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Nano-Project Qualifying Exam Process: An Intensified Dialogue
Between Students and Faculty

Joseph BLITZSTEIN and Xiao-Li MENG

An effectively designed examination process goes far beyond
revealing students’ knowledge or skills. It also serves as a great
teaching and learning tool, incentivizing the students to think
more deeply and to connect the dots at a higher level. This
extends throughout the entire process: pre-exam preparation,
the exam itself, and the post-exam period (the aftermath or,
more appropriately, afterstat of the exam). As in the publica-
tion process, the first submission is essential but still just one
piece in the dialogue.

Viewing the entire exam process as an extended dialogue be-
tween students and faculty, we discuss ideas for making this di-
alogue induce more inspiration than perspiration, and thereby
making it a memorable deep-learning triumph rather than a
wish-to-forget test-taking trauma. We illustrate such a dialogue
through a recently introduced course in the Harvard Statistics
Department, Stat 399: Problem Solving in Statistics, and two
recent Ph.D. qualifying examination problems (with annotated
solutions). The problems are examples of “nano-projects”: big-
picture questions split into bite-sized pieces, fueling contem-
plation and conversation throughout the entire dialogue.

KEY WORDS: Bias-variance trade-off; Confidence intervals
with restricted parameter space; Mean squared error; Ph.D.
Qualifying Examination; Preparation of and for exams; Statis-
tical education.

1. “TEACH US HOW TO PREPARE . . .”: STAT 399 AS
A CONVERSATION OPENER

Over the more than half-century history of Harvard Statis-
tics, the format of the Ph.D. Qualifying Examination has varied
considerably and repeatedly, from the two-week “Sleepless in
Seattle” exam when one of us (XLM) was taking it in 1987 to
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the current format of a theoretical examination in two 8-hour
parts, and a 32-hour applied examination (all take-home). But
one thing has remained constant: there are no specific textbooks
or courses around which the qualifying problems are designed.
Indeed, many problems are inspired by research projects of in-
dividual faculty members.

The underlying philosophy behind such problems is to re-
quire creativity and an ability to “connect the dots,” recognize
patterns, and see when a new problem is essentially equiv-
alent to a familiar problem. Such problems also provide a
good opportunity for deeper learning, because they are “nano-
research projects,” showcasing essentially all the whistles and
bells needed for conducting research, albeit in miniature form.
We have often heard anecdotes of a tendency for students to
drift after quals, a sort of “post-qual slump” (not entirely ex-
plainable by regression toward the mean!). The nano-project
process aims to make the transition from “pre-qual thinking”
to “post-qual thinking” more seamless and natural than formats
where the exam is an isolated hurdle to jump over, disconnected
from the student’s development into a creative, precise thinker.

Understandably, students find it more difficult to prepare for
such examinations than for those based on a specific course
or textbook. This is intentional! The qualifying exam process
is meant both to assess and to assist, emphasizing preparing
for research rather than preparing for an exam. The focus is
on strategies and tactics for tackling new problems, rather than
on memorizing facts and formulas or trudging through tedious
textbook-style problems.

A potential pitfall of this style of exam is that students may
be confused about how to prepare for an exam meant not to
be prepared for, about how to create creativity, and about how
to handle the expected unexpected. This has sometimes led to
excessive stress and mystery surrounding the quals, with some
students complaining beforehand that they did not know how
to prepare, and afterward that the problems looked nothing like
what they had seen in their courses.

Smullyan (1983) recounted hearing the famous pianist Schn-
abel discussing reviewers:

I don’t read my reviews, at least not in America. The trouble with
American reviewers is that when they make a criticism, I don’t
know what to do about it! Now, in Europe it was different—for
example, I once gave a concert in Berlin. The critic wrote, ‘Schn-
abel played the first movement of the Brahms sonata too fast.’
I thought about the matter and realized that the man was right!
But I knew what to do about it; I now simply play the movement
a little slower. But when these American critics say things like,
‘The trouble with Schnabel is that he doesn’t put enough moon-
shine in his playing,’ then I simply don’t know what to do about
it!
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We would like our students to display both “moonshine”
(which we take to mean creativity, elegance, and a natural flow
of ideas) and technical competence (so that creative ideas are
backed up by sound logic rather than hand-waving), but expect-
ing a student to develop moonshine without the right guidance
can lead to much stress and confusion about how to prepare.

To help convert unpredictable unpredictability into pre-
dictable unpredictability, Stat 399: Problem Solving in Sta-
tistics was created. This is one of several recent pedagogical
and professional development innovations at Harvard Statistics
resulting from promptly responding to students’ requests and
concerns, as reported by Meng (2009).

Stat 399 is a discussion-oriented, teamwork-based course. It
has been led by Professor Carl Morris (co-Director of Gradu-
ate Studies) since its inception in 2006–2007, with participation
from 100% of our faculty (each attending in different weeks).
Typically, students select some previous qualifying problems
that they wish to study, and invite the faculty members who
wrote the problems to join the corresponding sessions. This
gives students an inside look into the motivation, insights, and
techniques each faculty had in mind in designing his or her
exam problems. Conversely, the faculty can see firsthand how
the students are thinking, individually and collectively, in a set-
ting very unlike a typical classroom. Stat 399 has also helped
demystify the quals without devaluing them or decreasing the
difficulty, by making the exams more of a collaborative expe-
rience and opening better lines of communication between stu-
dents and faculty.

In such a course, a balance is needed between students shar-
ing their thoughts on the problems (preferably at the board) and
faculty discussing strategy, background, etc. This depends on
the size and composition of the class, whether they seem stuck,
and other factors, but in any case much of the benefit requires
the course to be discussion-based. A suggested format (with no
claims of optimality or uniqueness) for each meeting is as fol-
lows.

1. Discussion of the background and motivation (some of
which should already be in the problem itself). Why might
such a problem come up in a real research project? In short,
who cares? What is the big picture, both statistically and
pedagogically?

2. Students describe their ideas and approaches (having worked
on the problem individually ahead of time), asking questions
and taking turns presenting at the board. The faculty should
keep the discussion on track and emphasize the logical flow
between and within the individual parts of the problem, and
how they collectively represent a research process.

3. Discussion of alternative solutions, and of how the problem
connects to other problems the students may have seen.

Students are expected to work hard on the problems individ-
ually before the meeting, and are strongly encouraged to partic-
ipate actively. Having students present solutions at the board is
informative for both students and faculty, as long as it is done
interactively rather than as a mere transcription of the student’s
notes onto the board. The faculty member can also discuss how
he or she approached grading the question: what were the com-
mon mistakes, and what insights were worth the most partial
credit?

A course such as Stat 399 is particularly effective in tan-
dem with “nano-project format” problems, which we describe
in more detail in the next section, followed in Sections 3–6 by
two recent examples with annotated solutions. These solutions
interweave research and pedagogy, by containing both solutions
and notes on the pedagogical motivations of the exam. Section 7
discusses “afterstat”: the crucial importance of what happens
after the exam. Lastly, in Section 8 we examine some exten-
sions and challenges, again emphasizing the exam as a process
rather than a transient test, and how nano-project problems ben-
efit both the exam takers and the exam writers.

2. THE NANO-PROJECT FORMAT

By “nano-project” problem, we mean a multi-part problem
which can be thought of as a miniature version of a real re-
search project, well-motivated by a big-picture question. Com-
pared with most problems, we believe that the nano-project for-
mat enhances the learning intensity and thus can imprint mem-
ories far longer, provided that the problem is well-motivated,
of an appropriate level, and preceded and followed up suitably
rather than treated as a fleeting experience.

Of course, countless exams have used multi-part formats, so
why bother making up this new name? Multi-part problems are
used for many purposes, such as controlling the difficulty of the
problem (often inversely correlated with the number of parts,
if parts serve as hints), saving space by not having to redefine
notation, etc. Our emphasis here is on the pedagogical advan-
tages of this format, and “nano-project” refers to the motiva-
tions for the format more than to the format itself. Seeing many
examples of how experienced researchers decompose a compli-
cated problem into manageable subproblems is a crucial part of
the deeper learning process needed to transform students from
homework/exam solvers to real-life problem solvers.

Indeed, most parts are designed in such a way that if a student
cannot complete a particular part, he or she can still move for-
ward by using the results from that part, much like in research
where we sometimes use established results without necessar-
ily knowing how to rigorously establish them ourselves. If the
earlier part asks the student to calculate the value of a quantity
c, then often the student can be allowed to leave the later parts
in terms of the symbol c (and the problem should be designed
to facilitate this). If the earlier part is of the form “Prove asser-
tion A,” then the student can simply assume that assertion A is
true in the later parts. If the earlier part is of the form “Prove
assertion A or give a counterexample,” this becomes harder,
but this wording is closer to real-life problems, where we of-
ten have to iterate back and forth between making conjectures
and finding counterexamples. This kind of iterative thinking is
well-reflected in the nano-project format. Indeed, we can often
design the problem so that later parts serve as hints to earlier
parts, with the later part yielding a contradiction if the earlier
part was answered incorrectly. This reminds the student to con-
sider the parts as a coherent project rather than isolated parts.

Students should also be reminded that the order of parts for
such nano-project problems corresponds to a logical flow of
ideas rather than a flow of increasing difficulty, because stu-
dents often assume that the later parts will be harder than the
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earlier parts. A trade-off arises here too, in deciding the number
of parts. Too many parts can make it harder to see the big pic-
ture and can result in each part being a trivial verification; but
with too few parts, most students could have too little guidance,
though some of the best students would still learn much from
finding their own approaches to breaking the problem into sim-
pler parts. Deciding how many parts to give is helped well by
knowing the students well, which is again a major advantage of
a course such as Stat 399.

Some multi-part problems appear to have been generated by
taking a long proof of some result, extruding the abstract mathe-
matical core, and then converting this to a long list of statements
to verify. Students often then do each verification but miss the
big picture, seeing neither the purpose of the verifications nor
the strategies that suggested breaking the proof into those steps
in the first place. Thus, in designing a nano-project problem, it
is very important that the parts be well-motivated, both within
each part and in the connections between parts. Whereas such
a task might seem to require a delicate balancing act, our ex-
periences are that if the problem is based on an actual research
project, particularly a current one, then it is rather straightfor-
ward because it merely reflects our own thought process (un-
less, of course, we have very muddy ones ourselves!). Often
one of the most important roles of a statistician collaborating or
consulting with others is to bring clarity to the framing of re-
search questions. The nano-project format helps emphasize the
importance of starting with a clear, well-motivated big-picture
question, and then decomposing it into smaller but equally clear
questions.

We turn next to two specific examples, one from each of the
last two years of qualifying exams in the Harvard Statistics De-
partment. The two problems illustrate the features and flexibil-
ity of the nano-project format. The first has four parts, focusing
on an interval estimation problem with a constraint on the pa-
rameter space, while the second has eight parts, investigating
a recent proposal for achieving automated bias-variance trade-
off. Both are from the theoretical exam, with students having
8 hours to solve three problems on each of two days. For space
reasons, we do not discuss the applied exam here, but we be-
lieve the nano format is also very effective in that context, and
that nano-problems interweaving theoretical and applied parts
can also be fruitfully developed.

We also provide the actual annotated solutions, as prepared
for Stat 399. We do not claim that these solutions are the best
possible (but we do hope they are almost surely correct!). Quite
to the contrary, we encourage our students in Stat 399 to come
up with better ones, which also mirrors real-world research:
improving upon existing methods and solutions is part of the
game.

3. AN ACTUAL PH.D. QUALIFYING EXAM PROBLEM
(HARVARD STATISTICS, BLITZSTEIN 2008)

Confidence intervals or probability intervals are required for
the mean μ, based on observing Normal data y ∼ N (μ,σ 2),
where for simplicity σ 2 is assumed known. In the application
of interest, it is physically impossible for μ to be negative, for
example, μ represents a length or mass. So the parameter space
is taken to be [0,∞).

Note that negative values of y are still possible (e.g., due to
measurement error). For example, many early attempts to mea-
sure the squared mass of the neutrino resulted in negative esti-
mates.

(a) Arguing that it is absurd to include negative values in
a confidence interval for μ, Statistician A proposes taking the
usual 95% CI I0 = [y − 1.96σ,y + 1.96σ ] and truncating the
interval to eliminate any negative values, that is, using I1 =
I0 ∩ [0,∞). Is this still a 95% CI in the frequentist sense? Is
the corresponding upper limit of the interval a one-sided 97.5%
upper bound? What about the lower bound?

(b) Determine whether there is a prior π for μ such that the
Bayesian posterior interval is the same as I1 from (a) (for all
possible data).

(c) Choosing an Exponential prior for μ, with rate parame-
ter λ > 0 (known), find a 95% Bayesian posterior interval for
μ (simplify; you may either give a central interval (cutting out
2.5% in each tail) or an HPD (highest posterior density) inter-
val).

(d) Suppose now that we are only interested in an upper
bound for μ and so want to give the “best” possible interval of
the form [0, a], where instead of prespecifying a desired cover-
age probability, we try to minimize the posterior loss with re-
spect to the following loss function L(μ, I), where μ ≥ 0 and
I is an interval.

Define L(μ, I) to be 1 if μ /∈ I , and L(μ, I) = 1 − e−|I | oth-
erwise, where |I | is the length of the interval I . This penalizes
an interval for not containing μ; given that the interval does
contain μ, it rewards shorter intervals. Assume that the pos-
terior distribution for μ is Exponential with rate parameter λ.
Find (explicitly) the best interval [0, a].

4. ANNOTATED SOLUTION TO THE BLITZSTEIN
2008 PROBLEM

(a) This part tests familiarity with confidence intervals and
coverage probabilities in a setting unfamiliar to most students
(yet still natural), as well as a general level of carefulness—
despite the seeming simplicity, it is easy to make a serious mis-
take in this part. The solution is almost immediate if approached
as below, but almost all the students taking the actual exam
made it much more complicated, trying various approaches and
often running into trouble.

The coverage probability of I1 is identical to that of I0 since

P(μ ∈ I1) = P(μ ∈ I0 ∩ [0,∞))

= P(μ ∈ I0,μ ∈ [0,∞)) = P(μ ∈ I0). (4.1)

This simple one-line proof illustrates the power of looking for
the essence of a problem, and using mathematical notation ef-
fectively to reflect that essence. Written this way, the fact that
the coverage probability does not change is immediate from the
definition of intersection; most students tried breaking the prob-
lem into several cases and finding other formulas for I1, more
“explicit” in some sense but more complicated to handle. Note
also that this argument can easily be extended to other distribu-
tions on y and other constraints on the parameter.
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For the one-sided parts, a convention is needed for how to ac-
count for the fact that the “interval” I1 may be empty, in which
case the upper and lower limits are undefined (part of the point
here was to check whether students would carefully handle de-
tails such as this: the fact that the interval may be trivial is non-
trivial to deal with!). Let us take the convention that we will use
−∞ as the upper bound and ∞ as the lower bound when I1 is
empty (this is consistent with the standard convention that the
supremum of the empty set is −∞ and the infimum is ∞, which
is of course the only case where the infimum of a set exceeds
its supremum!).

Then we will check that the upper bound retains the same
coverage as in the unrestricted parameter space case, while the
lower bound coverage decreases. This is rather surprising: if the
two-sided coverage is preserved and the upper bound coverage
is preserved, does it not follow that the lower bound coverage is
preserved? The explanation is that in the case that I1 is empty,
both one-sided bounds fail and so there is overlap in the two
types of noncoverage. That is, because

P(interval fails) = P(upper limit fails) + P(lower limit fails)

− P(both limits fail)

= 0.05, (4.2)

we have that P(upper limit fails) = 0.025 implies P(lower
limit fails) > 0.025.

To check the upper limit, express the upper limit U1 as y +
1.96σ if y + 1.96σ ≥ 0, and −∞ otherwise. Then

P(μ ≤ U1) = P(μ ≤ y + 1.96σ,y + 1.96σ ≥ 0)

= P(μ ≤ y + 1.96σ), (4.3)

so the coverage probability is identical to that in the unrestricted
parameter space case.

To check the lower limit, express the lower limit L1 as
max(y − 1.96σ,0) if y + 1.96σ ≥ 0, and ∞ otherwise. Then

P(μ ≥ L1) = P(y − 1.96σ ≤ μ,0 ≤ μ,y + 1.96σ ≥ 0)

= P(−1.96σ ≤ y ≤ μ + 1.96σ), (4.4)

which is strictly less than P(μ ≥ y−1.96σ), the coverage prob-
ability for the unrestricted μ case.

(b) This part contrasts the confidence intervals encountered
in (a) with the intervals obtained from a Bayesian perspective,
and is a counterexample to the saying “you can’t prove a nega-
tive!” It is again almost immediate if one thinks about the fact
that the confidence intervals in (a) can be empty, but some stu-
dents tried writing down explicit priors and again doing messy
calculations (and of course they could not try all possible priors
in this way).

It is not possible that there is such a prior, since the confi-
dence interval I1 is empty with positive probability. The ab-
surdity of reporting an empty confidence interval is technically
legal in the frequentist sense, but a posterior interval cannot be
empty. Putting a prior on μ allows us to directly use the con-
straint on μ (by giving prior probability 0 to μ < 0), and the
posterior interval automatically incorporates this information.

(c) This part tests basic comfort with computing a posterior
distribution in a case where this can be done explicitly; it is

made much cleaner if the student knows that he or she can ig-
nore constant factors in the likelihood function and is able to
recognize a truncated Normal distribution.

By multiplying likelihood times prior and ignoring some
constant factors, we have

π(μ|y) ∝ exp

(
− (y − μ)2

2σ 2
− λμ

)
I (μ ≥ 0), (4.5)

where I (μ ≥ 0) is the indicator of μ ≥ 0 (a common and disas-
trous mistake is to forget to include the constraint on μ; students
need to be reminded to be careful about the ranges of possible
values). Completing the square, we have

π(μ|y) ∝ exp

(
− (μ − (y − σ 2λ))2

2σ 2

)
I (μ ≥ 0), (4.6)

which we recognize as a truncated Normal distribution. That
is, μ|y is distributed as the conditional distribution of W given
W ≥ 0, where W ∼ N (m,σ 2) with m = y − σ 2λ. A 95% in-
terval for μ is thus any interval (a, b) with P(a ≤ W ≤ b|W ≥
0) = 0.95. Taking a ≥ 0, the left side can be evaluated explicitly
in terms of the standard Normal CDF � by

P(a ≤ W ≤ b|W ≥ 0) = P(a ≤ W ≤ b)

P (W ≥ 0)

= �
(

b−m
σ

) − �
(

a−m
σ

)
�

(
m
σ

) . (4.7)

(d) This part tests basic understanding of posterior loss, in
a somewhat unusual setting where the loss function measures
loss from providing an interval rather than from providing a
point estimate. To simplify the calculations because of time con-
straints, the posterior distribution was assumed to take a very
simple form here.

We wish to minimize

P(μ /∈ I ) + (
1 − e−|I |)P(μ ∈ I )

= e−λa + (1 − e−a)(1 − e−λa)

= bλ+1 − b + 1,

where I is the interval [0, a] and b = e−a . By basic calculus,
there is a unique minimum at b = ( 1

λ+1 )1/λ (the student should
check that there is a unique minimum there, not just that the
derivative is 0 there!). This corresponds to

a = − logb = log(λ + 1)

λ
. (4.8)

5. AN ACTUAL PH.D. QUALIFYING EXAM PROBLEM
(HARVARD STATISTICS, MENG 2009)

During a recent departmental seminar, our speaker made an
assertion along the following lines: “I have two estimators, β̂

and β̂0 for the same parameter β . The former is more robust
because it is derived under a more general model, and the sec-
ond is more efficient because it is obtained assuming a more
restrictive model. The following is a compromise between the
two:

β̂c = (β̂ − β̂0)
2

V̂(β̂) + (β̂ − β̂0)2
β̂ + V̂(β̂)

V̂(β̂) + (β̂ − β̂0)2
β̂0, (5.1)
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where V̂(β̂) is a consistent estimate of the variance of β̂ . This
should work better because when the more restrictive model is
true, β̂c tends to give more weight to the more efficient β̂0, and
at the same time, β̂c remains consistent because asymptotically
it is the same as β̂ .”

As some of you might recall, I was both intrigued by and
skeptical about this assertion. This problem asks you to help
me to understand and investigate the speaker’s assertion. To do
so, let us first formalize the meaning of a general model and a
more restrictive one.

Suppose we have iid data 	Y = {y1, . . . , yn} from a model
f (y|θ), where θ = {α,β}, both of which are scalar quantities,
with β the parameter of interest, α the nuisance parameter, and
the meaning of β does not depend on the value of α. Suppose
the restrictive model takes the form f0(y|β) = f (y|α = 0, β),
that is, under the restrictive model we know the true value of α

is zero. Let θ̂ = {α̂, β̂} be a consistent estimator of θ under the
general model f (y|θ), and let β̂0 be a consistent estimator of
β0, which is guaranteed to be β only when the restrictive model
f0(y|β) holds. We further assume all the necessary regularity
conditions to guarantee their joint asymptotic normality, that is,

√
n

[(
θ̂

β̂0

)
−

(
θ

β0

)]

→ N

((
0
0

)
,	 =

(
	θ CT

C σ 2
β0

))
. (5.2)

For simplicity of derivation, we will assume 	 ≥ 0 (i.e., a semi-
positive definite matrix) is known, and the convergence in (5.2)
is in the L2 sense (i.e., Xn → X means limn→∞ E‖Xn−X‖2 =
0).

(A) The speaker clearly was considering a variance-bias
trade-off, assuming that β̂0 is more efficient than β̂ when the
more restrictive model is true. Under the setup above, prove
this is true asymptotically when θ̂ and β̂0 are maximum likeli-
hood estimators (MLE, as in the superscript below) under the
general model and restrictive model respectively and when we
use the mean squared error (MSE) criterion (we can then as-
sume 	θ and σ 2

β are given by the inverse of the corresponding
Fisher information). That is, prove that if the restrictive model
holds, the (asymptotic) relative efficiency (RE) of β̂0 to that of
β̂ is no less than 1:

RE ≡ lim
n→∞

E[β̂MLE − β]2

E[β̂MLE
0 − β]2

≥ 1, (5.3)

and give a necessary and sufficient condition for equality to
hold. Provide an intuitive statistical explanation of this result,
including the condition for equality to hold.

(B) Give a counterexample to show that (5.3) no longer holds
if we drop the MLE requirement. What is the key implication
of this result on the speaker’s desire to improve β̂ via β̂0?

(C) Since we assume 	 is known, we can replace V̂(β̂) in
(5.1) by σ 2

β/n, where σ 2
β is an appropriate entry of 	θ . We can

therefore re-express (5.1) as

β̂c = (1 − Wn)β̂ + Wnβ̂0, where
(5.4)

Wn = σ 2
β

σ 2
β + n(β̂ − β̂0)2

.

Prove that, under our basic setup (5.2), limn→∞ E(Wn) = 0 if
and only if β �= β0.

(D) Using Part (C) to prove that whenever β �= β0,

lim
n→∞

E[β̂c − β]2

E[β̂ − β]2
= 1. (5.5)

Which aspect of the speaker’s assertion does this result help to
establish?

(E) To show that the condition β �= β0 cannot be dropped
in Part (D), let us consider that our data {y1, . . . , yn} are iid
samples from the following bivariate normal model:

Y =
(

X

Z

)
∼ N

((
α

β

)
,

(
1 ρ

ρ 1

))
, (5.6)

where ρ is known. Show that under this model, when we use
MLEs for β̂ and β̂0,

√
n(β̂c − β) has exactly the same distribu-

tion as

ξ = Z0 − ρ(X0 + √
nα)W̃n

= (Z0 − ρX0) + ρ[(1 − W̃n)X0 − W̃n

√
nα], (5.7)

where (X0,Z0)
� has the same distribution as in (5.6) but with

both α and β set to zero, and

W̃n ≡ W̃n(ρ,α) = 1

1 + ρ2(X0 + √
nα)2

.

Use the right-most expression in (5.7) to then show that

nE[β̂c − β]2 = 1 − ρ2 + ρ2Gn(ρ,α), (5.8)

where

Gn(ρ,α) = E
[
(1 − W̃n(ρ,α))X0 − W̃n(ρ,α)

√
nα

]2
. (5.9)

(F) Continuing the setting of Part (E), use (5.8) to prove that
when α = 0, for all n,

E[β̂MLE
0 − β]2 < E[β̂c − β]2 < E[β̂MLE − β]2, (5.10)

as long as ρ �= 0. Why does this result imply that β �= β0 cannot
be dropped in Part (D)? What happens when ρ = 0?

(G) Still under the setting of Parts (E) and (F), verify that
Gn(0, α) = nα2, and then use this fact to prove that as long as
nα2 > 1, there exists a ρ∗

n,α > 0 such that for all 0 < |ρ| < ρ∗
n,α ,

nE[β̂c − β]2 > 1 = nE[β̂MLE − β]2. (5.11)

Does this contradict Part (D)? Why or why not?
(H) What do all the results above tell you about the speaker’s

proposed estimator β̂c? Does it have the desired property as the
speaker hoped for? Would you or when would you recommend
it? Give reasons for any conclusion you draw.
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6. ANNOTATED SOLUTION TO THE MENG
2009 PROBLEM

(A) This part tests a student’s understanding of the most ba-
sic theory of likelihood inference, especially the calculation of
Fisher information, and the fact that the MLE approach is ef-
ficient/coherent in the sense that when more assumptions are
made its efficiency is guaranteed to be nondecreasing.

The result (5.3) is easily established using the fact that if we
write the expected Fisher information under the general model
(with n = 1) as

I (θ) =
(

iαα iαβ

iαβ iββ

)
, and notationally

(6.1)

I−1(θ) =
(

iαα iαβ

iαβ iββ

)
,

then iββ = [iββ − i2
αβi−1

αα ]−1. The Fisher information under the
restrictive model of course is given by iββ with α = 0. Conse-
quently, under our basic setup, when α = 0,

RE = iββ

i−1
ββ

=
[

1 − i2
αβ

iααiββ

]−1

≥ 1, (6.2)

where equality holds if and only if iαβ = 0 when α = 0, that
is, when β and α are orthogonal (asymptotically) under the re-
strictive model. Intuitively, the gain of efficiency of β̂MLE

0 over

β̂MLE is due to β̂MLE’s covariance adjustment via α̂MLE − α

when α = 0. However, this adjustment can take place if and
only if β̂MLE is correlated with α̂MLE when α = 0, which is the
same as iαβ �= 0.

(B) This part in a sense is completely trivial, but it carries
an important message. That is, the common notation/intuition
that “the more information (e.g., via model assumptions) or the
more data, the more efficiency” can be true only when the pro-
cedure we use processes information/data in an efficient way
(e.g., as with MLE).

There are many trivial and “absurd” counterexamples. For
example, in Part (A), if we use the same MLE under the general
model, but only use 1/2 our samples when applying the MLE
under the restrictive model, then the RE ratio in (6.2) obviously
will be deflated by a factor of 2, and hence it can easily be made
to be less than 1.

[A much less trivial or absurd example is when we want to
estimate the correlation parameter ρ with bivariate normal data
{(xi, yi), i = 1, . . . , n}. Without making any restriction on other
model parameters, we know the sample correlation is asymp-
totically efficient with asymptotic variance (1 − ρ2)2/n (see
Ferguson 1996, chapter 8). Now suppose our restrictive model
is that both X and Y have mean 0 and variance 1. The Fisher
information for this restrictive model is (1 + ρ2)/(1 − ρ2)2,
therefore RE = 1 + ρ2 ≥ 1, which confirms Part (A).

However, since E(XY) = ρ under the restrictive model,
someone might be tempted to use the obvious moment estima-
tor r̂n = ∑

i xiyi/n for ρ. But one can easily calculate that the
variance (and hence MSE) of r̂n is (1 + ρ2)/n for any n. Con-
sequently, the RE of r̂n compared to the sample correlation is
(asymptotically) (1 − ρ2)2/(1 + ρ2), which is always less than
1 and actually approaches 0 when ρ2 approaches 1.

So the additional assumption can hurt tremendously if one is
not using an efficient estimator! (A qualifying exam problem
from a previous year also dealt with this.) Moment estimators
are used frequently in practice because of their simplicity and
robustness (to model assumptions), but this example shows that
one must exercise great caution when using moment estimators,
especially when making claims about their relative efficiency
when adding assumptions or data.]

(C) Intuitively this result is obvious, because when β �= β0,
the denominator in Wn can be made arbitrarily large as n in-
creases, and hence its expectation should go to zero. But this
part tests a student’s ability to make such “hand-waving” ar-
guments rigorous without invoking excessive technical details,
which is an essential skill for theoretical research.

Let �n = √
n(β̂ − β̂0 − δ), where δ = β − β0. Then by

(5.2), �n converges in L2 to N(0, τ 2), where τ 2 = a�	a, with
a = (0,1,−1)�. Therefore, there exists an n0 such that for all
n ≥ n0, V(�n) ≤ 2τ 2. Consequently, for any ε > 0, if we let
Mε = √

2τ 2/ε and An = {|�n| ≥ Mε}, then by Chebyshev’s
inequality, we have

Pr(An) = Pr(|�n| ≥ Mε) ≤ V(�n)

M2
ε

≤ ε. (6.3)

Now if δ �= 0, then as long as n ≥ M2
ε /δ2, we have, noting 0 <

Wn = σ 2
β

σ 2
β+(�n+√

nδ)2 ≤ 1,

0 ≤ E(Wn) = E(Wn1An) + E(Wn1Ac
n
)

≤ Pr(An) + σ 2
β

σ 2
β + (

√
n|δ| − Mε)2

, (6.4)

where in deriving the last inequality we have used the fact that
(u + v)2 ≥ (|u| − |v|)2. That E(Wn) → 0 then follows from
(6.3) and (6.4) by first letting n → ∞ in (6.4), and then letting
ε → 0 in (6.3).

To prove the converse, we note that when δ = 0, Wn =
σ 2

β

σ 2
β+�2

n

. Therefore, by Jensen’s inequality E(X−1) ≥ [E(X)]−1,

we have

E(Wn) ≥ σ 2
β

σ 2
β + E(�2

n)
→ σ 2

β

σ 2
β + τ 2

> 0.

(D) This part is rather straightforward, as long as the stu-
dent is familiar with the Cauchy–Schwarz inequality (which is
a must!).

From (5.4), we have
√

n(β̂c − β) = √
n(β̂ − β) − WnDn,

where Dn = √
n(β̂ − β̂0). It follows then

nE(β̂c − β)2 = nE(β̂ − β)2 + E(W 2
nD2

n)

− 2E[√n(β̂ − β)(WnDn)]. (6.5)

Under our assumptions, the first term on the right side of (6.5)
converges to σ 2

β > 0, so (5.5) follows if we can establish that
the second term on the right side of (6.5) converges to 0. This
is because, by the Cauchy–Schwarz inequality, the third term
on the right side of (6.5) is bounded above in magnitude by

2
√

nE(β̂ − β)2E(W 2
nD2

n), and hence it must then converge to
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0 as well if the second term does so. But by the definition of Wn

in (5.4),

E(W 2
nD2

n) = E

[
Wn

σ 2
βD2

n

σ 2
β + D2

n

]
≤ σ 2

βE(Wn), (6.6)

which converges to 0 by Part (C) when δ = β − β0 �= 0. The
implication of this result is that the speaker’s assertion that β̂c

is asymptotically the same as β̂ is correct, as long as β �= β0.
[Note that there is a subtle difference between β = β0 and α =
0. The latter implies the former, but the reverse may not be true
because one can always choose β̂0 to be β̂ even if the restrictive
model is not true.]

(E) This part tests a student’s understanding of multivariate
normal models and the basic regression concepts, with which
one can complete this part without any tedious algebra.

The most important first step is to recognize/realize that un-
der the general model, β̂MLE = Z̄n, and under the restrictive
model, β̂MLE

0 = Z̄n −ρX̄n, where X̄n and Z̄n are the sample av-
erages; hence Dn = ρ

√
nX̄n. The first expression in (5.7) then

follows from (5.4) when we rewrite it as β̂c = Z̄n − Wn(ρX̄n)

and let X0 = √
n(X̄n − α) and Z0 = √

n(Z̄n − β), and the fact
that (X0,Z0) has the same bivariate normal distribution as in
(5.6) but with zero means. The second expression is there to
hint at the independence of the two terms, because the first term
(Z0 − ρX0) is the residual after regressing out X0, and the sec-
ond term is a function of X0 only. With this observation, (5.8)
follows immediately because the residual variance is 1 − ρ2.

(F) Again, this part does not require any algebra if a student
understands the most basic calculations with bivariate normal
and regression.

When α = 0, W̃n(ρ,0) = 1
1+ρ2X2

0
, and

Gn(ρ,0) = E
[
X0(1 − W̃n(ρ,0))

]2

= E

[
X2

0

(
ρ2X2

0

1 + ρ2X2
0

)2]
≡ Cρ, (6.7)

where the constant Cρ > 0 is free of n and it is clearly less
than E(X2

0) = 1. Therefore the identity (5.8) immediately leads
to nE[β̂c − β]2 = 1 − (1 − Cρ)ρ2, which is strictly larger than
nE[β̂MLE

0 −β]2 = 1−ρ2 and smaller than nE[β̂MLE −β]2 = 1,
as long as ρ �= 0. Clearly in this case (5.5) of Part (D) will not
hold because the ratio there will be 1 − (1 − Cρ)ρ2 < 1, hence
the condition β �= β0 cannot be dropped in Part (D)—note when
ρ �= 0, β �= β0 is equivalent to α �= 0.

When ρ = 0, β̂MLE = β̂MLE
0 , and hence regardless of the

value of α, Part (D) holds trivially even though the condition
β �= β0 is violated. This also provides another (trivial) example
that β = β0 does not imply α = 0, as we discussed at the end of
the solution to Part (D) above.

(G) This part demonstrates the need for some basic math-
ematical skills in order to derive important statistical results
(that cannot be just “hand-waved”!).

When ρ = 0, W̃n(0, α) = 1, and hence Gn(0, α) = nα2.
From its expression (5.9), the (random) function under expecta-
tion is continuous in ρ and bounded above by X2

0 +nα2, which
has expectation 1 + nα2. Hence, by the Dominated Conver-
gence Theorem, Gn(ρ,α) is a continuous function of ρ for any

given α and n. Consequently, whenever Gn(0, α) = nα2 > 1,
there must exist a ρ∗

n,α > 0, such that for any |ρ| ≤ ρ∗
n,α ,

Gn(ρ,α) > 1 as well. It follows then, when 0 < |ρ| ≤ ρ∗
n,α ,

that from (5.8),

nE[β̂c − β]2 = 1 − ρ2 + ρ2Gn(ρ,α)

> 1 − ρ2 + ρ2 = 1 = nE[β̂MLE − β]2. (6.8)

Inequality (6.8), however, does not contradict Part (D) be-
cause the choice of ρ∗

n,α depends on n, so Part (D) implies that
as n increases, ρ∗

n,α → 0.
(H) Parts (A) and (B) demonstrate that in order for the pro-

posed estimator (5.1) to achieve the desired compromise, a min-
imal requirement is that there should be some “efficiency” re-
quirement on the estimation procedures, especially the one un-
der the more restrictive model. Otherwise it would not be wise
in general to bring in β̂0 to contaminate an already more effi-
cient and more robust estimator β̂ .

Parts (C) and (D) proved that under quite mild conditions, the
proposed β̂c is equivalent asymptotically to the estimator un-
der the general model, as long as the estimator under the more
restrictive model is asymptotically biased, that is, as long as
β0 �= β . So in that sense the speaker’s proposal is not harmful
but not helpful either asymptotically, and therefore any possible
improvement must be a finite-sample one (which apparently is
what the speaker intended and indeed the only possible way if
one uses MLE to start with).

Parts (E)–(G) give an example to show that when the restric-
tive model is true, the speaker’s proposal can achieve the de-
sired compromise, that is, β̂c beats β̂MLE in terms of MSE for
all n, but it is not as good as β̂MLE

0 . The latter is not surprising

at all because in this case β̂MLE
0 is the most efficient estimator

(asymptotically, but also in finite sample given its asymptotic
variance is also the exact variance).

However, when the restrictive model is not true, there is no
longer any guarantee that β̂c will dominate β̂ (indeed this is
not possible in general whenever β̂ is admissible). The result in
Part (G) also hinted that in order for β̂c to beat β̂ , the “regres-
sion effect” of β̂ on α̂ must be strong enough (e.g., expressed
in this case via |ρ| > ρ∗

n,α) in order to have enough borrowed

efficiency from β̂0 to make it happen.
In summary, the speaker’s proposal can provide the desired

compromise when the restricted model is close to being true
and the original two estimators are efficient in their own right,
but it cannot achieve this unconditionally. In general, it is not
clear at all when one should use such a procedure, especially
when the original two estimators are not efficient to start with.

7. AFTERSTAT

The post-exam phase, which we call afterstat rather than af-
termath, is also an integral part of the dialogue. Of course, there
is a natural tendency for students to be concerned mainly about
their grades (and whether they passed), but the clearer the rel-
evance of the exam is to their research, the more they will care
about understanding the problems deeply. In order for the af-
terstat to reinforce and enhance the learning from the exam, we
suggest the following.
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(1) Allow and encourage students to keep copies of the ques-
tions immediately after the exam, so that it is easier for
them to discuss the problems with each other and think
more about them. After the grading is done, let students
have their exams back (or copies, if the originals need to be
retained).

(2) The grading scheme can itself mirror research progress
(with a lot of partial credit given for insights that would be
useful in the corresponding research problem). Solving a
special case (often by looking at simple and extreme cases)
is an extremely valuable strategy and often is itself sub-
stantial progress, and this can be reflected in the grading,
letting the students know in advance that substantial par-
tial credit is often available for solving an insightful special
case. Checking answers, solving the problem in more than
one way, and giving clear intuitive explanations in addition
to mathematical derivations should all be rewarded.

(3) Encourage the students to do a systematic, honest self-
diagnosis after they see their graded exams. There is a ten-
dency for students to exaggerate how much was due to “just
careless mistakes” when in fact with a stronger understand-
ing of the material, many of the mistakes would be less
likely to be made and (if made) more likely to be detected.

(4) Require students to submit rewrites of problems on which
they made mistakes, and even for problems on which they
received full credit but did the problem in a long, brute
force method when they could have had a lot more moon-
shine. At Harvard, most Ph.D. students end up rewriting
at least one qual problem, interacting one-on-one with the
appropriate faculty, and sometimes going through several
iterations on each. Students often learn a lot from this ex-
tension of the dialogue, and from revisiting problems rather
than blotting them out of their memories. A recent student
wrote the following about the rewrite process (and many
other students have expressed similar sentiments):

I’m also glad I’ve been given the opportunity to rewrite all
questions . . . It’s going to make me a better statistician for
sure. Rewriting is definitely a worthwhile exercise, looking
back at some of my first solutions, I can see the obvious
errors and gaps. Now I can think long and hard about these
problems and try and come up with different ways to attack
them. It’s great.

When little emphasis is placed on the afterstat, an exam often
goes in one ear and out the other. The additional effort required
for revisiting exams in this way, and for carefully grading in
a way that reflects the nano-project goals, is amply rewarded
by improved understanding and retention of the key ideas. Se-
quels to Stat 399 can further fortify and extend what the stu-
dents have learned; for example, we recently taught a work-
shop course (Stat 366) on how to nurture a research idea into
a publication. The Visiting Committee in 2010, consisting of
six statisticians appointed to evaluate the department, observed
a marked improvement in several graduate education issues re-
ported by the previous (2006) Visiting Committee, noting that
“the new courses 303 (The Art and Practice of Teaching Sta-
tistics), 399 (Problem Solving in Statistics), and 366 (Research
Cultivation and Culmination) have relieved unnecessary anxi-
ety over teaching, qualifying exams, and research.”

Indeed, our proposed exam process provides the students a
“nano taste” of the research publication process. Few submitted
articles are accepted as is without any need for revisions, and
likewise for quals it is expected that revisions will be needed
for most students. (Also like article submissions, there will be
exam submissions that are too low in quality to be revisable, and
therefore must be rejected; the students who fail the exam often
have a second and final chance.) The analogy to the publication
process also carries through to the grading. Faculty who grade
the exams should provide “reviewer’s comments”: rather than
providing answers, they should raise important issues, point
out any gaps and mistakes, and make both general and specific
comments. In both cases, the first submission is just part of the
process, important but still just one piece in the dialogue.

8. EXTENSIONS AND CHALLENGES

Real-life research projects can be used to develop an essen-
tially unlimited number of examination problems like those
above. In addition to the other advantages discussed earlier,
such problems help make the qualifying exam process feel to
students like an essential learning experience rather than an ar-
bitrary hoop to jump through, disconnected from their future
research. For problems inspired by a seminar talk (such as the
Meng 2009 problem), a further advantage is in providing stu-
dents with an extra incentive to attend seminars!

The above problems were designed for take-home Ph.D.-
level exams, but similar design goals can be applied to many
other levels and settings (even for homework problems, not just
exams). A take-home exam is not always feasible due to the
possibility of cheating or finding answers online, but the key
message—that a carefully designed examination process is an
intensified deeper-learning opportunity—remains the same in
many other situations. For example, here are several variations
for the Meng 2009 problem, suitable for different settings yet
each with a deeper-learning aim.

For an in-class examination for a statistical modeling course,
we can focus on the theme underlying Parts (A)–(B) only, with
questions such as:

(1) Does knowing more about a model always lead to a better
estimator or test?

(2) How does one quantify knowing more, better, and their re-
lationship?

Or for a statistical theory course, we can provide stu-
dents with the annotated solution from Section 6 and ask
them to write an essay (as part of a take-home exam) on
what the statistical questions all these formulas intend to
address are, and:

(3) Are there other/better ways to answer the same questions?
(4) What are some concrete examples of such trade-offs be-

tween robustness and efficiency?
(5) How can one convey the summaries in Part (H) to someone

who is interested in using (5.1) but is not equipped to digest
the technical details in other parts?

For some more mathematically oriented students, we can
even imagine engaging them by asking them to check whether

The American Statistician, November 2010, Vol. 64, No. 4 289



there is any error or nonrigorous derivation in the anno-
tated solution in Section 6, and if so to provide correc-
tions/modifications. (Mistakes, especially the subtle ones, are
another excellent source for deeper learning.) We can then en-
tice them to think about how their beautiful mathematics helps
to answer the underlying statistical/scientific questions.

There are also computer-based variations, where the students
can simulate the performance of the estimators under differ-
ent conditions; indeed, computationally intensive problems can
very naturally be put in the nano-project format. But of course
when programming is required, the problem is only suitable for
take-home exams, and the exam writer must be mindful of the
large variation in students’ abilities in programming and debug-
ging.

Lest anyone complain about the intensified difficulty of com-
ing up with such problems in the first place, we would like to
emphasize that the “intensified dialogue” directly benefits the
exam writer in ways that go beyond the pedagogical advan-
tages. Indeed, we have learned a great deal from preparing qual-
ifying exam problems and commenting on problems proposed
by other faculty. For example, studying Mukherjee and Chatter-
jee’s (2008) proposal while designing the Meng 2009 problem
revealed a misleading insight in gene-environment interaction
studies and a partial shrinkage phenomenon of partially Bayes
methods, resulting in a full research article (Meng 2010).

The health of such an exam process relies heavily on having
strong support from the faculty. What if, despite the benefits de-
scribed above, not many faculty are willing to take the time to
design such problems? Here again the view that Stat 399, the
exam itself, and the afterstat are an inseparable process is help-
ful. Visiting such a course, it becomes palpably clear that a well-
designed problem is fun and insightful for everyone to discuss,
with benefits extending over many years as the problem can be
discussed for years to come. The more faculty who participate,
the more a sense of teamwork evolves, improving many types
of communication and helping convince the rest of the faculty

that this effort is worthwhile. That is, this exam process also en-
hances the dialogues among faculty, learning from each other
both research insights and pedagogical ideas.

Many of us understand well that the ideal scholarship con-
sists of excellence in both research and pedagogy; our limited
experiences suggest that a course such as Stat 399, combined
with nano-project problems and a thoughtful afterstat, forms
an effective exam process and a constant reminder to both stu-
dents and faculty of the importance of interweaving research
and pedagogy. Without being able to experiment on students,
it is challenging to show definitively that our suggested process
better prepares students for research than more “textbook-style”
approaches; we hope to obtain empirical evidence to support
or make us re-evaluate the anecdotal evidence and pedagogi-
cal principles we currently have available. We would welcome
hearing about the experiences of others in making the exam
process both predictive and productive, and seeing the “moon-
shine” or even “sunshine” that they have brought to these criti-
cal issues.

[Received January 2010. Revised September 2010.]
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