω∗, 0) with
Y (ω∗, 1), which obviously are unavailable. However, this lack
of direct data does not and should not deter us from formulating
the question as the doctor asks it. Only after formulating the
correct ideal question can we formulate the relevant inferential
question. Throughout, we will also assume that the data are
generated from a randomized experiment: the states (ω, t) that
comprise our data are sampled through independent sampling
of ω and t. Mathematically, this means that the treatment T will
be functionally independent of any function of ω alone, f (ω), a
critical assumption for the discussions below.

2.2 The Inferential Question: Finite Resolution
for Similarity

Our fundamental inference challenge—as Lindley and
Novick (1981) stated—is to make a valid statement about
(Y (ω∗, 0), Y (ω∗, 1)) when we only observe Y (ω, 0) and Y (ω′, 1)
for some ω,ω′ 
= ω∗. To address this problem, Lindley and
Novick (1981) relied on the concept of exchangeability. We
prefer the notion of resolution. The change in terminology
suggests a different emphasis in action. Exchangeability is
something we assume; resolution is something we can ad-
just. When we have no direct data (exact replications) to learn
Y (ω∗, 0) or Y (ω∗, 1), we say that the resolution of the estimand,
(Y (ω∗, 0) , Y (ω∗, 1)), exceeds the resolution of our dataset. In
such cases, which include all clinical trials, we have to cre-
ate approximate clones for ω∗. The observed states of these
approximate clones then provide indirect data (approximate
replications) with which to infer Y (ω∗, 0) and Y (ω∗, 1). The
resolution of our inference can be thought of as how strict we
are in letting some ω be an approximate clone of ω∗. The infer-
ential question is: how strict should we be?

In finding an optimal strictness, we need to account for the
error of approximating ω∗ by ω. How much do ω and ω∗ differ
with respect to intrinsic characteristics—those depending only
on ω and ω∗, and not their particular states, (ω, t) and (ω∗, t∗)?
As any good scientist would do, we wish to compare states with
different treatments but intrinsically similar individuals. We are
simply formalizing the scientific idea of ceteris paribus, holding
all else (ω) constant except the treatment assignment. For
C (ω, t), a realized-state characteristic, to also be an intrinsic
characteristic, we must have C (ω, 0) = C (ω, 1). Thus, we say
that a nonconstant (vector) function C, defined on �A = � × T,
records an intrinsic characteristic of ω if C (ω, t) can be written
as C (ω), that is, C is functionally independent of the treatment.

Equipped with this definition, we say that ω is an approxi-
mate clone for ω∗, if for a selected set of intrinsic characteristics,
C (ω) = C (ω∗). That is, we define the ω∗-relevant subpopula-
tion with respect to C as �C(ω∗) = {ω : C(ω) = C(ω∗)}. The
resolution level, R, can then be defined as a numerical index
of how restrictive this subpopulation is. A convenient choice
is the dimension of C, with infinite resolution corresponding
to cases where the only acceptable clone of ω∗ is itself; see

Meng (2014). Though flawed in many regards (e.g., it does not
distinguish different kinds of infinite resolutions), this intuitive
notion of resolution will suffice for our discussion of Simpson’s
Paradox. Our whole point is that it is wrong to define �C(ω∗)
using a realized-state characteristic C (ω, t) that functionally
depends on t—this mistakes the fundamental unit of analysis
as (ω, t) rather than ω. As Plato would remind us, we should
not care about superficial similarities (C(w, t) = C(w′, t ′)) but
rather about intrinsic similarities (C(w) = C(w′)).

Example 1. Is it possible to define intrinsic similarity via the
notion of independence most familiar to statisticians, that is,
stochastic independence? Intuitively, if “T does not affect Z,”
then Z is a property intrinsic to the individual rather than a
consequence of treatment. This intuition is indeed correct, but
equating “does not affect” with stochastic independence is not.
To see this, let Zat be the standardized cholesterol level (in a
population of interest) at the time of treatment such that Zat ∼
N (0, 1). Suppose the standardized post-treatment cholesterol
level, Z, is linked to Zat via

Z = T (−Zat) + (1 − T )(Zat) = (1 − 2T )Zat. (1)

Because Z|T ∼ N (0, 1), Z is properly standardized condi-
tionally and unconditionally. Consequently, Z is stochastically
independent of T . Yet when we condition on Z = z in the
treatment group T = 1, we obtain the subpopulation where
Zat = −z. In the control group T = 0, however, restricting
Z = z would lead to the subpopulation where Zat = z, clearly
a rather different subpopulation from the one for T = 1.

So what does stochastic independence give us? The stochastic
independence of T and Z guarantees that Simpson’s Paradox
does not occur (Wasserman 2013, June 20, Blog). The signs
of the two comparisons, conditioning on Z or not, will then
agree. But this agreement itself says little about the validity of
these comparisons. Indeed we would be misled if we take the
agreement as a confirmation of validity. Only by conditioning
on characteristics functionally independent of treatment can we
guarantee a comparison of apples to apples. The downside of
requiring functional independence between Z and T , however,
is that it cannot be tested by data. This echoes Pearl’s emphasis
(see Pearl 2000, p. 180) that probability calculus is not rich
enough for handling Simpson’s Paradox. Fortunately, when we
use Z to infer intrinsic characteristics, rather than for direct
conditioning, we can circumvent this problem.

To proceed, we first note that at the resolution level de-
fined by intrinsic characteristics, C, ω∗ is indistinguishable
from any individual in �C(ω∗). We can then approximate
the infinite-resolution estimand (Y (ω∗, 0) , Y (ω∗, 1)) by av-
eraging (Y (ω, 0) , Y (ω, 1)) over �C(ω∗) to obtain the lower-
resolution, operational estimand P (Y (ω, t) = 1|ω ∈ �C(ω∗))
for t = 0, 1. The inferential question, “How strict should we
be?” becomes “How should we choose C?” To increase the
quality of our approximate clones, we want C to be as rich a set
of intrinsic characteristics as possible. But the price is a loss in
our capacity to estimate the operational estimand from the ob-
served data. For one, we may not observe all the components of
C, and even when we do, there may not be any observed individ-
ual that satisfies ω ∈ �C(ω∗); see Meng (2014). We therefore
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want our operational estimand P (Y (ω, t) = 1|ω ∈ �C(ω∗)) to
be as close as possible to our ideal estimand, Y (ω∗, t), and
simultaneously to approximate our operational estimand suffi-
ciently well by an estimator. To strike the right balance, we need
to understand the data resolution.

2.3 The Estimation Question: Data Resolution

Once we rigorously define the concept of intrinsic character-
istics, there is no ambiguity over what variables to condition on:
condition on as many intrinsic characteristics as possible. The
question then turns to, “What is possible?.” This is ultimately
a problem of inferring intrinsic characteristics from observed
data. The observation process, which we now define, determines
the highest possible resolution for our inference, that is, maxi-
mally what we can say about intrinsic similarity from apparent
similarity.

Suppose our clinical trial contains data produced by n real-
ized states {(ωi, ti)}ni=1. Let C (ωi, ti) denote a realized state (not
necessarily intrinsic) characteristic. However, the potential out-
comes C1 (ωi) ≡ C(ωi, 1) and C0 (ωi) ≡ C(ωi, 0) are intrinsic
characteristics of individual ωi because these functions them-
selves are unaffected by the treatment assignment ti . What is
affected is which of these potential outcomes we are allowed
to observe. Then C (ωi, ti) can be thought as being generated
via

C (ωi, ti) = tiC1 (ωi) + (1 − ti) C0 (ωi) . (2)

Clearly (2) is applicable whether C is the dependent variable Y
or the third variable Z, as seen in (1).

To connect back to the common missing-data setup, we can
view Z (ωi, ti) as the observed data and (Z0 (ωi) , Z1 (ωi)) as
the missing or augmented data. We want to condition on the
intrinsic characteristics (Z0 (ωi) , Z1 (ωi)), but this requires us
to infer/predict it from Z (ωi, ti). By expressing Z(ω, t) in terms
of (Z0(ω), Z1(ω)) via (2), we see that conditioning on the third
variable leads to the comparison

P (Y = 1|T = 1, Z = z) − P (Y = 1|T = 0, Z = z) , (3)

which is mathematically equivalent to

P (Y = 1|T = 1, Z1 = z) − P (Y = 1|T = 0, Z0 = z) . (4)

Whereas (3) gives us the illusion of holding everything else
constant other than the treatment assignment, the explicit
differential subscripts in the higher-resolution expression (4)
reveal that we are actually comparing apples and oranges un-
less Z0(ω) = Z1(ω) for all ω ∈ �. If we all adopted the explicit
notation in (4), we believe much of the current confusion could
have been avoided.

Obviously intrinsic characteristics generating no heterogene-
ity in the observed data cannot possibly distinguish any indi-
viduals in our data. Therefore, since by (2) ωi can affect the
generation of Z only through (Z0(ωi), Z1(ωi)), we know that
the choice C(ωi) = (Z0(ωi), Z1(ωi)), R = 2, is the upper limit
for how rich we can make C(ωi). Thus, we can take R to be 0,
1, or 2, but which one is optimal?

2.4 Resurrecting The Third Objective: Finding an
Optimal Resolution

Angrist, Imbens, and Rubin (1996) proposed studying sub-
populations defined by all possible pairs of (Z0, Z1), termed
principal strata by Frangakis and Rubin (2002). In clinical tri-
als with noncompliance, compliance can be thought of as a side
effect of the treatment assignment (see Jin and Rubin 2008), and
hence we should compare treatments conditional on compliance
type, (Z0, Z1). Pearl (2011) also saw value in using principal
strata to classify individuals. What he criticized is their use in
defining the notions of “direct” and “indirect effect.” But when
our primary objective is making a treatment choice for ω∗, the
opinion seems to be unanimous that conditioning on princi-
pal strata gives us a better look (relative to no conditioning) at
how differences in treatment differ across individuals. Have we
resolved Simpson’s Paradox—is the answer always to choose
R = 2 with C = (Z0, Z1)?

Expression (2) with C = Z shows that unless additional as-
sumptions are made, we may only infer Z0i when Ti = 0 and
Z1i when Ti = 1. Therefore, the overall data resolution, Rdata,
is 0: no intrinsic characteristic is observed for all subjects. Thus
to reach R = 2, we need additional assumptions, typically in the
form of prior specifications. But as usual, bias resulting from
prior misspecification may overwhelm the resolutional benefit
gained from using R = 2 rather than R = 0 or 1. At the other end
of the spectrum, we might be tempted to force R = Rdata = 0
for ease of estimation, but this choice throws away valuable
information because for each individual ωi , we do observe one
(and only one) component of (Z0 (ωi) , Z1 (ωi)). From this we
cannot say which individuals are alike at resolution R = 2, but
we can say which are unlike: ωi is unlike ωj if Z0(ωj ) 
= 0
when Z0(ωi) = 0. As we see in Section 3, to exploit this partial
information we will need to take R > 0 even if Rdata = 0.

Just as we must carefully balance bias and variance in select-
ing a model, so we must pivot between the ideal high-resolution
estimand and feasible low-resolution estimators in choosing an
operational estimand to net a better treatment decision. There is
no such thing as a correct or natural choice of C. Box’s quote
“All models are wrong but some are useful” now becomes “All
choices of C are wrong (except C (ω) = ω) but some are useful.”

3. LET US ENJOY SOME FORGOTTEN OR
FORBIDDEN FRUITS

When a treatment decision is needed for an individual ω∗,
a key quantity of interest is θ (ω∗) = sign{Y1(ω∗) − Y0(ω∗)},
which indicates if treatment T = 1 is better than (θ = 1), worse
than (θ = −1), or the same as treatment T = 0 (θ = 0). The
science of inference then is to choose a suitable population
average to infer this individual-specific estimand, that is, to
approximate the ideal (infinite-resolution) estimand θ (ω∗) by the
operational estimand (a lower-resolution average), E[θ (ω)|ω ∈
�C(ω∗)], using the notation of Section 2.2. However, this lower-
resolution average is itself not directly available since we never
observe (Y1(ω), Y0(ω)) jointly. Nevertheless, for binary (Y0, Y1),

E[θ (ω)|S] = E(Y1|S) − E(Y0|S) (5)
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holds for any S for which both sides of (5) are defined. This
allows us to define an operational estimand:

E[θ (ω)|�C(ω∗)] = E(Y1(ω)|ω ∈ �C(ω∗))

− E(Y0(ω)|ω ∈ �C(ω∗)). (6)

To estimate (6), we can then choose an estimator of the form

θ̃ (C̃0, C̃1) ≡ E(Y1(ω)|ω ∈ �C̃1
(ω∗))

− E(Y0(ω)|ω ∈ �C̃0
(ω∗)), (7)

where C̃0, C̃1 can comprise only of intrinsic characteristics that
are directly identifiable from data. To simplify our discussions,
we have assumed in (7) that our samples are large enough that
we can replace any sample average by the corresponding popu-
lation average. Whereas we must choose the same C in defining
our operational estimand to ensure a comparison of apples and
apples, we are unaware of any estimation principle that would
prevent us from using different C̃0 and C̃1 in (7). That is, C̃0

and C̃1 must both be subvectors of C, but they do not need to
coincide. As long as our goal is correct, we can and should be
as Machiavellian as possible in reaching it.

However, some readers might be puzzled or even disturbed
by the idea of allowing different C̃0 and C̃1. What egregious
hypocrites we are, accusing others of comparing apples and
oranges, while our own prescription seems to advocate compar-
ing apples to apricots! Have we warned others away from this
forbidden fruit only to gorge on it ourselves? Of course not.
What is forbidden is to mistake apparent similarity for intrin-
sic similarity, not the use of apparent dis-similarity to (better)
estimate intrinsic similarity. We saw in Section 2.3 that if we
force C̃0 = C̃1, then the maximal resolution of C̃0 = C̃1 (with-
out further assumptions) is Rdata = 0. However, when C̃0 and
C̃1 can differ, we can achieve R̃0 > 0, R̃1 > 0, where R̃t is the
resolution of C̃t ; for an estimator θ̃ (C̃0, C̃1) with R̃0 
= R̃1, we
will denote its resolution as 1

2 (R̃0 + R̃1), leaving the question of
the best designation to further research. This intuitive reasoning
makes it easy to grasp why such an estimator can be better (e.g.,
having smaller mean squared error (MSE)) than the one forcing
C̃0 = C̃1.

In Section 4.2, we will provide a theoretical condition, the
“1/2 Rule” (26), justifying the use of C̃0 
= C̃1. The reality is
that C̃1−t is missing from group T = t , so we cannot use it in
predicting Yt (hence causing a mismatch in (7)). But can we
pretend that we omitted C̃1−t not because it was not available
but because it was not helpful (hence rendering the mismatch
irrelevant)? The 1/2 Rule tells us when this pretense passes: the
predictive power of what is missing must be less than half the
predictive power of what is observed. The criterion used by the
1/2 Rule is MSE. Hence, it permits trading bias (incurred from
our pretense) for variance (reduced by having R̃0, R̃1 > Rdata).

For concreteness, let C̃t = Zt , the post-treatment cholesterol
under treatment t. If the success of treatment t, Yt , depends
mostly on how the patient’s cholesterol changes with respect to
that treatment and only somewhat on how the patient’s choles-
terol changes under the alternate treatment, then the 1/2 Rule is
satisfied. For those wondering why a patient’s cholesterol un-
der the alternate treatment might matter, such data can capture
aspects of the patient’s health status at time of treatment, which

affect the side effect of the alternate treatment but not the side
effect of the treatment applied. The question then is to what
extent those same aspects affect the main effect of the treatment
applied. The 1/2 Rule aims to characterize when we can use
the part of the data that is easy to use and ignore the part of
the data that is “hard” to use—by hard we mean data whose use
would require a full Bayesian model for (Y0, Y1, Z0, Z1) thereby
inviting (potentially very) biased prior information.

3.1 Low-Resolution Estimand or Low-Resolution
Estimator?

The conclusion that direct conditioning on the third variable,
(3), is valid only when Z0 (ω) ≡ Z1 (ω) does not imply the next
best alternative is no conditioning at all, that is, to use as the
operational estimand:

θR=0 ≡ P (Y1 = 1) − P (Y0 = 1) = P (Y = 1|T = 1)

− P (Y = 1|T = 0), (8)

where the estimand resolution is R = 0 because no intrinsic
characteristics are used. Note (8) does not hold in general with-
out assuming that T is independent of (Y0, Y1), as emphasized
by Wasserman (2013, June 20, Blog). As argued before, even if
it is not legitimate to condition on Z, conditioning on the two-
component (and hence R = 2) intrinsic characteristic (Z0, Z1)
gives us a valid operational estimand:

θR=2(z0, z1) ≡ P (Y1 = 1|Z0 = z0, Z1 = z1)

− P (Y0 = 1|Z0 = z0, Z1 = z1) , (9)

which is a better approximation to our ideal estimand θ (ω∗)
than is (8). The question now becomes whether we can find a
good enough estimator of (9) to exploit its higher resolution or
whether the higher cost of estimating (9), as compared to (8),
represents too large an investment. Let R̃ denote the resolution
of an estimator for θR=2. From this perspective, we see that the
assumption, Z0 = Z1, is really the most convenient condition
for achieving R̃ = 2 by reducing (9) to (3), which permits the
simplest estimation procedure. Simplicity is always welcome in
practice, but must be assessed against the possible invalidity of
too strong a condition. The multiresolution framework reminds
us that weaker conditions do exist, and that Z0 = Z1 is not the
only assumption that can motivate us to use (9) instead of (8).

To simplify our discussion, let us assume that Zt ’s are bi-
nary, as in Dr. Armistead’s article (e.g., Z = 0 and Z = 1 in-
dicate, respectively, whether the patient’s post-treatment blood
pressure remained low or became normal). If individual i is as-
signed to treatment, Ti = 1, observing Zi = 1 allows us to infer
Z1i = 1, but not whether the individual belongs to subpopula-
tion {(Z0, Z1) = (0, 1)} or to subpopulation {(Z0, Z1) = (1, 1)}.
Given this reality, we have two strategies:

(i) Lower the resolution, R, of our operational estimand.
(ii) Estimate our high-resolution estimand, (9), by using a

lower-resolution estimator, R̃ < R.

The consequence of either choice is resolution bias—a mis-
match of desired versus adopted resolution. For (i), the reso-
lution bias is incurred in the decision phase (when we use the
operational estimand to make a decision), whereas for (ii), it is
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incurred in the inference phase. Let Dθ̃ ≡ D(θ̃ ) be a decision
function taking estimates, θ̃ , of θ (ω∗) =sign{Y1(ω∗) − Y0(ω∗)}
as argument and let L(Dθ(ω∗),D

′) be the loss of decision D′

when the optimal decision is Dθ(ω∗). Adopting the notation in
the previous section, the two types of resolution bias are

Inference bias: θ̃ (C̃0, C̃1) − E[θ (ω)|�C(ω∗)] (10)

Decision bias: L
(
Dθ(ω∗),DE[θ(ω)|�C (ω∗)]

)
. (11)

The bias we ultimately hope to minimize is

Realized bias: L
(
Dθ(ω∗),Dθ̃ (C̃0,C̃1)

)
. (12)

One can think about minimizing (12) directly, of course, but this
reduced formulation masks the pivotal role of C, the mechanism
through which we actually can influence the realized bias. To
conceptually connect the realized bias back to the more helpful
I-bias and D-bias, we rewrite the realized bias as

L
(
Dθ(ω∗),Dθ̃(C̃0,C̃1)

) = L
(
Dθ(ω∗),DE[θ(ω)|�C (ω∗)]

) + �L

· I{|θ̃(C̃0, C̃1)−E[θ (ω)|�C(ω∗)]|>τ }
= D-bias + Estimation Penalty

· I {I-bias > Tolerance} . (13)

�L is the change in loss if Dθ̃(C̃0,C̃1) were used instead of
DE[θ(ω)|�C (ω∗)] (the optimal decision being Dθ(ω∗)) and τ is the
amount of I-bias needed for our actual decision to deviate from
the intended decision (under the operational estimand), that is,
Dθ̃(C̃0,C̃1) 
= DE[θ(ω)|�C (ω∗)]. Identity (13) is conceptually power-
ful because it reveals the balancing role played by C, which
appears in both terms—the choice of C must balance the error
from using a nonideal estimand for decision making (11) and
the estimation error for that nonideal estimand (10).

This choice between (i) and (ii) is reminiscent of the bias-
variance tradeoff. However, the bias-variance tradeoff takes
place entirely within the inference phase, whereas the tradeoff
between I-bias and D-bias occurs across phases. The utility of
this two phase setup is to remind us that for coarse decisions, for
example, treatment 1 versus treatment 0, a large amount of I-bias
can be incurred without changing our final decision. On the other
hand, D-bias by definition alters our decision from the optimum.
The tolerance term, τ , captures this asymmetry in how I-bias and
D-bias enter into the realized bias, hence distinguishing it from
the usual bias-variance tradeoff. Expression (13) is most useful
for binary decisions as it employs a single penalty and tolerance
term. When the decision space is richer, (13) may be rewritten
to exhibit additional thresholds (with associated penalties). But
the emphasis is the same: we may prefer making stronger as-
sumptions to estimate a higher-resolution operational estimand
using low-resolution data—knowing full well that this estimate
will be biased—over settling for a low-resolution operational
estimand. The latter, even though estimated with certainty, may
yet be meaningless or misleading.

3.2 Simpson’s Warning and the ID-Bias Tradeoff

We begin our investigation of the ID-bias tradeoff with strat-
egy (ii). Whereas the success rate of treatment 1 is observed in
the superpopulation {Z1 = z1}, the corresponding rates in its two
subpopulations, {(Z0, Z1) = (0, z1)} and {(Z0, Z1) = (1, z1)},

though desired, are not. Under the usual mean-squared loss,
the best prediction of the desired P (Y1 = 1|Z0, Z1 = z1), as
a function of the random variable Z0, is its expectation con-
ditional on Z1 = z1, which is the superpopulation success
rate P (Y1 = 1|Z1 = z1) = P (Y = 1|T = 1, Z = z1). This is
equivalent to choosing C = (Z0, Z1) in (6) and C̃1 = Z1 in
(7). Similarly for T = 0, we choose C̃0 = Z0; as discussed, to
estimate conditioning on �C(ω∗) we can choose �C̃0

(ω∗) 
=
�C̃1

(ω∗).
Applying this reasoning, we can estimate the R = 2 estimand

(9) by the R̃ = 1 estimator

θ̃ R̃=1
R=2 (z0, z1) = P (Y = 1|T = 1, Z = z1)

− P (Y = 1|T = 0, Z = z0) , z0, z1 ∈ {0, 1} .

(14)

The use of the tilde notation θ̃ instead of the usual hat notation θ̂

is to remind us that even if there is no sampling error—Equation
(14) is a population mean instead of sample average—we will
still have errors caused by the discrepancy between R̃ and R.
Also note that an implicit assumption here is that both values
of {0, 1} are observed for Z under T = 1 and T = 0; in general
we assume the support of Zt is invariant to t (which may be
violated, such as when the treatment shifts all cholesterol levels
upward).

Expression (14) says that to conclude that treatment 1 is supe-
rior to treatment 0 for all principal strata {(Z0, Z1) = (z0, z1)},
we need to consider four separate comparisons. For the two com-
parisons with z0 = z1, our estimate θ̃ R̃=1

R=2 (z0, z1) corresponds
to exactly the two Z-conditional contrasts, (3). Thus, the Z-
conditional contrasts have forgotten about the two principal
strata with Z0 
= Z1, where individuals observed to be dissim-
ilar in the two treatment groups may be actually intrinsically
similar (though we must be mindful of our I-bias in mak-
ing this assertion). Of course, if all four comparisons share
the same sign, then we pay no price for our forgetfulness (if
we base our treatment decision only on the sign). This is pre-
cisely the situation where Simpson’s Paradox does not occur.
If all four comparisons implied by (14) are positive, we ob-
tain P (Y = 1|T = 1) > P (Y = 1|T = 0). Hence, either the
Z-conditional contrasts or the marginal contrast, taken as a re-
duction of (14), preserves the full sign information contained in
(14).

When Simpson’s Paradox occurs, the sign of the estimated
treatment effect on the subpopulation where Z0 = Z1 must dif-
fer from the sign of the estimated treatment effect over the sub-
population where Z0 
= Z1. The Z-conditional contrasts contain
the sign information for the subpopulation where Z0 = Z1, and
the marginal contrast contains the sign information for the sub-
population where Z0 
= Z1. Neither tells the entire story. Simp-
son’s Paradox is not paradoxical at all from this viewpoint:
the sign of the Z-conditional contrast, (3), and the sign of the
marginal contrast, (8), do not contain contradictory information,
but rather orthogonal information pertaining to disjoint subpop-
ulations. Or as Dr. Armistead put it “an apparent contradiction
that may contain more than one truth.”

Ironically, the advice to use only the marginal contrast when
we cannot assume Z0 = Z1 makes the same mistake as the
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advice to use the Z-conditional contrast. They both throw away
the sign information for parts of the population. Conceptually,
we fell into the trap of thinking that either (8) or (3) must be
correct, when they are both correct or incorrect, depending on
which individuals the information will be applied to. The ap-
pearance of Simpson’s Paradox provides evidence for treatment
effect by subpopulation interaction. A low-resolution estimand,
for example, (8), will incur high D-bias, because the optimal
decision may differ across principal strata. Instead of a paradox,
the lesson we are given is Simpson’s Warning:

Low resolution operational estimands are most dangerous
(higher D-bias) when Simpson’s Paradox appears.

Rather than telling us to default to a marginal compari-
son when Z0 
= Z1, the appearance of Simpson’s Paradox is
a sign that we should consider taking on I-bias to make a high-
resolution inference, for example, (14), accounting for treatment
effect by subpopulation interactions. However, in any particular
situation, one may still feel that the I-bias incurred from using
θ̃ R̃=1
R=2 to estimate θR=2 trumps any reduction in D-bias.

To make a more satisfactory ID-bias tradeoff, we can choose
an operational estimand with resolution between θR=0 and θR=2.
We can form marginal principal strata defined by Z0 and Z1 in-
dividually instead of jointly. This leads to operational estimands
at resolution R = 1:

θR=1,Zt
(z) = P (Y1 = 1|Zt = z) − P (Y0 = 1|Zt = z) , (15)

for t = 0, 1. When our target is θR=1,Z0 , because Z0i is ob-
served for everyone assigned to treatment 0, we can estimate
the P (Y0 = 1|Z0 = z) term in (15) with no I-bias by setting
C̃0 = Z0. For individuals in the treatment 1 group, we observe
Z1i but not Z0i . In the absence of prior knowledge of the correla-
tion between Z0i and Z1i , we once again estimate subpopulation
rates using superpopulation rates, that is, we set C̃1 to be empty
in (7). The price of this strategy is I-bias but by lowering the
resolution of our estimand to R = 1, we need only pay this price
for the P (Y1 = 1|Z0 = z) term in (15) (though logically it is
possible for the difference of two biased estimators to be unbi-
ased for the difference of their estimands). Our estimator then
is

θ̃ R̃=0.5
R=1,Z0

(z) = P (Y = 1|T = 1) − P (Y = 1|T = 0, Z0 = z),

(16)

with resolution R̃ = (R̃0 + R̃1)/2 = 0.5. In contrast to (14),
which requires four comparisons, (16) requires only two com-
parisons, reflecting the increased D-bias caused by lowering
our resolution. Specifically, at resolution R = 1, we take into
account how the treatment effect may change across subpopu-
lations defined by Z0 (= 0, 1) but ignore further changes in the
treatment effect within those subpopulations.

In a nutshell, the resolution framework urges us to carefully
consider the risk of adopting subpopulation specific but I-biased
estimators versus robust but D-biased estimators. In addition,
the resolution framework reminds us that θR=0 and θR=2 are not
the only possible ways to compare the treatments.

3.3 Increase Data Resolution via Eliminating
Subpopulations

In practice, some combination of lowering the estimand res-
olution and increasing the data resolution may be necessary to
achieve a satisfactory ID-bias tradeoff. First, we note that the
strong assumption Z0 = Z1 increases the estimation resolution
to R̃ = 2 by ruling out two subpopulations: {(Z0, Z1) = (0, 1)}
and {(Z0, Z1) = (1, 0)}. This assumption reduces the dimension
of our estimand to make it identified. But we can weaken this
assumption by ruling out only a single subpopulation, achiev-
ing estimators with resolution R̃ = 1.5. We will incur I-bias
in estimating θR=2 but gain some robustness. Specifically, we
can make the following “no-defier” assumption (see Angrist,
Imbens, and Rubin 1996).

Exclusion Assumption. The subpopulation defined by
{(Z0, Z1) = (1, 0)} is empty.

In the context of blood pressure, this assumption says that
treatment 1 performs at least as well as treatment 0 in raising
the patient’s blood pressure. A plausible scientific story is the
existence of an unobserved genetic factor G, where G = 0, 1, 2
represent, respectively, the homozygote recessive, the heterozy-
gote, and the homozygote dominant individuals. The homozy-
gotes recessive and dominant are disposed toward low and nor-
mal blood pressure, respectively, regardless of treatment. The
heterozygote is not predisposed toward either low or normal
blood pressure—in this case, blood pressure is decided by treat-
ment rather than genetic causes. Specifically, we have

Z =
⎧⎨
⎩

0 if G = 0
T if G = 1
1 if G = 2

⇒
{(Z0, Z1) = (0, 0)} = {G = 0}
{(Z0, Z1) = (0, 1)} = {G = 1}
{(Z0, Z1) = (1, 1)} = {G = 2}

.

Consequently, conditioning on principal strata allows us to suc-
cessfully condition on the appropriate genetic factor even though
it is unobserved and possibly even unknown to us. The nonex-
istence of the subpopulation {(Z0, Z1) = (1, 0)} is induced by
the ternary nature of genotypes. Whereas this story is useful for
explaining the intuition behind principal strata, our calculations
below do not depend on it.

As Figure 1 shows, by eliminating one principal stratum, we
can directly infer (Z0i , Z1i) from Ti and Zi whenever Ti 
= Zi .
Hence, the exclusion assumption increases the resolution of our

Figure 1. Inferring membership in principal strata from observed data.
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Table 1. Lindley–Novick dataset

Z = 0 Z = 1
(Low BP) Y = 0 Y = 1 n (Normal BP) Y = 0 Y = 1 n

T = 0 21 9 30 T = 0 3 7 10
T = 1 8 2 10 T = 1 12 18 30

Totals 29 11 40 Totals 15 25 40

data. But even for those individuals with Ti = Zi , we still have
some information on their likely stratum membership. To see
this, denote pij = P (Z0 = i, Z1 = j ) for i, j = 0, 1. Then the
exclusion assumption implies that

p00 = P (Z1 = 0) = P (Z = 0|T = 1) and

p11 = P (Z0 = 1) = P (Z = 1|T = 0). (17)

This allows us to estimate {pij , i, j = 0, 1} directly from the
data, because p10 = 0 and p01 = 1 − p00 − p11.

Next we see that under the exclusion assumption we need to
make only three comparisons:

θR=2(g) = P (Y1 = 1|G = g)−P (Y0 =1|G = g)

≡ π1g − π0g, g = 0, 1, 2. (18)

To estimate {πtg} for t = 0, 1 and g = 0, 1, 2, let μt,z =
P (Y = 1|T = t, Z = z). We then have

μ1,0 = π10, μ0,1 = π02; (19)

μ0,0 = p00

p00 + p01
· π00 + p01

p00 + p01
· π01,

μ1,1 = p01

p01 + p11
· π11 + p11

p01 + p11
· π12. (20)

Because all four μt,z’s are directly estimable from the observed
data (assuming we have observations with both values of Z
under either treatment), π10 and π02 are in turn directly estimable
because of (19), but π00, π01, π11, and π12 are not because the
equations in (20) are under-determined. Thus, our estimator will
have resolution R̃ < 2 and incur I-bias in estimating θR=2.

However, for making a treatment decision, we may only need
to infer sign(θR=2). Therefore, even if we do not know each
(π0g, π1g) exactly, we may still able to determine whether or
not π1g > π0g , eliminating I-bias for estimating sign(θR=2). For
example, letting o1|01 = p01/p00 (odds of G = 1 given G = 0
or 1) and o1|12 = p01/p11 (odds of G = 1 given G = 1 or 2)
yields, respectively,

π00 = (1 + o1|01)μ0,0 − o1|01π01,

π12 = (1 + o1|12)μ1,1 − o1|12π11. (21)

Using the fact that all πtg’s must stay inside [0, 1], the first
equation above restricts π00 to the interval

max{0, μ0,0(1 + o1|01) − o1|01} ≤ π00

≤ min{1, (1 + o1|01)μ0,0}, (22)

and similarly we can derive bounds for π12. Such bounds, if suffi-
ciently tight, allow for estimation of sign(θR=2) even when θR=2

is not directly estimable. Furthermore, even if the bounds do not
lead to a definite estimate of sign(θR=2), they may still enable

us to make essentially bias-free decisions at a higher-resolution
level with the help of extremely weak prior information, as we
demonstrate below.

Example 2. Table 1 gives the Lindley–Novick dataset, as
modified in Dr. Armistead’s article. For simplicity, we will
treat it as the population of interest instead of merely a sam-
ple and hence we can ignore any hat notation (but retain the
tilde notation as needed). As noted in the article, as a side effect,
treatment 1 appears to raise blood pressures more than treat-
ment 0 does, so the exclusion assumption is not contradicted
by the data. Adopting this assumption, by (17) we obtain that
p00 = p11 = 10/40 = 0.25 and hence p01 = 0.5. That is, half
the population comprises of individuals for whom treatment 1
was more effective than treatment 0 in increasing the blood pres-
sure and the other half have blood pressure invariant to treatment
choice. Equations (19) and (20) now become

0.2 = μ1,0 = π10, 0.7 = μ0,1 = π02;

0.3 = μ0,0 = 1

3
π00 + 2

3
· π01, 0.6 = μ1,1 = 2

3
π11 + 1

3
π12.

(23)

Using (23), we can derive bounds for the remaining success
rates:

0 ≤ π00 ≤ 0.9, 0 ≤ π01 ≤ 0.45,

0.4 ≤ π11 ≤ 0.9, 0 ≤ π12 ≤ 1. (24)

These bounds are loose. Hence, we are unable to directly
conclude from them a definite sign for θR=2(g) = π1g − π0g .
(Section 4.1 will provide a direct link of this phenomenon to
Simpson’s Paradox.)

The closest we come to a definitive conclusion is in the
subpopulation {(Z0, Z1) = (0, 1)}, where we can conclude that
θR=2(1) ≥ −0.05, which suggests rather strong evidence that it
is more likely than not that θR=2(1) ≥ 0. As a matter of fact, from
(23), we see that θR=2(1) < 0 if and only if π12 − π00 > 0.9,
which requires π12 > 90% and π00 < 10%. However, if this
were a real life application, doctors can usually ballpark the
magnitude of the success rate for various treatments. What is
unknown is a more fine-scale comparison between alternatives.
Yet this weak prior information (e.g., common sense) alone
may be sufficient to rule out extreme rates such as π12 > 90%
or π00 < 10% as well as their opposite nature. Putting all the
pieces together, this analysis says that we cannot be sure which
treatment is better for those whose blood pressure will be equally
affected by both treatments. However, there is rather strong ev-
idence that the main advantage of treatment 1 over treatment 0,
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if it exists, is through the superior effect of treatment 1 in raising
blood pressure, echoing Dr. Armistead’s finding.

3.4 What Fruits Are Worth the I-Bias Price?

When bounds of the form (22) are insufficient for estimat-
ing sign(θR=2) and no useful prior information is available, we
can resort, as before, to estimating subpopulation rates using
their superpopulation counterparts. For the T = 0 group, we can
use the superpopulation {Z0 = 0} to cover the estimations for
{Z0 = 0, Z1 = 0} and {Z0 = 0, Z1 = 1}, that is, we set C̃0 = Z0

in (7) when estimating π00 and π01. Similarly, we set C̃1 = Z1

when estimating π11 and π12. For cases where a subpopulation
is directly observed, we set C̃0 = C̃1 = (Z0, Z1). As in (14), the
price of this estimation is I-bias.

Example 2 (continued). Adopting the strategy above, we
obtain

0.3 = μ0,0 = π̃00 = π̃01, 0.6 = μ1,1 = π̃11 = π̃12.

We can then use them to construct estimates for θR=2 (note π10

and π02 are directly available at resolution 2 under the exclusion
assumption and hence they do not “wear” tilde):

θ̃ R̃=1.5
R=2 (0, 0) = π10 − π̃00 = −0.1,

θ̃ R̃=1
R=2 (0, 1) = π̃11 − π̃01 = 0.3,

θ̃ R̃=1.5
R=2 (1, 1) = π̃12 − π02 = −0.1.

Here, the estimator resolution for the principal stratum {Z0 =
0, Z1 = 0} is R̃ = 1.5 since C̃1 = C = (Z0, Z1) (R̃1 = 2) and
C̃0 = Z0 (R̃0 = 1). A similar logic gives the estimator resolu-
tion for the principal stratum {Z0 = 1, Z1 = 1}. The stratum
{Z0 = 0, Z1 = 1} has a lower estimator resolution, R̃ = 1, be-
cause both terms must be estimated: C̃0 = Z0 (R̃0 = 1) and
C̃1 = Z1 (R̃1 = 1).

Our estimates reiterate that treatment 1 outperforms treat-
ment 0 only when it does a better job in raising blood pressure.
In fact, for individuals whose blood pressure is invariant to
T , statistically speaking, treatment 1 actually fares worse. Un-
der our exclusion assumption, 50% of individuals have blood
pressure that is invariant to treatment choice. (This does not
mean that treatment 1 is the wrong choice for 50% of new
patients—a conclusion that relies on the fallacy of the elec-
toral college: winning a majority in subpopulations comprising
a majority of the superpopulation does not imply winning a
majority of the superpopulation.) A marginal comparison hides
this information. While the low-resolution operational estimand,
θR=0 = (20/40) − (16/40) = 0.1, is robust, it is misleading
because it ignores treatment effect by subpopulation interac-
tions. By characterizing these interactions, we see that the doc-
tor should try hard to ascertain whether the patient’s blood pres-
sure will be invariant to treatment choice, and make a decision
accordingly. For example, if the genotype G truly regulates
blood pressure according to our story, a doctor could ascertain
(Z0 (ω∗) , Z1 (ω∗)) prior to making a treatment decision through
genetic screening (but this requires us to at least suspect the
genetic effect, perhaps through a secondary study).

But what if we truly have no predictive accuracy for the value
of (Z0 (ω∗) , Z1 (ω∗))? Let us consider a case where θR=0 > 0
but we know nothing about the value of Z0 (ω∗) or Z1 (ω∗)
except that they are equal (e.g., we cannot predict a patient’s
blood pressure after either treatment, but we have good rea-
sons to believe that the impact of the treatment on the blood
pressure, as a side effect, will be very similar). If we must se-
lect a treatment, the best decision—in terms of minimizing the
probability of mistake—is to assign ω∗ to treatment 1, which
is wholly based on θR=0. However, θR=2 is not useless—the
higher-resolution information tells us about the quality and risk
of the decision based on θR=0. In particular, if θR=0 (0, 0) > 0
and θR=0 (1, 1) > 0, then we know our decision based on θR=0

is reliable in that it is invariant to any new information about
(Z0, Z1). But if θR=0 (0, 0) and θR=1 (1, 1) are of opposite
sign, then our decision will not be invariant to information
on (Z0, Z1)—the lack of invariance measures the inadequacy
of low-resolution information. This same logic generalizes to
the case where Z0 
= Z1. In our example, a decision based on
θR=0 will be invariant to new information on (Z0, Z1) only 50%
of the time, that is, it is no more reliable than flipping a fair
coin.

When the decision process is no longer binary but includes
the option “gather more information,” information on the risk of
choosing treatment 1 (or 0) can be used directly in decision mak-
ing. Since intrinsic characteristics are functionally independent
of treatment, conceptually nothing prevents us from assessing
(Z0, Z1) prior to treatment; after all, the treatment process itself
is a particular measurement process, which uses T to tease out
(Z0, Z1)—a process that always creates missing data depend-
ing on T . We can, for example, use a patient’s medical history
or genetic screening to predict (Z0 (ω∗) , Z1 (ω∗)). That is, an
estimate of θR=2 can lead to a different decision even when
(Z0 (ω∗) , Z1 (ω∗)) is unknown, if the former makes us suspect
that a treatment decision based on θR=0 alone is of unacceptable
quality.

Example 2 (continued). We explicitly quantify how the addi-
tional information in our estimate of θR=2 translates into tighter
bounds for the error probability of a decision based on θR=0. For
any subpopulation S, define qS

ij = P (Y0 = i, Y1 = j |ω ∈ S) for
i, j = 0, 1. Let qS

.1 = qS
01 + qS

11 and qS
1. = qS

10 + qS
11. Define the

error rate of choosing treatment 1 for subpopulation S as

εS (1) ≡ qS
10/

(
qS

10 + qS
01

)
.

This gives the probability that we will make the incorrect de-
cision when our choice leads to different outcomes, that is,
when it matters. Suppose that we wish to bound εS(1) given
θS ≡ qS

01 − qS
10, for a subpopulation, S; note θS is directly ob-

servable from data because

P (Y0 = 0, Y1 = 1|ω ∈ S) − P (Y0 = 1, Y1 = 0|ω ∈ S)

= P (Y1 = 1|ω ∈ S) − P (Y0 = 1|ω ∈ S) . (25)

Then we find the maximum and minimum (over qS
10) of εS (1) =

qS
10/(2qS

10 + θS). For the Lindley–Novick data, we want the error
rate over the entire population since nothing is known about
our patient. We first estimate this rate using only information
at resolution R = 0. We observe θ = θR=0 = 0.1. In addition,
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0 ≤ q10 ≤ q1., where q1. can be estimated by P (Y0 = 1) = 0.4.
This leads to bounds 0 ≤ ε (1) ≤ 4/9.

Moving to higher-resolution (but estimated with I-bias) in-
formation at resolution R = 2, we see that since θ̃ R̃=1.5

R=2 (0, 0) =
−0.1, (25) implies that 0.1 ≤ q

(0,0)
10 , where S here is the subpopu-

lation {Z0 = 0, Z1 = 0}. Similarly θ̃ R̃=1.5
R=2 (1, 1) = −0.1 implies

0.1 ≤ q
(1,1)
10 . The lower bound for q

(0,1)
10 cannot be improved from

0 since θ̃ R̃=1.5
R=2 (0, 1) = 0.3. Using these bounds together with

the fact p00 = p11 = 0.25 and p01 = 0.5 yields an improved
lower bound for q10 = ∑

i,j q
(i,j )
10 pij ≥ 0.05. We then minimize

and maximize ε (1) = q10/ (2q10 + θ ) over 0.05 ≤ q10 ≤ 0.4
for θ = 0.1 to obtain 1/4 ≤ ε (1) ≤ 4/9.

By incorporating higher-resolution information, we substan-
tially improve the lower bound for ε (1)—in particular, the
bounds using only low-resolution information are too opti-
mistic about treatment 1. In the absence of information about
(Z0 (ω∗) , Z1 (ω∗)) for our new patient, our best decision (when
we cannot “gather more information”) is still to choose treat-
ment 1, that is, we still base our decision on θR=0. But the
higher-resolution information allows us to ascertain the uncer-
tainty of our decision. A fitting analogy to classical statistics is
the difference between a point estimate and a confidence inter-
val. (It is doubly fitting because the uncertainty ascertainment
itself is subject to error: it relies on lower-resolution estimators
such as θ̃ R̃=1.5

R=2 , just as we typically estimate the variance term
when constructing a confidence interval.)

3.5 A Compromising Resolution Without
Compromising Inference

When we use I-biased estimates, as in the previous section, we
obviously should worry about the sensitivity of our inferences
to the I-bias incurred. One way to ascertain this sensitivity is to
lower the resolution of our operational estimand—hence lower-
ing the I-bias. We can do so by focusing on θR=1,Z0 rather than
on θR=2. The marginal stratum {Z0 = 0} is a mix of the principal
strata {(Z0, Z1) = (0, 0)} and {(Z0, Z1) = (0, 1)}, equivalently
{G = 0} and {G = 1}, whereas {Z0 = 1} = {G = 2}. We have
lowered the I-bias because the first equation in (20) becomes
μ0,0 = P (Y0 = 1|Z0 = 0), permitting a direct estimation of the
control success rate in {Z0 = 0}. We no longer need bounds for
π00 and π01, effectively reducing the undetermined parameters
to just π11 and π12 in (20). This reduction is especially powerful
if π00 or π01 were the quantities that we could not sufficiently
bound. If it was π11 or π12 in (20) for which practical bounds
did not exist, then we should consider using θR=1,Z1 instead of
θR=1,Z0 . If neither equation in (20) provides useful bounds, then
nonnegligible I-bias accrues even at resolution R = 1.

Example 2 (continued). Let ϕtz = P (Yt = 1|Z0 = z). Then

ϕ10 = 1

3
π10 + 2

3
π11, ϕ00 = 0.3,

ϕ11 = π12, ϕ01 = 0.7.

Our inability to bound π12 in (24) means that ϕ11 remains
unidentified. Thus, we cannot compare the two treatments for
the marginal stratum {Z0 = 1} without incurring I-bias. How-
ever, since π10 = μ1,0 = 0.2 and 0.4 ≤ π11 ≤ 0.9 (from (24)),

by substituting this information into the equation for ϕ10, we ob-
tain 1/3 ≤ ϕ10 ≤ 2/3. This implies that ϕ00 = 0.3 < ϕ10. Thus,
statistically speaking, treatment 1 outperforms treatment 0 if a
patient’s blood pressure remains low under treatment 0. This
conclusion is reached without I-bias and relies only on the ex-
clusion assumption. In addition, we know that the population
proportion of such individuals is P (Z0 = 0) = 0.75. This allows
us to say that even if Z0 were known for our patient (and even
if we somehow discovered the value of ϕ11), there is at least a
75% chance that we would not change our decision from the one
based on θR=0. (Again, this differs from the incorrect assertion
that treatment 1 will outperform treatment 0 with probability at
least 75%.)

Therefore, as before, the higher-resolution information al-
lows us to calibrate the reliability of a decision based on
θR=0—reliability in the sense of invariance of our decision to
new sources of knowledge. This assessment of reliability comes
without I-bias, but it does come with D-bias in that we can
only speak about decision invariance to newfound information
about Z0, not the more refined (Z0, Z1). By lowering our res-
olution, we ignore that the treatment effect may differ in the
subpopulations {Z0 = 0, Z1 = 0} and {Z0 = 0, Z1 = 1}. The
decrease in I-bias at the cost of D-bias explains why our con-
clusion here differs from our conclusion in Section 3.4 that
there is only a 50% chance that our decision will be invariant
to new knowledge. However, both inferences carry much more
(and higher quality) information than if we had chosen θR=0

as our operational estimand, that is, if we had simply com-
pared P (Y = 1|T = 1) = 0.5 to P (Y = 1|T = 0) = 0.4 and
concluded that treatment 1 is better on average. Information
on the quality (and risk) of our decision carried in the higher-
resolution inference but missing from the lower-resolution op-
erational estimand can be quite valuable when designing long-
term treatment plans in practice.

4. MORE FRUIT FOR THOUGHTS

4.1 A Warning and Also a Dilemma: Scylla or Charybdis?

The loose bounds for (π00, π01, π11, π12) in the
Lindley–Novick dataset indicate that the data are am-
biguous about the comparative treatment effectiveness for
specific principal strata {(Z0, Z1) = (z0, z1)}. The slackness of
these bounds turns out to be directly related to the presence of
Simpson’s Paradox. In fact, we have the following result:

Suppose that Simpson’s Paradox occurs in a dataset. Then
we will not be able to bound (π00, π01, π11, π12) to guar-
antee π1g ≥ π0g for g = 0, 1, 2, even under the exclusion
assumption.

To prove this, first note that by the law of total probability,
π1g ≥ π0g for g = 0, 1, 2 implies P (Y1 = 1) ≥ P (Y0 = 1) and
hence P (Y = 1|T = 1) ≥ P (Y = 1|T = 0) for a randomized
experiment. We now show that this contains enough information
for the following statement to also hold for z = 0, 1:

μ1,z ≡ P (Y = 1|T = 1, Z = z) ≥ P (Y = 1|T = 0, Z = z)

≡ μ0,z.
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For the bound π00 ≤ π10 to hold for all values of π01, by the first
expression in (21), we must have

max
π01

π00 = μ0,0(1 + o1|01) ≤ π10 = μ1,0,

which implies μ1,0 ≥ μ0,0. Similarly for the bound π12 ≥ π02

to hold for all values of π11, by the second expression in (21),
we require

min
π11

π12 = μ1,1(1 + o1|12) − o1|12 ≥ π02 = μ0,1.

Rewriting this inequality gives

μ1,1 ≥ μ0,1 + o1|12

1 + o1|12
(1 − μ0,1) ≥ μ0,1.

Hence, the marginal and Z-conditional contrasts share a com-
mon sign.

The result says that if Simpson’s Paradox occurs, then the
data, even with our exclusion assumption, do not contain suf-
ficient evidence for the superiority of treatment 1 over treat-
ment 0 across all nonempty subpopulations. This statement has
two sides. First, we see again that Simpson’s Paradox occurs
precisely when the better treatment may differ across subpop-
ulations. The presence of this interaction reduces the utility of
low-resolution operational estimands such as θR=0, which give
us no information about the quality/risk of any decision we
make. The D-bias of low-resolution estimands will be high. Is
there a way to make a high-resolution inference in this case
without incurring significant I-bias?

The second side of the statement answers this question in
the negative. We cannot hope to make a decision at resolution
R = 2 relying on only the bounds supplied by the exclusion
assumption. We will either have to take on I-bias by using su-
perpopulation averages to estimate subpopulation averages or
lower the resolution of our operational estimand, say to R = 1.
Thus, there is a genuine tradeoff between I-bias and D-bias to
be made. At this juncture, we must make the decision whether
to sail closer to Scylla or Charybdis. For the Lindley–Novick
data, we were able to reach a healthy compromise by compar-
ing two treatments within subpopulations defined by Z0 alone
(a resolution R = 1 inference). We found statistical evidence
for treatment 1 to be superior for individuals with low blood
pressure under treatment 0. This conclusion is free of I-bias and
with less D-bias than the operational estimand θR=0.

Simpson’s Warning foreshadows not just the potential for
D-bias but dashes any hopes for reducing D-bias without in-
curring some I-bias. We need to strike a resolution-robustness
compromise to obtain the most useful and reliable decision.
We feel that the current thinking leans too heavily in favor of
minimizing I-bias: defaulting to the resolution zero estimand,
P (Y1 = 1) − P (Y0 = 1). This is a bad habit of statisticians in
thinking only in terms of estimation error—we would rather
estimate a bad model correctly than estimate a good one poorly.
Certainly, we should take some advice from crafty Odysseus
who opted to lose a few men to Scylla rather than his whole
crew to Charybdis. In our minds, the D-bias of low-resolution
estimands is Charybdis—how could we make the right decision
if we are asking the wrong questions? The I-bias from trying
to obtain a higher-resolution inference is the few men we must

sacrifice to Scylla to save the decision-making enterprise as a
whole.

4.2 The Nightshade is Actually A Tomato

In Section 3, we proposed estimators for θ = Y1 − Y0 of
the form (7), which maximize the resolution component-wise.
That is, in treatment group T = t , we approximate the pop-
ulation �C(ω∗) by �C̃t

(ω∗) = �Ct
(ω∗) where Ct contains all

intrinsic characteristics observed for that group. The alternative
chooses identical approximating populations for both groups:
�C̃0

(ω∗) = �C̃1
(ω∗) = �Ccom (ω∗), conditioning only on those

intrinsic characteristics observable in both treatment groups,
leading to the estimator

θ̃ (Ccom) ≡ E[Y1 (ω) |ω ∈ �Ccom (ω∗)]

− E[Y0 (ω) |ω ∈ �Ccom (ω∗)] = E[θ |Ccom].

Note that �C0 (ω∗) and �C1 (ω∗) are both refinements of
�Ccom (ω∗). The possible superiority of the maximal component-
wise resolution estimator, θ̃ (C0, C1), over θ̃ (Ccom) underpins
the justification for choosing an operational estimand with reso-
lution greater than the data resolution. Hence, the theory of such
estimators will be a crucial component in the future development
of multiresolution inference. Below, we offer some low-hanging
but nonetheless rich fruit to hopefully entice others.

Our goal is to characterize when θ̃ (C0, C1) dominates
θ̃ (Ccom) in MSE. In evaluating the frequentist properties of
θ̃ (C0, C1) and θ̃ (Ccom), it makes sense to condition on Ccom.
To simplify notation, let Ŷt ≡ E [Yt (ω) |Ct ], Rt ≡ Yt − Ŷt ,
σ 2

t ≡ V (Ŷt |Ccom), and for t = 0, 1,

βobs
t |1−t ≡ cov(Ŷt , Ŷ1−t |Ccom)

V (Ŷ1−t |Ccom)
≡ σ obs

01

σ 2
1−t

,

βmis
t |1−t ≡ cov(Rt, Ŷ1−t |Ccom)

V (Ŷ1−t |Ccom)
≡ σ mis

t,1−t

σ 2
1−t

.

Then θ̃ (C0, C1) attains smaller MSE than θ̃ (Ccom) if and only
if σ mis

1,0 + σ mis
0,1 ≤ 1

2 (σ 2
0 + σ 2

1 ) − σ obs
01 . To help us interpret, con-

sider the case σ 2
0 > 0, σ 2

1 > 0, which allows us to rewrite the
condition in terms of the 1/2 Rule:

σ 2
0

σ 2
0 + σ 2

1

βmis
1|0 + σ 2

1

σ 2
0 + σ 2

1

βmis
0|1

≤ 1

2

[
σ 2

0

σ 2
0 + σ 2

1

(
1 − βobs

1|0
) + σ 2

1

σ 2
0 + σ 2

1

(
1 − βobs

0|1
)]

. (26)

Here, σ 2
t is the amount of variation in Yt explained by the ob-

served data Ct . So the weight σ 2
t /(σ 2

0 + σ 2
1 ) is the fraction of

total explained variation attributable to Ct . But how much of
this information is unique to Ct , that is, would we have done
any worse if the situation had been reversed and we predicted
Yt using C1−t instead of Ct? To answer this, we regress Ŷt on
a function of C1−t , Ŷ1−t . If Ŷ1−t is perfectly redundant for the
information in Ct , then the regression coefficient βobs

t |1−t equals 1.
So 1 − βobs

t |1−t measures the predictive power for Yt unique to the
observed data, Ct . Hence, the right-hand side of (26) equals 1/2
times a weighted average of the predictive information unique
to the observed data for Y0 and Y1, respectively. Similarly, we
can calculate the predictive power for Yt that is unique to the
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missing data, C1−t . Note that Rt is variation in Yt unexplained
by Ct . Hence, the regression coefficient of Rt on Ŷ1−t mea-
sures how much information in C1−t is missing from Ct . The
left-hand side of (26) is a weighted average of the predictive
information unique to the missing data. Thus, condition (26)
can be interpreted as

Info Unique to Missing Data

≤ 1

2
· Info Unique to Observed Data. (27)

Consider the special case where �C0 (ω∗) = �Ccom (ω∗), that is,
the resolutional improvement is concentrated in predicting Y1.
Then, we require βmis

0|1 ≤ 1
2 , that is, the information missing from

group T = 0 should not be highly predictive of the residuals
Y0 − E (Y0|Ccom).

The danger of choosing C̃0 
= C̃1 in (26) is that the missing
data may be highly influential—inferences that condition only
on the observed data will then fail to adequately approximate
the operational estimand that conditions on both the observed
and missing data. However, if dependence of outcome on the
missing data is weak—in fact less than 1/2 the dependence of
outcome on the observed data—then we can essentially “ignore
the error term” and still enjoy the resolutional benefits of choos-
ing our operational estimand so that R =dim(C) >dim(Ccom).
To make this interpretation clearer, we illustrate (26) on a canon-
ical example.

Example 3. For analytic tractability, both (C0i , C1i) and
(Y0i , Y1i) are taken to be continuous, though the intuition flows
back easily to the discrete case. Assume that (C0i , C1i) are
standardized but correlated normal variates: N2(02, (1 − ρ)I2 +
ρ121T

2 ), which affect the potential outcomes (Y0i , Y1i) via

Yt = μt + αobsCt + αmisC1−t + εt

for t = 0, 1, where ε0 and ε1 are iid N (0, τ 2) and independent
of (C0i , C1i). In the treatment group, we observe only C1 and
in the control group we observe only C0. Thus, Ccom is empty.
The question of interest: when is E (Y1|C1) − E (Y0|C0) a better
predictor of Y1 − Y0 (in MSE terms) than E (Y1) − E (Y0)? As
suggested, the answer depends on how important the missing in-
formation, C1−t , is compared with the observed information, Ct ,
in predicting Yt , determined here by the values of (αobs, αmis).

The best (in MSE terms) predictor of Yt using Ct and the
prediction residual are

Ŷt = E (Yt |Ct ) = μt + (αobs + αmisρ)Ct ;

Rt = Yt − Ŷt = αmis (C1−t − ρCt ) + εt .

To write condition (26), we find

1 − βobs
t |1−t = 1 − ρ2

1 + ρ
, βmis

t |1−t = 1 − ρ2

αobs/αmis + ρ
.

These regression coefficients measure the predictive informa-
tion unique to the observed and missing data, respectively—the
similarity in form is striking with αobs/αmis replacing the con-
stant 1 in the latter. When αobs > 0, αmis > 0, then βmis

t |1−t is
a monotonic decreasing function of αobs/αmis—the ratio of the
predictive strength of the observed data to that of the unobserved

data. Since σ0 = σ1, (26) then has the form

1 − ρ2

αobs/αmis + ρ
≤ 1

2

1 − ρ2

1 + ρ
.

When ρ ≥ 0, this becomes αobs/αmis ≥ 2 + ρ. So if ρ = 0, we
need the information in the observed data Ct to be twice as
important as the information in the missing data, C1−t . In many
applications this is not an unreasonable assumption. After all,
we would expect the potential side effects experienced by our
patient under treatment t to be much more predictive of the
success/failure of treatment t than the potential side effects ex-
perienced under alternative treatments. In these situations max-
imizing component-wise resolution will lead to smaller MSE
than adopting the data resolution, namely, using the uncondi-
tional comparison E(Y1) − E(Y0) to predict Y1 − Y0.

The limitation of (26) is that it only applies when MSE ade-
quately describes our actual loss. For real life examples, other
loss functions may be more appropriate: in selecting treatment
for a patient, our focus may be 0–1 loss (did we choose the right
or wrong treatment?). Nevertheless, the 1/2 Rule establishes the
possibility of improving our decision making by maximizing
resolution component-wise. And while the magic number may
differ from 1/2 for other losses, the intuition remains: the ex-
planatory power of the observed data must trump that of the
missing data. We hope this insight will encourage others to taste
this previously forbidden fruit, which is more tomato (yes, a
tomato is a fruit) than nightshade. We ought to stop now before
we over serve our dessert after Dr. Armistead’s main entree,
which was rich with food for thought. We do, however, hope
that our multiresolution fruit basket is large and inviting enough
for readers who remain hungry for more—please help yourself!
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