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A Note on Bivariate Distributions That 
Are Conditionally Normal 

ANDREW GELMAN and XIAO-LI MENG* 

It is possible for a nonnormal bivariate distribution to 
have conditional distribution functions that are normal 
in both directions. This article presents several exam- 
ples, with graphs, including a counterintuitive bimodal 
joint density. The graphs simultaneously display the joint 
density and the conditional density functions, which ap- 
pear as Gaussian curves in the three-dimensional plots. 

KEY WORDS: Bimodality; Bivariate normal distribu- 
tion; Conditional probability. 

1. INTRODUCTION 

It is well known that the pair of marginal distributions 
does not uniquely determine a bivariate distribution; for 
example, a bivariate distribution with normal marginals 
need not be jointly normal (Feller 1966, p. 69). In con- 
trast, the conditional distribution functions uniquely de- 
termine a joint density function (Arnold and Press 1989). 
A natural question then arises: Must a bivariate distri- 
bution with normal conditional distributions be jointly 
normal? The answer is no; in fact, the joint distribution 
thus specified must fall in a parametric exponential fam- 
ily that we show includes such oddities as bimodal den- 
sities and a distribution with constant conditional means 
but nonconstant conditional variances. This article pre- 
sents a simple expression for the distributional result de- 
rived in Castillo and Galambos (1987); we then graph 
some examples of bivariate density functions. 

In general, a multivariate distribution on the variables 
(xI, ..., xn) may be characterized by its joint distribution 
or the conditional distributions of (xi I xj, all j =# i) for 
all i. For many models, one can specify the set of con- 
ditional distributions but cannot directly identify the joint 
distribution; Brook (1964) and Besag (1974) connected 
these two specifications for nearest-neighbor and Gibbs 
distributions and showed that the set of conditional dis- 
tributions for all xi determines the joint distribution. In 
addition, the set of conditional distributions is con- 
strained by the requirement that they be consistent; that 
is, a single joint distribution should exist that reduces to 
each conditional distribution. Even in the bivariate case, 
interesting complications arise, as in the example of this 
article. 

Dawid (1979) and others stressed the importance of 

identifying models by their conditional distributions; our 
work may be of practical importance because we expand 
the class of multivariate distributions that can be simply 
specified by conditionals. The supply of tractable joint 
distributions is limited, and it may be useful, for ex- 
ample, to model a bimodal joint density using only con- 
ditional normal densities (see Fig. 3). 

2. PARAMETRIC FAMILY 

Let xl and x2 be two jointly distributed random vari- 
ables, for which xl is normally distributed given x2 and 
vice versa. Then their joint distribution, after location 
and scale transformations in each variable, can be writ- 
ten as 

f(xl, x2) c' exp(-2[AxX2 + 4 + x2 

- 2Bx1X2 - 2C1Ix - 2C2X2]), (1) 

whence the conditional distributions are 

N Bx2 + C1 1 

2AX + 1 Ax2 + Il' 

Ax, + I AI + 1/) 

The only restrictions for (1) to be a probability density 
function are that A ' 0, and if A = 0, then IBI < 1. One 
can see the conditional variances are constant iff A = 0, 
in which case the conditional mean functions are linear 
and the joint distribution is Gaussian. 

This result can be extended to the general multivariate 
problem of variables xl, ..., xn whose conditional dis- 
tributions (xi I xj, all j $ i) are Gaussian for all i. The 
resulting joint density must be of the form 

f(xl * *, xn) oc exp(-2 E Akx* I xn) 

The summation is taken over all 3fn values of the expo- 
nents defined by each ki attaining the values 0, 1, or 2. 
The coefficients Ak are allowed to take on any real values 
for which the joint density function has a finite integral. 

3. EXAMPLES 

We illustrate the diversity of this distributional family 
with graphs of three bivariate densities that clearly differ 
from joint normality. Consider for simplicity the sym- 
metric subfamily in which A = 1, B = 0, C1 = C2 = 

C, with conditional distributions 

xJx2.--N 1 1 XI I X2 - N + -, 2, 9 + l 2 9 
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Figure 1. f(x1, x2) X exp(- [x,x2 + x2]). 

and similarly for x2 I xi. Figures 1-3 illustrate the cor- 
responding joint densities for the values C = 0, 1, 4. 
Note that the grid lines in the graphs, which are just 
unnormalized conditional density functions, are clearly 
Gaussian. Figure 1 shows a joint density with zero con- 
ditional means that differs from a Gaussian by having 
nonconstant conditional variances. The distribution shown 
in Figure 2 is amusing in that (xl I x2) - N(1/(x2 + 1), 
1/(x2 + 1)) and vice versa, so the conditional mean equals 

Figure 2. f(xl, x2) X exp( 1x x2 + x,2 + x22 - 2x1 - 2x2]). 

Figure 3. f(x1, x2) Mc exp(- [x2x2 + X2 + x2 - 8x1 - 8x2]). 

the conditional variance at all points. Figure 3 presents 
a counterintuitive example of a bimodal joint density with 
bimodal marginals but Gaussian conditional densities. It 
is easily shown that, within this subfamily, the joint den- 
sity is bimodal iff C > 2. 

[Received May 1990.] 
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