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LETTERS TO 
THE EDITOR 

Letters to the editor will be confined to discussions of papers that have 
appeared in The American Statistician and to important issues facing 
the statistical community. Letters discussing papers in The American 
Statistician must be received within two months of publication of the 
paper; the author of the paper will then be given an opportunity to 
reply, and the letters and reply will be published together. All letters 
to the editor will be refereed. Corrections of errors that have been 
noted in papers published in The American Statistician will be listed as 
corrections at the end of this section. 

INMAN, HENRY F. (1994), "KARL PEARSON AND 
R. A. FISHER ON STATISTICAL TESTS: A 1935 EXCHANGE 

FROM NATURE," THE AMERICAN STATISTICIAN, 48,2-11: 
COMMENT BY CHRISTENSEN AND REPLY 

The exchange on statistical testing between Fisher and Pearson con- 
tained in Inman (1994) was very interesting. Surprisingly, I found my- 
self agreeing with both Fisher and Pearson. The purpose of my letter 
is to explain this phenomenon, and to make some gratuitous comments 
on prediction, one-sided tests, and confidence intervals. In particular, 
it seems popular these days to denounce testing, especially "two-sided" 
testing, in favor of confidence intervals. I disagree with this trend on 
philosophical, if not practical, grounds. 

Consider the simplest standard case: YI... Yn independent 
N(p, o.2) and testing Ho: i = 0. There are at least five assumptions 
being made here: (1) that the observations are independent, (2) that the 
observations are normally distributed, (3) that the observations all have 
the same mean, (4) that the observations all have the same variance, and 
(5) that it = 0. Together, the assumptions constitute a model for the 
data. A model allows us to conduct science, that is, make predictions 
and evaluate the accuracy of those predictions. If we have future obser- 
vations to which we can apply this model, our point prediction for them 
would be 0 and a 95% interval prediction contains the values between 
O ? t(.975, n)& where &2 = :n I yr /n. 

The essence of Statistics is finding better and more useful models for 
observable phenomena. In practice, one must agree with Pearson that 
models are never actually correct. The real question is whether they 
are useful. Where do useful models come from? Who knows? Often, 
they result from interactions between statisticians and subject matter 
specialists. 

Testing plays its role in establishing whether models are tenable. You 
can never prove that models are correct, but they come from somewhere, 
and to conduct science we must be willing to stand by our models until 
they are no longer tenable. Different people can have different models, 
and there will be no way to choose between them until some models 
are shown to be untenable. As Fisher points out, a statistical test is 
essentially an attempt at proof by contradiction. We assume the model 
and ask whether the observed data contradict it. Pearson mentions 
that absolute contradictions are rare, but his point does not vitiate the 
force of Fisher's argument. In our normal theory example the model 
indicates that (y - 0)/(s/VH) has a t(n - 1) distribution. The support 
of a t(n - 1) is the entire real line, so no data can give an absolute 
contradiction to the model (at least when conducting a t test). On the 
other hand, some possible values of ( - 0)/(s/lVH) are so unusual 
for a t(n - 1) distribution that if they were observed, the model would 
be called in question. The P value is simply a measure of how rare a 
particular value for (33y-O)/(s/VHi) is relative to the t(n -1) distribution. 
The conclusion of the test is that we have either seen a rare event, as 
measured by the P value, or the model is incorrect. As the P value gets 
smaller, it becomes progressively more logical to assume that the model 
is incorrect. 

How do you compute the P value? The t(n - 1) distribution has a 
density. Rare values of (3 - 0)/(s/VH) are those values that give small 
values for the density. The P value is simply the probability of getting 
a value of (y - 0)/(s/1/i) with a density that is less than or equal to 
the density of the observed value of (y - 0)/(s/VH). Note that the P 
value thus obtained is identical to that in the usual "two-sided" test. 

None of this has anything to do with an alternative hypothesis. Either 
the data are consistent with the model or are inconsistent with the model. 
If they are consistent, they yield very little new information because we 
have attempted a proof by contradiction without getting a contradiction. 
Consistent data certainly do not prove the model to be correct. If the 
data are inconsistent with the model, the model is inadequate. (Although 
sometimes demonstrably inadequate models can still be useful.) In our 
example the model involves at least five assumptions. The inadequacy of 
the model could stem from violation of any or all of those assumptions. 
Inconsistent data certainly do not imply that the particular assumption 
embodied in H0 : it = 0 is the one assumption that was violated. 
Concluding that ,u $0 is only reasonable if the other four assumptions 
have been validated. 

Procedures for testing Ho: it = 0 vs. HA: it $ 0 or, say, Ho: ,u = 0 
vs. HA: it > 0, whether they be Neyman-Pearson or Bayesian, take for 
granted that the first four assumptions are correct. Given a belief in the 
first four assumptions, my personal preference is to conduct a Bayesian 
analysis, but I find the choice between Bayesian or Neyman-Pearson to 
be of little importance compared to the crucial issue of validating the 
assumptions. The point here is that it is easy to test whether data are 
inconsistent with a model, but it is very difficult to conduct a valid test 
in either a Neyman-Pearson or Bayesian setting. 

I have already indicated that I think prediction is fundamental, and 
my dislike for one-sided alternatives stems from a basic dislike of al- 
ternatives. My last point is a question, "What is this creature we call a 
confidence interval?" We start with a perfectly valid probability state- 
ment about future observables. In the example, ignoring H(, it is 

1- oz = Pr 9t (1 - et, n -1 I s < ,u <y 

+ t I1- 2 )n n-1 ^I; ] 

How do we substitute observed values for y and s and magically turn this 
into (1-a)100% "confidence" thatt ,is betweeny 3 ?t(1-, n-1) s 9 

What in the world could "confidence" possibly mean, and how in the 
world does the 1 - o convert itself from probability into confidence? 
And please do not give me the long-run frequency interpretation; I 
know the Law of Large Numbers. It rarely applies, and even when it 
does, it solves nothing. We all know that, except for those that have been 
browbeaten into giving the "correct" answer, everyone treats confidence 
as a synonym for probability. So this approach to confidence seems 
like a blatant attempt at making Bayesian omelettes without break- 
ing Bayesian eggs or even admitting to making omelettes. At least 
Fisher's fiducial approach to inverse probability admitted it was making 
omelettes. 

My real point here is simply that frequentists should not bad mouth 
testing while praising confidence intervals. Until they can give good 
answers to the questions raised in the previous paragraph, a confidence 
interval must be simply the collection of parameter values that are con- 
sistent with the data as determined by an oz level test. Moreover, predic- 
tion intervals can be thought of as those future observable values that 
are consistent with the model based on an oz level test. I grant that it is 
stupid to do a basic oz level test because either a P value or a confidence 
interval is uniformly more informative. However, testing seems to be 
the foundation of frequentist inference. 

Ronald CHRISTENSEN 
Department of Mathematics and Statistics 
University of New Mexico 
Albuquerque, NM 87131 

I am glad that Professor Christensen found Inman (1994) interest- 
ing and that it provokied him to examine what a statistical test actu- 
ally achieves. Because one aim of my article was to demonstrate that 
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confusion among statisticians and scientists regarding the relationship 
between testing statistical hypotheses and scientific inference is not a 
recent development, I welcome his effort to grapple with this issue. 

However one judges their claims to scientific relevance, the Neyman- 
Pearson and neo-Bayesian arguments have contributed significantly to 
the clarity and rigor of the theory of testing hypotheses as a statistical 
problem. In my view this is largely due to the fact that both approaches 
explicitly incorporate the alternative hypothesis and provide a decision 
rule that is based on sampling models that apply under the alternative as 
well as the null hypothesis. As I noted in Inman (1994), Karl Pearson 
and R. A. Fisher adhered to the tradition of the classical test of signif- 
icance. Although both men recognized and addressed issues related to 
sampling procedures in their work, neither saw validation of a sampling 
model as a necessary requirement for performing a statistical test. The 
difference between their views lies in how the results of the test should 
be interpreted; this, in turn, is based on how Pearson and Fisher re- 
garded probability statements and the sorts of scientific investigations 
they pursued. 

Fisher argued that the logical force of a statistical test stemmed from 
the rejection of the null hypothesis tested, but much of Fisher's work in- 
volved the analysis of designed experiments. Although claiming to 
avoid formal statistical tests altogether, Pearson noted the scientific 
value of adopting, at least provisionally, a model fit to data which 
(in most of his work) derived from what we would now classify as 
observational investigations. Pearson, it seems to me, saw statistical 
methodology within a framework consistent with Bayesian inference, 
but because Pearson rejected the truth of scientific models he did not 
recognize the Bayesian goal of attaching probabilities to hypotheses as 
measures of truth. Instead, Pearson interpreted probability statements in 
terms of hypothetical future observations generated by the phenomenon 
under study. For Pearson an adequate statistical model, fit to scientific 
data (however obtained), incorporated within it the stochastic basic for 
probability calculations. 

Finally, I sadly must take this opportunity to note the death of 
Arthur J. Lee, who retired in 1980 as Director of Fisheries Research 
at the Ministry of Agriculture, Fisheries and Food's Lowestoft Labo- 
ratory. Mr. Lee kindly communicated to me his own recollections of 
H. J. Buchanan-Wollaston; provided me the address of Geoffrey Wollas- 
ton, Buchanan-Wollaston's son; and guided me to relevant information 
in Lee (1992). Without his help Inman (1994) would have been far less 
interesting to write and (I believe) to read. Unfortunately Mr. Lee died 
shortly before the article appeared in The American Statistician; thus he 
was unable to see the result of the assistance he generously gave me. 

Henry F. INMAN 
2016 A Park Avenue 
Richmond, VA 23220 
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KELLER, J. B. (1995), "A CHARACTERIZATION OF THE 
POISSON DISTRIBUTION AND THE PROBABILITY OF 

WINNING A GAME," THE AMERICAN STATISTICIAN, 48, 
294-298: COMMENTS BY MENG AND SEN AND REPLY 

I read this article with joy-it is fun and intriguing. However, its 
Appendix, and thus the extension to continuous variables, is built upon 
an elementary error. 

The Appendix started with: "Let X and Y be real-valued random 
variables with densities p(x, A) and q(y), respectively, where A is the 
mean of X." It then arrived at 

Pr[X = Y] = / p(y, A)q( y) dy. (A.2) 

This is obviously wrong, even assuming the independence between X 
and Y, an assumption I deduced from the integrand as well as from 
the treatment of the discrete cases in the article. In fact, when the 
distribution of X -Y is continuous, Pr[X = Y] = 0. Another simple 
way of rejecting (A.2) is to note that its right side may exceed 1. For 

instance, suppose X, Y - iidN(O, 0.2); then the right side is (2\V/o-rl, 
which exceeds 1 for o- < (2/<)-. 

All of these, of course, are well known. I surmise that the error was a 
simple "mindo" (that is, a "typo" of the mind), as the article's main focus 
was on discrete cases, and (A.2) was thought to be a natural extension 
of the discrete setting. I also surmise that it would be more appropriate 
to publish such an extension in Teacher's Corner, for it provides a good 
classroom illustration of the need for caution when generalizing from 
the discrete case to the continuous one. 

Xiao-Li MENG 
Department of Statistics 
University of Chicago 
Chicago, IL 60637 
meng@galton.uchicago.edu 

Keller (1994) provides an interesting interpretation of the Poisson 
distribution in terms of probabilities of winning and drawing a game. I 
would like to open this letter by congratulating the author on an inno- 
vative and stimulating piece of work. The intent of this letter, however, 
is to point out a substantial simplification of the treatment presented in 
the appendix of the aforementioned article, and subsequently establish 
a general result which is apparently overlooked in the appendix. 

Specifically, the author starts with the defining relation (A.3), namely, 

a Pr[X > Y] = Pr[X = Y] (1) 

for every continuous random variable Y independent of X where X is 
continuous with finite mean A. From this, the author, via a differential 
equation approach, derives a characterizing Equation (A.8) for the dis- 
tribution of X, and consequently establishes that no nonnegative random 
variable X satisfies (1). The treatment simplifies considerably by not- 
ing that the right-hand side of (1) actually equals zero for independent, 
continuous random variables. The assumption of independence (also 
assumed by the author) is crucial because dependence between X and Y 
may lead to a positive value of Pr[X = Y] (e.g., in the case of Marshall 
and Olkin's (1967) bivariate exponential distribution). In the following 
I will establish that, in fact, there is no continuous random variable X for 
which (1) holds, a stronger contention than that arrived at by the author. 

Note that in view of our observation, (1) entails that Pr[X > Y] is 
free of A for every continuous random variable Y, independent of X. In 
particular, choosing Y to be a Uniform(O, 0) random variable, we get 
1`9 Pr[X > x] dx free of A for every 0 > 0, and so 

r00 ra 
/ Pr[X > x] dx= lim Pr[X > x] dx (2) 

is free of A. But for X > 0, the left-hand side of (2) equals E(X) = A, 
a contradiction, establishing that (1) fails to hold for any nonnegative 
continuous X. For a general continuous X the expression for the mean 
equals 

A=E(X) = Pr[X > x] dx-- Pr[X < x] dx. (3) 
* 1) * -~~~00 

An argument very similar to the above enables us to conclude that 
both terms on the right of (3) are free of A, thus reaching the desired 
contradiction in the general case. 

As a concluding note I would like to mention that a similar char- 
acterization for geometric random variables exists in connection with 
probabilities of wins and ties. Specifically, we need to replace the au- 
thor's condition (2.1) by 

Pr[P > Q] oc Pr[P = Q]. (4) 

It is easily seen that (4) holds for all nonnegative, integer-valued random 
variables Q independent of P (also nonnegative integer-valued) if and 
only if P is geometric with mean equaling the constant of proportionality. 
In this case, as in the Poisson case, the crux of the proof rests on the fact 
that the class Q is rich enough to include all degenerate distributions 
which enable us to extract the exact structure of the distribution of P. 

Ananda SEN 
Department of Mathematical Sciences 
Oakland University 
Rochester, MI 48309 
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Xiao-Li Meng has pointed out a blunder in Equation (A.2) in the 
appendix to my paper, which invalidates the "proof" of the conclusion 
stated there. Fortunately, Ananda Sen has presented a correct proof 
of an even stronger conclusion. He has also given a characterization 
of geometric random variables, analogous to my characterization of 
Poisson variables. I apologize for the blunder and thank the authors for 
pointing it out and giving a correct proof, respectively. 

Joseph B. KELLER 

Department of Mathematics anid 
Mechanical Engineering 

Stanford University 
Stanford, CA 94305 

COYLE, C. A., AND WANG, C. (1993), "WANNA BET? ON 
GAMBLING STRATEGIES THAT MAY OR MAY NOT WORK 

IN A CASINO," THE AMERICAN STATISTICIAN, 47, 
108-111: COMMENT BY DONEGAN 

The article by Coyle and Wang (1993) presents some interesting 
comparisons among various gambling strategies. The first comparison 
involves a game (called Game 1) based on tossing a "fair" coin, and 
another game (Game 2) based on an "almost fair" roulette wheel with 
38 possible outcomes. The first result in the article states that with 
the games as described, the gambler is more likely to reach his or her 
target in game 1 rather than game 2. This is, of course, true. But, 
if game 2 were to be based on a French roulette wheel (with only a 
single zero, i.e., 37 possible outcomes), then the situation would be 
reversed. 

Redefine Game 2. 
Game 2A: The gambler will bet $1 on either red or black on an 

American roulette wheel (the probability of winning is 18/38 = .474). 
Game 2F: The gambler will bet $1 on either red or black on a French 

roulette wheel (the probability of winning is 18/37 = .486). 
Readers who are familiar with casinos outside North America will 

be aware that, despite the differing probabilities of a winning bet, the 
odds paid are identical. It is obvious that game 2F is closer to being 
"fair" than game 2A. 

Following the notation of Coyle and Wang, and keeping other para- 
meters unchanged, the games can be summarized as follows: 

Capital Goal 

Game 1 $900 $1,000,000 (p = 50%) 
Game 2A $900 $1,000 (p = 47.4%) 
Game2F $900 $1,000 (p = 48.6%). 

The probabilities of reaching the goal can be shown to be 

Game 1 h($900) = .09% 
Game 2A h($900) = .0027% 
Game 2F h($900) = .4486%. 

Note that the probability of success in game 2F is considerably higher 
than in Game 1. 

Introducing Game 2F into the analysis involving the Dubins-Savage 
strategy yields the following comparisons which do not show such dra- 
matic differences. 

The probabilities of reaching the goal and expected winnings are as 
follows: 

Game 2A h2(9) = 87.94% E(Winnings) = -$20.53 

Game 2F 1h(9) = 88.98% E(Winnings) = -$10.24. 

Thus employing the Dubins-Savage strategy in French roulette, a gam- 
bler is about 200 times more likely to reach goal than using a $1 
bet. 

Comparisons of the Dubins-Savage strategy with variations of the 
original (constant bet) strategy are given in the following tables. 

Game2A 

m(9) = expected Expected 
number of loss using 
hands to D-S over 

Bet h(9) E(loss) completion same time 

$1 .000027 $899.97 17,099 $168,690 
$5 .12158 $778 2,958 $29,181 
$20 .58837 $312 296 $2,920 
D-S .87942 $21 2.0856 

Game 2F 

m(9) = expected Expected 
number of loss from using 
hands to D-S over 

Bet h(9) E(loss) completion same time 

$1 .00448 $895.51 33,134 $166,089 
$5 .33913 $561 4,150 $20,805 

$20 .74612 $154 285 $1,427 
D-S .88976 $10 2.0436 

Now consider the case of the Japanese whale. We are not informed 
as to which game Mr. Kashiwagi played, so we shall consider three 
cases. The table below shows results based on American roulette (A), 
French roulette (F), and the "best" case as suggested by Coyle and Wang 
(p = 49.375%). 

Game 2A Game 2F Best 

p .473684 .486486 .49375 
1-p .526315 .513513 
K 60 60 60 
G 120 120 120 
h(60) .001793 .037541 .182413 
Expected loss $11,942,580 $10,798,640 $6,162,740 
Expected number 

of hands 1,135.910 2,053.314 3,048.826 

The expected number of hands reported by Coyle and Wang 
(-5,000) should be 3,049, while it is considerably less on either Amer- 
ican or French roulette. In this light it is surprising that Mr. Kashiwagi 
lasted as long as he did. In this case even crossing the Atlantic would 
not have been any advantage to him. 

Apart from the slight inaccuracies in the computations there is a 
typographic error in the article. On p. 109, right column, paragraph 4, 
the equation should be: 

pq+p *q h(9) = p + I q2 = h($900). 

Kevin DONEGAN 

Faculty of Business and Technology 
University of Western Sydney-Macarthur 
Campbelltown, NSW 2560 
Australia 

TIETJEN, G. (1993), "RECURSIVE SCHEMES FOR 
CALCULATING CUMULATIVE BINOMIAL AND POISSON 
PROBABILITIES," THE AMERICAN STATISTICIAN, 48, 

136-137: COMMENT BY NEMENYI 

For the calculation of Binomial individual, right tail, and cumulative 
(= left tail) probabilities, Tietjen points out computational advantages 
of using one of the recursions 

Pr,1(r) =p.Prn_j(r- 1) + qPrn-j(r) (1a) 
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beginning with 0 q p 0 in a sea of zeros, 

Tail,,(r) = p * Tail,. 1( - 1) + q Tail,,.. 1 (r) (Ib) 

beginning with 1 1 p 0 0, 

Cum,, (r) = q * Cum,,-1 (r) + p * Cum,,1 (. - 1) ( c) 

starting with 0 0 q 1 1, or 

Pr,,(r) = (n - r + l)p Pr,,( - 1)/(qi-) (2) 

beginning with Pr,,(0) = ql-their advantages over a closed formula 
like 

11 | 
( 1 - 

Tail,,(r) = E (- P))". (3) 

(The notation here is a bit different from Tietjen's, but self-explanatory.) 
It should be noted that (1) is free of underflow and overflow problems. 

If d = how many decimals matter for your purposes (plus a safety margin 
of 3 to allow for accumulation of rounding erlors, if you plan to take 
n pretty high), then immediately round off any calculated probability 
< .5 i0`1 to 0. (Modify this if you measure accuracy in significant 
digits.) 

To me the most important use for (1) and then (2) is in education, to 
let Elementary Statistics be elementary. For a beginning student with 
little math, (3) is intimidating and likely to produce paralysis before sta- 
tistical inference even begins. The simple recursions (1) follow directly 
from verbal definitions of Pr, Tail, and Cum and rudimentary rules of 
probability, and are easy to see happening numerically in a table. In the 
symmetric case p = .5, it means you simply keep averaging two adja- 
cent entries to get the one below. In the general case you have weighted 
averages ("p of those plus q of these"). 

A nonparalytic introduction to statistics can begin with Arbuthnot's 
(1710) proof of Divine Providence based on 82 available years of Lon- 
don birth records showing more baby boys than girls born every year. 
Students have no trouble seeing that each successive year like that halves 
the probability of chance occurrence, resulting in a chance probability 
of 1/282, smaller than 10-24. Eisenhart and Alan Birnbaum (1967) 
exhumed this early sign test.. 1/282 is also the probability that the Min- 
imum of a random sample of 82 items from a quantitative (continuous) 
population exceeds the population median (because it means that all 82 
items do), and so you have a lower confidence limit for the population 
median with confidence probability 1 - 1/282. 

The 24 zeros, or nines, ask us: Would 81 years of excess male births 
out of 82 have been enough evidence to establish Divine Providence? 
In other words, is not the second lowest value out of a sample of 82 safe 
enough as a lower limit for a population median? The answer depends 
upon Pr(No exceptions) + Pr(I exception), (or Pr(82) + Pr(8 1)). 

If just one year out of 82 shows an excess of baby girls, this means 
either the last year shows more baby girls and none of the first 81 did, or 
the last showed more boys and so did all but one of the first 8 1, so that 

Pr82(All but 1) = .5 . Prg 1(All 8 1) + .5 . Prg I(All but 1) 

(based on chance) 

or 

q Prg1 (All 8 1) + p Prg1 (All but 1) (in general). 

The result: Pr(No exception) + Pr(I exception) still begins with 
22 zeros, and the corresponding confidence probability begins with 22 
nines, calling for the calculation of another term: 

Pr82(2 exceptions) = q Prg1(I exception) + p - Prg1(2 exceptions), 

and so on until an accumulated tail probability rises into the realm of 
possible chance occurrence in the students' judgement. Or switch to an 
example with smaller i before going on to the general formulation (l a). 

In an experimental Math 111 at the University of Maryland in 1974, 
we gave the students an A-table of Pr calculated by (la) and a B-table 
of tails obtained by accumulation, each for p = .5 and p = .2 (and 
with some gaps left to fill in). A student, Damon Sui, came in a little 
confused because he thought the recursion formula applied to the Tail 
probabilities. So we checked a few examples to straighten him out-and 
saw that he was right, and then why: (lb) of course follows from (la) 
by the distributive law of arithmetic, and also directly from first princi- 
ples by the same reasoning as above with inequalities in place of some 
"equals." The course text was simplified accordingly. (Nemenyi and 
Halry Bushar (1975), Motivated Math, privately printed for the course.) 

When two-sided confidence intervals for a median are introduced, 
the table of confidence probabilities is generated by the same averaging 
formula (starting with 1, .5, 0 for n = 2) because 

Conf,,(r-) = Pr((x(,.), x(')) of the first n - 1 sample values already 

brackets the median) 

+ Pr(it misses by one and the nith value falls on the 

deficient side) 

= Conf,l(r) + 0.5((Conf,1(r - 1) - Conf, (r)) 

= (Conf, I (r - 1) + Conf, I (r))/2. (Id) 

The recursion folmula (2) can be obtained from (la) by a few short 
inductive steps, and then used to derive the law of laige nuimbers di- 
rectly, without having to learn means, variances, or Tschebychev first. 
The nor mal approximationi can also be derived from (2) by showing that 
the ratio of successive probabilities becomes more and more indistin- 
guishable from the ratio of the corresponding normal approximations as 
n gets big. For students with some calculus this can be done more for- 
mally, showing that the limit of (2), centered, is the differential equation 
of a normal density function. 

The closed formula (3) also follows from (2), of course. Really, there 
is no need for the big formula at all, but it is a good idea to show it to 
the students at some point, if only because they will see it all over the 
literature in later life. 

Peter NEMENYI 

8211/2 Burch Aveniue 
Durham, NC 27701 
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CORRECTION 

JEFFREY F. BROMAGHIN (1993), "SAMPLE SIZE 
DETERMINATION FOR INTERVAL ESTIMATION OF 
MULTINOMIAL PROBABILITIES," THE AMERICAN 

STATISTICIAN, 47, 203-206 

The quantity ac in Equation (3) should be replaced by 1 - oi. In the 
expression of r7t in Equation (4), the - following *7; should be replaced 
by a +. In the numerator of the expression of 7r' in Equation (12), the 
- following 2ni should be replaced by a +. 

Jeffrey Bromaghin expresses his appreciation to G. Li and 
R. C. Tiwari and bringing two of these errors to his attention. 
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